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Abstract — This paper examines subset selection for non-
linear least squares parameter estimation, and applies the
methodology to a test system previously studied in the
power system literature, involving the on-line identifica-
tion of a synchronous generator model with many pa-
rameters. Subset selection partitions the parameters into
well-conditioned and ill-conditioned subsets. We show
for the test system that fixing the ill-conditioned param-
eters to prior estimates (even if these prior estimates are
substantially in error), and estimating only the remain-
ing parameters, significantly improves the performance of
the estimation algorithm and greatly enhances the quality
of the estimated parameters. It is shown that attempts
to estimate all of the model parameters, as done in the
original work with this test system, can yield extremely
unreliable results.
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I. INTRODUCTION

Parameter estimation is a key step in fitting a model to measure-
ments, and is therefore central to the task of system identification.
The parameter estimates are chosen so as to minimize a measure
of the errors between: (i) the model’s predictions of what values
the available measurements will take, and (ii) the actual values
taken by the measurements. Methods of solving this minimiza-
tion problem are dependent on the structure of the model and on
the error criterion. For models whose predictions are linear in the
parameters, and with an error measure that is the sum of squared
" prediction errors, efficient and stable linear least squares estima-
tion techniques are available (see, e.g. [1, 2, 3]). For models that
are nonlinear in the parameters, least squares estimation involves
iterative methods, of which the Gauss-Newton iterated linearized
least squares method is among the most used [1, 4, 5, 6].

Several aspects of the model and measurements affect the per-
formance of a parameter estimation algorithm and determine the
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quality of the estimates that are produced. What happens very
often in the power system setting is that a component model is
built up from detailed analysis of the underlying physical phenom-
ena, and therefore involves a relatively large number of physically
interesting and interpretable parameters; this is certainly the case
with the synchronous generator models found in the literature,
[7, 8]. On the other hand, the measurements available from on-
line experiments in an interconnected power system — which is
the setting that is ultimately of interest — are typically not rich
enough to adequately reflect the individual effects of all the pa-
rameters in the various components of the system. This mismatch
between the (high) detail of the models and the (low) richness in
the measurements leads to very sensitive or ill-conditioned param-
eter estimation problems.

The purpose of this paper is to point out the manifestations of
such ill-conditioning in the context of parameter estimation for a
synchronous generator model, and to suggest a strategy for over-
coming the ill-conditioning. Our results apply more broadly than
to synchronous generator identification, but this particular identi-
fication problem is, important enough to have been studied fairly
extensively in the power systems literature — see for example
[9, 10, 11, 12, 13, 14, 15, 16} and references therein — and there-
fore provides a fruitful context for our study. In particular, the test
system that we use is taken from [16]. Some mention of condition-
ing in the generator identification problem appears in [11, 13, 14],
but the theme does not seem to have been developed in any detail
prior to now. )

Our strategy for overcoming ill-conditioning is based on the
subset selection approach proposed in [17, 18] for nonlinear least
squares parameter estimation, extending subset selection for lin-
ear least squares estimation as described in [2]. Subset selection
partitions the model parameters into well-conditioned parameters,
which are likely to be estimated reliably from the given measure-
ments, and ill-conditioned parameters, whose estimates are likely
to be unreliable, and whose presence makes the parameter esti-
mation problem very sensitive. Given this partitioning, we pro-
posed in {17, 18] to fix the ill-conditioned parameters at prior es-
timates, in effect abandoning any attempt to estimate them from
the available measurements, and to then solve a reduced-order and
well-conditioned parameter estimation problem to determine the
remaining parameters. This strategy is successful if the bias intro-
duced by fixing the ill-conditioned parameters to prior estimates
is more than made up for by the improvement in estimation of the
remaining parameters. The application of this strategy to the esti-
mation of induction machine speed and parameters in [17, 18] led
to major performance improvements over full-order estimation.

