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The distribution of knots in the Petaluma model
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The representation of knots by petal diagrams (Adams et al 2012) naturally defines

a sequence of distributions on the set of knots. We establish some basic properties

of this randomized knot model. We prove that in the random n–petal model the

probability of obtaining every specific knot type decays to zero as n , the number of

petals, grows. In addition we improve the bounds relating the crossing number and

the petal number of a knot. This implies that the n–petal model represents at least

exponentially many distinct knots.

Past approaches to showing, in some random models, that individual knot types occur

with vanishing probability rely on the prevalence of localized connect summands

as the complexity of the knot increases. However, this phenomenon is not clear in

other models, including petal diagrams, random grid diagrams and uniform random

polygons. Thus we provide a new approach to investigate this question.

57M25; 60B05

1 Introduction

The study of random knots and links emerges from various perspectives, both theoretical

and applied. See Even-Zohar [13] for a survey of randomized knot models in the

literature. We here pursue the study of the Petaluma model, based on petal diagrams;

see Adams, Crawford, DeMeo, Landry, Lin, Montee, Park, Venkatesh and Yhee [2].

This model has the advantage of being based on one random permutation, and it

seems related to knotting phenomena arising in biology and elsewhere. In previous

work [15; 14] we investigated the distribution of finite-type invariants in the Petaluma

model. Here we return to some remaining fundamental questions about this model,

such as how many knots can appear and with what probabilities.

Consider a petal diagram with an odd number 2n C 1 of petals, as in Figure 1. Each

assignment of 2n C 1 heights to the 2n C 1 straight arcs above the multicrossing point
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Figure 1: Petal diagrams with 3 , 5 , 7 and 9 petals

determines a knot. Indeed, the knot type is well-defined by the relative ordering of

the heights, through a smooth curve in R
3 that projects to this diagram. The random

variable K2nC1 is the knot type obtained from a uniformly random sequence of heights

� 2 S2nC1 . These heights �.1/; �.2/; : : : correspond to the straight arcs in the order

they occur as one travels along the diagram.

For example, K3 is the unknot with probability 1, while K5 yields a trefoil knot

with probability 1
12

. This is obtained by the permutation � D .1; 3; 5; 2; 4/ 2 S5 and

by its rotations and reflections. The permutation .1; 5; 3; 7; 2; 4; 6/ 2 S7 yields the

figure-eight knot. Adams et al give more examples, and prove that all knots appear in

this model.

Theorem 1 [2] For every knot K there exists an odd p 2 N such that K can be

realized by a p–petal diagram with a permutation � 2 Sp .

In fact, the knot K will then have a q–petal diagram for every odd q � p . This follows

easily by inserting two consecutive heights to the permutation, without changing the

knot type. The smallest such p is denoted by p.K/, the petal number of K .

The efficiency of this representation is studied by relating it to regular knot diagrams,

which are planar projections that are one-to-one except for finitely many transverse

double points. The crossing number, denoted by c.K/, is the least number of such

crossings in any diagram of K .

Example Adams et al [2] precisely compute the petal number for two infinite families

of knots:

(1) Tn D the .n; nC1/–torus knot, where p.Tn/ D 2n C 1 and c.Tn/ D n2 � 1.

(2) Sn D the .2n�1/–twist knot, where p.Sn/ D 2n C 1 and c.Sn/ D 2n � 1.

These explicit constructions are optimal for petal representations in the following sense:
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Theorem 2 [2; 1] For every nontrivial knot K ,

c.K/ �
�

1
2
p.K/

˘2 � 1:

If K is alternating, then

c.K/ � p.K/ � 2:

Here we consider the opposite direction and give a quantitative bound on the worst

case, which turns out to be only a constant factor away from the second example above.

Theorem 3 For every nontrivial knot K ,

p.K/ � 2c.K/ � 1:

Theorem 3 is proved in Section 2 via the analysis of an efficient algorithm that transforms

a regular knot diagram into a petal diagram with a suitable permutation. This, in

particular, yields a constructive proof of Theorem 1.

Theorem 3 shows that .2n�1/–petal diagrams represent at least as many knots as

regular knot diagrams with n crossings. Some explicit constructions are known to

generate �.2:68n/ different n–crossing knots; see Welsh [25]. Consequently:

Corollary 4 There are at least �.2:68n/ distinct .2n�1/–petal knots.

