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In the past decade, significant effort has been directed towards 
structuring classical light waves using spatial light modulators and 
metasurfaces1–9. Such structured light has many potential applica-

tions, ranging from micromachining to manipulating particles10–12. 
Furthermore, it can affect interactions in nonlinear optical systems13. 
Recently, an implementation of metasurfaces using arrays of atoms 
has been studied14–18, and metasurfaces have been employed to 
manipulate photonic quantum states19,20. Moreover, a new approach 
for entangling atom arrays has been suggested21. Although previous 
efforts have focused on structuring the spatial or temporal properties 
of light by means of metasurfaces22, here we explore the possibility 
for generating atom–photon entanglement between metasurfaces 
and photons and using it for controlling the many-body entangled 
photonic state. Such ‘quantum metasurfaces’ are realized by prepar-
ing and manipulating entangled states of atomic reflectors and scat-
tering light from them, constituting a new platform for manipulating 
both classical and quantum properties of light.

Here we analyse, in particular, a method in which quantum 
operator-valued reflectivity allows us to simultaneously control the 
quantum and spatiotemporal properties of light in free space. This 
approach can be used to realize a quantum light modulator (QLM), 
enabling the generation of highly correlated photonic states. As 
example applications, we show that this methodology enables cav-
ity-free parallel quantum operations on multiple photonic degrees 
of freedom and the preparation of highly entangled photonic 
states suitable for quantum information, such as multidimensional  
photonic cluster states.

Quantum metasurfaces. The key idea of this work is to manipu-
late the macroscopic response of a metasurface to light on a quan-
tum level. This results in atom–photon entanglement and allows 
for quantum light state manipulation. Specifically, we focus on the 
realization of such quantum metasurfaces using two-dimensional 
(2D) arrays of neutral atoms. Such an approach has the advantage 
that even a single atomic layer can have extreme scattering proper-
ties, where using subwavelength spacing of atoms results in per-
fect reflectivity for some frequencies of light14,15. At the same time, 
the internal atomic degrees of freedom and, correspondingly, the 
scattering properties of such an array, can be easily manipulated. 

In combination, these two properties allow us to manipulate the 
quantum properties of light in a free-space setting. To illustrate 
this, let us assume that we can prepare the atom array in two quan-
tum states: a state Cj i

I
, in which the array is coupled to an inci-

dent light field, and a second state Uj i
I

, in which it is uncoupled 
and thus transparent. Specific implementations to achieve such 
control are discussed in the following. Scattering a coherent light 
beam off a quantum metasurface prepared in a superposition state 
ψj i ¼ 1ffiffi

2
p ð Uj i þ Cj iÞ

I

 results in entanglement between the quan-
tum metasurface and the free-space photonic degrees of freedom:

Ψj i ¼ Uj i  α; 0j i þ Cj i  tα; rαj iÞ ð1Þ

where r and t are the reflection and transmission coefficients iden-
tified with the linear response of the atom array. Further control 
can be obtained by measuring the state of the array (Fig. 1a,c).  
For example, a projective measurement in the basis of entangled 
states 1ffiffi

2
p Uj i± Cj ið
I

 projects the conditionally scattered light into 
cat-like states: ψj i ¼ 1ffiffi

2
p ð α; 0j i ± tα; rαj iÞ

I

.
To achieve quantum control over the scattering proper-

ties of an atom array, we consider atoms with three internal lev-
els, a ground state gj i

I
, an excited state ej i

I
 and a Rydberg state rj i

I
  

(Fig. 1b). We are interested in the situation where state gj i
I

 is cou-
pled by an optical dipole transition to state ej i

I
. Using an appropriate 

(subwavelength) arrangement of atoms, the array acts as a mirror 
for photons tuned to the collective resonance around the g ↔ e 
transition frequency, ωeg, realizing the coupled state ( Cj i

I
) (Fig. 1c). 

