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Abstract

It has been suggested that non-verbal transitive inference (if A > B and B > C, then A > C) can be accounted for by associative
models. However, little is known about the applicability of such models to primate data. In Experiment 1, we tested the fit of two
associative models to primate data from both sequential training, in which the training pairs were presented in a backward order,
and simultaneous training, in which all training pairs are presented intermixed from the beginning. We found that the models
provided an equally poor fit for both sequential and simultaneous training presentations, contrary to the case with data from
pigeons. The models were also unable to predict the robust symbolic distance effects characteristic of primate transitive choices.
In Experiment 2, we used the models to fit a list-linking design in which two seven-item transitive lists were first trained
independently (A>B....>F>Gand H>1....>M > N) then combined via a linking pair (G+ H-) into a single, 14-item list.
The model produced accurate predictions for between-list pairs, but did not predict transitive responses for within-list pairs from
list 2. Overall, our results support research indicating that associative strength does not adequately account for the behavior of
primates in transitive inference tasks. The results also suggest that transitive choices may result from different processes, or
different weighting of multiple processes, across species.

Keywords Transitive inference - List linking - Primates - Associative models - Reinforcement

Introduction

One of the prototypical examples of deductive reasoning is
transitive inference, the ability to infer that if A is related to B
and B is related to than C, then A is related to C (Johnson-
Laird, 1999; Lazareva, 2012; Vasconcelos, 2008). For exam-
ple, if we know that Travis is faster than Kim and Kim is faster
than James, then we can reliably deduce that Travis is faster
than James. In a typical non-verbal transitive inference exper-
iment, subjects are presented with a series of overlapping,
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simultaneously presented premise pairs: A+ B-, B+ C-, C+
D-, and D+ E- (where letters refer to arbitrary discriminative
stimuli and pluses and minuses indicate reinforcement and
non-reinforcement). Four or more overlapping pairs are nec-
essary to ensure that at least one novel test pair that does not
contain end-anchor stimuli is available to assess inference.
End-anchors do not provide a good test of inference because
they are always (or never) reinforced. Across training ses-
sions, premise pairs can be presented sequentially in a forward
order (starting with A+ B-, then adding B+ C-, and so on),
sequentially in a backward order (starting with D+ E, then
adding C+ D-, and so on), or simultaneously, with all training
pairs presented intermixed in each session.

Once all premise pairs are learned, subjects are presented
with the novel test pair BD, where choice of stimulus B indi-
cates successful transitive inference; this pair is composed of
internal stimuli that have been reinforced in one pair and non-
reinforced in another. The ability to accurately select a transi-
tively correct stimulus has been demonstrated in young chil-
dren (e.g., Bryant & Trabasso, 1971; Markovits & Dumas,
1999; Wright & Dowker, 2002) as well as in multiple animal
species (e.g., Andre, Cordero, & Gould, 2012; Bond, Wei, &
Kamil, 2010; Davis, 1992; Gazes, Lazareva, Bergene, &
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Hampton, 2014; Gillan, 1981; Grosenik, Clement, & Femald,
2007; Jensen, Alkan, Mufioz, Ferrera, & Terrace, 2017;
Lazareva et al., 2004; Mikolasch, Kotrschal, & Schloegl,
2013; Tromp, Meunier, & Roeder, 2015; von Fersen,
Wynne, Delius, & Staddon, 1991).

Cognitive models attribute a choice of stimulus B in the BD
pair to the formation of a mental representation of the series of
discriminative stimuli (A > B > C > D > E) during training.
Subjects then use that representation to correctly select B over
D at test (Davis, 1992; Dusek & Eichenbaum, 1997).
Alternatively, associative models of transitive inference inter-
pret the choice of stimulus B as evidence of a richer reinforce-
ment history of this stimulus compared to stimulus D
(Couvillon & Bitterman, 1992; Siemann & Delius, 1998;
von Fersen et al.,, 1991; Wynne, 1997). According to these
associative models, the commonly employed forward sequen-
tial training procedure results in associative values of the train-
ing stimuli coincidentally mirroring the order that would be
inferred using inferential processes (i.e., with A having the
highest associative value, followed by B, down through E
with the lowest associative value). Consequently, when the
novel pair BD is presented, the subject merely selects the
stimulus with the higher associative value.

The extent to which associative models are sufficient to
predict a subject’s behavior in a transitive inference task re-
mains a matter of debate (see Lazareva, 2012; Vasconcelos,
2008; Wright & Howells, 2008, for reviews). Associative
models predict that subject’s choices in transitive inference
tests can be manipulated by changing the reinforcement his-
tory of the training stimuli. For example, arranging a richer
reinforcement history for the stimulus D by using massed
presentations of the pair D+ E- should result in a preference
for stimulus D when the pair BD is presented. Interestingly,
some pigeons do indeed prefer stimulus D after such massed
presentations, while others continue selecting stimulus B de-
spite its lower associative value, indicating that not all birds
are relying on associative values to solve the task (Lazareva,
Kandray, & Acerbo, 2015). Other reports failed to find evi-
dence of a strong effect of reinforcement history on transitive
choices in pigeons and monkeys (Jensen et al., 2017; Lazareva
et al., 2004; Lazareva & Wasserman, 2006; Weaver, Steirn, &
Zentall, 1997). Associative models also predict that experi-
mental measures of associative strength at the end of training
should produce reasonably good estimates of choice behavior
in subsequent transitive inference tests; this prediction too has
not been supported by data (Gazes, Chee, & Hampton, 2012;
Jensen, Alkan, Ferrera, & Terrace, 2019; Lazareva &
Wasserman, 2012).