A natural question, which applies to any random model of knots, asks for the probability

of generating the unknot. This goes back to the oldest models of random knots, by

Delbruck [8] and by Frisch and Wasserman [16], that are based on certain types of

polygonal paths in Z
3 and in R

3 . The Delbruck–Frisch–Wasserman conjecture asserts

that the resulting knot is nontrivial with high probability, ie the probability of the unknot

decays to zero as the number of steps grows. This was positively settled in various

models by finding small localized connected summands in the prime decomposition of

the knot; see Diao [9], Diao, Pippenger and Sumners [10], Pippenger [21], Soteros,

Sumners and Whittington [23] and Sumners and Whittington [24]. Similar reasoning

worked for another model, based on random planar diagrams; see Chapman [5]. How-

ever, we don’t expect this behavior of the prime decomposition in the Petaluma model,

and hence we have to use another knot invariant.

The Casson invariant c2.K/ is the coefficient of x2 in the Alexander–Conway polyno-

mial CK .x/ D 1 C c2x2 C � � � ; see Lickorish [19]. It is also the unique second-order
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invariant of knots, up to affine transformations; see Chmutov, Duzhin and Mostovoy [6].

In the Petaluma model we showed EŒc2.K2nC1/k � D �kn2k CO.n2k�1/, and obtained

formulas for the normalized limiting moments �k [15]. However, it is impossible to

conclude that with high probability c2 does not vanish based solely on finitely many

limiting moments; see Kreı̆n and Nudel’man [18]. Here we overcome this difficulty.

Theorem 5 For every n 2 N and v 2 Z,

P Œc2.K2nC1/ D v� � 8

n1=10
:

Consequently, for every knot K ,

P ŒK2nC1 D K�
n!1����! 0;

and, in particular, K2nC1 is knotted with high probability.

Theorem 5 is proved in Section 3. Our approach involves the analysis of the formulas for

the Casson invariant and for the linking number, evaluated on random knots and links,

together with a simple coupling argument. As these invariants are given by summation

over all crossings, we show that a small perturbation of the heights’ ordering is likely

to spread their distribution over many values, and deduce that they cannot be too

concentrated.

In our proof, we establish a similar bound, P Œlk.L2m;2n/ D v� � 6=
p

min.m; n/, for the

linking number of a random .2m; 2n/–petal link. See Section 3 for precise definitions

and statement.

Our approach to the Delbruck–Frisch–Wasserman conjecture is different than those

previously applied to other constructions of random knots, as it doesn’t rely on estab-

lishing the presence of small connected summands. Indeed, the occurrence of such

summands seems less likely in the Petaluma model, where the typical “step length” is

comparable to the diameter of the whole curve. We thus expect our methods to extend

to other well-studied knot models, in which local entanglements are similarly believed

to be rare.

For example, two random permutations �; � 2 Sn define a knot via an n � n grid

diagram [4; 7]. See also [15]. It is very plausible that an adaptation of our argument,

based on perturbing one of these permutations, would yield a proof of the still-open

Delbruck–Frisch–Wasserman conjecture in this setting. Another case in point is Millett’s

Algebraic & Geometric Topology, Volume 18 (2018)



The distribution of knots in the Petaluma model 3651

uniform random polygon [20] with n segments, where the spatial confinement to the

cube seems to decrease local knotting, and the conjecture is yet to be verified.

Further discussion and open questions appear at the end of each section.

2 Petal number and crossing number

We first give a simple proof of p.K/ < 4c.K/, and then improve it to p.K/ < 2c.K/

with a more technical argument.

Proof of p.K / < 4c.K / The proof refines the construction of petal diagrams by

Adams et al [2]. Basically, we preprocess the planar embedding of a minimal-crossing

knot diagram, and then run their algorithm.

Consider a knot diagram with n crossings. Travel along the knot diagram starting

from some basepoint B . Mark each crossing as ascending (A) or descending (D ),

depending on whether its lower or upper strand is visited first. See Figure 3, top-left.

Note that if all the vertices have the same type then K is the unknot.

This yields two finite sets of points in the plane which can be separated by a generic

simple closed curve C. We assume that C passes through B , avoids all the crossing

points of the diagram, and crosses it transversely finitely many times. It simplifies

the construction to assume that the point at infinity lies on C, either by choosing it

accordingly or by applying an isotopy of the diagram in S2 .

Let E be any edge of the knot diagram, viewed as a 4–regular plane graph. We

claim that the separating curve C can be chosen so that it does not intersect E more

than twice. Indeed, if they intersect three times, then the local operation shown in

Figure 2 keeps A and D separated and C connected. Note that this is the only possible

configuration of three adjacent intersection points on E , up to rotations and reflections.

If one of them is the basepoint B then we can let the new curve C pass through it

again. Repeating for all 2n edges as needed, C intersects the knot at � 4n points.

The rest of the construction is almost unchanged from [2], and we briefly repeat its

main steps. The reader is referred to [2] for more details and illustrations.

(1) Isotope the plane diagram so that C is the y–axis, ascending crossings have

positive x–coordinate and descending crossings have negative x–coordinate.

