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The distribution of knots in the Petaluma model
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The representation of knots by petal diagrams (Adams et al 2012) naturally defines
a sequence of distributions on the set of knots. We establish some basic properties
of this randomized knot model. We prove that in the random n—petal model the
probability of obtaining every specific knot type decays to zero as n, the number of
petals, grows. In addition we improve the bounds relating the crossing number and
the petal number of a knot. This implies that the n—petal model represents at least
exponentially many distinct knots.

Past approaches to showing, in some random models, that individual knot types occur
with vanishing probability rely on the prevalence of localized connect summands
as the complexity of the knot increases. However, this phenomenon is not clear in
other models, including petal diagrams, random grid diagrams and uniform random
polygons. Thus we provide a new approach to investigate this question.

57M25; 60B05

1 Introduction

The study of random knots and links emerges from various perspectives, both theoretical
and applied. See Even-Zohar [13] for a survey of randomized knot models in the
literature. We here pursue the study of the Petaluma model, based on petal diagrams;
see Adams, Crawford, DeMeo, Landry, Lin, Montee, Park, Venkatesh and Yhee [2].
This model has the advantage of being based on one random permutation, and it
seems related to knotting phenomena arising in biology and elsewhere. In previous
work [15; 14] we investigated the distribution of finite-type invariants in the Petaluma
model. Here we return to some remaining fundamental questions about this model,
such as how many knots can appear and with what probabilities.

Consider a petal diagram with an odd number 2n 4 1 of petals, as in Figure 1. Each
assignment of 2n + 1 heights to the 2n + 1 straight arcs above the multicrossing point
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Figure 1: Petal diagrams with 3, 5, 7 and 9 petals

determines a knot. Indeed, the knot type is well-defined by the relative ordering of
the heights, through a smooth curve in R? that projects to this diagram. The random
variable K5, is the knot type obtained from a uniformly random sequence of heights
7 € Sap+1. These heights 7 (1), w(2),... correspond to the straight arcs in the order
they occur as one travels along the diagram.

For example, K3 is the unknot with probability 1, while K5 yields a trefoil knot
with probability % This is obtained by the permutation 7 = (1, 3,5,2,4) € S5 and
by its rotations and reflections. The permutation (1,5, 3,7,2,4,6) € S7 yields the
figure-eight knot. Adams et al give more examples, and prove that all knots appear in
this model.

Theorem 1 [2] For every knot K there exists an odd p € N such that K can be
realized by a p—petal diagram with a permutation w € S .

In fact, the knot K will then have a g—petal diagram for every odd ¢ > p. This follows
easily by inserting two consecutive heights to the permutation, without changing the
knot type. The smallest such p is denoted by p(K), the petal number of K.

The efficiency of this representation is studied by relating it to regular knot diagrams,
which are planar projections that are one-to-one except for finitely many transverse
double points. The crossing number, denoted by c(K), is the least number of such
crossings in any diagram of K.

Example Adams et al [2] precisely compute the petal number for two infinite families
of knots:

(1) T, = the (n,n+1)—torus knot, where p(T,) =2n+1 and ¢(Ty,) =n?>—1.
(2) S, = the (2n—1)—twist knot, where p(S,) =2n+1 and ¢(S,) =2n—1.

These explicit constructions are optimal for petal representations in the following sense:
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Theorem 2 [2; 1] For every nontrivial knot K ,

c(K)< [ Lp(K)|*—1.

If K is alternating, then
c(K) < p(K)-2.

Here we consider the opposite direction and give a quantitative bound on the worst
case, which turns out to be only a constant factor away from the second example above.

Theorem 3 For every nontrivial knot K,

p(K) <2¢(K)—1.

Theorem 3 is proved in Section 2 via the analysis of an efficient algorithm that transforms
a regular knot diagram into a petal diagram with a suitable permutation. This, in
particular, yields a constructive proof of Theorem 1.

Theorem 3 shows that (2n—1)—petal diagrams represent at least as many knots as
regular knot diagrams with n crossings. Some explicit constructions are known to
generate 2(2.68") different n—crossing knots; see Welsh [25]. Consequently:

Corollary 4 There are at least €2(2.68") distinct (2n—1)—petal knots.