Despite these challenges, associative models have been
successfully used to fit and predict some behavioral data
(Delius & Siemann, 1998; Siemann & Delius, 1998; Wynne,
1997, 1998; see Lazareva, 2012, and Vasconcelos, 2008, for
reviews). However, almost all of the modeling efforts to date
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have used data obtained from pigeons. In contrast, little is
known about the applicability of associative models to primate
data, and there are several reasons to believe that primate data
may present unique challenges for such models. These differ-
ences between primate and pigeon transitive inference studies
are indicated below.

Pigeons and monkeys are often trained differently. First,
primate training procedures frequently do not involve the cor-
rection trials commonly used with pigeons (i.e., a repeated
presentation of the same trial until the subject makes a correct
choice). Second, monkeys usually learn the initial training
pairs faster than pigeons. Both of these variables are known
to negatively affect the goodness-of-fit and the predictive
power of associative models (Lazareva & Wasserman, 2010;
Wynne, 1997, 1998). Third, because many pigeons are unable
to learn transitive inference tasks when all training pairs are
presented simultaneously from the beginning of the training
(von Fersen et al., 1991; Wynne, 1995), they are usually
trained sequentially. In contrast, monkeys are often trained
with all premise pairs presented simultaneously in a session
(e.g., Gazes et al., 2014; Treichler, Raghanti, & Van Tilburg,
2007). Simulations suggest that associative models provide a
better fit for data from sequential training than from simulta-
neous training (Wynne, 1995, 1997).

Fourth, monkeys, but not pigeons, are often trained with
lists long enough to test for symbolic distance effects. Pigeons
are always trained in five-term transitive inference lists (A > B
> C > D > E) that produce only one internal test pair, BD. In
contrast, primates are often trained in six- or seven-item lists
(A>B>C>D>E >F > Q) that provide an opportunity to
test multiple internal pairs such as BD, BF, and CE.
Consequently, primate data afford an opportunity to test for
the symbolic distance effect: Pairs comprised of the stimuli
that are located farther away from to each other in a series
(e.g., BF) enjoy higher accuracy and faster reaction times.
This effect has been universally shown in transitive inference
tests with primates, and has often been interpreted as evidence
that subjects have created and referenced a cognitive ordinal
representation of the stimuli (Gazes et al., 2012; Gazes et al.,
2014; MacLean, Merritt, & Brannon, 2008; Treichler & Van
Tilburg, 1996). Although associative models are commonly
assumed to be able to account for the symbolic distance effect
(Lazareva, 2012; Vasconcelos, 2008; Wynne, 1997, 1998),
this assumption has not been tested with empirical data (but
see Jensen et al., 2019, for a theoretical test).

Finally, primates are one of only two groups to have par-
ticipated in transitive inference experiments using a list
linking design (Gazes et al., 2012; Treichler & Van Tilburg,
1996; Wei, Kamil, & Bond, 2014). Here, the subjects are
trained on two independent sequences of overlapping discrim-
inations, such as A+ B- ... F+ G- and H+ I- ... M+ N-. Next,
the two sequences are joined together by the presentation of a
single linking pair that has the lowest item in the first list
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reinforced over the highest item in the second list (G+ H-).
Use of an inference-based strategy would link the two separate
lists into one long 14-item series (Gazes et al., 2012; Treichler,
Raghanti, & Van Tilburg, 2003; Treichler & Van Tilburg,
1996; Wei et al., 2014). However, associative-based models
theoretically cannot explain the rapid changes in choice be-
havior that result from the short and specific linking training
(Jensen, Alkan, Ferrera, & Terrace, 2019).

Our goal in this study was to determine whether associative
models could successfully account for transitive inference per-
formance in primates across a number of standard training
manipulations. Using previously published data from rhesus
monkeys (Gazes et al., 2012; Gazes et al., 2014), we com-
pared the goodness-of-fit and the predictive power of associa-
tive models after simultaneous training, backward sequential
training, and after a list-linking procedure to directly assess the
extent to which these models are able to predict transitive
choices in these experimental procedures in primates. If the
behavior of monkeys in transitive inference tests is controlled
by the associative strength of the training stimuli, associative
models should provide accurate predictions of monkeys’
performance.

Experiment 1: Comparison of sequential
and simultaneous training

Pigeons are commonly trained using forward sequential train-
ing in which the first training pair in the sequence (e.g., A+ B-)
is presented first and trained to criterion, then the next pair in
the sequence is presented and trained to criterion, all the way
through the last pair in the sequence (D+ E-; Lazareva &
Wasserman, 2012; Wynne, 1995). This incremental ordered
training may result in associative values of the stimuli accru-
ing in an order consistent with that inferred through inference
(i.e. A>B > C > D > E). Indeed, associative models of
transitive inference successfully fit results of forward sequen-
tial training in pigeons (Lazareva & Wasserman, 2006, 2012;
Wynne, 1997, 1998). Similar results have also been obtained
for backward sequential training in pigeons in which the last
pair (e.g., D+ E-) is presented first and trained to criterion,
followed by the next-to-last pair, and so on (Lazareva &
Wasserman, 2012; Wynne, 1997, 1998).