(2) Further isotope the knot diagram so that for jxj � 1 it consists of an even number

of horizontal segments, intersecting the y –axis.
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Figure 2: Reducing intersections. The cyclic ordering of parts of C is marked

by 1 , 2 , 3 .

(3) Start at B D .0; y0/ and travel along the knot diagram. The point B and the

other p intersection points .0; y1/; : : : ; .0; yp/ cut the knot into p C1 arcs. Let

ypC1 D y0 .

(4) Lift the diagram to R
3 so that above .0; yk/ it remains a straight segment z D kx

for jxj � 1, and the angle arctan
�

z
x

�

is nondecreasing within each arc.

(5) Instead of lifting B to .0; y0; 0/, with two half-segments to .�1; ypC1; �.pC1//

and .1; y0; 0/, connect these two points directly by a straight-line segment.

Note that step 4 preserves the knot type thanks to the condition on the A and D

crossings. Indeed, by the choice of line segments between arcs and lifting within them,
z
x

is increasing throughout our travel along the knot. Since x > 0 in each ascending

point, the z–coordinate of the lifted curve rises between its two visits to such a point.

The case of decreasing points is similar.

It follows from the construction that the projection of the lifted knot along the y–

direction to the xz–plane yields a single multicrossing point at the origin. Moreover,

the projected curve has 1
2
.p �1/ petals contained in the first quadrant, 1

2
.p �1/ petals

in the third quadrant and one fat petal encompassing the fourth quadrant. This is a

petal diagram with p < 4n petals.

To summarize, the construction in the above proof underlies the following petal algo-

rithm (cf [1]), representing a knot by a petal diagram given a regular diagram.

F Travel along the diagram starting at some point B , and identify crossing types

in fA; Dg.

F Choose a generic curve C, containing B , separating A’s from D ’s.
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F Travel along C and label with 1; : : : ; p all intersections with the diagram other

than B .

F Travel again along the diagram and record the ordering of the labels as � 2 Sp .

Remark By the above argument, in the third and fourth steps one has to travel along

the curve C starting from the point at infinity, and along the knot diagram starting

from the basepoint B . However, as observed in [1], the resulting knot type is preserved

under rotations of � from both directions: Kp.�/ D Kp.� ı �/ D Kp.� ı �/, where

�.x/ D .xC1/ mod p . It follows that these two starting points can be chosen arbitrarily.

We have shown that there always exists such a C with at most 4n intersections. Now

we improve the bound by choosing C even more efficiently.

Proof of p.K / < 2c.K / The upper bound is derived by better controlling the number

in f0; 1; 2g of intersection points on each edge. Since the curve C is separating, an

edge between two vertices of type A and D contributes one point of intersection. We

construct C more carefully, so that the edges that are disjoint from it can be at least as

frequent as those with two intersection points.

Consider a knot diagram of K with n crossings, not necessarily one that realizes the

crossing number. As before, we view K as a 4–regular plane graph with a basepoint B

on one edge and vertices of type A or D, as in Figure 3, top-left.

It is sufficient to prove p.K/<2n for the case of 3–edge-connected diagrams, ones that

remain connected whenever 2 edges are removed. Otherwise, find a 2–edge cut that

disconnects the diagram. It follows that K is a connected sum K1 # K2 with diagrams

of n1 and n2 crossings, respectively, where n1 Cn2 D n. By the subadditivity of petal

numbers [2, Theorem 2.4] and induction on n, we have p.K/ < p.K1/ C p.K2/ <

2n1 C 2n2 D 2n. We note that if K is prime and given by a diagram with c.K/

crossings then it is already 3–edge-connected.

As usual, the vertices of the dual graph K0 correspond to the faces of the diagram, and

edges correspond to edges. K0 is simple, without loops or multiple edges, since the

knot diagram is 3–edge connected. It is also bipartite since the diagram is 4–regular

and planar, so its faces admit a checkerboard coloring.

We define a subgraph G of K0, with the same set of vertices, whose edges are those

that correspond to the A–D edges in the diagram. Denote by 2m the number of edges,

as this number must be even. Recall that we are assuming K is nontrivial, and so
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Figure 3: Different stages of the construction in the proof of Theorem 3. Here

K D 31 # 41 . Top-left: assigning A and D types to n D 10 crossings with

respect to the basepoint B . Top-center: the dual subgraph G with m D 5

(solid), an edge through B and extension to T (dashed). Top-right: putting

18 line segments by G [ T , namely 10 � 1 for A–D edges and 4 � 2 for

A–A and D–D. Bottom-left: matching adjacent segment tips in each face

yields a circle set. Bottom-center: performing suitable )
(

!) ( moves leads

to C, a separating curve. Bottom-right: labeling intersections by C yields

� D 1 3 5 8 11 2 17 14 12 15 6 13 7 9 10 4 16 .

m > 0. Note also that there is an even number of A–D edges around each face of

the knot diagram, hence the vertices of G have even degrees. G is planar, simple and

bipartite since K0 is. See Figure 3, top-center, for an example of such a G.

