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Abstract  -This paper examines subset selection for non- 
linear least squares parameter estimation, and applies the 
methodology to a test sys tem previously studied in  the 
power system literature,  involving the on-line identifica- 
t ion of a synchronous generator model wi th  many  pa- 
rameters.  Subset selection parti t ions the parameters  into 
well-conditioned and ill-conditioned subsets. We show 
for the test sys tem that fixing t h e  ill-conditioned param- 
eters to prior estimates (even if these prior estimates are 
substantially in  error),  and estimating only the remain- 
ing parameters, significantly improves the performance of 
the estimation algorithm and greatly enhances the quality 
of the estimated parameters. It is shown that a t t empt s  
to es t imate  all of the model parameters,  as done  in  the 
original work wi th  this test system, can  yield extremely 
unreliable results. 

K e y  W o r d s  - Least Squares, Estimation, Identification, 
Conditioning, Subset Selection, Synchronous Generator.  

I. INTRODUCTION 
Parameter estimation is a key step in fitting a model to measure- 
ments, and is therefore central to the task of system identification. 
The parameter estimates are chosen so as to minimize a measure 
of the errors between: (i) the model’s predictions of what values 
the available measurements will take, and (ii) the actual values 
taken by the measurements. Methods of solving this minimiza- 
tion problem are dependent on the structure of the model and on 
the error criterion. For models whose predictions are linear in the 
parameters, and with an error measure that is the sum of squared 
prediction errors, efficient and stable l inear least squares estima- 
tion techniques are available (see, e.g. [l, 2, 31). For models that 
are nonlinear in the parameters, least squares estimation involves 
iterative methods, of which the Gauss-Newton i terated linearized 
least squares method is among the most used [l, 4, 5, 61. 

Several aspects of the model and measurements affect the per- 
formance of a parameter estimation algorithm and determine the 
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quality of the estimates that are produced. What happens very 
often in the power system setting is that a component model is 
built up from detailed analysis of the underlying physical phenom- 
ena, and therefore involves a relatively large number of physically 
interesting and interpretable parameters; this is certainly the case 
with the synchronous generator models found in the literature, 
[7, 81. On the other hand, the measurements available from on- 
line experiments in an interconnected power system - which is 
the setting that is ultimately of interest - are typically n o t  rich 
enough to adequately reflect the individual effects of all the pa- 
rameters in the various components of the system. This mismatch 
between the (high) detail of the models and the (low) richness in 
the measurements leads to very sensitive or ill-conditioned param- 
eter estimation problems. 

The purpose of this paper is to point out the manifestations of 
such ill-conditioning in the context of parameter estimation for a 
synchronous generator model, and to suggest a strategy for over- 
coming the ill-conditioning. Our results apply more broadly than 
to synchronous generator identification, but this particular identi- 
fication problem is. important enough to have been studied fairly 
extensively in the power systems literature - see for example 
[9, 10, 11, 12, 13, 14, 15, 161 and references therein - and there- 
fore provides a fruitful context for our study. In particular, the test 
system that we use is taken from [16]. Some mention of condition- 
ing in the generator identification problem appears in [ll, 13, 141, 
but the theme does not seem to have been developed in any detail 
prior to now. 

Our strategy for overcoming ill-conditioning is based on the 
subset selection approach proposed in [17, 181 for nonlinear least 
squares parameter estimation, extending subset selection for lin- 
ear least squares estimation as described in [2]. Subset selection 
partitions the model parameters into well-conditzoned parameters, 
which are likely to be estimated reliably from the given measure- 
ments, and ill-conditzoned parameters, whose estimates are likely 
to be unreliable, and whose presence makes the parameter esti- 
mation problem very sensitive. Given this partitioning, we pro- 
posed in [17, 181 to fix the ill-conditioned parameters at prior es- 
timates, in effect abandoning any attempt to estimate them from 
the available measurements, and to then solve a reduced-order and 
well-conditioned parameter estimation problem to determine the 
remaining parameters. This strategy is successful if the bias intro- 
duced by fixing the ill-conditioned parameters to prior estimates 
is more than made up for by the improvement in estimation of the 
remaining parameters. The application of this strategy to the esti- 
mation of induction machine speed and parameters in [17, 181 led 
to major performance improvements over full-order estimation. 