We demonstrate in this paper, for the synchroncus generator
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model used in the identification experiments of [16], and for qual-
itatively similar “measurements” (synthesized from the model in
[16], since the original data was not available to us), that the pro-
posed strategy leads to a reduced-order estimation procedure and
associated parameter estimates that are much better behaved than
if all the parameters are estimated together. Section II of the pa-
per briefly reviews the nonlinear least squares problem, highlight-
ing the role of the Jacobian (or gradient or first derivative matrix)
of the error vector with respect to the parameter vector in find-
ing the least squares estimate by the Gauss-Newton method; the
Hessian (or second derivative matrix) of the error criterion with
respect to the parameter vector is also defined. The section then
gives the main idea behind the subset selection procedure, applied
to the Jacobian or Hessian, and finally specifies the algorithm in
more detail. Section III describes the test system, explains how
the “measurements” for oar identification experiments were syn-
thesized, and then presents the results of our various estimation
experiments on the system. Some conclusions are stated in Section
Iv.

II. LEAST SQUARIEES ESTIMATION AND SUBSET
SELECTION

A. The Nonlinear Least Squares Problem

Least squares fitting of a model to experimental data is a common
procedure in engineering. In this method, the parameters of a
model are determined such that they minimize the sum of squares
of the components of the N-component error (or “residual”) vector

r()) =30 -v, @

where 6 denotes the n-vector of model parameters, ¥(6) is the N-
vector of model predictions for the measurements, and y is the V-
vector of actual measuremants. Stated mathematically, the vector
of parameter estimates is specified as

0= argminV'(6) , @

where the minimization criterion for least squares is defined by
1 1
V) = @I =53 k0, @

with r¢(6) denoting the £th component of the error vector, and the
factor of % being simply for convenience in some later expressions.
Minimization of the above criterion by the Gauss-Newton method
involves iterated linearization of the nonlinear problem around the
current best guess of the parameter estimates, and therefore re-
quires the N x n Jacobian or gradient or matrix of first partial
derivatives of the error vector with respect to the parameter vec-
tor: oe(6)
. T

The Gauss-Newton method begins with an initial guess of the
parameter estimate, say §o. The next guess is then computed as

§1 =§0 +a1p1 , (5)

where o3 is a scalar (of the order of unity) that fixes the step
size in the Gauss-Newton direction pj. This direction is com-
puted by solving a linear least squares problem associated with
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the linearization of the original problem around the initial guess.
Specifically, p; satisfies the so-called “normal” equations:

FNp1=JTr, (6)

where ' denotes matrix transposition, and both J and r in (6) are
evaluated at the current estimate 50. In principle, p1 could be
found by inverting the matrix (J'J) that pre-multiplies it in the
above equation, but from a numerical point of view there are bet-
ter methods of actually computing p:, see [2]). Note that (J'J) is
invertible, and correspondingly p1 is uniquely determinable, if and
only if the n columns of J are independent. From the definition in
(4), we see that this condition is equivalent to requiring that incre-
ments in the various parameters should perturb the error vector
in n independent directions (in N-space).

The step size oy in (5) may be picked so as to obtain (close
to) the greatest possible decrease of the criterion V() by move-
ment in the specified direction. Once 91 has been found, the entire
procedure is repeated, but now linearizing around 6;. This itera-
tion is continued until the desired degree of convergence has been
achieved. A more detailed algorithm description may be found in
[4]; a clear summary in the context of generator identification is
given in [12].

Other Newton-type approaches to solving the minimization
problem (2) involve the Hessian, which is the n X n matrix of
second partial derivatives of the error criterion V'(8) with respect
to the parameter vector 8, and is easily seen to be given by

H() = 7030 + 3 re0) 2L ™
=1

For small residuals, the Hessian can evidently be approximated by
H(6) ~ J'(6)3(9) , ®)

which is the matrix on the left side of (6). In the remainder of this
paper, we shall use the term “Hessian” and the symbol H to refer
to this approximation of the strict Hessian, namely J'J.