Let H be a connected component of G with k > 0 edges, which implies k > 1 by the

above. It is a corollary of Euler’s formula that the number of vertices and edges in a

connected simple bipartite plane graph satisfy the relation 2v � e C 4, since each face

has at least four sides. Hence H has at least k
2

C 2 vertices, and a spanning tree with

at least k
2

C 1 edges.
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The union of spanning trees for all such H ’s yields a forest F in G with at least mC1

edges. By adding at most n � m edges of type A–A or D–D, we complete F to a

spanning tree T of the whole .nC2/–vertex graph K0.

We now describe how to make sure that either G or T contains the edge that corresponds

to the basepoint. If it is an A–D edge then we are fine as G contains it. If its two

adjacent faces are in different connected components of G, then we can pick this edge

when choosing T . Otherwise, we throw this edge into G even though its type is A–A

or D–D, so that G has 2m C 1 edges. Repeating the above computation with 2m C 1

in place of 2m shows that in fact F has � m C 2 edges. Therefore, at most n � m � 1

further A–A or D–D edges were needed to construct T . See Figure 3, top-center,

again, for an example of this latter scenario.

In conclusion, G [ T is connected and spans the dual graph K0, with 2m edges of

type A–D and at most n � m edges of type A–A or D–D.

We construct C so that it intersects the knot diagram exactly in the edges corresponding

to G [ T . We start by putting one small line segment across every A–D edge, and

two small line segments across every A–A or D–D edge in G [ T , as in Figure 3,

top-right. The total number of line segments is at most 2m � 1 C .n � m/ � 2 D 2n.

Since an even number of line segments emanate into each face, we can match their

tips to each other without crossings, say by connecting adjacent ones. We have thus

separated the A’s from the D ’s by a set of disjoint embedded circles. See Figure 3,

bottom-left.

Different circles may be cut and reconnected together via the local moves )
(

!) ( as

long as they pass through a common face. Since the graph G [ T connects all faces of

the diagram, we can perform such moves until we end up with one long circle C, as in

Figure 3, bottom-center.

Since the curve C intersects each A–D edge once and each A–A or D–D edge twice,

it separates the ascending and descending crossings. By construction, C intersects the

knot at � 2n points, and visits both the basepoint and the point at infinity if specified.

We apply to it the algorithm by Adams et al as above. See Figure 3, bottom-right.

Discussion Several questions remain open:

(1) How tight is Theorem 3? It is tight for c.K/ D 3 or 4, but this is presently

known in general only up to a factor of two, by Theorem 2.
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(2) As observed in Corollary 4, there are at least exponentially many distinct n–petal

knots. Is this asymptotic estimate tight? We cannot, at present, rule out the

possibility that the answer is, in fact, exp.�.n log n//.

(3) What is the typical crossing number of K2nC1 in the Petaluma model? By

Theorems 2 and 3, the crossing number of a knot is between linear and quadratic

in its petal number.

Experiments by the authors and by Adams and Kehne [3; 17] indicate that

the hyperbolic volume of K2nC1 is typically of order n log n, which yields a

similar lower bound for the typical c.K2nC1/. See [11] for experiments on the

hyperbolic volume and the number of crossings in a different model.

3 Petaluma knots are knotted

The proof of Theorem 5 relies on an analogous and easier statement concerning the

linking number of 2–component links in the Petaluma model.

A random 2–component link L2m;2n is obtained from a petal diagram as in Figure 5,

right, with 2m and 2n petals in the black and gray components, respectively. A

uniformly random permutation � 2 S2mC2n determines the height of the arcs above

the center point.

Recall that the linking number of a 2–component link L can be defined in terms of a

link diagram of L as the sum of crossing signs: lk.L/ D 1
2

�

# � #
�

, where only

crossings between the two components are counted. In our previous work we found

the limiting distribution of the linking number in the Petaluma model [15].

The analogue of Theorem 5 for 2–component links is the following bound:

Theorem 6 For every m; n 2 N and v 2 Z,

P Œlk.L2m;2n/ D v� � 6
p

min.m; n/
:

We shall use more than once in our proofs the following classical result by Erdős,

known as the Littlewood–Offord problem.

Theorem 7 [12] Let a1; : : : ; at 2 R. At most
�

t
bt=2c

�

of the 2t sums

�

X

i2I

ai W I � f1; : : : ; tg
�

are contained in any open interval of length mini jai j.
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In the language of probability, if one of the 2t sums is sampled uniformly at random,

then it is contained in such an interval with probability at most
�

t
bt=2c

�

=2t � 1=
p

t .