We demonstrate in this paper, for the synchronous generator 
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the linearization of the original problem around the initial guess. 
Specifically, p1 satisfies the so-called “normal” equations: 

(J’J)pl = J’r , (6) 

where ‘ denotes matrix transpositioz, and both J and r in (6) are 
evaluated at the current estimate 80.  In principle, p1 could be 
found by inverting the matrix (J‘J) that pre-multiplies it in the 
above equation, but from a numerical point of view there are bet- 
ter methods of actually computing PI,  see [Z]. Note that (J‘J) is 
invertible, and correspondingly p1 is uniquely determinable, if and 
only if the n columns of J are independent. From the definition in 
(4), we see that this condition is equivalent to requiring that incre- 
ments in the various parameters should perturb the error vector 
in TI independent directions (in N-space). 

The step size a1 in (5) may be picked so as to obtain (close 
to) the greatest possible decrease of the criterion V (  ) by move- 
ment in the specified direction. Once 81 has been f o y d ,  the entire 
procedure is repeated, but now linearizing around 81. This itera- 
tion is continued until the desired degree of convergence has been 
achieved. A more detailed algorithm description may be found in 
[4]; a clear summary in the context of generator identification is 
given in [12]. 

Other Newton-type approaches to solving the minimization 
problem (2) involve the Hessian, which is the n x n matrix of 
second partial derivatives of the error criterion V(0)  with respect 
to the parameter vector 8, and is easily seen to be given by 

h 

model used in the identification experiments of [16], and for qual- 
itatively similar “measurements” (synthesized from the model in 
[16], since the original datis was not available to us), that the pro- 
posed strategy leads to a reduced-order estimation procedure and 
associated parameter estimates that are much better behaved than 
if all the parameters are estimated together. Section I1 of the pa- 
per briefly reviews the nonlinear least squares problem, highlight- 
ing the role of the Jacobian (or gradient or first derivative matrix) 
of the error vector with rtspect to the parameter vector in find- 
ing the least squares estimate by the Gauss-Newton method; the 
Hessian (or second deriva1;ive matrix) of the error criterion with 
respect to the parameter vector is also defined. The section then 
gives the main idea behind the subset selection procedure, applied 
to the Jacobian or Hessian, and finally specifies the algorithm in 
more detail. Section I11 describes the test system, explains how 
the “measurements” for o i r  identification experiments were syn- 
thesized, and then presenhs the results of our various estimation 
experiments on the system. Some conclusions are stated in Section 
IV. 

11. LEAST SQUARI3S ESTIMATION AND SUBSET 
$;ELECTION 

A .  The Nonlinear Least Squares Problem 
Least squares fitting of a model to experimental data is a common 
procedure in engineering. In this method, the parameters of a 
model are determined such that they minimize the sum of squares 
of the components of the N-component error (or “residual”) vector 

r((9) = ?(e) - Y , (1) 

where 8 denotes the n-vecl.or of model parameters, ?(e) is the N- 
vector of model predictions for the measurements, and y is the N- 
vector of actual measurem1:nts. Stated mathematically, the vector 
of parameter estimates is specified as 

A 

8 =: arg min V(8) , e (2) 

where the minimization criterion for least squares is defined by 

(3) 

with ~ ( 8 )  denoting the lth component of the error vector, and the 
factor of f being simply for convenience in some later expressions. 
Minimization of the above criterion by the Gauss-Newton method 
involves iterated Zineariza-at:ion of the nonlinear problem around the 
current best guess of the parameter estimates, and therefore re- 
quires the N x n Jacobian or gradient or matrix of first partial 
derivatives of the error vector with respect to the parameter vec- 
tor: 

(4) w e )  
ae J’(8) - . 