Primates, in contrast, are often trained on all premise pairs
simultaneously, with all of the test pairs intermixed in each
training session. Associative models may predict fewer
transitive-like choices after simultaneous training, as such
training may be less likely to produce an ordered series of
associative values at the end of the training (Wynne, 1995,
1997). Here, we compared the predictive power of associative
models for data from rhesus monkeys after traditional back-
ward sequential training and after simultaneous training to
determine whether (1) associative models can predict accurate

transitive inference for primate data, and (2) training type af-
fects the predictive power of the models.

Method
Subjects and apparatus

Subjects were 12 rhesus monkeys (Macaca mulatta). All be-
havioral procedures were approved by the Institutional Care
and Use Committee at Emory University. Monkeys were test-
ed in their home cages using touchscreen computerized sys-
tems as detailed in Gazes, Chee, and Hampton (2012).

Behavioral procedure

Sequential transitive inference sets Behavioral methods and
performance results of this task were published in Gazes,
Chee, and Hampton (2012; Experiment 1). The monkeys were
trained on a standard seven-item transitive inference task
(A....G) presented in a sequential backward order. Each pair
was first presented by itself and trained until criterion and then
presented intermixed with the other already trained pairs.
Specifically, monkeys were first trained on 25 trial sessions
containing only pair F+ G- until they correctly chose F on at
least 80% of the trials. They were then presented with 25 trial
sessions containing only pair E+ F- until they correctly chose
E on at least 80% of the trials. They then received 50 trial
sessions containing both F+G- and E+F- pairs pseudo-
randomly intermixed until they performed above 80% on both
pairs in a single session. This procedure of introducing new
pairs alone, then intermixing all trained pairs was followed
until all six training pairs were presented. Once monkeys per-
formed above 80% correct on all six pairs in an intermixed
150-trial session, they were presented with four test sessions
consisting of 165 trials (25 trials of each of the six training
pairs plus all 15 possible novel non-adjacent test pairs).
Choices on test pairs were non-differentially reinforced with
an auditory reinforcer and no food reward. Once these four
testing sessions were completed, monkeys were presented
with a new seven-item list following this same procedure.
No correction trials were used during training.

Simultaneous transitive inference set The monkeys were
trained on a seven-item transitive inference set in which all
six training pairs were presented simultaneously, pseudo-
randomly intermixed in 150 trial sessions. Reinforcement
was the same as in the sequential transitive inference set for
both training and testing sessions. Once monkeys performed
above 80% correct on all six training pairs in a session, they
were presented with four test sessions consisting of 165 trials
(25 trials of each of the six training pairs plus 15 possible
novel test pairs). Once these four test sessions were complet-
ed, monkeys were presented with a new seven-item list
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following this same procedure. During training, the stimuli on
the screen were presented horizontally (on the left and right
sides of the screen); however, during testing they were pre-
sented vertically (on the top and bottom of the screen).

Application of associative models

Simulations The simulations were conducted using Trl tool-
box designed by OFL (Lazareva & Goodman, 2014; available
for download from http://www.copal-lab.com/tri-toolbox.
html). We used the Wynne (1995) and Siemann-Delius
models (Siemann & Delius, 1998) that have been shown to
be applicable to a wide variety of training conditions
(Lazareva et al., 2004; Wynne, 1997, 1998). The data for each
monkey were fitted individually with the least-square error
technique using the full sequence of trials that were presented
during training. Because individual training history can dra-
matically affect the models’ predictions (e.g., Lazareva &
Wasserman, 2006), this approach more accurately captures
the exact manner in which learning takes place for each sub-
ject than does use of simulated training history. This approach
has successfully predicted training and testing performance
under some conditions in both pigeons and humans
(Lazareva, Kandray, & Acerbo, 2015; Lazareva &
Wasserman, 2006, 2010, 2012). Moreover, these models have
been successfully used to model several behavioral indicators
of transitive inference under simulated training history condi-
tions (Wynne, 1995, 1997), again indicating that they can
predict subjects’ behavior under some circumstances.
Finally, we minimized the likelihood of the model falling into
a local minimum by (1) using an exhaustive search method
instead of a gradient descent, (2) using a reasonably high
stopping criterion (least-squared error between 1% and 2%),
and (3) varying the starting associative values of the stimuli.
Thus, our approach to simulations should be appropriate for
finding an optimal solution in the solution space.

Accuracy during the last session of training was used as a
dependent variable. The obtained associative values of the
stimuli from the best-fitting solution were then used to calcu-
late choice probability to the training pairs and to the testing
pairs during the testing phase according to the choice func-
tions used by the models. This procedure allowed us to eval-
uate the goodness-of-fit (i.e., how accurately the model fit the
training performance) and the predictive power (i.e., how ac-
curately it predicted testing performance). The Siemann-
Delius model produced smaller residuals than the Wynne
model in most applications; therefore, for simplicity, only
the results of Siemann-Delius model are presented.

The Siemann-Delius models use a simple matching choice
rule (Luce, 1959). The inclusion of more complex choice rules
(e.g., an exponential function as in Couvillon & Bitterman,
1992) with a higher sensitivity to differences in associative
values would raise the choice probability for a stimulus in a
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pair in comparison to the results obtained in our simulations.
Thus, finding that the model merely under-predicts subjects’
performance is not particularly revealing of how well the
model can predict behavior, as it could be remedied by inclu-
sion of a free-varying sensitivity parameter into a choice rule.
Instead, failure to capture the patfern of performance is much
more concerning, as it cannot be addressed by an easy modi-
fication of the model.