Efficient methods exist for computing the Jacobian when the
data is modeled as comprising time samples of the output of a
state-space model, which is the case with our test system. For
a detailed description of these methods, we refer the reader to
[4]. Explicit treatments of the application of least squares param-
eter estimation in this manner to the identification of synchronous
machines, including the calculation of gradient functions, can be
found in {9, 12, 14].

B. Parameter Conditioning

The Hessian matrix H = J'J on the left of the normal equations
(6) is symmetric and positive semidefinite, so all its eigenvalues
are real and non-negative. Suppose H is actually singular, with
just one eigenvalue at 0 and some associated eigenvector; this hap-
pens if and only if the n columns of J actually contain only n —1
independent vectors. An immediate implication of the singularity
is that the step direction computed from the normal equations (6)
can be varied in the direction of this eigenvector of H without
affecting the error criterion (at least to first order). Such inde-
terminacy would be highly undesirable in a physical parameter
estimation problem, because it would indicate that the parame-
ters cannot be unambiguously estimated from the given measure-
ments. Note that such parameter indeterminacy can exist even if
the model predictions fit the measurements exactly, i.e. even if
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V(@) = 0; the Hessian involves the second partials of V(-), not
the value of V(-) itself. Thus the fact that one gets a small er-
ror between the model predictions and the measurements is not
sufficient validation of the quality.of the parameter estimates.

Tt is typically the case that H is not exactly singular. However,
often H is nearly singular, in the sense that its smallest eigenvalue
is very small relative to its largest eigenvalue. Such a situation
corresponds to the n columns of J being nearly dependent, i.e.,
being almost confined to a subspace of dimension less than n in
Euclidean N-space. This situation is also undesirable, because
it reflects near indeterminacy in the parameter estimates, caused
by having more parameters than can be reliably estimated from
the available measurements. Nearness to singularity is usually
measured by the condition number, {2], which (in the case of a
symmetric, positive definite matrix) is the ratio of the largest to
smallest eigenvalues; we shall denote the condition number of the
Hessian by «<(H).

[Our discussion could equivalently be framed in terms of the
so-called singular values and associated singular vectors of J, [2],
rather than the eigenvalues and eigenvectors of H, but we use the
latter because eigenvalues and eigenvectors are more familiar ob-
jects. From a numerical point of view, it is actually preferable
to work with the singular value decomposition (SVD) of J rather
than to compute H according to (8) and then determine its eigen-
decomposition, but this is not a serious issue for the exposition
. herel]

There are several related manifestations of a high condition
number in the Hessian. For example, from the definition of H
as the matrix of second partial derivatives of the error criterion
V(8), it follows that the eigenvalues of the Hessian describe the
curvature of the error criterion in the directions of the associated
eigenvectors. A high condition number for the Hessian indicates
that the error criterion varies much more slowly with § in some
directions than in others. The implication for parameter estima-
tion is that the parameter vector is more poorly determined in
directions where the curvature it small, relative to directions with
high curvature.

Yet another consequence of a high condition number which can
be deduced from (6), is that a small fractional change in the error
r can make a large fractional change in the step direction, with
the ratio of these fractional changes possibly being as large as the

“condition number. Finally, a high condition number can result in

a large number of iterations to convergence in the Gauss-Newton
algorithm.

C. Subset Selection and
Reduced-Order Estimation

The strategy suggested in [17, 18] for improving the behavior of
nonlinear least squares parameter estimation is to determine which
parameter axes lie closest to the ill-conditioned directions of the
Hessian, and to fix the associated parameter values at prior esti-
mates throughout the iterative estimation.process. If the Hessian
has p large eigenvalues and n — p small ones, then what we do in
the update step (5) is fix n— p appropriately chosen components of
the step direction vector to be 0, so that the associated parameters
do not change. The resulting normal equations will then only in-
volve the Jacobian of the error with respect to the p remaining or
“active” parameters; we denote this Jacobian by J,, and note that
its_columns are just a subset of the columns of J, namely those
corresponding to the active parameters. The associated Hessian
is H, = J,J,.