A natural question, which applies to any random model of knots, asks for the probability
of generating the unknot. This goes back to the oldest models of random knots, by
Delbruck [8] and by Frisch and Wasserman [16], that are based on certain types of
polygonal paths in Z3 and in R3. The Delbruck—Frisch-Wasserman conjecture asserts
that the resulting knot is nontrivial with high probability, ie the probability of the unknot
decays to zero as the number of steps grows. This was positively settled in various
models by finding small localized connected summands in the prime decomposition of
the knot; see Diao [9], Diao, Pippenger and Sumners [10], Pippenger [21], Soteros,
Sumners and Whittington [23] and Sumners and Whittington [24]. Similar reasoning
worked for another model, based on random planar diagrams; see Chapman [5]. How-
ever, we don’t expect this behavior of the prime decomposition in the Petaluma model,
and hence we have to use another knot invariant.

The Casson invariant c,(K) is the coefficient of x? in the Alexander-Conway polyno-
mial Cg(x) =1+ cyx2 + -+ see Lickorish [19]. It is also the unique second-order
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invariant of knots, up to affine transformations; see Chmutov, Duzhin and Mostovoy [6].
In the Petaluma model we showed E[cs(K2y41)K]= puin?) + 012k, and obtained
formulas for the normalized limiting moments py [15]. However, it is impossible to
conclude that with high probability c, does not vanish based solely on finitely many
limiting moments; see Krein and Nudel’man [18]. Here we overcome this difficulty.

Theorem 5 Foreveryn € N and v € Z,

Consequently, for every knot K ,

n—o0

P[K2n+1 = K] — 0,

and, in particular, K,,+1 is knotted with high probability.

Theorem 5 is proved in Section 3. Our approach involves the analysis of the formulas for
the Casson invariant and for the linking number, evaluated on random knots and links,
together with a simple coupling argument. As these invariants are given by summation
over all crossings, we show that a small perturbation of the heights’ ordering is likely
to spread their distribution over many values, and deduce that they cannot be too
concentrated.

In our proof, we establish a similar bound, P[Ik(L3,,2,) =v] < 6/y/min(m, n), for the
linking number of a random (2m, 2n)—petal link. See Section 3 for precise definitions
and statement.

Our approach to the Delbruck—Frisch—Wasserman conjecture is different than those
previously applied to other constructions of random knots, as it doesn’t rely on estab-
lishing the presence of small connected summands. Indeed, the occurrence of such
summands seems less likely in the Petaluma model, where the typical “step length” is
comparable to the diameter of the whole curve. We thus expect our methods to extend
to other well-studied knot models, in which local entanglements are similarly believed
to be rare.

For example, two random permutations 7,0 € S, define a knot via an n x n grid
diagram [4; T]. See also [15]. It is very plausible that an adaptation of our argument,
based on perturbing one of these permutations, would yield a proof of the still-open
Delbruck-Frisch—Wasserman conjecture in this setting. Another case in point is Millett’s
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uniform random polygon [20] with n segments, where the spatial confinement to the
cube seems to decrease local knotting, and the conjecture is yet to be verified.

Further discussion and open questions appear at the end of each section.

2 Petal number and crossing number

We first give a simple proof of p(K) < 4c(K), and then improve it to p(K) < 2¢(K)
with a more technical argument.

Proof of p(K) < 4c(K) The proof refines the construction of petal diagrams by
Adams et al [2]. Basically, we preprocess the planar embedding of a minimal-crossing
knot diagram, and then run their algorithm.

Consider a knot diagram with n crossings. Travel along the knot diagram starting
from some basepoint B. Mark each crossing as ascending (A) or descending (D),
depending on whether its lower or upper strand is visited first. See Figure 3, top-left.
Note that if all the vertices have the same type then K is the unknot.

This yields two finite sets of points in the plane which can be separated by a generic
simple closed curve C. We assume that C passes through B, avoids all the crossing
points of the diagram, and crosses it transversely finitely many times. It simplifies
the construction to assume that the point at infinity lies on C, either by choosing it
accordingly or by applying an isotopy of the diagram in S2.

Let E be any edge of the knot diagram, viewed as a 4-regular plane graph. We
claim that the separating curve C can be chosen so that it does not intersect £ more
than twice. Indeed, if they intersect three times, then the local operation shown in
Figure 2 keeps A and D separated and C connected. Note that this is the only possible
configuration of three adjacent intersection points on E, up to rotations and reflections.
If one of them is the basepoint B then we can let the new curve C pass through it
again. Repeating for all 2n edges as needed, C intersects the knot at < 4n points.

The rest of the construction is almost unchanged from [2], and we briefly repeat its
main steps. The reader is referred to [2] for more details and illustrations.