The Gauss-Newton method begins with an initial guess of the 
parameter estimate, say 80. The next guess is then computed as 

A h  el = eo + alp1 , (5) 

where a1 is a scalar (of the order of unity) that fixes the step 
size in the Gauss-Newton direction p1. This direction is com- 
puted by solving a linear least squares problem associated with 

(7) 

For small residuals, the Hessian can evidently be approximated by 

H(B) w J‘(O)J(e) ) (8) 

which is the matrix on the left side of (6). In the remainder of this 
paper, we shall use the term “Hessian” and the symbol H to refer 
to this approximation of the strict Hessian, namely J’J. 

Efficient methods exist for computing the Jacobian when the 
data is modeled as comprising time samples of the output of a 
stateispace model, which is the case with our test system. For 
a detailed description of these methods, we refer the reader to 
[4]. Explicit treatments of the application of least squares param- 
eter estimation in this manner to the identification of synchronous 
machines, including the calculation of gradient functions, can be 
found in [9, 12, 141. 

B. Parameter Conditioning 
The Hessian matrix H = J’J on the left of the normal equations 
(6) is symmetric and positive semidefinite, so all its eigenvalues 
are real and non-negative. Suppose H is actually singular, with 
just one eigenvalue at 0 and some associated eigenvector; this hap- 
pens if and only if the n columns of J actually contain only n - 1 
independent vectors. An immediate implication of the singularity 
is that the step direction computed from the normal equations (6) 
can be varied in the direction of this eigenvector of H without 
affecting the error criterion (at least to first order). Such inde- 
terminacy would be highly undesirable in a physical parameter 
estimation problem, because it would indicate that the parame- 
ters cannot be unambiguously estimated from the given measure- 
ments. Note that such parameter indeterminacy can exist even if 
the model predictions fit the measurements exactly, i.e. even if 
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V(0) = 0; the Hessian involves the second partials of V( .  ), not 
the value of V( .)  itself. Thus the fact that one gets a small er- 
ror between the model predictions and the measurements is not 
sufficient validation of the quality of the parameter estimates. 

It is typically the case that H is not exactly singular. However, 
often N is nearly singular, in the sense that its smallest eigenvalue 
is very small relative to its largest eigenvalue. Such a situation 
corresponds to the n columns of J being nearly dependent, i.e., 
being almost confined to a subspace of dimension less than n in 
Euclidean N-space. This situation is also undesirable, because 
it reflects near indeterminacy in the parameter estimates, caused 
by having more parameters than can be reliably estimated from 
the available measurements. Nearness to singularity is usually 
measured by the condition number, [2], which (in the case of a 
symmetric, positive definite matrix) is the ratio of the largest to 
smallest eigenvalues; we shall denote the condition number of the 
Hessian by K(H). 

[Our discussion could equivalently be framed in terms of the 
so-called sangular values and associated singular vectors of J, [2], 
rather than the eigenvalues and eigenvectors of H, but we use the 
latter because eigenvalues and eigenvectors are more familiar ob- 
jects. From a numerical point of view, it is actually preferable 
to work with the singular value decomposition (SVD) of J rather 
than to compute H according to (8) and then determine its eigen- 
decomposition, but this is not a serious issue for the exposition 
here.] 

There are several related manifestations of a high condition 
number in the Hessian. For example, from the definition of H 
as the matrix of second partial derivatives of the error criterion 
V(6'), it follows that the eigenvalues of the Hessian describe the 
curvature of the error criterion in the directions of the associated 
eigenvectors. A high condition number for the Hessian indicates 
that the error criterion varies much more slowly with 0 in some 
directions than in others. The implication for parameter estima- 
tion is that the parameter vector is more poorly determined in 
directions where the curvature it small, relative to directions with 
high curvature. 