The array can be turned transparent by means of electromagneti-
cally induced transparency (EIT) by applying a classical coherent 
pump field with frequency ωp that coherently couples the state ej i

I
 

to the state rj i
I

, with Rabi frequency Ωp. The switch between reflec-
tive and transparent response of the array consists of an ancillary 
atom and employs Rydberg interactions to control the two-photon  
resonance frequency (similar to the so-called ‘Rydberg blockade’ 
mechanism23). The ancillary atom has two internal states, a ground 
state g 0j i

I
 and a Rydberg state r0j i

I
. We assume that it can be trapped in 

close proximity to the atom array, such that it interacts strongly with 
any atom in the array, if both are in the Rydberg states r0j i

I
 and rj i

I
, 

respectively24,25. We denote the corresponding interaction shift by V.  
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The ancillary atom acts as a quantum switch, controlling the reflec-
tion coefficient of the atom array:

r ¼ iðγ þ ΓÞðδr þ VÞ
�iðδr þ VÞðγ þ Γ � 2iðδ� ΔÞÞ þ 2jΩpj2

ð2Þ

where δ = ωeg − ω is the detuning of the light from the atomic 
resonance and γ denotes the radiative lifetime of state ej i

I
. Δ and Γ 

are cooperative corrections to δ and γ, arising from dipole–dipole 
interactions, and δr = ωrg − ωp − ω is the two-photon detuning 
(see Supplementary Information for details). We are interested in 
the scattering properties of incident photons that are resonant with  
the cooperatively renormalized transition frequency, that is δ = Δ. 
If the ancillary atom is in the ground state, the array is completely 
transparent, with r = 0, realizing Uj i

I
 (for pump frequency satisfying 

δr = 0). On the other hand, if the ancillary atom is in the Rydberg 
state, the two-photon resonance is effectively shifted by V such that 
the array becomes reflective:

r ! �1þ i
jΩpj2

ðγ þ ΓÞ=2
1
V

ð3Þ

realizing Cj i
I

. Thus, far away from the two-photon resonance 
r !V!1� ðγþΓÞ=2

ðγþΓÞ=2�iðδ�ΔÞ
I

, the reflection coefficient reduces to r = −1 
at δ = Δ. We emphasize that cooperative effects arising from diople–
dipole interactions within the array play a fundamental role in the 
scattering dynamics. Furthermore, note that at this stage we neglect 
any spatial dependence of the Rydberg interaction V across the 
array, where the above results holds as long as V  jΩp j2

ðγþΓÞ=2
I

.
Using this approach, the superposition is realized by prepar-

ing the ancillary atom in the superposition 1ffiffi
2

p ð g 0j i þ r0j iÞ
I

. Further  

control can be obtained by ’measurements’ of the array state, which in 
this context corresponds to ancilla measurement in the appropriate  
basis: 1ffiffi

2
p g 0j i ± r0j ið
I

. Although perfect reflectivity is valid in the case 
of infinite arrays, in practice, control over atom arrays of modest 
size is sufficient to produce relatively large cat-like states with high 
fidelity (Fig. 1d).

Applications to photonic quantum state control. This quantum 
metasurface provides a light–matter interface that allows high-fidel-
ity control over quantum light states by generalizing protocols dis-
cussed in the context of cavity quantum electrodynamics (QED)26–29 
to a free-space setting (Fig. 2a), while removing major loss chan-
nels that limit cavity-based approaches and also allowing for natural 
parallelization as multiple transverse modes of the light can be con-
trolled simultaneously. As a specific example, we consider several 
non-overlapping Gaussian beams, focused onto different transverse 
locations (n,m) of the quantum metasurface. Here, single photons 
in each of the transmitted and reflected modes represent qubit 
states 0j in;m

I
 and 1j in;m

I
, respectively. An ancillary atom that con-

trols the reflectivity of the entire array allows one to simultaneously 
manipulate these qubits and realize multi-qubit gates. Specifically, 
this allows one to entangle photons in different transverse loca-
tions in a single scattering process, as shown in Fig. 2a. With the 
control qubit in state 1ffiffi

2
p ð g 0j i þ r0j iÞ
I

, the scattering of Nph incident 
unentangled photons, followed by a projective measurement of the 
ancillary atom in the basis 1ffiffi

2
p ð g 0j i ± r0j iÞ
I

, prepares an N-photon 
entangled Greenberger–Horne–Zeilinger (GHZ) photonic state 
ψGHZj i ¼ 1ffiffi

2
p ð 0j iNph þ 1j iNphÞ

I

. In this configuration, the scat-
tering process realizes a parallel controlled-NOT (CNOT) gate for 
many photonic qubits (Fig. 2c). The extent to which such opera-
tions can be parallelized is mainly limited by the finite range for 
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Fig. 1 | Preparing cat states with quantum metasurfaces. a, Schematic of scattering from the quantum metasurface in a superposition state that perfectly 
reflects (coupled) and perfectly transmits (uncoupled) the light tuned close to the collective gj i ! ej i

I
 transition (with collective shift Δ), conditioned on 

the ancilla state. b, Electronic levels for EIT implementation of a two-photon cascade configuration where a control field tuned to the ej i ! rj i
I

 transition 
is applied, resulting in an array transparent to light tuned to the collective gj i ! ej i