Subset selection is aimed at recognizing which p parameters
to keep active so as to obtain a corresponding Hessian H, with
as small a condition number as possible. A combinatorial search
would be prohibitively expensive computationally. The- following
algorithm, which is essentially the one specified in [17] (which in
turn is derived from the subset selection algorithm for linear least
squares described in [2]), is much cheaper, and yields very good
results:

ALGORITEM  (SUBSET SELECTION AND
REDUCED-ORDER ESTIMATION)

o Given an initial parameter vector estimate 50, compute the
eigendecomposition of H(6y), yielding H = VAV'.

e "Determine p such that the first p eigenvalues of H are much
larger than the remaining n — p ones.

e Make the partition V = [ V,
the first p columns of V.,

Vn_p ] with V, containing

e Determine a permutation matriz P by constructing a QR de-

composition with column-pivoting, [2], for V), i.e. determine

V,P =QR 9)

where Q is an orthogonal matriz, and the first p columns of
R form an upper triangular matriz.

e Use P to reorder the parameter vector 6 according to 5 =P'g
o Make the partition 0 = | Aé'p 7

—p 1" with ’9V,, containing the

first p elements of 6. Fig 5n_p to a prior estimate 5,,_,,.
e Compute 0 by solving 0 = arg mmb«V(bv) subject to 5n—p =

By

[It is assumed that the initial estimate B, is accurate enough for
the Algorithm to provide a subset selection that does not differ
significantly from one based on the Hessian evaluated at the op-
timal estimate. If desired, the Algorithm can be restarted at any
stage with the current best estimate of the parameters, to check
if the subset selection has changed.]

III. APPLICATION TO A TEST SYSTEM
A. The System Model

Our test system is extracted from the description in [16], and in-
volves the following small-signal model of a 100 MVA turbogenera-
tor connected to an infinite bus. The model consists of incremental
equations describing the synchronous machine around an operat-
ing point. The d-axis incremental equations in standard notation,
[7, 8], and as presented in [16], are

dAE;_ 1 , Td— T

= YTAEq— T o AE, (10)
Tg — k
T AV
dAEY (1
= A
& S \Tg T;a By ()

1 -zl wd Ty ) 7
- +47%d AE
(Té'a Tiory  Tiory !



1 1 1
Tg—Tg | Tyg— Ty k
¥ ( T * Tha ) BVt gy BV

. 1
Aig = F(AE‘I; - AVY) (12)
d
The inputs to the above equations are AV, and AVy4, while Aig
is a measured output. The parameters to be estimated are z4,
zy, =, Tyo, Ty and k = Taq/Rysq. Similarly, the incremental
equations along the g-axis are

dAE] g y g — T4
= ——A_AFE) - A 1
dt Ty e T T AV (13)
. 1 1
q q

The input is AVy, Aig is a measured output, and z,, z; and Ty,
are the parameters to be estimated.

The generator is assumed to be connected to an infinite bus of
voltage magnitude Vg through a line reactance z.; these two quan-
tities are parameters to be sstimated. The connection imposes the
phasor relationships represented in Fig. 1, where I denotes the cur-
rent flowing from the generator into the infinite bus, Vi denotes the
generator’s terminal voltage, and ¢, 6, and the power angle d; are
as defined in the figure. Linearizing these relationships around an
operating point leads to incremental equations relating AI, A,
AV;, A8, AVy and AV,

» d-axis

Figure 1: Phasor relationships.

The incremental motion equations of the system are

dAw D Ws
dA¢y

where w is the angular velocity of the rotor, w, is synchronous
frequency, P = Vgiq + V4i4 is the electrical power out of the gen-
erator, H is the inertia constant of the machine set and D is a
mechanical damping coefficient. The inputs to the above equa-
tions are AP and A@, while Ad; is a measured output. Both H
. and D are parameters to be estimated.