Goodness-of-fit and predictive power in different training
conditions To evaluate how well the models predicted the
data, we calculated residual sum of squares for all testing
pairs. Note that the model was run to minimize the least-
square error for the training pairs; the testing pairs were not
included in this minimization procedure. Instead, the accrued
associative values of the stimuli associated with the best-
fitting training model were used to compute the predicted
accuracy in tests with the novel pairs. Therefore, it was entire-
ly possible to obtain a solution with small residuals to the
training pairs and large residuals to the test pairs.

The squared residuals for each pair were then used as a
dependent variable in the linear mixed-effect analyses that
included type of training or type of testing pairs as fixed fac-
tors. The symbolic distance effect variable was centered to
improve the model’s convergence. The intercept and the slope
of the regression lines were allowed to vary randomly among
subjects. Tukey’s HSD test was used for pairwise compari-
sons. To simplify visual analysis of the data, all graphs present
experimental data and predicted data on the same graph, rather
than residuals. All analyses were conducted in R (version
3.5.0; R Core Team, 2014) using packages Ime4 (Bates,
Maechler, Bolker, & Walker, 2014), ImerTest (Kuznetsova,
Brockhoff, & Christensen, 2014), tidyr (Wickham & Henry,
2018), and ggplot2 (Wickham, 2009).

Results and discussion

The model generated similarly accurate predictions after si-
multaneous and sequential training (see Fig. S1, Online
Supplemental Material); therefore, any differences in predic-
tive power between these two training procedures were not
likely to be attributable to differences in the goodness-of-fit.
The model predicted the most accurate performance for test-
ing pairs containing the last-anchor stimulus G, chance-level
performance for testing pairs containing the first-anchor stim-
ulus A, and below-chance performance on all internal test
pairs (Fig. 1). Consistent with this prediction, monkeys did
show the highest accuracy on test trials containing the last
anchor. However, in contrast to the model’s predictions, mon-
keys’ performance was well above chance on test pairs con-
taining the first anchor A and on all internal test pairs.
Predictions by subject are presented in Fig. S2 (Online
Supplemental Material).
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Fig. 1 Results of the model (predicted) and actual monkey performance
(obtained) for the sequential (left) and simultaneous (right) training pre-
sentations. Proportion of transitively correct choices across all testing
pairs containing the stimulus A (first item), the stimulus G (last item),

The best-fitting linear mixed-effect model included a fixed
effect of testing pair type, confirming that the model generated
the lowest residuals for the last-anchor testing pairs, ¢ = -4.37,
p <.0001, and the highest residuals for the internal pairs, # =
5.21, p <.0001. In addition, the model included a fixed effect
of training procedure and a testing pair type X training proce-
dure interaction. Specifically, the model produced similar re-
siduals for the first-anchor testing pairs, z = 0.148, p = .999,
and the last-anchor testing pairs, z = .044, p = .999; however,
the residuals were significantly smaller for the sequential than
for the simultaneous training data, z = 4.09, p = .0006, indi-
cating more accurate predictions for sequential training.

For the symbolic distance effect analysis we excluded end-
anchor testing pairs, as the presence of end-anchors influenced
residuals (Fig. 1); thus, this analysis only included internal
testing pairs. As Fig. 2 shows, the model again underpredicted
accuracy for both simultaneous and sequential training (see
Fig. S3, Online Supplemental Material, for individual
predictions). More importantly, the model predicted a decline
in accuracy with an increase in the symbolic distance among
the stimuli. In contrast, monkeys showed the inverse, in-
creased accuracy with increasing symbolic distance.

The best-fitting linear mixed-effect model for the symbolic
distance effect data included a fixed effect of symbolic dis-
tance, ¢ = 4.68, p = .0007, confirming that residuals increased
with an increase in the symbolic distance as the predicted
performance deviated more dramatically from the data. The
model also included a fixed effect of training procedure, ¢ =
4.48, p < .0001, and no interaction; this effect highlighted
larger residuals for the simultaneous training procedure due
to lower variability in monkeys’ performance and the model’s
predictions (cf. Fig. S3, Online Supplemental Material).

or neither of the end-anchor stimuli (internal). The green full line depicts
monkeys’ accuracy, and the blue dashed line shows the accuracy predict-
ed by the model. Error bars indicate standard error of the mean

All monkeys in this study received sequential training and
list linking training first, followed by simultaneous training.
Consistent with improvement from experience, the analysis of
trials to criterion showed that monkeys learned the simulta-
neous training task significantly faster than the sequential
training task (trials to criterion, simultaneous task: 1,770 +
602; sequential task: 2,668 + 756; two-tailed paired t-test, ¢
(11)=6.59, p < .001, Cohen’s d = 1.31). Thus, the somewhat
poorer predictions for the data from the simultaneous training
could be due to the smaller number of errors, resulting in
insufficient errors to generate large differences in accumulated
associative values.

Overall, the associative model failed to predict transitive
behavior in monkeys. This is interesting in light of previous
findings that associative models can account for pigeons’ be-
havior in the standard transitive inference tasks that do not
involve procedural manipulations designed to modify associa-
tive values of training stimuli (Lazareva et al., 2015; Lazareva
& Wasserman, 2006, 2012). The ability of associative models
to account for pigeon data but not primate data may indicate
underlying differences in the cognitive mechanisms used by
these species to solve transitive inference tasks. Alternatively,
it may simply reflect species-specific differences in training
procedures. For example, the absence of correction trials and
rapid learning shown by monkeys result in fewer errors, and
therefore smaller differences in accrued associative values
among the stimuli. The importance of correction trials for
associative models’ ability to predict transitive inference has
been noted previously (Wynne, 1995).

