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ABSTRACT: Quasi-classical mapping Hamiltonian methods have
recently emerged as a promising approach for simulating electronically
nonadiabatic molecular dynamics. The classical-like dynamics of the
overall system within these methods makes them computationally
feasible, and they can be derived based on well-defined semiclassical
approximations. However, the existence of a variety of different quasi-
classical mapping Hamiltonian methods necessitates a systematic
comparison of their respective advantages and limitations. Such a
benchmark comparison is presented in this paper. The approaches
compared include the Ehrenfest method, the symmetrical quasi-classical
(SQC) method, and five variations of the linearized semiclassical (LSC)
method, three of which employ a modified identity operator. The comparison is based on a number of popular nonadiabatic model
systems; the spin-boson model, a Frenkel biexciton model, and Tully’s scattering models 1 and 2. The relative accuracy of the
different methods is tested by comparing with quantum-mechanically exact results for the dynamics of the electronic populations and
coherences. We find that LSC with the modified identity operator typically performs better than the Ehrenfest and standard LSC
approaches. In comparison to SQC, these modified methods appear to be slightly more accurate for condensed phase problems, but
for scattering models there is little distinction between them.

1. INTRODUCTION
Electronically nonadiabatic dynamical processes constitute an
important class of inherently quantum-mechanical chemical
phenomena that range from electronic energy and charge
transfer to photochemistry.1−12 Electronically nonadiabatic
dynamics also underlies the functionality of many technologi-
cally- and biologically relevant systems ranging from photo-
voltaic devices12−15 to the photosynthetic reaction center.16−18

The prohibitive computational cost of quantum-mechanically
exact simulations of electronically nonadiabatic dynamics in
complex molecular systems19−22 has led to the development of a
wide variety of approximate approaches,23 including the
Ehrenfest method,24 surface hopping methods,25−36 the mixed
quantum-classical Liouville method,37−44 the quantum-classical
path integral method,45−50 and quasi-classical mapping
Hamiltonian (QC/MH)methods.19,44,51−73 These approximate
methods typically reduce the computational cost by describing
the dynamics of the nuclear degrees of freedom (DOFs) and
sometimes also of the electronic DOFs, in terms of classical-like
trajectories.
In this paper we focus on QC/MH methods,19,44,51−69 which

represent the electronic population and coherence operators,
whose expectation values correspond to the diagonal and off-
diagonal electronic density matrix elements, respectively, using
mapping operators. The latter have the same commutation
relations as the original electronic operators. However, unlike
the original operators, they are given in terms of auxiliary

position and momentum operators and, as such, have a well-
defined classical limit. Within the QC approximation, one
typically treats the nuclear coordinates and momenta, as well as
the above-mentioned auxiliary coordinates and momenta
associated with the electronic DOFs, as classical-like. The
dynamics of those phase-space variables is then dictated by
classical-like Hamilton equations, with theHamiltonian given by
the classical limit of the mapped Hamiltonian in terms of the
coordinates and momenta associated with the nuclear and
electronic DOFs. The classical dynamics of the phase-space
variables reproduces exactly the quantum dynamics of the bare
electronic-state system, and the approximate nature of the result
emanates from the classical treatment of the nuclear dynamics
and their coupling to the electronic states.
It should be noted that QC/MH methods have been shown

not to accurately capture nuclear quantum interference such as
recurrences at longer times, due to the classical nature of the
independent trajectory approximation.74 For systems where
such effects are relevant, more accurate methods such as
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semiclassical initial value representation,74,75 multiconfiguration
time-dependent Hartree,76 and matching pursuit or tensor-train
split-operator Fourier transform77,78 should be used. We would
like to point out that mapping methods are most useful for the
study of large systems, especially in the condensed phase, where
the aforementioned more accurate methods are not feasible due
to their exponential scaling with system size. We would also like
to highlight that the systems studied in our work are models
either for scattering or for large, condensed phase systems, which
are known not to exhibit such effects.
Various QC/MH methods have been proposed, which differ

with respect to the choice of mapping variables, as well as the
sampling used to determine the values of the corresponding
electronic variables at different times throughout the dynamics.
The goal of this paper is to present a comprehensive comparison
of different QC/MH methods. This comparison is based on a
number of benchmark models (spin-boson, biexciton
model,60,79,80 and Tully’s models25). The various mapping
approaches compared include the Ehrenfest method, the
symmetrical quasi-classical method (SQC), the linearized
semiclassical method (LSC-IVR),52,53 the Poisson-bracket
mapping equation (PBME),44,55,81 and three versions of the
modified mapping approach recently proposed by Saller, Kelly,
and Richardson.62,63 The relative accuracy of these methods is
tested by comparing their results with the quantum-mechan-
ically exact dynamics of both the electronic populations and
coherences.
The rest of this paper is organized as follows. The theoretical

framework underlying QC/MH methods and the different
formulations that lead to different methods are outlined in
Section 2. The benchmark models used are described in Section
3. The results are presented and discussed in Section 4.
Concluding remarks are given in Section 5.