Putting together the incremental relationships above and elim-
inating the appropriate variables, we obtain a small-signal state-
space model for the system. in the standard form

_x(t)
y(t)

i

Ax(t) + Bu(t)
Cx(t) ,

(18)
(19)
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with state vector, output measurements and input respectively
given by

x = [ AE, AE] AE] Aw A¢] (20)
y = [Aig Aip A8 AVe AV, ) (21)
u = AVjyq. (22)

For convenience, we specify the operating point around which the
small-signal model is constructed by specifying the active power P,
reactive power @ = V,iq4 — Vyiq, and the angle ap from Vg to the
d-axis. Our numerical experiments used the operating condition
corresponding to P = 1.0p.u., @ = 0.1p.u., and ap = 70°.

B. Formulation of Estimation Ezperiments

A nonlinear least squares parameter estimation approach for on-
line identification of synchronous machines is presented in [16],
along with the results of application to several actual large gener-
ators. With the generator connected to a large power system and
loaded normally, one applies a sudden change of excitation AVyq
through some appropriate means. The transients in the line volt-
ages Vab, Vip, phase currents iq, 45 and i, field voltage Vyq and
power angle §; are recorded, and used as the basis for parameter
estimation.

Table 1 lists the parameters that have to be estimated. All the
parameters listed in the table, with the exception of Vp and =z,
were identified in [16] by applying the Gauss-Newton method, us-
ing the electrical equations (10-14) and the mechanical equations
(15-17) to model the data. The electrical subsystem model in-
volves 9 parameters; what we shall demonstrate is that estimating
all 9 of these parameters without fixing a subset of them can yield
extremely unreliable results for the given estimation problem.

-Since the experimental data from [16] were not available to us,
and also to permit a more controlled assessment and comparison
of parameter estimation strategies, we used the system model from
the previous subsection to produce synthetic “measurements” that
serve as the basis for our estimation studies. To generate these
“measurements”, we took as the “true” or underlying parameters
the final identified parameters from [16], listed in the bottom row
of Table 1, chose a reasonable operating point, and excited our
model with a field voltage perturbation AVys — shown in Fig. 2
— that yielded “measured” waveforms qualitatively similar to the
experimental measurements in [16]. These “measured” waveforms,
which serve as inputs to our estimation process, are Aig, Aiq, AVy,
AV, and Aé;, shown in Figures 3-5. (The waveforms in Figure 4
are actually shown with some additive noise imposed, at levels
used later in the paper to study the sensitivity of the parameter
estimates to noise.)

The reader should keep in mind that our purpose is to compare
methodologies rather than to make specific numerical comparisons
of identified parameters with the results in [16]. Therefore, the

fact that for “true” parameters we use values that were the result

of the potentially ill-conditioned estimation process in [16] should
not be a real concern, particularly since the values listed in the
bottom row of Table 1 are physically quite reasonable.

For comparison, the manufacturer’s nameplate values for most
of these parameters, as quoted in [16], are listed above the “true”
values in the table. We used these manufacturer’s values as initial
estimates for the parameter values; the starting values for the
four parameters not provided by the manufacturer were chosen
arbitrarily.
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Table 1: Parameter Values. The second row (Manuf.) lists the parameter values declared in [16] as provided by the
manufacturer. The third row (“True”) lists the parameters estimated in [16], and used as “true” values in synthesizing the

“measurements” for our experiments.

T4 xh z Tho T k Tq T To H D Vs Te
(pu.) | (pu.) | (p.u) | (sec) | (sec) (pu.) | (pu.) | (sec) | (sec) (p-u) | (pu.)
Manuf. | 1.806 | 0.286 | 0.183 6.2 0.24 | 1271 - - - 9 3 1.22 -
“True” | 1.414 | 0.333 | 0.208 | 5.85 | 0.194 | 1552 | 1.302 | 0.396 | 0.955 | 11.2 | 1.89 0.99 0.016
0 - >
. -1x10* T |
=
£ i
2 -2x107 .
Z .
-3x10™ .
4 . Il " 1 " L L 1 x 1 L 1
0T 6 8 10 12

Time /s

Figure 2: Transient field voltage AVy,.
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Figure 3: Transient currents Ay, Adg.