I
 transition. If rj i

I
 is shifted due to the interaction with an ancilla, the 

EIT condition is not fulfilled and the quantum metasurface is reflective. c, Numerical calculation of the electric field distribution after scattering from 
the quantum metasurface in the coupled (right) and uncoupled (left) state. d, Effect of a finite array: the fidelity of the cat light state, calculated after 
projective measurement of the quantum metasurface state (see Supplementary Information), as a function of atom array length (for a spacing of 0.2λ and 
Gaussian beam waist of 1.56λ). Error bars represent errors in the extraction of reflection and transmission coefficients from numerical calculations (see 
Supplementary Information for more details).
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which the Rydberg interactions efficiency control the EIT condition  
of the transverse modes (Fig. 2b). To maximize the spatial extend of  
the Rydberg blockade it may be beneficial to use Rydberg states  
of different parity, such as P and S states for ancillary and array 
atoms, respectively24,25.

As the quantum metasurface enables parallelization of quantum 
operations on multiple qubits, it offers a natural platform for fast 
preparation of tree cluster states, which are tensor network states with 
preparation protocols consisting of parallel control gates (Fig. 2d).  
These types of entangled state are important for overcoming pho-
ton loss errors30 and as part of quantum error correction schemes, 
and they can serve as a basic building block to states related to 
holographic high-energy theories31. In particular, Fig. 2d dis-
plays the graph representation of a state where each single qubit 
is connected to six others. The protocol consists of initializing the 
ancillary atom in the 1ffiffi

2
p ð g 0j i þ r0j iÞ
I

 state. In each step, photons in 
specific transverse locations are scattered from the array to create 
the desired correlations, where in between steps the state of the 
ancilla is rotated (Hadamard gate), marked by boxed H). This pro-
cedure consists of rescattering specific photons from the quantum 
metasurface, which can be implemented by employing free-space 
techniques (see Supplementary Information). The quantum meta-
surface can also serve as a building block for a scalable quantum 
optical interface. This can be implemented by considering an array 
of quantum metasurfaces that act as photonic sources, as analysed 
in the next section.

Highly entangled photonic states via a QLM. The set-up described 
above can not only be used as a passive device but also as a source 
of quantum light in free space. In this mode of operation, the atom 
array effectively serves as an antenna32 that emits single photons in 

well-defined spatial modes. This emission process can be controlled 
by the ancillary atom, enabling the generation of quantum correla-
tions between sequentially generated photons. This system can be 
scaled to generate large-scale atom–photon entanglement. In par-
ticular, one can envision its use as a QLM with multiple ancillary 
atoms, each controlling its own array (pixel), which serves as the 
interface to free-space photons (as schematically depicted in Fig. 3c).  
The specific protocol for controlled quantum emission from a single 
pixel consists of two steps. First, a coherent pulse (with Rabi fre-
quency Ω1) is used to resonantly excite the atoms in the array to a 
single delocalized Rydberg excitation (Fig. 3a)23, conditioned on the 
ancillary atom state. Next, a control field (Ω2) is applied to trans-
fer the Rydberg excitation to the collective excited state. The radia-
tive decay of this collective excitation results in photon emission 
with defined momentum33 due to momentum conservation of the  
collective excitation (see Supplementary Information for details).  
In summary, the conditional emission of a photon results in the 
ancilla-photon entangled state α g 0j i þ β r0j i ! α g 0; 1j i þ β r0; 0j i

I
, 

where 0j i
I

 and 1j i
I

 refer to the presence or absence of a photon. The 
fidelity for the controlled emission is displayed in Fig. 3b as a func-
tion of pixel size and for typical Rydberg blockade. This approach 
allows for the preparation of desired entangled states of the ancil-
lary atoms that control the emission from the different pixels of the 
QLM, enabling generation of photonic correlations between many 
degrees of freedom. In this setting, the quantum information is 
encoded in the absence or presence of photons in specific transverse 
locations. In addition, by sequential operations we can employ pho-
ton state engineering schemes in the time degree of freedom34–36.