2. THEORY
2.1. Preliminary Considerations. We focus on systems

that can be described by a Hamiltonian of the following
commonly encountered form:

∑ α α̂ =
̂
+ ̂ ′

α α
α α

′
′H VP R

2
( )

N2

,

e

(1)

Here, ̂ = ̂ ̂ ··· ̂P P P P( , )N1 2 n
and ̂ = ̂ ̂ ··· ̂R R R R( , )N1 2 n

denote the
Nn mass-weighted coordinates and momenta of the nuclear
DOFs. The electronic Hilbert space is spanned by {|α⟩} for α =
1, ..., Ne, which is assumed to constitute an orthonormal R-
independent basis, also known as a diabatic basis. It should
however be noted that none of the QC/MH methods under
consideration are limited to this type of basis.82 Here we choose
to work in terms of such a basis since the benchmark models we
use are given in this form.
Within this representation, {|α⟩⟨α|} corresponds to electronic

population operators, and {|α⟩⟨α′|} corresponds to electronic
coherence operators (α ≠ α′). ̂αα′V R( ) is the potential energy
surface (PES) associated with the α-th electronic state, and

̂αα′V R( ) is the electronic coupling between the α-th and the α′-th
electronic states (α ≠ α′). Some of our models also make use of
the Condon approximation, which corresponds to replacing the
electronic coupling operator ̂αα′V R( ) by the constant electronic
coupling coefficientVαα′. This however is not a restriction for the
approaches we discuss here.

We will study initial states of the overall system that have the
following form:

ρ ρ σ̂ = ̂ ⊗ ̂(0) (0) (0)n (2)

Here, ρ ρ̂ = [ ̂ ](0) Tr (0)n e and σ ρ̂ = [ ̂ ](0) Tr (0)n are the reduced
density operators that describe the initial states of the nuclear
DOFs and electronic DOFs, respectively (Tre[·] and Trn[·]
stand for partially tracing over the electronic Hilbert space and
the nuclear Hilbert space, respectively). Note that we choose
both ρ ̂ (0)n and σ(̂0) to be normalized such that ρ[ ̂ ] =Tr (0) 1n n
and σ[ ̂ ] =Tr (0) 1e . For the sake of concreteness, we will also
restrict ourselves to the commonly encountered case where
σ λ λ̂ =(0) , which implies that the initial state of the
electronic DOFs corresponds to being in one of the basis states,
{|α⟩}.
The state of the electronic DOFs at a later time t is then given

by the electronic reduced density operator

∑σ ρ σ α α̂ = [ ̂ ] = | ⟩⟨ ′|
αα

αα
′

′t t t( ) Tr ( ) ( )n
(3)

where

σ ρ λ λ α α= [ ̂ | ⟩⟨ | | ′⟩⟨ | ]
≡

αα′
̂ ℏ − ̂ ℏ

̂ ̂λλ α α′

t e

C t

( ) Tr (0) e

( )
n

iHt iHt

M M

/ /

(4)

is the αα′ electronic density matrix element. Here, Tr[···] ≡
Trn[Tre[···]] is the overall (electronic + nuclear) trace,

α α̂ ≡ | ′⟩⟨ |α α′M , and ̂ ̂C t( )AB is the correlation function defined
by

ρ= ̂ ̂ ̂̂ ̂
̂ ℏ − ̂ ℏ

ÄÇÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑC t Ae Be( ) Tr (0)AB n
iHt iHt/ /

(5)

Importantly, σαα(t) corresponds to the population of the α-th
electronic state, and σα′α(t) corresponds to the electronic
coherence between the α′-th and α-th electronic states (α≠ α′).
Following refs 62 and 63, we also note that the electronic

population operator can be cast in the following alternative form,
as the sum of the identity operator, ̂1, and a traceless term

α α = ̂ + ̂
αN

Q1 (1 )
e (6)

where

∑̂ = ̂ − ̂
α αα

α
α α

′
′ ′Q NM Me

Ne

(7)

As a result, one can cast the electronic populations and
coherences in the following alternative, yet completely
equivalent, form:

σ = [ + + ]αα ̂ ̂ ̂ ̂α λ α
t

N
N C t C t( ) 1 ( ) ( )

e
e Q Q Q2 1

(8)