C. Estimation of Vg, z., H and D

The electrical subsystem of the test model is the focus of our stud-
ies of subset selection, but we first deal briefly with the estimation
of VB, &e, H and D, before concentrating on the electrical subsys-
tem in the next subsection. )

In [16] it is suggested that Vp and we be determined by lincar
regression from the following relation:

Vi = bV + baa? + baz. (23)
where b1 = 1/Vi, by = —I*/V; and bs = 2I cos(r/2 — ¢). Measure-
ments provide us with the values of V;, I and ¢. However, since
(283) is nonlinear in ., a nonlinear parameter estimation method
should be used to get reliable results. Furthermore, the estima-
tion problem is ill-conditioned when the measured transients are
small compared to their operating-point values. We therefore pro-

10 ‘ 12
Time /s

Figure 4. Transient voltages AV, AV, (with added

noise).

0 2 4 6 g 10 12
Time /s

Figure 5: Transient power angle Ad;.

pose estimating Vp and z. by the following two steps, involving
incremental equations.

e By linearizing (23) around the operating point, z. can be
determined from

01%e + Q222

AV =
a3 + GaZe

(24)
through application of a nonlinear estimation method, e.g.
Gauss-Newton. The ai’s in (24) involve known operating
point values and the transients of §;, iq and 4.

e Once z. has been estimated, Vp can be directly calculated
from the relationships in Figure 1.

The estimation of H and D was done by applying the Gauss-
Newton method to the state-space incremental model (15-17). The



condition of the associated Hessian is «(H) = 79.3, which indi-
cates a rather well-conditioned estimation problem. As might be
expected from this conditioning, both H and D can be estimated
reliably.

D. FEstimation of the Electrical Parameters

In this section we show that estimation of the parameters involved
in the electrical subsystem (10-14) can be improved significantly
by subset selection. The parameter vector to be estimated is

(25)

as listed in Table 1. The full-order Hessian evaluated at the “true”
parameters possesses the following eigenvalues:

!
0=[2a zy af Th Ti k zq z Tpo ],

86.9, 4.94, 1.20, 0.670, 0.126, 0.0252,
0.0168, 3.46 x 107%, 6.47 x 10713,

(26)

and has a condition number of 1.34 x 10*, which indicates severe
ill-conditioning. [Evaluating the Hessian at other nearby sets of
parameters yields qualitatively similar results; for our purposes, it
suffices to evaluate it at the “true” values.] It is evident that the
last two eigenvalues are comparatively very small; there is a huge
gap between the 7th and the 8th eigenvalues. This suggests that
there are two ill-conditioned parameters whose values we should
fix at prior estimates in order to get a well-conditioned problem.

The application of our Algorithm yields the following partition-
ing of parameters into 7 well-conditioned parameters and 2 ill-
conditioned ones:

9= [ zy Tgo zq T4 i zg za | k Th ]l . (27
Since k and T4, have been shifted to the last two positions of the
reordered parameter vector @, these are the parameters to fix.

Rather than looking at the results for just the case of two fixed
parameters, it is illuminating to examine the whole range of pos-
sibilities. We therefore applied our Algorithm for all choices of
p from 9 down to 1, to determine which 9 — p parameters to fix.
The remaining unfixed parameters were estimated using noise-free
“measurements”, and with a termination criterion of the form

v@) <c, (28)
with ¢ being a small constant threshold.

Table 2 shows: (i) the number of iterations needed to meet
the termination criterion; (ii) the condition number x(H,) of the
reduced-order problem. obtained by fixing the parameters specified
by the Algorithm; and (iii) the ideal reduced-order condition num-
ber x,(H) = M\ (H)/A,(H), with A;(H) denoting the ith-largest
eigenvalue of H. This ideal reduced-order condition number is
what would be obtained if we held constant the n — p worst lin-
ear combinations of parameters, rather than the n — p individual
parameters. The close approximation of ,(H) by x(H,) reflects
how effective our Algorithm is at picking the n—p worst individual
parameters.