Proof of Theorem 6 Consider a random 2–component link L2m;2n . Denote the

2m and 2n straight arcs at the center of the petal diagram by I D f1; : : : ; 2mg and

J D f2m C 1; : : : ; 2m C 2ng, respectively. As usual, let � 2 S2mC2n be the random

heights of these arcs, and write for brevity lk.�/ D lk.L2m;2n.�//. Perturb the petal

diagram near the center point to obtain a regular link diagram.

By the crossing signs formula for the linking number,

lk.�/ D 1

2

�

# � #
�

D 1

2

X

i2I

X

j2J

.�1/iCj �
�

C1 if �.i/ > �.j /;

�1 if �.i/ < �.j /;

where the .i; j / term corresponds to the crossing of arc i from the first component

and arc j from the second component. The sign of such a crossing depends on the

heights �.i/ and �.j / of these two arcs, and also on their orientations as determined

by the parity of i and j ; see Figure 5, right.

The proof of Theorem 6 goes by perturbing the permutation � with m C n swaps,

which are transpositions of arcs with adjacent heights, such as � 0 D .1 2/ ı � . By

the above formula, the effect of such a swap is ˙1 for a mixed pair of arcs, with one

arc from each components, and 0 otherwise. The contributions of disjoint swaps are

additive.

We proceed by the following procedure: We first pick � uniformly at random from

all .2m C 2n/! permutations. Then we obtain � 0 from � by swapping, via a random

subset of f.1 2/; .3 4/; : : : g, uniformly chosen from all 2mCn subsets. Note that if �

is uniformly distributed then so is � ı � for any fixed � . Therefore, the distribution

of � 0 is a mixture of uniform distributions, which is uniform as well.

Starting from lk.�/, each mixed pair contained in this random subset changes the

linking number by ˙1. Therefore, the probability that lk.� 0/ attains a given value v

is bounded by Theorem 7, in the easy special case where all ai are ˙1. If there are t

mixed pairs in � then P Œlk.� 0/ D v j t � � 1=
p

t .

It is hence useful to derive a lower bound on t , the number of mixed pairs of arcs out

of all m C n pairs under consideration. Lemma 8 below claims that the probability of

having less than 1
2

min.m; n/ mixed pairs is at most 20=min.m; n/.
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Finally, we divide into two cases, according to whether or not t � 1
2

min.m; n/. Apply-

ing the union bound,

P Œlk.� 0/ D v� � 1
p

1=2 min.m; n/
C 20

min.m; n/
� 2 C 4

p

min.m; n/
;

where we use the observation that the proposition is trivially true for
p

min.m; n/ � 5.

Lemma 8 Let I and J be two disjoint nonempty sets of cardinality 2m and 2n,

respectively. Let E D .e1; : : : ; emCn/ be a random matching of I [ J. Then the

probability that less than 1
2

min.m; n/ edges in the matching connect elements of I

and J is at most 20=min.m; n/.

Proof Denote by Z the count of edges that mix I and J, meaning that they connect

an element of I with an element of J. Chebyshev’s inequality for Z will be sufficient

for our argument [22]. We estimate the expectation and variance of Z . Write Z D
Z1 C � � � C ZmCn , where Zi D 1 if the edge ei is mixed and 0 otherwise. We have

EŒZi � D 2m � 2n
�

2mC2n
2

�
� 2mn

.m C n/2
D) EŒZ� � 2mn

m C n
:

Note that we may assume m; n � 20, as otherwise the lemma clearly holds. Also

V ŒZi � D 4mn
�

2mC2n
2

�
�

�

4mn
�

2mC2n
2

�

�2

� 4mn

2.m C n/2
�

1 � 1
2.mCn/

�

� 2mn

.m C n/2 � 79
80

� 3mn

.m C n/2
:

In the covariance of Zi and Zj for i ¤ j the terms of order m2n2=.m C n/2 cancel,

and one can show by similar estimates

COVŒZi ; Zj � D
2
�

2m
2

��

2n
2

�

3
�

2mC2n
4

�
� .4mn/2

�

2mC2n
2

�2
� 14m2n2

.m C n/5
:

Therefore,

V ŒZ� D
mCn
X

iD1

V ŒZi � C
X

i¤j

COVŒZi ; Zj � � 3mn

m C n
C 14m2n2

.m C n/3
� 10mn

m C n
:
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Figure 4: Smoothing and taking outside the highest two strands in a petal diagram

By Chebyshev’s inequality,

P
�

Z � 1
2

min.m; n/
�

� P
�

Z � 1
2
EŒZ�

�

� 4V ŒZ�

EŒZ�2
� 10.m C n/

mn
� 20

min.m; n/
;

as required.