Yet another consequence of a high condition number, which can 
be deduced from (6), is that a small fractional change in the error 
r can make a large fractional change in the step direction, with 
the ratio of these fractional changes possibly being as large as the 
condition number. Finally, a high condition number can result in 
a large number of iterations to convergence in the Gauss-Newton 
algorithm. 

C. Subset Selection and 
Reduced- Order Estimation 

The strategy suggested in [17, 181 for improving the behavior of 
nonlinear least squares parameter estimation is to determine which 
parameter axes lie closest to the ill-conditioned directions of the 
Hessian, and to fix the associated parameter values at prior esti- 
mates throughout the iterative estimation process. If the Hessian 
has p large eigenvalues and n - p small ones, then what we do in 
the update step (5) is fix n - p  appropriately chosen components of 
the step direction vector to be 0, so that the associated parameters 
do not change. The resulting normal equations will then only in- 
volve the Jacobian of the error with respect to the p remaining or 
"active" parameters; we denote this Jacobian by J,, and note that 
its columns are just a subset of the columns of J, namely those 
corresponding to the active parameters. The associated Hessian 
is H, = JbJ,. 

Subset selection is aimed at recognizing which p parameters 
to keep active so as to obtain a corresponding Hessian H, with 
as small a condition number as possible. A combinatorial search 
would be prohibitively expensive computationally. The following 
algorithm, which is essentially the one specified in [I71 (which in 
turn is derived from the subset selection algorithm for linear least 
squares described in [2]), is much cheaper, and yields very good 
results: 

ALGORITHM (SUBSET SELECTION AND 
REDUCED-ORDER ESTIMATION) 

h 

Gaven an anztaal paramet5r vector estamate 8 0 ,  compute the 
eigendecomposition of H(0o), yielding H = VAV'. 
Determane p such that the first p eigenvalues of H are much 
larger than the remaznang n - p ones. 
Make the partztzon V = [ V, Vn-, ] wath V, contaanang 
the first p columns of V. 
Determane a permutataon matrax P by constructang a QR de-  
composition with column-pivoting, [2], f O T  Vb, %.e. determane 

VLP = QR (9) 

where Q i s  an orthogonal matrix, and the first p columns of 
R form an upper traangular matrax. 
Use P to  reorder the parameter vector 0 accordzng to Z = P'B 
Make the partataon 0 = [ ;> 1' wath Z, contaanang the 

first p elements of 0. Fax On-, to  a prior estimate en-,. 
Compute 0 by solvang 8 = argmiwV(0) subject to 

-1 - 
h - - .-., 

- - h - h - 
= 

5 

o n - p .  

A 

[It is assumed that the initial estimate 00 is accurate enough for 
the Algorithm to provide a subset selection that does not differ 
significantly from one based on the Hessian evaluated at the op- 
timal estimate. If desired, the Algorithm can be restarted at any 
stage with the current best estimate of the parameters, to check 
if the subset selection has changed.] 

111. APPLICATION TO A TEST SYSTEM 
A .  The System Model 
Our test system is extracted from the description in [16], and in- 
volves the following small-signal model of a 100 MVA turbogenera- 
tor connected to an infinite bus. The model consists of incremental 
equations describing the synchronous machine around an operat- 
ing point. The d-axis incremental equations in standard notation, 
[7, 81, and as presented in [16], are 
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The inputs to the above equations are AV, and Avfd, while Aid 
is a measured output. The parameters to be estimated are Xd, 
x:, x f ,  TAo, Tio and k = x,d/Rfd. Similarly, the incremental 
equations along the q-axis are 

The input is Avd, Ai, is a measured output, and xg, xy and T:o 
are the parameters to be er;timated. 