It can be seen that the fixing of only two parameters decreases
the number of iterations by approximately a factor of 10, and
reduces the condition number x(H,) by 11 orders of magnitude
compared to the full-order case. Fixing more than two parame-
ters gives modest further improvements. These results imply that
fixing the two parameters k and T}, is reasonable.
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The preceding results were for noise-free “measurements”. To
assess the effects of noise on the estimation process, normally dis-
tributed zero-mean white noise signals were added to the noise-
free “measurement” signals in the electrical model (10-14). The
variances of the noise signals were chosen to be 0.5% of the steady-
state magnitudes of the quantities they were added to. Figure 4
shows as an example the disturbed versions of AV; and AV,.

With the disturbed signals, 20 runs of parameter estimation
were carried out for both the full-order case and the reduced-order
case (with k and T, fixed to their “true” values). The results are
presented in Table 3. The mean errors and the standard devi-
ations of the estimated parameters, expressed as percentages of
their “true” values, are used as indicators of the quality of the
parameter estimations.

It can be seen that in the full-order case there are huge mean
deviations (up to 791% in z4”) from the “true” values, whereas
the maximum mean deviation for the reduced-order case is only
9.7% (in Tj,). Furthermore, the reproducibility of parameter esti-
mates for the reduced-order case is very high, i.e. the normalized
standard deviations are very small compared to those in the full-
order case. This shows clearly the great improvement achieved by
fixing a subset of only two parameters. It also shows that param-
eter estimation without fixing the ill-conditioned parameters can
be absolutely unreliable in the case of noisy measurements.

It should be emphasized that all the parameter estimation runs
used the same termination criterion (28). This means that all the
sets of estimated parameters, in both the full-order and reduced-
order cases, produce an objective function V(6) < ¢ for some fixed
small ¢, i.e. all the final error vectors r(#) have small magnitude.
That is why the the magnitude of r(6) cannot be used as the only
measure of evaluation for parameter estimation, as is done in [16)
and elsewhere in the literature. This measure is only reasonable
in conjunction with other features like those used in Table 3.

In a practical application, parameters cannot be fixed to their
“true” values because these are unknown. Instead an a prior:
estimate must be used. To illustrate the effects of fixing k and T,
to values different from their “true” values, the following cases
were investigated:

Case Ak and T, vary 5% from their “true” values
Case Bk and T}, vary +10% from their “true” values
Case C k and T, vary +20% from their “true” values

For each of the above cases, 20 runs of parameter estimation
were carried out using the same noisy input and output signals as
before. The mean relative errors of the estimated parameters with
respect to their “true” values are presented in Table 4.

Comparing the results in Tables 3 and 4, one can see that fix-
ing the ill-conditioned parameters to values different from their
“true” values results in biased estimates of the remaining parame-
ters. However, even in Case C, the estimated parameters are much
better than the parameters obtained for the full-order case. The
standard deviations for Cases A-C are not presented because they
are very similar to those in the bottom row of Table 3, i.e. they
are again very small compared to the full-order case.

Table 3 as well as Table 4 show that the parameters =4, z; and
T,o are always identified very well. One could have expected this

by looking at the reordered parameter vector fin (27). The men-
tioned parameters hold the first three positions, which indicates
that they are the best-conditioned of the parameters.