The proof of Theorem 5 goes by random arc swaps as well, and makes use of the

notion of smoothing. By properties of the Alexander–Conway polynomial, the effect

of a crossing change on the Casson invariant is given by the linking number of the

smoothing of that crossing, which is the 2–component link obtained from reconnecting

the two strands. This can be summarized by the relation c2. / � c2. / D lk. /,

where the rest of the diagram is the same.

Let �; � 2 S2nC1 , where � D .t tC1/ is an adjacent transposition. Consider the

smoothed link L.�; �/ obtained from the knot K2nC1.�/ by reconnecting the two

arcs at heights t and t C 1. The following lemma shows that L.�; �/ has a petal

representation which is closely related to that of the given knot.

For such � and � we write d D
�

1
2
j��1.t C 1/ � ��1.t/j

˘

. In other words, d is half

the distance between the locations of t and t C 1 in � .

Lemma 9 For any � 2 S2nC1 and a transposition � D .t tC1/ 2 S2nC1 , the smoothed

link L.�; �/ is given by L2m;2.n�m/.�t / for some �t 2 S2n , where m D d or n � d .

Moreover, if � is uniformly random, then the conditional distribution of the smoothed

link given the value of m is the same as L2m;2.n�m/.�/ for uniform � 2 S2n .

Proof Observe that knots and links given as petal diagrams are invariant under vertical

rotation, eg K2nC1.�/ D K2nC1.� ı �/, where �.i/ D .i C 1/ mod .2n C 1/. Thus
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m

2n C 1 ! 2n petals 2n ! .2m; 2.n � m// petals

Figure 5: Manipulations of petal diagrams. Left: The solid line is a 2n–petal

diagram. It is obtained from a diagram with 2n C 1 petals by replacing the

highest arc, marked by a dotted line, with the big outer petal. Right: The

black and gray solid lines are a petal diagram of a two-component link. It

is obtained from the 2n–petal knot diagram with the two dotted segments,

having the same multicrossing.

we may assume without loss of generality that t D 2n, so that the smoothing takes

place between the two highest arcs in R
3 .

Smoothing the top two arcs might introduce new crossing points to the diagram, in

addition to the single multicrossing point. However, since the smoothed arcs are above

the rest, they can be taken outside, to the top part of the diagram, as demonstrated in

Figure 4. This operation creates a petal diagram of the two-component link L.�; �/,

with two large outer petals.

In order to study the permutation of the resulting petal link diagram, we equivalently

describe the smoothing using the two steps shown in Figure 5. First, we take outside

the highest arc as in Figure 5, left. Now, the arc that is at height 2n can be any of

the remaining 2n arcs above the center. Consider the unique petal continuing that

arc in the top part of the petal projection. The smoothing by � D .2n 2nC1/ is now

performed by reconnecting this petal with the large outer petal. These are the dotted

petals in Figure 5, right.

The two components have 2m and 2.n � m/ petals, where m depends on which inner

petal participates in the smoothing. Starting from the outer petal in Figure 5, left, we
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traverse the curve until we reach the smoothing, at the inner petal adjacent to the arc at

height 2n. The inner petals are visited from left to right, and each one corresponds to

two entries of � . The number of petals in this component is hence half the distance

between the locations of 2n and 2n C 1 in the permutation � . Explicitly, m D d or

n � d , where d D
�

1
2
j��1.2n C 1/ � ��1.2n/j

˘

.

For example, if the heights of the original knot are given by

� D .2; 6; 10; 4; 9; 1; 3; 11; 8; 7; 5/ and � D .10 11/;

then m D
�

1
2
j8 � 3j

˘

D 2 and the two resulting components have height sequences

.4; 9; 1; 3/ and .8; 7; 5; 2; 6; 10/, which concatenate into �10 .

Note that if the locations of 2n and 2n C 1 are adjacent in � , then d D 0 and the

smoothing takes place within the big loop in Figure 5, left. This edge case yields a

two-component link with 2n and 0 petals, where the 0–petal component is a disjoint

unknot. We remark that this special case can be simplified further to 2n � 1 petals, but

we regard it as a 2n–petal link, to be consistent with the general case.

Suppose that the locations of 2n and 2n C 1 in � are fixed, while the other en-

tries of � are uniformly random among the .2n � 1/! possibilities. Then m is also

determined, and so is the location of 2n in the permutation �2n that describes the

resulting .2m; 2.n�m//–petal 2–component link, but the other 2n � 1 entries of �2n

are uniformly random.

We claim that for such � the distribution of the smoothed link L2m;2.n�m/.�2n/ is the

same as L2m;2.n�m/.�/, where � 2 S2n is uniform. Indeed, let �.i/ D .�2n.i/ C j /

mod 2n, where j 2 f1; 2; : : : ; 2ng is uniformly random and independent of � . Such

a rotation preserves the link type as mentioned above, but the resulting permutation

becomes uniform in S2n .