The generator is assumed to be connected to an infinite bus of 
voltage magnitude VB through a line reactance 2,; these two quan- 
tities are parameters to be (estimated. The connection imposes the 
phasor relationships represented in Fig. 1, where I denotes the cur- 
rent flowing from the generator into the infinite bus, & denotes the 
generator’s terminal voltage, and 4, 19, and the power angle St are 
as defined in the figure. Liiiearizing these relationships around an 
operating point leads to ic cremental equations relating A I ,  Aq5, 
A&, A9, Avd and A h .  

d-axis 

p:, 
Figure 1: Phasor relationships. 

The incremental motion equations of the system are 

dA4 - = AW 
d t  

where w is the angular velocity of the rotor, w, is synchronous 
frequency, P = Vdid + Vqi, is the electrical power out of the gen- 
erator, H is the inertia constant of the machine set and D is a 
mechanical damping coefficient. The inputs to the above equa- 
tions are A P  and A6, while A& is a measured output. Both H 
and D are parameters to be estimated. 

Putting together the incremental relationships above and elim- 
inating the appropriate vanables, we obtain a small-signal state- 
space model for the system in the standard form 

with state vector, output measurements and input respectively 
given by 

For convenience, we specify the operating point around which the 
small-signal model is constructed by specifying the active power P, 
reactive power Q = vqid - Vdi,, and the angle CXB from VB to the 
d-axis. Our numerical experiments used the operating condition 
corresponding to P = 1.0 P.u., Q = 0.1 P.u., and CYB = 70’. 

B. Formulation of Estimation Experiments 
A nonlinear least squares parameter estimation approach for on- 
line identification of synchronous machines is presented in [16], 
along with the results of application to several actual large gener- 
ators. With the generator connected to a large power system and 
loaded normally, one applies a sudden change of excitation Avfd 
through some appropriate means. The transients in the line volt- 
ages Vab, V&, phase currents i,, & and i,, field voltage vfd and 
power angle 6t are recorded, and used as the basis for parameter 
estimation. 

Table 1 lists the parameters that have to be estimated. All the 
parameters listed in the table, with the exception of VB and x,, 
were identified in 6161 by applying the Gauss-Newton method, us- 
ing the electrical equations (10-14) and the mechanical equations 
(15-17) to model the data. The electrical subsystem model in- 
volves 9 parameters; what we shall demonstrate is that estimating 
all 9 of these parameters without fixing a subset of them can yield 
extremely unreliable results for the given estimation problem. 

Since the experimental data from [16] were not available to us, 
and also to permit a more controlled assessment and comparison 
of parameter estimation strategies, we used the system model from 
the previous subsection to produce synthetic “measurements” that 
serve as the basis for our estimation studies. To generate these 
“measurements”, we took as the “true” or underlying parameters 
the final identified parameters from [16], listed in the bottom row 
of Table 1, chose a reasonable operating point, and excited our 
model with a field voltage perturbation Avfd - shown in Fig. 2 
- that yielded “measured” waveforms qualitatively similar to the 
experimental measurements in [16]. These “measured” waveforms, 
which serve as inputs to our estimation process, are Aid, Ai,, A&, 
AV, and AS,, shown in Figures 3-5. (The waveforms in Figure 4 
are actually shown with some additive noise imposed, at levels 
used later in the paper to study the sensitivity of the parameter 
estimates to noise.) 

The reader should keep in mind that our purpose is to compare 
methodologies rather than to make specific numerical comparisons 
of identified parameters with the results in [16]. Therefore, the 
fact that for “true” parameters we use values that were the result 
of the potentially ill-conditioned estimation process in [16] should 
not be a real concern, particularly since the values listed in the 
bottom row of Table 1 are physically quite reasonable. 

For comparison, the manufacturer’s nameplate values for most 
of these parameters, as quoted in [le], are listed above the “true” 
values in the table. We used these manufacturer’s values as initial 
estimates for the parameter values; the starting values for the 
four parameters not provided by the manufacturer were chosen 
arbitrarily. 
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Table 1: Parameter Values. T h e  second row (Manuf.) lists the parameter values declared in [16] as provided by the 
manufacturer. The  third row ("True") lists the parameters estimated in [16], and used as "true" values in synthesizing the 
"measurements" for our experiments. 

t 
-4x1040 2 4 6 8 10 12 

Time Is 

Figure 2: Transient field voltage AV,,. 