Strikingly, the model failed to predict the symbolic distance
effect that is pervasive in monkeys’ transitive behavior, de-
spite earlier assertions that associative models ought to easily
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Fig. 2 Proportion of correct choices by the symbolic distance on the internal testing pairs for sequential and simultaneous training. The green full line
depicts monkeys’ accuracy, and the blue dashed line shows the accuracy predicted by the model. Error bars indicate standard error of the mean

reproduce this phenomenon (Lazareva, 2012; Vasconcelos,
2008; Wynne, 1995, 1998). This result is especially notewor-
thy because the symbolic distance effect is alternatively
interpreted as an indication of comparisons among items from
a linear ordered representation (Gazes et al., 2012; Gazes
et al., 2014; Henley, Horsfall, & De Soto, 1969; Trabasso,
Riley, & Wilson, 1975; Treichler & Van Tilburg, 1996).
Consequently, our results suggest that the presence of the
symbolic distance effect in a species’ transitive choices may
be a good indicator of a cognitive-based strategy.

Experiment 2: List linking

Only primates and jays have been tested in transitive inference
experiments using a list-linking design (Gazes et al., 2012;
Treichler & Van Tilburg, 1996; Wei et al., 2014). Accurate
performance on these tasks is often taken as the gold standard
of evidence against a simple associative account of transitive
inference, as these designs present a number of specific chal-
lenges for associative models (Gazes et al., 2012; Lazareva,
2012; Vasconcelos, 2008).

As the right panel of Fig. 3 illustrates, the possible novel
testing pairs in the list linking design can be classified as within-
list pairs, where both testing stimuli are drawn from the same
list, or as between-list pairs, where the two testing stimuli come
from two different lists. As in a standard transitive inference
task, associative models could theoretically account for perfor-
mance on the within-list pairs if the stimuli within each list
form an ordered series of associative values acquired during
initial training. However, to predict between-list performance,
all items in list 2 must acquire lower associative values than all
items in list 1, creating a uniformly decreasing series of
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associative values from A to N. The associative models appear
to lack a mechanism to produce this pattern, as the brief list
linking training with a single pair G+ H- seem unlikely to lead
to a single linear series of associative values.

Furthermore, the between-list pairs can be divided into
three groups. In consistent pairs, the transitively correct stim-
ulus also has a higher rank in its individual list; for example,
stimulus B in the novel pair BL occupies a second position in
list 1 while the stimulus L occupies a fifth position in the list 2.
Assuming that the associative models produce two indepen-
dent series of associative values for each list during training,
one might expect that they will easily account for transitive
choices in such pairs, as the stimulus with the higher ranking
should also have a higher associative value. In contrast, stim-
uli in equal pairs have the same rank in their respective lists
(e.g., both stimuli in the pair BI occupy second position in
their lists). Following the same logic, associative models
should produce poorer predictions for these pairs, as the stim-
uli comprising them are more likely to have similar associative
values. Finally, the transitively correct stimulus in inconsistent
pairs has a lower rank on its individual list than the incorrect
stimulus. For example, the transitively correct stimulus F in
the pair FI occupies the sixth position in list 1, whereas the
incorrect stimulus I occupies the second position in list 2.
Therefore, associative models will likely predict an incorrect
choice of stimulus I, as it is more likely to have a higher
associative value.

Theory suggests that list linking training is unlikely to re-
sult in associative values following the pattern necessary to
explain both within-list and between-list test performance
(Jensen et al., 2019). However, modeling of list linking to date
has not been based on empirical data. In this study, we tested
whether associative models can predict primate performance
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Fig. 3 A schematic representation of a list linking design. Left panel:
Two transitive inference lists are trained independently then linked
through the presentation of the pair G+ H- that is intended to create a
single representation of an ordered series A....N. Right panel: The novel
pairs in the list linking design can be classified as within-list (both stimuli

in a list-linking task. If associative models can account for
transitive choices after list linking, it would imply that positive
performance on list-linking tasks does not necessarily indicate
the use of ordinal representations of stimuli. Alternatively, the
failure of associative models to account for transitive choices
in a list-linking task would suggest that monkeys may indeed
engage some cognitive ordinal representation when solving
this task.

Method

The subjects and apparatus were the same as in Experiment 1.
Behavioral methods and performance results of this task were
published in Gazes, Chee, and Hampton (2012; Experiment
4).

After acquisition of the two sequentially trained seven-item
transitive inference sets (Gazes et al., 2012, Experiment 1),
subjects were presented with re-familiarization sessions
consisting of 25 trials of each of the six previously trained
adjacent premise pairs from one of the two lists (A+ B-, B+
C-, C+ D-, D+ E-, E+ F-, and F+ G-). Once they reached 80%
or better on all six premise pairs simultaneously in one ses-
sion, the subjects were presented with sessions containing the
six premise pairs from the second list (H+ I-, I+ J-, J+ K-, K+
L-, L+ M-, and M+ N-) until they reached this same criterion.

are drawn either from List 1 or from List 2) or between-list (one stimulus
is drawn from the List 1 and another from the List 2). Between-list pairs
can be divided into consistent, inconsistent, or equal pairs (see text for
more details)

Finally, they were presented with sessions in which all 12 of
the premise pairs from the two lists were intermixed. During
this re-familiarization phase none of the pairs spanned the two
lists; thus, monkeys were familiarized with test sessions con-
taining 12 test pairs intermixed, but could not link the two
previously learned lists at this stage.