(1) Isotope the plane diagram so that C is the y-axis, ascending crossings have
positive x—coordinate and descending crossings have negative x —coordinate.

(2) Further isotope the knot diagram so that for |x| <1 it consists of an even number
of horizontal segments, intersecting the y-—axis.
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Figure 2: Reducing intersections. The cyclic ordering of parts of C is marked
by 1, 2, 3.

(3) Start at B = (0, yp) and travel along the knot diagram. The point B and the
other p intersection points (0, y1),..., (0, yp) cut the knot into p + 1 arcs. Let
Yp+1=Jo-

(4) Lift the diagram to R so that above (0, y) it remains a straight segment z = kx
for |x| <1, and the angle arctan(%) is nondecreasing within each arc.

(5) Instead of lifting B to (0, yg, 0), with two half-segments to (—1, y,41, —(p+1))
and (1, yg, 0), connect these two points directly by a straight-line segment.

Note that step 4 preserves the knot type thanks to the condition on the 4 and D
crossings. Indeed, by the choice of line segments between arcs and lifting within them,
Z is increasing throughout our travel along the knot. Since x > 0 in each ascending
point, the z—coordinate of the lifted curve rises between its two visits to such a point.
The case of decreasing points is similar.

It follows from the construction that the projection of the lifted knot along the y—
direction to the xz—plane yields a single multicrossing point at the origin. Moreover,
the projected curve has %( p—1) petals contained in the first quadrant, %( p—1) petals
in the third quadrant and one fat petal encompassing the fourth quadrant. This is a
petal diagram with p < 4n petals. O

To summarize, the construction in the above proof underlies the following petal algo-
rithm (cf [1]), representing a knot by a petal diagram given a regular diagram.

> Travel along the diagram starting at some point B, and identify crossing types
in {4, D}.

> Choose a generic curve C, containing B, separating A’s from D’s.
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> Travel along C and label with 1,..., p all intersections with the diagram other
than B.

> Travel again along the diagram and record the ordering of the labels as = € S),.

Remark By the above argument, in the third and fourth steps one has to travel along
the curve C starting from the point at infinity, and along the knot diagram starting
from the basepoint B. However, as observed in [1], the resulting knot type is preserved
under rotations of & from both directions: K,(rw) = K,(mw o p) = Kp(po ), where
p(x)=(x+1) mod p. It follows that these two starting points can be chosen arbitrarily.

We have shown that there always exists such a C with at most 4n intersections. Now
we improve the bound by choosing C even more efficiently.

Proof of p(K) <2c(K) The upper bound is derived by better controlling the number
in {0, 1,2} of intersection points on each edge. Since the curve C is separating, an
edge between two vertices of type A and D contributes one point of intersection. We
construct C more carefully, so that the edges that are disjoint from it can be at least as
frequent as those with two intersection points.

Consider a knot diagram of K with n crossings, not necessarily one that realizes the
crossing number. As before, we view K as a 4-regular plane graph with a basepoint B
on one edge and vertices of type A or D, as in Figure 3, top-left.

It is sufficient to prove p(K) < 2n for the case of 3—edge-connected diagrams, ones that
remain connected whenever 2 edges are removed. Otherwise, find a 2—edge cut that
disconnects the diagram. It follows that K is a connected sum K; # K, with diagrams
of ny and n, crossings, respectively, where n{ 4+ n, = n. By the subadditivity of petal
numbers [2, Theorem 2.4] and induction on 7, we have p(K) < p(Kp) + p(K3) <
2ny + 2n, = 2n. We note that if K is prime and given by a diagram with ¢(K)
crossings then it is already 3—edge-connected.

As usual, the vertices of the dual graph K’ correspond to the faces of the diagram, and
edges correspond to edges. K’ is simple, without loops or multiple edges, since the
knot diagram is 3—edge connected. It is also bipartite since the diagram is 4-regular
and planar, so its faces admit a checkerboard coloring.

We define a subgraph G of K’, with the same set of vertices, whose edges are those
that correspond to the A—D edges in the diagram. Denote by 2m the number of edges,
as this number must be even. Recall that we are assuming K is nontrivial, and so
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Figure 3: Different stages of the construction in the proof of Theorem 3. Here
K =3, #4,. Top-left: assigning A and D types to n = 10 crossings with
respect to the basepoint B. Top-center: the dual subgraph G with m =5
(solid), an edge through B and extension to 7" (dashed). Top-right: putting
18 line segments by G U 7', namely 101 for A—D edges and 4 -2 for
A—-A and D-D. Bottom-left: matching adjacent segment tips in each face
yields a circle set. Bottom-center: performing suitable < <w> ) ( moves leads
to C, a separating curve. Bottom-right: labeling intersections by C yields
7w =1358112171412156137910416.

m > 0. Note also that there is an even number of A—D edges around each face of
the knot diagram, hence the vertices of G have even degrees. G is planar, simple and
bipartite since K’ is. See Figure 3, top-center, for an example of such a G.