As a specific example, we describe the preparation protocol for 
a 3D photonic cluster state, which has important applications for 
fault-tolerant quantum computation37. The first step is to prepare a 
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Fig. 2 | Quantum information with quantum metasurfaces. a, A central ancillary atom (red) controls multiple photonic qubits by scattering from a 
quantum metasurface. Photonic qubits are defined as right ( 0j in;m

I
) or left ( 1j in;m

I
) propagating modes in transverse locations (n,m). b, Lines: fidelity of the 

photonic GHZ state as a function of photonic qubit number for different mode separation distances (L/a) (where a is the atomic spacing). The fidelity is 
affected by the strength of the interaction with the central ancilla and the collective reflectivity. For larger mode separation (blue), the fidelity drops faster 
with photonic qubit number due to the finite Rydberg interaction. Inset: schematic of the photons’ transverse location (bottom left), where the greyscale 
reflects the distance from the central ancilla, which corresponds to coloured areas in the fidelity graph, each with a specific slope. The fidelity is evaluated 
for interaction strength Rc/a = 57 and mode width W0 = 1.56λ (see Supplementary Information for more examples). c,d, Quantum circuits of preparation 
protocols for the photonic entangled states described in the main text (for the GHZ state (c) and the tree cluster state (d)), where qubit numbering is in 
agreement with the graph representation in b.
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2D atomic cluster state for the array of ancillary atoms. This is done 
by initializing the ancillary atoms in the þj i ¼ ð g 0j i þ r0j iÞ=

ffiffiffi
2

p

I
 

state and applying entangling gates (controlled phase gates) 
between neighbouring ancillary atoms, for example by exciting 
them to Rydberg states38 (Fig. 3d). By applying the protocol for con-
trolled emission described above, single photons are emitted from 
each pixel, conditioned on the state of the corresponding ancilla. 
To sequentially generate photons, the ancillary atoms have to be re-
entangled by rotation and repetition of the controlled phase gates 
from the first step. By repeating this protocol, the photonic cluster 
state dimension is increased (Fig. 3c), where with each repetition 
an additional N × M photons are entangled. Measuring the atomic 
state projects the system onto a photonic cluster state with an addi-
tional dimension (emission time) over the initial atomic cluster 
state dimension39. An illustration of the multi-qubit operation and 
the quantum circuit describing the 3D cluster state preparation is 
provided in Fig. 3c,d.

Potential implementations. We now discuss a specific realiza-
tion of a quantum metasurface with an array of trapped neutral 
atoms40–42 whose many-body state can be manipulated by exploit-
ing Rydberg interactions43,44. Recently, the generation of superposi-
tion states of a 1D atom array was demonstrated45. An extension of 
this approach to two dimensions is sufficient for implementing the 
ancillary atoms controlling the QLM pixels. To realize the collective 
effect of the quantum metasurface, atoms have to be trapped at dis-
tances (a) that are smaller than the wavelength of the incident light  
(λ > a). For atom trapping with optical tweezers, the spacing  
between atoms is normally bounded by the diffraction limit. 
However, the requirement for subwavelength spacing can be met by 

using longer-wavelength transitions where λ > 1 μm (for example,  
171Yb, which has a telecom transition of 1,389 nm, was recently 
trapped in optical tweezers using a 470 nm laser; ref. 46). This enables 
the following realization of the electronic levels: gj i  6s6p

I

3P0 and 
ej i  5d6s
I

3D1. Recently, atomic confinement in optical lattices47 has 
been utilized to demonstrate reflectivity from atomic arrays. Finally, 
we note that the condition for the subwavelength atom spacing can 
be relaxed if each pixel of the QLM is associated with a small atomic 
ensemble that can be used, under conditions of Rydberg blockade, 
to emit single photons with defined momentum33,48.

Decoherence and fidelity analysis. We identify several main 
sources for decoherence and errors in our suggested system. First, 
the suggested protocols rely on Rydberg interactions, which have a 
finite range, inducing decoherence. These include the control mech-
anism of the ancillary atom, which is based on the Rydberg level 
shift of atoms within the array, and the single-photon source pro-
tocol, which relies on a maximum of one Rydberg excitation within 
the array. From a different perspective, the long-range Rydberg 
interactions can also induce decoherence due to crosstalk between 
foreign qubits. Another decoherence mechanism is the emission or 
scattering to undesired modes, which occurs for finite array sizes 
or for imperfect atomic states due to experimental limitations. For 
example, imperfect arrays result from unsuccessful atom trapping 
or atomic motion due to thermal fluctuations. In addition to these 
consideration, the finite lifetime of excitations to the Rydberg state 
also induces decoherence.