0 2 4 6 8 1 0 1 2  
Time Is 

-0.20 

Figure 3: Transient currents Aid, Ai,. 

C. Estimation of VB, x,, H and D 

The electrical subsystem of the test model is the focus of our stud- 
ies of subset selection, but we first deal briefly with the estimation 
of VB, xe, H and D, before concentrating on the electrical subsys- 
tem in the next subsection. 

regression from the following relation: 
In [16] it is  suggested that Vs and be determined by linear 

where bl = 1/&, bz = -I2/& and bs = 2Icos(n/2-q5). Measure- 
ments provide us with the values of Vt, I and $. However, since 
(23) is nonlinear in ze, a nonlinear parameter estimation method 
should be used to get reliable results. Furthermore, the estima- 
tion problem is ill-conditioned when the measured transients are 
small compared to their operating-point values. We therefore pro- 

=! 
3 

?i- 
$ 

Figure 4: 
noise). 

s 
-k 
00" 
U 

0 2 4 6 8 1 0 1 2  
Time Is 

Transient voltages A&, AV, (with added 

0 2 4 6 8 1 0 1 2  
Time Is 

Figure 5: Transient power angle A&. 

pose estimating VB and xe by the following two steps, involving 
incremental equations. 

By linearizing (23) around the operating point, xe can be 
determined from 

through application of a nonlinear estimation method, e.g. 
Gauss-Newton. The at's in (24) involve known operating 
point values and the transients of &, id and i,. 
Once z e  has been estimated, VB can be directly calculated 
from the relationships in Figure 1. 

The estimation of H and D was done by applying the Gauss- 
Newton method to the state-space incremental model (15-17). The 
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condition of the associated Hessian is n(H) = 79.3, which indi- 
cates a rather well-conditioned estimation problem. As might be 
expected from this conditioning, both H and D can be estimated 
reIia bly. 

D. Estimation of the Electrical Parameters 
In this section we show that estimation of the parameters involved 
in the electrical subsystem (10-14) can be improved significantly 
by subset selection. The parameter vector to be estimated is 

as listed in Table 1. The full-order Hessian evaluated at the “true” 
parameters possesses the following eigenvalues: 

86.9, 4.94, 1.20, 0.670, 0.126, 0.0252, (26) 
0.0168, 3.46 x lo-‘, 6.47 x 

and has a condition number of 1.34 x 1014, which indicates severe 
ill-conditioning. [Evaluating the Hessian at other nearby sets of 
parameters yields qualitatively similar results; for our purposes, it 
suffices to evaluate it at the “true” values.] I t  is evident that the 
last two eigenvalues are comparatively very small; there is a huge 
gap between the 7th and the 8th eigenvalues. This suggests that 
there are two ill-conditioned parameters whose values we should 
fix at prior estimates in order to get a well-conditioned problem. 

The application of our Algorithm yields the following partition- 
ing of parameters into 7 well-conditioned parameters and 2 ill- 
conditioned ones: 

Since k and Tio have been teifted to the last two positions of the 
reordered parameter vector 8, these are the parameters to fix. 

Rather than looking at the results for just the case of two fixed 
parameters, it is illuminating to examine the whole range of pos- 
sibilities. We therefore applied our Algorithm for all choices of 
p from 9 down to 1, to determine which 9 - p parameters to fix. 
The remaining unfixed parameters were estimated using noise-free 
“measurements”, and with a termination criterion of the form 

V(ii, < c , (28) 

with c being a small constant threshold. 
Table 2 shows: (i) the number of iterations needed to meet 

the termination criterion; (ii) the condition number 6(HP) of the 
reduced-order problem obtained by fixing the parameters specified 
by the Algorithm; and (iii) 1,he ideal reduced-order condition num- 
ber +(H) = Xl(H)/X,(H), with X;(H) denoting the ith-largest 
eigenvalue of H. This ideal reduced-order condition number is 
what would be obtained if we held constant the n - p worst Zin- 
ear combinations of parameters, rather than the n - p individual 
parameters. The close approximation of fip(H) by n(Hp) reflects 
how effective our Algorithm is at picking the n-p worst individual 
parameters. 