Even if the fixed parameters differ from their “true” values,
the corresponding biased parameter estimates obtained from the
reduced-order estimation can predict the system behavior more
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Table 2: Successive Fixing of Parameters. Parameter estimation with noise-free “measurements” and a successive fixing
of parameters to their design values. x(H,) is the condition of the Hessian achieved by our Algorithm. The last column
shows the ideal reduced-order condition number ,(H) = A (H)/A,(H). '

Fixed Number of x(H,) ko (H)
Parameters | Iterations
0 223 1.34 x 10™ | 1.34 x 10™*
1 229 251 x10%° | 2.51 x 10°
2 122 5.17 x 10° 5.17 x 10°
3 24 3.46 x 10° | 3.45 x 10°
4 23 796.35 690.70
5 23 216.35 129.67
6 17 72.91 72.41
7 16 19.49 17.61
8 10 1.00 1.00

Table 3: Disturbed Data. 20 runs of parameter estimation with noisy simulated “measurements” for the full-order and
reduced-order cases, respectively. Row err shows the mean relative errors of the estimated parameters with respect to their
“true” values (in %). Row std shows the normalized standard deviations of the estimated parameters (in %), normalized by

the “true” values.

g x!, Ty Tho T k Tq zy | Tyo

err full 340.83 | 358.51 | 791.36 | -97.17 | -74.17 | -61.16 | -0.07 | 5.33 | 2.05
reduced -0.20 -0.89 8.74 - 9.96 -1 0.07 15091243

std full 18.47 12.18 24.18 19.85 12.00 8.83 044 | 0.85 | 1.18
reduced 0.08 0.25 1.41 - 2.38 - 0.02 | 0.39 | 0.24

precisely than the full-order estimates. To show this, the state
variables of the electrical model were simulated using the mean
estimates underlying Tables 3 and 4. To slightly shift the gen-
erator’s operating point, the excitation AVyq was magnified by a
factor of 1.5 for this investigation.

Figure 6 shows as an example the simulated state variable AE]
for the full-order case as well as Case C. One can see that the state
variables for Case C are much closer to the real state, which is the
dashed line, than the state variable corresponding to the full-order
case.

0.00 ]
. -0.05 C (-20%) ]
R N R A,
o 010} . C(+20%) 4
03} 4
-04F \/‘:full—order ]
-0.5 * L L L 1 1
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Figure 6: Transient state variables AEin modified ex-
periment, and with errors in fixed parameters.

IV. CoNCLUSION

This paper has examined subset selection for nonlinear parame-
ter estimation, and illustrated its application to identifying a syn-
chronous generator model with many parameters. A reduced-order
and well-conditioned. estimation problem was obtained by fixing
certain ill-conditioned parameters to prior estimates. Fixing just
two carefully chosen parameters of the nine-parameter electrical
model led to major improvements in estimation performance —
in terms of numbers of iterations as well as standard deviations
of the estimated parameters — compared to the full-order case,
especially in the presence of added noise.

It is our belief that much work remains to be done in the area
of matching model complexity to the quality of the available mea-
surements in power systems, and in showing how to use the re-
sulting models for various types of systems studies. As intercon-
nected power systems move towards deregulation, probably with
less sharing of information among the various players, the need for
sound-approaches to on-line identification will become increasingly
felt, and the notion of parameter conditioning will almost certainly
play an important role in the development of these approaches.
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Table 4: Effects of Errors in Fixed Parameters. 20 runs of parameter estimation with noisy “measurements” for Cases
A-C. The table shows mzan relative errors of the estimated parameters with respect to their “true” values (in %).

[ Case | @a [ 24 [ o | Tio [ @¢ | of [ Tio [ Too [k ]
A [ 102 [ 028 | 9.14 | 12.07 [ 007 | 500 [243 ] 5
234 | -153 | 823 | 760 | 007 | 509 [243 ]| -5
B | 4.04 [ 0.28 | 9.49 | 14.02 | 0.07 [ 5.00 | 243 ]| 10
450 | 202 | 779 | 522 | 007 | 509 | 243 || -10
C [ 822 | 1.31 ] 10.11 | 1752 | 0.07 [ 5.00 | 243 || 20
-8.88 | -3.75 | 6.57 | -0.40 | 0.07 | 5.00 | 2.43 || -0
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