Let H be a connected component of G with k > 0 edges, which implies k > 1 by the
above. It is a corollary of Euler’s formula that the number of vertices and edges in a
connected simple bipartite plane graph satisfy the relation 2v > e + 4, since each face
has at least four sides. Hence H has at least % + 2 vertices, and a spanning tree with
at least % + 1 edges.
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The union of spanning trees for all such H’s yields a forest F in G with at least m + 1
edges. By adding at most n —m edges of type A—A or D—D, we complete F to a
spanning tree 7 of the whole (n+2)-vertex graph K.

We now describe how to make sure that either G or 7" contains the edge that corresponds
to the basepoint. If it is an A—D edge then we are fine as G contains it. If its two
adjacent faces are in different connected components of G, then we can pick this edge
when choosing 7'. Otherwise, we throw this edge into G even though its type is 4—A4
or D-D, so that G has 2m + 1 edges. Repeating the above computation with 2m + 1
in place of 2m shows that in fact F' has > m + 2 edges. Therefore, at most n —m — 1
further A—A or D—D edges were needed to construct 7. See Figure 3, top-center,
again, for an example of this latter scenario.

In conclusion, G U T is connected and spans the dual graph K’, with 2m edges of
type A—D and at most n —m edges of type A—A or D—D.

We construct C so that it intersects the knot diagram exactly in the edges corresponding
to G U T. We start by putting one small line segment across every A—D edge, and
two small line segments across every A—A4 or D—D edge in G U T, as in Figure 3,
top-right. The total number of line segments is at most 2m -1+ (n —m)-2 = 2n.

Since an even number of line segments emanate into each face, we can match their
tips to each other without crossings, say by connecting adjacent ones. We have thus
separated the A’s from the D’s by a set of disjoint embedded circles. See Figure 3,
bottom-left.

Different circles may be cut and reconnected together via the local moves = <w>) ( as
long as they pass through a common face. Since the graph G U T connects all faces of
the diagram, we can perform such moves until we end up with one long circle C, as in
Figure 3, bottom-center.

Since the curve C intersects each A—D edge once and each A—A4 or D—D edge twice,
it separates the ascending and descending crossings. By construction, C intersects the
knot at < 2n points, and visits both the basepoint and the point at infinity if specified.
We apply to it the algorithm by Adams et al as above. See Figure 3, bottom-right. O

Discussion Several questions remain open:

(1) How tight is Theorem 3? It is tight for ¢(K) = 3 or 4, but this is presently
known in general only up to a factor of two, by Theorem 2.
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(2) As observed in Corollary 4, there are at least exponentially many distinct n—petal
knots. Is this asymptotic estimate tight? We cannot, at present, rule out the
possibility that the answer is, in fact, exp(2(nlogn)).

(3) What is the typical crossing number of K5,y in the Petaluma model? By

Theorems 2 and 3, the crossing number of a knot is between linear and quadratic
in its petal number.
Experiments by the authors and by Adams and Kehne [3; 17] indicate that
the hyperbolic volume of K,,; is typically of order nlogn, which yields a
similar lower bound for the typical ¢(Kj5,+1). See [11] for experiments on the
hyperbolic volume and the number of crossings in a different model.

3 Petaluma knots are knotted

The proof of Theorem 5 relies on an analogous and easier statement concerning the
linking number of 2—component links in the Petaluma model.

A random 2—component link Lj,, 2, is obtained from a petal diagram as in Figure 5,
right, with 2m and 2n petals in the black and gray components, respectively. A
uniformly random permutation m € S5,,42, determines the height of the arcs above
the center point.

Recall that the linking number of a 2—component link L can be defined in terms of a
link diagram of L as the sum of crossing signs: 1k(L) = %(#’X‘ —#'X), where only
crossings between the two components are counted. In our previous work we found
the limiting distribution of the linking number in the Petaluma model [15].

The analogue of Theorem 5 for 2—component links is the following bound:

Theorem 6 Forevery m,n €N and v € Z,
6

v/min(m, n) .