List-linking training sessions presented 25 trials of the
linking pair in which the lowest item (G) from the to-be-
higher ranked list was rewarded when paired with the highest
item (H) from the to-be-lower ranked list until subjects per-
formed above 80%. For half of the subjects the higher ranked
list was the first one learned in sequential training; for the
other half of the subjects, it was the second one learned in
sequential training. Next, subjects received training sessions
in which all 13 training pairs were intermixed (the 12 premise
pairs from the two previously learned lists and the one linking
pair) until they performed above 80% on all 13 pairs in a
session.

Test sessions consisted of all possible non-adjacent test
pairings pseudo-randomly intermixed with the 13 training
pairs in a session containing 403 trials. The 13 premise pairs
and linking pair made up 325 of these trials (25 of each trial
type), within-list test pairs made up 30 of these trials, and
between-list test pairs made up 48 of the trials (cf. Fig. 1).
Monkeys received four test sessions.
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Application of associative models

The same approach to simulations was used as in Experiment
I.

Results and discussion

With an exception of a single subject (see Fig. S4, Online
Supplemental Material), the model generated accurate fits
for the training data. To test the model’s predictive power for
non-adjacent testing pairs, we grouped the pairs into those
containing stimuli A or N (the first and the last stimuli in the
14-item list formed after list linking), those pairs containing
stimulus H or G (the stimuli that were end-anchors in the
seven-item list but not in the 14-item list), and those pairs that
did not contain any end anchors (internal pairs). As Fig. 4
shows, the model slightly underpredicted accuracy in all of
these pair types, but it did capture the general pattern of the
monkeys’ responses, with the highest predicted accuracy to
the pairs containing stimuli A or N and lower accuracy to the
rest of the testing pairs (see Fig. S5, Online Supplemental
Material, for individual predictions).

The best-fitting model included a fixed effect of pair type.
Specifically, the model produced the smallest residuals for the
testing pairs containing stimuli A or N, p < .0001, indicating
more accurate predictions than for the other testing pairs. The
residuals for the testing pairs containing stimuli H or G and for
the internal testing pairs were not significantly different, p =
.248, indicating equally accurate predictions for these pairs.

Next, we explored whether the model predicted the sym-
bolic distance effect after the list-linking procedure. Both the
experimental data set and the accuracy scores predicted by the

model displayed a statistically significant correlation between
distance score and accuracy (experimental accuracy: » = .26, p
< .0001, 95% CI [.20, .32]; predicted accuracy: r = .21, p <
.0001, 95% CI[.14, .27]). However, it is conceivable that the
symbolic distance effect may be different for within-list and
between-list pairs. For example, one might expect that the
within-list pairs would show a more robust symbolic distance
effect due to gradually declining associative values acquired
during training, whereas the symbolic distance effect for the
between-list pair would be weaker or even absent. Therefore,
we next analyzed the symbolic distance effect separately for
within-list pairs in list 1, within-list pairs in list 2, and
between-list pairs.

Figure 5 provides a graphical illustration of these analyses.
Rhesus monkeys displayed a robust symbolic distance effect
for between-list pairs and for within-list pairs from the list 1; in
contrast, this effect was absent for pairs from the list 2. More
importantly, the pattern of correlations in the model’s predic-
tions did not fit with these observed patterns. Instead, the sym-
bolic distance effect was predicted for both list 1 and list 2 pairs,
but not for between-list pairs. The model also underpredicted
monkeys’ performance, especially for list 2 pairs.

Given the apparent differences in experimental and
modeled data for the internal testing pairs, we next explicitly
compared monkeys’ performance and the model’s predictions
for between- and within-list pairs. Recall that, theoretically,
the model could accurately predict performance on lists 1
and 2 if the ordered series of associative values formed inde-
pendently for each list during training (see Fig. 3). Predicted
accuracy for between-list pairs, however, would additionally
require that the associative values of all items in list 2 fall
below that of list 1. Interestingly, the model accurately
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Fig. 4 Proportion of correct choices in the testing pairs containing stimuli
A or N (the end-anchor stimuli after list linking), stimuli H or G (former
end-anchor stimuli), and the internal pairs that did not contain end-anchor
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stimuli. The green full line depicts monkeys’ accuracy, and the blue
dashed line shows the accuracy predicted by the model. Error bars indi-
cate standard error of the mean
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experimental data (top row) and model predictions (bottom row). Each

captured performance for within-list pairs from list 1, and on
between-list pairs, but underpredicted accuracy for within-list
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Text inserts provide 7 and p for the linear regression, together with the

pairs from list 2 (Fig. 6; see Fig. S6, Online Supplemental
Material, for individual predictions).
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Fig. 6 Proportion of correct choices plotted separately for between-list pairs, within-list pairs from list 1, and within-list pairs from list 2. The green full
line depicts monkeys’ accuracy, and the blue dashed line shows the accuracy predicted by the model. Error bars indicate standard error of the mean
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The best-fitting model included a fixed effect of internal
testing pair type, indicating a significant effect of testing pair
on residuals. Specifically, the residuals for list 2 pairs were
significantly larger than for list 1 pairs or for between-list pairs
(Tukey’s test, both ps < .0001). In other words, the model
provided reasonable predictions for performance on
between-list pairs despite the absence of reinforcement history
favoring the ordered list of associative values from A to N. In
contrast, the model was unable to predict performance in the
list 2 pairs that should have been supported by reinforcement
history.