It follows that if � 2 S2nC1 is uniformly random and we condition on the implied

value of m, then the smoothed .2m; 2.n�m//–petal link is distributed exactly as in

the Petaluma model.

The following lemma explores the effect of swapping several pairs of adjacent arcs

in a petal diagram on the Casson invariant. We successively apply the relation

c2. / � c2. / D lk. /, and we have to account for the effect of previous swaps on

each linking number.
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Lemma 10 Let � 0 2 S2nC1 and let � 00 D �1 ı � � � ı �k ı � 0, where �i D .ti ti C 1/ are

k disjoint swaps of consecutive numbers. Then

c2.K2nC1.� 00//�c2.K2nC1.� 0// D
k

X

iD1

".� 0; �i/ lk.L.� 0; �i//C
X

1�i<j�k

ı.� 0; �i ; �j /

where ".� 0; �i/ D ˙1 and jı.� 0; �i ; �j /j � 1.

Proof Since the variation of the Casson invariant with respect to a crossing change is

the linking number of its smoothing,

c2.K2nC1.�1 ı � 0// � c2.K2nC1.� 0// D ˙lk.L.� 0; �1//;

where the sign is determined by the relative orientations of the swapped arcs. Observe

that the linking number corresponding to the next swap might depend on whether the

current one takes place or not, even though the swaps are disjoint, and

lk.L.�1 ı � 0; �2// � lk.L.� 0; �2// 2 f�1; 0; 1g:

Indeed, the effect of one crossing change on the linking number of a future smoothing

is ˙1 or 0, depending on whether one or two branches of the smoothing occur at the

crossing. Two successive swaps yield

c2.K2nC1.�1 ı �2 ı � 0// � c2.K2nC1.� 0//

D ˙lk.L.� 0; �1// ˙ lk.L.� 0; �2// C ı.� 0; �1; �2/;

and the general case of k swaps follows by iteration.

Lemma 10 will be applied in the proof of Theorem 5 with a random permutation and a

random set of swaps. Similar to the linking number in Theorem 6, we will show that

for almost all permutations, the Casson invariant avoids any particular value for almost

all swap sets. In order to track the effect of potential swaps, the terms in the first sum

of Lemma 10 will have to be larger than the second sum. The following lemma will

supply us with many such potential swaps with large linking numbers:

Lemma 11 Let � 2 S2nC1 be uniformly random, and let k � n
8

. Then the probability

that jlk.L.�; �//j < 2k2 for more than 7k of the 8k swaps

� 2 f.1 2/; .3 4/; : : : ; .16k�1 16k/g

is at most 3=k C 96k2=
p

n.
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Proof Let �i D .2i�1 2i/ for i 2 f1; : : : ; 8kg. By Lemma 9, the two components

of L.�; �i/ have 2mi and 2.n � mi/ petals, where either mi or n � mi is half the

distance j��1.2i/ � ��1.2i � 1/j. By Lemma 12 below, applied with N D 2n C 1

and K D 8k , the probability that n
4

� mi � 3n
4

for less than 2k swaps is at most 3
k

.

We hence proceed assuming at least 2k balanced links, with the number of petals for

each component bounded below by min.mi ; n � mi/ � n
4

.

For each balanced link, we apply Theorem 6 and conclude that the probability of

lk.L.�; �i// attaining any particular value is at most 6=
p

n=4 D 12=
p

n. Therefore, the

probability of having a small link, with jlk.L.�; �i//j < 2k2 , is at most 48k2=
p

n.

We need to show that with high enough probability no more than k of these 2k links

are small. Note that these linking numbers might be strongly correlated. However,

Markov’s inequality [22] guarantees that if each of 2k events occurs with probability

at most p , then the probability that more than k of them occur is at most 2p . This

implies that jlk.L.�; �i//j < 2k2 for more than k of the 2k links with probability at

most 96k2=
p

n.

The lemma follows by the union bound on having less than 2k balanced smoothed links

and having more than k small links. In the complementary case, we have k swaps, as

desired.

Lemma 12 Let � 2 SN be uniformly random, and K � N
2

. The following event

holds with probability at most 24
K

:

#
˚

i 2 f1; : : : ; Kg j 1
4
N � j��1.2i/ � ��1.2i � 1/j � 3

4
N

	

< 1
4
K:

Proof Let Z be the quantity counted in the lemma. As in the proof of Lemma 8, we

can use Chebyshev’s inequality for Z . Write Z D Z1 C � � � C ZK , where Zi D 1 if

i is counted and 0 otherwise.