We shall use more than once in our proofs the following classical result by Erdds,

PIk(L2m,2n) = v] =

known as the Littlewood—Offord problem.

Theorem 7 [12] Let ay,...,a; € R. At most (I_t/tzj) of the 2! sums

{Zaizlg{l,...,t}}

iel

are contained in any open interval of length min; |a;|.
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In the language of probability, if one of the 2! sums is sampled uniformly at random,
then it is contained in such an interval with probability at most (Lt/tz J) /28 <1/4/t.

Proof of Theorem 6 Consider a random 2—component link Ly, 2,. Denote the
2m and 2n straight arcs at the center of the petal diagram by I = {1,...,2m} and
J={2m+1,...,2m+ 2n}, respectively. As usual, let 7 € S,,,42, be the random
heights of these arcs, and write for brevity 1k(w) = 1k(L2,,,2,()). Perturb the petal
diagram near the center point to obtain a regular link diagram.

By the crossing signs formula for the linking number,

k() = %(#% —#'X') = % Z Z(_l)i+j {

iel jeJ

11 if 76) > 7(j),
1 if () < 7()),

where the (i, j) term corresponds to the crossing of arc i from the first component
and arc j from the second component. The sign of such a crossing depends on the
heights 7 (i) and 7 (j) of these two arcs, and also on their orientations as determined
by the parity of i and j; see Figure 5, right.

The proof of Theorem 6 goes by perturbing the permutation 7= with m 4 n swaps,
which are transpositions of arcs with adjacent heights, such as 7’ = (1 2) o r. By
the above formula, the effect of such a swap is 1 for a mixed pair of arcs, with one
arc from each components, and 0 otherwise. The contributions of disjoint swaps are
additive.

We proceed by the following procedure: We first pick 7 uniformly at random from
all (2m + 2n)! permutations. Then we obtain 7’ from 7 by swapping, via a random
subset of {(12), (34),...}, uniformly chosen from all 2" subsets. Note that if 7
is uniformly distributed then so is T o & for any fixed 7. Therefore, the distribution
of 7’ is a mixture of uniform distributions, which is uniform as well.

Starting from 1k(x), each mixed pair contained in this random subset changes the
linking number by =+1. Therefore, the probability that 1k(z”) attains a given value v
is bounded by Theorem 7, in the easy special case where all @; are +1. If there are ¢
mixed pairs in 7 then P[lk(z) =v |t] < 1/4/.

It is hence useful to derive a lower bound on ¢, the number of mixed pairs of arcs out
of all m 4 n pairs under consideration. Lemma 8 below claims that the probability of
having less than %min(m, n) mixed pairs is at most 20/min(m, n).
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. .. . . 1 ..
Finally, we divide into two cases, according to whether or not # > 5 min(m, n). Apply-
ing the union bound,

1 20 244

v 12 min(m, n) - min(m, n) = J/min(m, n)’

where we use the observation that the proposition is trivially true for /min(m,n) <5.
O

PlIk(r") = v] <

Lemma 8 Let I and J be two disjoint nonempty sets of cardinality 2m and 2n,
respectively. Let E = (eq,...,em+n) be a random matching of I U J. Then the
probability that less than % min(m, n) edges in the matching connect elements of 1
and J is at most 20/min(m, n).

Proof Denote by Z the count of edges that mix I and J, meaning that they connect
an element of I with an element of J. Chebyshev’s inequality for Z will be sufficient
for our argument [22]. We estimate the expectation and variance of Z. Write Z =
Zi+-+ Zmsn, where Z; =1 if the edge ¢; is mixed and 0 otherwise. We have

2m-2n 2mn 2mn
>

E[Zi]= (2m;—2n) ~ (m+n)? = E[Z]=

m+n
Note that we may assume m,n > 20, as otherwise the lemma clearly holds. Also
VIZi] = dmn _( dmn )2 - dmn
) NG T 2m (1= )
2mn - 3mn

< .
(m+n)?-13~ (m+n)?

In the covariance of Z; and Z; for i # j the terms of order m?n?/(m + n)? cancel,
and one can show by similar estimates

2 () (@mn)® _ 14mn?