We estimate errors in state preparation quantitatively as fol-
lows. First, the inhomogeneous shift from resonance of the Rydberg 
level for atoms within the array results in imperfect reflectivity.  
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For the cat state protocol we estimate the error probability 
P  1

8 j
Ω2

p

ðγþΓÞ=2 ðR
6

c6
Þj2jαj2

I
, where R is the average distance of atoms 

from the ancilla and c6 is a constant that depend on the specific 
Rydberg level. For controlled reflection for photonic modes at dis-
tances rnm from the ancilla, the error in the reflection coefficient is 
 1

�iðRc=rnmÞ6þ1

I

, where Rc ¼ ðc6ðγþΓÞ
2jΩpj2

Þ1=6

I

. The finite Rydberg interac-
tions also give rise to a non-vanishing probability for more than one 
Rydberg excitation within the array, resulting in decoherence for 
the emission protocol, estimated by P ≈ ∑i,jΩ1∣ri − rj∣6/Na(Na − 1)c6,  
where the sum runs over all atomic couples in the array and Na is 
the total number of atoms. To estimate the error due to finite array 
sizes, we evaluate the imperfect reflectivity numerically by solv-
ing the scattering problem and quantify it by ηs (where ηs = 1 for 
perfect reflectivity), which depend on the mode width W0 and the 
separation between modes L (see Supplementary Information and 
Fig. 2b). We estimate the emission to undesired non-paraxial modes 
by small array sizes (R0) as −ϵλ/R0, where ϵ = π − 1/π and λ is the 
photon wavelength. The finite lifetime of the Rydberg state induces 
decoherence, which is estimated by �ð 1

Ω1
þ 1

Ω2
Þ=τg 0r0

I
 for the lifetime 

of the control ancilla (τg0r0
I

) and � 1
Ω2τ

I
 for the lifetime of a collec-

tive excitation in the array (τ). We further consider the crosstalk 
between different qubits for the different protocols. For parallel 
quantum operations by one control atom, we estimate the cross-
talk of the n,m qubit with foreign photonic modes by the overlap 
of the transverse wavefunctions 

R R
f nmðx; yÞ

P
i;j≠n;mf


ijðx; yÞdxdy

I
, 

where fij is the photonic wavefunction in transverse location ij, and 
dxdy runs over the array area. For Gaussian wavefunctions this 
gives an error probability of P ≈ 0.0035 per photonic qubit for  
L = 1.8W0. For the QLM, we estimate the crosstalk by the effect of 
a Rydberg excitation in one array on the controlled emission from 
a foreign array. This gives a geometrical limit on the construction 
of the QLM, L 

ffiffiffi
2

p
R0

I
, meaning that the distance between pixels 

has to be much larger than the pixel size. The above considerations 
are incorporated into the fidelity calculations that are displayed in 
Figs. 1d, 2b, 3b and 4 for the photonic cat state, GHZ state and con-
trolled emission, respectively. For typical parameters, the fidelity of 

the operation displayed in Fig. 2d is F ≈ 0.94 for L/W0 = 23. The 
fidelity of the 3D cluster state generation described above scales 
with photonic qubits number, F cs ¼ ðF eÞNMK

I
, where F e

I
 is the con-

trolled emission fidelity shown in Fig. 3b, N × M is the number of 
ancillary atoms and K is the repetition number. Fidelity from imper-
fect preparation of atomic states is displayed in Fig. 4. For less than 
1% of missing atoms, which is a typical error in the experimental 
systems43,49, the cat state fidelity is still higher than 0.965. For dis-
placement fluctuations that are smaller than 0.3a, the three-photon 
GHZ state fidelity is higher than 0.96. The displacement fluctuation 
error can be further reduced by preparing the atoms in the motional 
ground state of an optical lattice potential50, or utilizing a small 
atomic ensemble for each QLM pixel23.

Outlook. The above considerations indicate that quantum metasur-
faces can be used as an effective tool to create photonic quantum states. 
These considerations can be extended by combining techniques of 
classical metasurfaces for controlling the light degrees of freedom, 
such as angular momentum or polarization51. In particular, the QLM 
combines the parallelism of classical metasurfaces, as employed for 
applications such as equation solving52 with quantum state control. 
Our analysis can be further extended to interactions between pho-
tons beyond the weak field limit53,54. We also note that other possible 
experimental realizations, including excitons in atomically thin semi-
conductors, such as transition metal dichalcogenides55,56, can also be 
explored to realize quantum metasurfaces. Finally, we note that these 
considerations could be extended to quantum metamaterials and to 
explore phenomena such as emulations of the quantum gravitational 
background for light (see Supplementary Information).

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, extended data, supplementary informa-
tion, acknowledgements, peer review information; details of author 
contributions and competing interests; and statements of data and 
code availability are available at https://doi.org/10.1038/s41567-
020-0845-5.
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