Finally, we explored the model’s ability to predict mon-
keys’ behavior for the three between-pair subtypes: consistent,
equal, and inconsistent (see Fig. 3). Intuitively, the model
should predict transitive-like responses for consistent pairs,
but not for equal or inconsistent pairs. As Fig. 7 illustrates,
while the model once again failed to predict the monkeys’
performance, this intuition was not supported by the data.
Although the model’s predictions for equal and inconsistent
pairs were very close to monkeys’ performance, the predicted
performance for consistent pairs was low (below chance), and
the overall performance pattern shown by monkeys was not
mirrored by the predictions (see Fig. S7, Online Supplemental
Material, for individual predictions). The linear mixed-effect
analysis supported this finding, as the best-fitting model failed
to include a fixed effect of pair subtype.

To explain the model’s counterintuitive behavior, we visu-
ally examined associative values generated by the model at the
end of the training for all stimuli from A to N (Fig. 8). In the
Siemann-Delius model (Siemann & Delius, 1998), associative
values are calculated as a weighted sum of the elemental as-
sociative value accrued during all presentations of that stimu-
lus, combined with a configural value accrued only during a

presentation of that stimulus in a specific pair. However, test-
ing pairs have never been presented before and therefore have
not accrued configural associative values; thus, preference in
these pairs depends solely on elemental associative values.

Figure 8 portrays log-transformed elemental associative
values for the monkey Morpheus (see Fig. S8, Online
Supplemental Material, for associative values for all
subjects). The model generated a decreasing series of elemen-
tal associative values for the list 1, but the elemental associa-
tive values generated for list 2 followed the reverse pattern,
increasing from H through N. Moreover, many of the elemen-
tal associative values for the list 2 stimuli were lower than for
the list 1 stimuli.

This pattern of the elemental associative values explains
the results shown in Figs. 6 and 7. Lower elemental associa-
tive values for the stimuli comprising list 2 produced “transi-
tively correct” predictions for many between-list pairs, while a
decreasing series of associative values for stimuli comprising
list 1 generated accurate predictions for within-list pairs in list
1. In contrast, the increase in the associative values from H to
N in list 2 predicted low preference for “transitively correct”
stimuli for within-list pairs in list 2. Because most of the as-
sociative values of the stimuli in list 1 were below the values
of the stimuli in list 2, the subtypes of between-list pairs
(consistent, inconsistent, and equal; see Fig. 3) were fit equal-
ly well.

Recall that in order to predict transitive inference after list
linking the model needed to generate a gradually declining
series of associative values from A to N so that all stimuli in
the list 2 had lower associative values than stimuli in list 1. As
Fig. 8 illustrates, the model partially accomplished this goal.
To fit the accurate performance to the linking pair G+ H-, the
model had to generate an associative value for the stimulus H
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depicts monkeys’ accuracy, and the blue dashed line shows the accuracy predicted by the model. Error bars indicate standard error of the mean
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that was close to but below that of the stimulus G. Due to the
presence of a configural value for the pair G+ H-, close values
of the two stimuli could have still predicted a choice of G in
the pair G+ H-. However, the stimulus G in the list A....G has
never been reinforced and therefore possessed a low associa-
tive value. Consequently, the model had to contend with a
variant of a “floor effect”: The associative values of the stimuli
in list 2 simply did not have enough “room” to produce an
ordered series of the associative values. Consequently, the
model did not perform well on within-list pairs from list 2,
as many of the associative values in this list were too close to
each other to produce accurate predictions.

Overall, the model was unable to accurately predict mon-
keys’ performance after list linking. However, contrary to our
expectations, the model provided accurate predictions for
between-list pairs and for within-list pairs from list 1, but
not for within-list pairs from list 2.

General discussion

Our simulations showed that associative models could not
account for monkeys’ transitive choices. The model provided
an equally poor fit for sequential and simultaneous training
presentations, in contrast to simulations with pigeon data
(Wynne, 1995, 1997). Moreover, the model was unable to
predict the robust symbolic distance effect shown by the mon-
keys, instead predicting a reversed effect of decreasing accu-
racy with increasing symbolic distance. Additionally, the
model failed to predict performance following list linking.
Both the symbolic distance effect and list linking have been
suggested to be performance patterns indicative of ordinal
cognitive processes that cannot be explained by associative

models. Our findings support that theoretical assertion.
Overall, our results indicate that the traditional associative
models are not sufficient to explain transitive inference in
monkeys, and suggest that monkeys are engaging an ordinal
cognitive process in solving these tasks. Moreover, the fact
that these models were reasonably good at fitting pigeons’
behavior but not monkeys’ behavior suggests a possible fun-
damental difference between the two species.