COV[Z;, Zj] = s 5 = s
3( " ”) (2m;r2n) (m +n)
Therefore,
m+n 2.2
3mn 14m~n 10mn
V{Z]= VIZi]l+ COV|Z;, Zi]| < + < .
[Z] ;u; 2 Z)) = e e S m
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Figure 4: Smoothing and taking outside the highest two strands in a petal diagram

By Chebyshev’s inequality,

4V[Z] 10(m+n) 20
< < < ,
T E[Z)* T  mn T min(m,n)

as required. a

P[Z < tmin(m,n)] < P[Z < 1E[Z]]

1
2

The proof of Theorem 5 goes by random arc swaps as well, and makes use of the
notion of smoothing. By properties of the Alexander—Conway polynomial, the effect
of a crossing change on the Casson invariant is given by the linking number of the
smoothing of that crossing, which is the 2—component link obtained from reconnecting
the two strands. This can be summarized by the relation ¢, (3{) — ¢, () = 1k()0),
where the rest of the diagram is the same.

Let w,t € Sy,41, Wwhere T = (¢ t+1) is an adjacent transposition. Consider the
smoothed link L(7, 7) obtained from the knot K5, () by reconnecting the two
arcs at heights ¢ and ¢ + 1. The following lemma shows that L (s, t) has a petal
representation which is closely related to that of the given knot.

For such 7 and t we write d = |_%|JT_1(I +1) —fc_l(t)lj. In other words, d is half
the distance between the locations of # and f + 1 in 7.

Lemma9 Forany r € Sy, and a transposition t = (¢ t+1) € S3,41, the smoothed
link L(r,t) is given by Ly, »(n—m)(¢) for some ny € Sy, where m =d orn—d.
Moreover, if 7 is uniformly random, then the conditional distribution of the smoothed

link given the value of m is the same as Ly, >(n—m)(0) for uniform o € S5,

Proof Observe that knots and links given as petal diagrams are invariant under vertical
rotation, eg Ksy+1(w) = Kop41(pom), where p(i) = (i + 1) mod (2n + 1). Thus
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2n + 1 — 2n petals 2n — (2m, 2(n —m)) petals

Figure 5: Manipulations of petal diagrams. Left: The solid line is a 2n—petal
diagram. It is obtained from a diagram with 2n 4 1 petals by replacing the
highest arc, marked by a dotted line, with the big outer petal. Right: The
black and gray solid lines are a petal diagram of a two-component link. It
is obtained from the 2n—petal knot diagram with the two dotted segments,
having the same multicrossing.

we may assume without loss of generality that ¢ = 2n, so that the smoothing takes
place between the two highest arcs in R3.

Smoothing the top two arcs might introduce new crossing points to the diagram, in
addition to the single multicrossing point. However, since the smoothed arcs are above
the rest, they can be taken outside, to the top part of the diagram, as demonstrated in
Figure 4. This operation creates a petal diagram of the two-component link L(, 7),
with two large outer petals.

In order to study the permutation of the resulting petal link diagram, we equivalently
describe the smoothing using the two steps shown in Figure 5. First, we take outside
the highest arc as in Figure 5, left. Now, the arc that is at height 2n can be any of
the remaining 27 arcs above the center. Consider the unique petal continuing that
arc in the top part of the petal projection. The smoothing by t = (2n 2n+1) is now
performed by reconnecting this petal with the large outer petal. These are the dotted
petals in Figure 5, right.

The two components have 2m and 2(n —m) petals, where m depends on which inner
petal participates in the smoothing. Starting from the outer petal in Figure 5, left, we
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traverse the curve until we reach the smoothing, at the inner petal adjacent to the arc at
height 2n. The inner petals are visited from left to right, and each one corresponds to
two entries of . The number of petals in this component is hence half the distance
between the locations of 2n and 2n 4 1 in the permutation 7. Explicitly, m = d or
n—d, where d = L%IJT_I(ZI’Z +1) —n_1(2n)|J )

For example, if the heights of the original knot are given by
7 =(2,6,10,4,9,1,3,11,8,7,5) and t=(1011),

then m = L%lS — 3|J = 2 and the two resulting components have height sequences
(4,9,1,3) and (8,7,5,2,6,10), which concatenate into ;.

Note that if the locations of 2n and 2n + 1 are adjacent in 7, then d = 0 and the
smoothing takes place within the big loop in Figure 5, left. This edge case yields a
two-component link with 2x and 0 petals, where the O—petal component is a disjoint
unknot. We remark that this special case can be simplified further to 2n — 1 petals, but
we regard it as a 2n—petal link, to be consistent with the general case.

Suppose that the locations of 2n and 2n + 1 in & are fixed, while the other en-
tries of 7 are uniformly random among the (2n — 1)! possibilities. Then m is also
determined, and so is the location of 2n in the permutation m,, that describes the
resulting (2m, 2(n—m))—petal 2—component link, but the other 2n — 1 entries of m,,
are uniformly random.