Note that the interval
�

N
4

; 3N
4

�

contains between 1
2
.N �1/ and 1

2
.N C2/ integers, and

includes j��1.2i/���1.2i �1/j with probability at least half. Therefore, EŒZi � � 1
2

,

so that EŒZ� � K
2

. Trivially, V ŒZi � � 1
4

. By similar counting arguments we estimate,

for i ¤ j ,

COVŒZi ; Zj � �
1
2
.N C 2/

N � 1
�

1
2
.N C 2/

N � 3
�

�

1

2

�2
� 2:5

N
;

where we used the fact that for N � 48 the lemma clearly holds. In conclusion,

V ŒZ� � K � 1

4
C K2 � 2:5

N
� 3K

2
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and, by Chebyshev’s inequality,

P
h

Z � K

4

i

� P
h

Z � EŒZ�

2

i

� 4V ŒZ�

EŒZ�2
� 24

K
;

as required.

Finally, we prove Theorem 5, establishing P Œc2 D v� � 8= 10
p

n. As mentioned above,

the main idea of the proof is swapping certain entries of � 2 S2nC1 , such that with high

enough probability many of the potential swaps change c2 significantly. Performing a

random subset of such swaps, we use the Littlewood–Offord bound on the probability

that these changes add up to a value close to v . If they don’t then we show that c2 ¤ v

even after taking into account the error term coming from pairwise dependencies.

Proof of Theorem 5 Let � 2 S2nC1 be uniformly random. Consider the 8k swaps

.1 2/, .3 4/, .5 6/; : : : ; .16k�1 16k/, where k D
˙

1
8

5
p

n
�

. We modify � by a random

subset of these swaps, uniformly picked from all 28k subsets. Clearly, the resulting

permutation, denoted by � 00, is still uniformly random.

To analyze this procedure, it is convenient to perform the swaps in a certain order. A

swap � is called big if jlk.L.�; �//j � 2k2 . We perform big swaps after the other

ones. Lemma 11 shows that only with probability smaller than 3=k C 96k2=
p

n we

wouldn’t have at least k big swaps.

Denote by � 0 the intermediate permutation after the first 7k potential swaps for � ,

and before the last k potential big ones �1; : : : ; �k that will eventually yield � 00.

As we have made at most 7k crossing changes since we identified the big swaps,

jlk.L.� 0; �i//j � jlk.L.�; �i//j�7k . Assuming k � 7, this means jlk.L.� 0; �i//j � k2

for all big swaps. Note that if k < 7 then 8= 10
p

n is larger than 1, and the theorem is

trivially true.

We apply Lemma 10 to the last k potential swaps, which yield � 00 from � 0 :

c2.K2nC1.� 00//

D c2.K2nC1.� 0// C
k

X

iD1

Xi".� 0; �i/ lk.L.� 0; �i// C
X

1�i<j�k

XiXj ı.� 0; �i ; �j /;

where Xi D 1 if the i th big swap took place, and 0 otherwise. Here c2.K2nC1.� 0//

is some constant that doesn’t depend on the last k swaps. We then apply Theorem 7

to the first sum, with jai j � k2 . After adding this sum, c2 falls in any interval
�

v � 1
2
k2; v C 1

2
k2

�

with probability smaller than 1=
p

k . The magnitude of the second
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sum is at most 1
2
k.k � 1/ < 1

2
k2 . Hence, v is still attained with probability at

most 1=
p

k .

To conclude, P Œc2.K2nC1/ D v� is bounded by the union of two events: having less

than k big swaps, and otherwise actually attaining v for the value of c2 after swapping.

With n � 810 and k D
˙

1
8

5
p

n
�

� 10
p

n, the probabilities add up to at most

P Œc2.K2nC1/ D v� � 3

k
C 96k2

p
n

C 1p
k

� 3C96=72C
p

8
10
p

n
� 8

10
p

n
;

as promised.

Discussion and questions (1) The results in [15] and further numerical experi-

ments [13] indicate that our upper bound on P Œc2.K2nC1/ D v� is not expected

to be tight. It remains desirable to establish a bound of O.n�2/ in Theorem 5.

It is plausible that these bounds can be extended to other finite-type invariants.

(2) As for the probability mass function P ŒK2nC1 D K�, we conjecture that for

every K it decays at least exponentially fast in n. Even the special case where K

is the unknot is interesting. Of course, proving it would require the investigation

of more invariants.

(3) Although we couldn’t show that K2nC1 is nontrivial by finding small summands

in its decomposition, we wonder at what probability K2nC1 contains, say, a

trefoil summand? We can show �.n�3/ but conjecture it’s o.1/.

In fact, the above-mentioned experiments by Adams and Kehne [3; 17] indicate

that K2nC1 is prime with high probability. Why is this? Note that random knots

are not prime in most of the considered random models.
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