It can be seen that the fixing of only two parameters decreases 
the number of iterations by approximately a factor of 10, and 
reduces the condition number n(Hp) by 11 orders of magnitude 
compared to the full-order case. Fixing more than two parame- 
ters gives modest further improvements. These results imply that 
fixing the two parameters A; and Ti,, is reasonable. 

The preceding results were for noise-free “measurements” ~ To 
assess the effects of noise on the estimation process, normally dis- 
tributed zero-mean white noise signals were added to the noise- 
free “measurement” signals in the electrical model (10-14). The 
variances of the noise signals were chosen to be 0.5% of the steady- 
state magnitudes of the quantities they were added to. Figure 4 
shows as an example the disturbed versions of A v d  and AV,. 

With the disturbed signals, 20 runs of parameter estimation 
were carried out for both the full-order case and the reduced-order 
case (with k and Tio fixed to their “true” values). The results are 
presented in Table 3. The mean errors and the standard devi- 
ations of the estimated parameters, expressed as percentages of 
their “true” values, are used as indicators of the quality of the 
parameter estimations. 

It can be seen that in the full-order case there are huge mean 
deviations (up to 791% in X d ” )  from the “true” values, whereas 
the maximum mean deviation for the reduced-order case is only 
9.7% (in T20). Furthermore, the reproducibility of parameter esti- 
mates for the reduced-order case is very high, i.e. the normalized 
standard deviations are very small compared to those in the full- 
order case. This shows clearly the great improvement achieved by 
fixing a subset of only two parameters. It also shows that param- 
eter estimation without fixing the ill-conditioned parameters can 
be absolutely unreliable in the case of noisy measurements. 

It should be emphasized that all the parameter estimation runs 
used the same termination criterion (28). This means that all the 
sets of estimated parameters, in both the full-order and reduced- 
order cases, produce an objective function V(8)  < c for some fixed 
small c, i.e. all the final error vectors .(e) have small magnitude. 
That is why the the magnitude of .(e) cannot be used as the only 
measure of evaluation for parameter estimation, as is done in [16] 
and elsewhere in the literature. This measure is only reasonable 
in conjunction with other features like those used in Table 3. 

In a practical application, parameters cannot be fixed to their 
“true” values because these are unknown. Instead an a priori 
estimate must be used. To illustrate the effects of fixing k and Tio 
to values different from their “true” values, the following cases 
were investigated: 

Case A 
Case B 
Case C 

IC and Tio vary f5% from their “true” values 
k and Tio vary &lo% from their “true” values 
k and Tio vary f20% from their “true” values 

For each of the above cases, 20 runs of parameter estimation 
were carried out using the same noisy input and output signals as 
before. The mean relative errors of the estimated parameters with 
respect to their “true” values are presented in Table 4. 

Comparing the results in Tables 3 and 4, one can see that fix- 
ing the ill-conditioned parameters to values different from their 
“true” values results in biased estimates of the remaining parame- 
ters. However, even in Case C, the estimated parameters are much 
better than the parameters obtained for the full-order case. The 
standard deviations for Cases A-C are not presented because they 
are very similar to those in the bottom row of Table 3, Le. they 
are again very small compared to the full-order case. 

Table 3 as well as Table 4 show that the parameters xq, x: and 
Tlo are always identified very well. One could have expected this 
by looking at the reordered parameter vector F i n  (27). The men- 
tioned parameters hold the first three positions, which indicates 
that they are the best-conditioned of the parameters. 