We claim that for such 7 the distribution of the smoothed link L5, »(1—m)(725) is the
same as Ly 2(n—m)(0), where o € S5, is uniform. Indeed, let o (i) = (72, (i) + j)
mod 2n, where j € {1,2,...,2n} is uniformly random and independent of 7. Such
a rotation preserves the link type as mentioned above, but the resulting permutation
becomes uniform in S5,,.

It follows that if m € Sy, is uniformly random and we condition on the implied
value of m, then the smoothed (2m, 2(n—m))—petal link is distributed exactly as in
the Petaluma model. O

The following lemma explores the effect of swapping several pairs of adjacent arcs
in a petal diagram on the Casson invariant. We successively apply the relation
c2 (") — 2 () = 1Ik()T), and we have to account for the effect of previous swaps on
each linking number.
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Lemma 10 Let ' € Sy,41 andlet 7" =ty 0---01) o/, where t; = (t; t; + 1) are
k disjoint swaps of consecutive numbers. Then

k
c2(Kang1(m")—=ca(Kani1 (7)) =) (', i) (L', )+ Y 8(r' .5, 7))

i=1 1<i<j<k

where e(n’, t;) = £1 and |§(7’, 7;, 7j)| < 1.

Proof Since the variation of the Casson invariant with respect to a crossing change is
the linking number of its smoothing,

c2(Konti1(t107’)) —ca(Kopg1 (7)) = £Ik(L (7', 1)),

where the sign is determined by the relative orientations of the swapped arcs. Observe
that the linking number corresponding to the next swap might depend on whether the
current one takes place or not, even though the swaps are disjoint, and

Ik(L(ty o', 15)) —Ik(L(n', 12)) € {~1,0, 1}.

Indeed, the effect of one crossing change on the linking number of a future smoothing
is =1 or 0, depending on whether one or two branches of the smoothing occur at the
crossing. Two successive swaps yield

c2(Kapyi(tiop0m')) —ca(Kapgi (')
= +lk(L(7', 1)) £ IK(L(7', 12)) + 8(, 11, 12),

and the general case of k& swaps follows by iteration. a
Lemma 10 will be applied in the proof of Theorem 5 with a random permutation and a
random set of swaps. Similar to the linking number in Theorem 6, we will show that
for almost all permutations, the Casson invariant avoids any particular value for almost
all swap sets. In order to track the effect of potential swaps, the terms in the first sum

of Lemma 10 will have to be larger than the second sum. The following lemma will
supply us with many such potential swaps with large linking numbers:

Lemma 11 Let 7w € Sy,41 be uniformly random, and let k < 5. Then the probability
that |Ik(L(z, 7))| < 2k? for more than 7k of the 8k swaps

r€d(12),(34),...,(16k—116k)}
is at most 3/ k +96k?//n.
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Proof Let 7; = (2i—1 2i) for i € {1,...,8k}. By Lemma 9, the two components
of L(m,t;) have 2m; and 2(n —m;) petals, where either m; or n —m; is half the
distance |7~1(2i) — 7~ 1(2i —1)|. By Lemma 12 below, applied with N = 2n + 1
and K = 8k, the probability that 7 <m; < 3¢ 31 for less than 2k swaps is at most k'

We hence proceed assuming at least 2k balanced links, with the number of petals for
each component bounded below by min(m;,n —m;) > 2

For each balanced link, we apply Theorem 6 and conclude that the probability of
Ik(L (7, 7;)) attaining any particular value is at most 6//"/4 = 12 /,/n. Therefore, the
probability of having a small link, with [Ik(L (7, 7;))| < 2k?, is at most 48k?2//n.

We need to show that with high enough probability no more than k of these 2k links
are small. Note that these linking numbers might be strongly correlated. However,
Markov’s inequality [22] guarantees that if each of 2k events occurs with probability
at most p, then the probability that more than k£ of them occur is at most 2p. This
implies that |Ik(L (7, 71))| < 2k? for more than k of the 2k links with probability at
most 96k2/\/n.

The lemma follows by the union bound on having less than 2k balanced smoothed links
and having more than k& small links. In the complementary case, we have k swaps, as
desired. |

Lemma 12 Let nm € Sy be uniformly random, and K < % The following event
holds with probability at most %

#lie{l,... . K}|IN<|z7'Qi)-7"'2i-1)| <3N} < 1K

Proof Let Z be the quantity counted in the lemma. As in the proof of Lemma 8, we
can use Chebyshev’s inequality for Z. Write Z = Z{ +---+ Zg, where Z; =1 if
i is counted and 0 otherwise.