This is the first paper to empirically test associative models
using behavioral data for the symbolic distance effect and list-
linking procedures. Theory suggests that associative models
could predict the symbolic distance effect if training resulted in
a monotonically decreasing series of associative values (Gazes
et al., 2012; Lazareva, 2012; Vasconcelos, 2008; Wynne, 1998).
However, our results indicate that this is not the case; our simu-
lations predicted the opposite pattern to the symbolic distance
effect shown by monkeys (Figs. 2 and 5), suggesting that the
predictability of the symbolic distance effect by associative
models may have been overestimated. Therefore, the presence
of the symbolic distance effect may in fact serve as a reasonable
indicator of a cognitive strategy based on comparison between
items in a linearly ordered representation.

Likewise, theory suggests that list linking would pose seri-
ous challenges for associative models due to their assumed
inability to predict “transitively correct” choices for
between-list pairs, especially for “equal” pairs (Fig. 3; Gazes
etal., 2012; Lazareva, 2012). However, our simulations accu-
rately predicted between-list pair accuracy for all pair types,
including equal pairs. Instead, it dramatically underpredicted
accuracy for within-list pairs from list 2 (Figs. 6 and 7). Thus,
associative models were indeed unable to account for mon-
keys’ performance in list-linking procedures, albeit for differ-
ent reasons than previously believed.
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Our simulations concentrated on traditional associative
models in which a reinforced choice of a stimulus leads to
an increase in its associative value, while a non-reinforced
choice of a stimulus leads to a decrease in its associative value
(Siemann & Delius, 1998; Wynne, 1998). Although the model
under-predicted the empirical data in several circumstances,
lower accuracy does not necessarily represent a serious failure
because the Siemann-Delius model uses a simple choice rule
(Luce, 1959) that assumes a one-to-one correspondence be-
tween the associative values of the stimuli and the choice
probabilities. If a more complex choice rule were used, then
the same differences in associative values would predict
higher accuracy; such a rule would simply add one free pa-
rameter to the model (e.g., Couvillon & Bitterman, 1992).
However, we found multiple instances in which the model
predicted an opposite pattern of performance to the one pro-
duced by monkeys. Such failures indicate that the model is not
capturing the way in which learning and inference occurs, as
they cannot be remedied by minor modifications to the model.

The value transfer model (von Fersen et al., 1991) proposes
a different mechanism in which a proportion of the associative
value of one stimulus in a pair is transferred through its asso-
ciation with the second stimulus in that pair. For example,
stimulus B in pair A+ B- accrues a proportion of associative
value of stimulus A because they have been presented togeth-
er in a pair. However, the addition of value transfer theory to
the traditional associative model does not drastically change
its predictive power (Lazareva & Wasserman, 2006, 2010)
and would be unlikely to improve the fit of our models.

A recent hypothesis posits a new transitive inference mech-
anism whereby transitive choices are produced by differences
in attention to discriminative stimuli (Galizio, Doughty,
Williams, & Saunders, 2017; Zentall, Peng, & Miles, 2019).
According to this view, the subjects presented with the train-
ing pair A+ B- learn to select the consistently reinforced stim-
ulus A and ignore stimulus B. In contrast, when presented
with the training pair C+ D-, the subjects learn to both select
stimulus C and avoid stimulus D, as neither of the stimuli
consistently signals reinforcement. Thus, when novel pair
BD is presented during the test, the subjects display a bias
toward stimulus B due to inattention to its association with
non-reinforcement. However, this explanation is unlikely to
provide an account for transitive inference in longer series
(e.g, A>B>C>D>E>F > Q) orin list linking designs
in which the stimuli comprising the testing pair are never
paired with end-anchor stimuli (e.g., pair CE) and therefore
should not be subject to such biases.

We therefore conclude that the current associative models
cannot produce a satisfactory account of the primate data.
This result clearly illustrates the dangers of generalizing re-
sults of simulations using one species’ data (i.e., pigeons) to
other species (i.e., thesus monkeys). Associative models pro-
vide a good fit and accurate predictions for backward and
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forward sequential training but not for simultaneous training
in pigeons (Wynne, 1995, 1997, 1998). Yet, our simulations
show equally poor predictions for sequential and simulta-
neous training in primates (Figs. 1 and 2), suggesting that
rapid acquisition and absence of correction trials are more
problematic than the mode of pair presentation. Importantly,
this further supports previous empirical comparative findings
that suggest that different species and even different individ-
uals within the same species may solve the same transitive
inference tasks using different cognitive mechanisms
(Lazareva et al., 2015; Lazareva et al., 2004; Lazareva &
Wasserman, 2006; MacLean et al., 2008).

Overall, our results support and augment the existing
body of research suggesting that the current associative
models of transitive inference cannot adequately account
for behavioral data (Gazes et al., 2012; Jensen et al., 2019;
Jensen et al., 2017; Lazareva et al., 2015; Lazareva &
Wasserman, 2012; Steirn, Weaver, & Zentall, 1995).
Specifically, primates, like humans, may solve transitive
inference tasks by forming a linear representation of the
order of the stimuli. Indeed, research suggests that pri-
mates learn the order of the stimuli learned in a transitive
inference task and can order stimuli by their relationship
when they are presented in a simultaneous chaining format
(Jensen, Altschul, Danly, & Terrace, 2013). Additionally,
learning a spatial order of stimuli that are then trained in a
transitive inference task facilitates performance in humans,
and modestly in monkeys, suggesting that this order may
be represented spatially (Gazes et al., 2014). Thus, further
modeling efforts in this area should concentrate on the
development of new models that focus on a linearly or-
dered representation in addition to the associative strengths
of stimuli. Such models should be able to adequately ex-
plain the existing data while providing new predictions that
stimulate further empirical research.
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