Even if the fixed parameters differ from their “true” values, 
the corresponding biased parameter estimates obtained from the 
reduced-order estimation can predict the system behavior more 
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Table 2: Successive Fixing of Parameters. Parameter estimation with noise-free “measurements” and a successive fixing 
of parameters t o  their design values. n ( H p )  is the condition of the Hessian achieved by our  Algorithm. T h e  last column 
shows the  ideal reduced-order condition number K,(H) = XI (H)/X,(H). 

x d  x& xi Tio T:o IC xq 
err full 340.83 358.51 791.36 -97.17 -74.17 -61.16 -0.07 

reduced -0.20 -0.89 8.74 - 9.96 - 0.07 
std full 18.47 12.18 24.18 19.85 12.00 8.83 0.44 

reduced 0.08 0.25 1.41 - 2.38 - 0.02 

Table 3: Disturbed Data. 20 runs of parameter estimation with noisy simulated “measurements” for the full-order and 
reduced-order cases, respectively. Row err shows the  mean relative errors of the estimated parameters with respect t o  their 
‘(true” values (in %). Row std shows the normalized standard deviations of the  estimated parameters (in %), normalized by 
the “true” values. 

xy T& 
5.33 2.05 
5.09 2.43 
0.85 1.18 
0.39 0.24 

precisely than the full-order estimates. To show this, the state 
variables of the electrical model were simulated using the mean 
estimates underlying Tables 3 and 4. To slightly shift the gen- 
erator’s operating point, the excitation AVfd was magnified by a 
factor of 1.5 for this investigation. 

Figure 6 shows as an example the simulated state variable AE: 
for the full-order case as well as Case C. One can see that the state 
variables for Case C are much closer to the real state, which is the 
dashed line, than the state variable corresponding to the full-order 
case. 

, 

0 2 4 6 8 1 0 1 2  
Time Is  

-0.5’ ‘ I  ‘ I  * ’ ” ” ” 

Figure 6: Transient state variables AE:in m o d i f i e d  ex- 
periment, and with errors in f ixed  parameters. 

IV. CONCLUSION 
This paper has examined subset selection for nonlinear parame- 
ter estimation, and illustrated its application to identifying a syn- 
chronous generator model with many parameters. A reduced-order 
and well-conditioned estimation problem was obtained by fixing 
certain ill-conditioned parameters to  prior estimates. Fixing just 
two carefully chosen parameters of the nine-parameter electrical 
model led to major improvements in estimation performance - 
in terms of numbers of iterations as well as standard deviations 
of the estimated parameters - compared to the full-order case, 
especially in the presence of added noise. 

It is our belief that much work remains to be done in the area 
of matching model complexity to  the quality of the available mea- 
surements in power systems, and in showing how to use the re- 
sulting models for various types of systems studies. As intercon- 
nected power systems move towards deregulation, probably with 
less sharing of information among the various players, the need for 
sound approaches to on-line identification will become increasingly 
felt, and the notion of parameter conditioning will almost certainly 
play an important role in the development of these approaches. 
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Case 
A 

Table 4: Effects of Errors in Fixed Parameters. 20 runs of parameter estimation with noisy “measurements” for Cases 
A-C. The table shows ml2an relative errors of the estimated parameters with respect to their “true” values (in %). 

Xd x& xz T:o xq xt T:o TAo I k 
1.92 -0.28 9.14 12.07 0.07 5.09 2.43 5 

-2.34 -1.53 8.23 7.69 0.07 5.09 2.43 -5 I 

B 

C 

I 

4.04 0.28 9.49 14.02 0.07 5.09 2.43 I 10 

8.22 1.31 10.11 17.52 0.07 5.09 2.43 20 
-4.50 -2.22 7.79 5.22 0.07 5.09 2.43 -10 

-8.88 -3.75 6.57 -0.40 0.07 5.09 2.43 -20 
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