Note that the interval [N 3 iv ] contains between 1 5(N—=1) and 1 5 (N +2) integers, and

includes |7~!(2i) —~1(2i —1)| with probability at least half. Therefore, E[Z:]> 1,
so that E[Z]> % Trivially, V[Z;] < %. By similar counting arguments we estimate,

fori # j,

]<2(N+2) 2(N-i-Z) (l) 25
N —1 N -3 2) = N~
where we used the fact that for N < 48 the lemma clearly holds. In conclusion,

1 2 2.5 _ 3K
<K.= < 2=
ViZ]I< K 4+K N =3

Cov[Z;, Z;
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and, by Chebyshev’s inequality,
P|:Z < E] < P[Z < E[Z]] < 4V[Z] < ﬁ
417 - 2 1T E[Z)? T K
as required. O

Finally, we prove Theorem 5, establishing P[c, = v] < 8/'%/n. As mentioned above,
the main idea of the proof is swapping certain entries of & € S»,41, such that with high
enough probability many of the potential swaps change c, significantly. Performing a
random subset of such swaps, we use the Littlewood—Offord bound on the probability
that these changes add up to a value close to v. If they don’t then we show that ¢, # v
even after taking into account the error term coming from pairwise dependencies.

Proof of Theorem 5 Let & € S5,4+1 be uniformly random. Consider the 8k swaps
(12), (34), (56),...,(16k—116k), where k = f% Y/n’]. We modify 7 by a random

28k

subset of these swaps, uniformly picked from all subsets. Clearly, the resulting

permutation, denoted by 7", is still uniformly random.

To analyze this procedure, it is convenient to perform the swaps in a certain order. A
swap T is called big if |Ik(L(rw,1))| > 2k?. We perform big swaps after the other
ones. Lemma 11 shows that only with probability smaller than 3/ k + 96k?/\/n we
wouldn’t have at least k big swaps.

Denote by 7’ the intermediate permutation after the first 7k potential swaps for 7,
and before the last k potential big ones ty,..., 7 that will eventually yield 7”.
As we have made at most 7k crossing changes since we identified the big swaps,
[Ik(L(’, ;)| > |Ik(L (7, 7;))| =7k . Assuming k > 7, this means |Ik(L (7', 7;))| > k?
for all big swaps. Note that if k < 7 then 8/'Y/n is larger than 1, and the theorem is
trivially true.

We apply Lemma 10 to the last k potential swaps, which yield 7" from 7’:

c2(Kapy1 (")) A
= c2(Kant1()) + ) Xis(r', i) (L7, w)) + Y XiX;8(n', 1, 7)),
i=1 1<i<j<k

where X; = 1 if the i'" big swap took place, and 0 otherwise. Here c5(K2,41(7'))
is some constant that doesn’t depend on the last k& swaps. We then apply Theorem 7
to the first sum, with |a;| > k2. After adding this sum, c, falls in any interval
(v— %kz, v+ %kz) with probability smaller than 1/v/k. The magnitude of the second
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sum is at most %k(k -1 < %kz. Hence, v is still attained with probability at

most 1/vk.

To conclude, P[cy(K3,+1) = v] is bounded by the union of two events: having less
than k& big swaps, and otherwise actually attaining v for the value of ¢, after swapping.
With n > 810 and k = [ § 3/n| > '¥/n, the probabilities add up to at most
3,96k 1 _ 3496/7*++/8 8
=<2 < <

as promised. O

Discussion and questions (1) The results in [15] and further numerical experi-
ments [13] indicate that our upper bound on P[c,(K2,41) = v] is not expected
to be tight. It remains desirable to establish a bound of O(n~2) in Theorem 5.
It is plausible that these bounds can be extended to other finite-type invariants.

(2) As for the probability mass function P[K,,+1 = K], we conjecture that for
every K it decays at least exponentially fast in #. Even the special case where K
is the unknot is interesting. Of course, proving it would require the investigation
of more invariants.

(3) Although we couldn’t show that K, is nontrivial by finding small summands
in its decomposition, we wonder at what probability K,,4; contains, say, a
trefoil summand? We can show Q(n~3) but conjecture it’s o(1).

In fact, the above-mentioned experiments by Adams and Kehne [3; 17] indicate
that K5, 41 is prime with high probability. Why is this? Note that random knots
are not prime in most of the considered random models.
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