σ = [ + ]αα′ ̂ ̂ ̂ ̂α α λ α α′ ′
t

N
C t C t( ) 1 ( ) ( )

e
M Q M1

(9)

2.2. Mapping Variables and the Quasiclassical
Approximation. MH methods are often based on casting the
electronic population and coherence operators, {α α′ }, onto
an isomorphic set of operators, { ̂ ̂ }α α′M q p( , ) , that satisfy the
same commutation relations:19,52,53,55,62−68,68,69,80−91
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α α′ → ̂ ̂α α′M q p( , ) (10)

Here, { ̂ ̂}q p, represents a set of auxiliary Cartesian coordinate
and momentum operators associated with the mapping (not to
be confused with the coordinate and momentum operators of
the actual electrons). The motivation for replacing the original
set of electronic operators with the mapping operators can be
traced back to the fact that unlike {α α′ }, { ̂ ̂ }α α′M q p( , ) has
classical-like analogues. As a result, QC approximations become
possible.
The actual choice of mapping variables is not unique, and

multiple choices of mapping variables have been proposed and
employed.68−70,80,82,87,92−94 In this paper, we focus on methods
based on the mapping proposed by Stock and Thoss51

(sometimes also referred to in the literature as the Meyer-Miller
mapping, due to its similarity to themapping proposed earlier by
Meyer and Miller19).
Within this Meyer-Miller-Stock-Thoss (MMST) mapping,

one represents the system ofNe electronic states, {|α⟩}, in terms
of an isomorphic system of Ne independent harmonic modes
with creation and annihilation operators { ̂ }α

†c and {c ̂α},
respectively, such that δ[ ̂ ̂ ] =α α αα′

†
′c c, . The electronic operators,

{α α′ } (with α = α′ for populations and α ≠ α′ for
coherences), can then be mapped onto the harmonic oscillator
operators{ ̂ ̂ }α α′

†c c , which satisfy the same commutation relations.

α̂
†c and cα̂ can also be cast in terms of Cartesian coordinates,{ ̂ }αq ,

and momenta, { ̂ }αp , such that ̂ = ̂ − ̂α α α
†

ℏc q ip( )1
2

and

̂ = ̂ + ̂α α αℏc q ip( )1
2

. This results in the following expressions

for the electronic population and coherence operators in terms
of { ̂ ̂ }α αq p, :

̂ → ℏ ̂ + ̂ − ℏ

̂ → ℏ ̂ ̂ + ̂ ̂ − ̂ ̂ + ̂ ̂

αα α α

α α α α α α α α α α′ ′ ′ ′ ′

M q p

M q q p p iq p ip q

1
2

( )

1
2

( )

2 2

(11)

We denote the mapping relations in eq 11 as mapping #1.
An alternative mapping can be obtained by noting that the

quantum dynamics in terms of the MMST mapping variables is
restricted to the subspace spanned by the singly excited states,
{| ⟩}α0 , 0 , ..., 1 , ..., 0N1 2 e

. Here, | ⟩α0 , 0 , ..., 1 , ..., 0N1 2 e
corre-

sponds to the α-th mode being in the first excited state, while
all the other modes are in the ground state. This leads to the
following mapping of the electronic population and coherence
operators:

̂ →α α α α′ ′M 0 , 0 , ..., 1 , ..., 0 0 , ..., 1 , ..., 0 , 0N N1 2 2 1e e

(12)

We denote the mapping relations in eq 12 as mapping #2.
Applying the linearized semiclassical (LSC) approxima-

tion41,95−105 to eq 5 leads to the following QC approximation
for the correlation function ̂ ̂C t( )AB :

∫ ∫ ∫ ∫π
ρ

≈ ℏ
× [ ̂ ]

̂ ̂
ikjjj y{zzzC t

A B

dR dP dq dp

R P q p q p

( ) 1
2

(0) ( , ) ( , ) ( , )

AB

N

n W W W t t

0 0 0 0

0 0 0 0 (13)

Here, N = Ne + Nn is the total number of DOFs of the overall
system, while ρ[ ̂ ] R P(0) ( , )n W and A q p( , )W 0 0 are the Wigner

transform of the nuclear operator ρ ̂ (0)n and electronic operator
Â, respectively:

∫
∫ρ ρ

= + ̂ ̂ −

[ ̂ ] = + ̂ −

− ℏ

− ℏ

A Aq p dz q z q p q z

R P dZ R Z R Z

( , ) e
2

( , )
2

(0) ( , ) e
2

(0)
2

W
i

n W
i

n

zp

ZP

/

/

(14)

Importantly, { }R P q p, , ,t t t t is obtained by starting at the
initial state{ }R P q p, , ,0 0 0 0 and evolving a classical trajectory by
solving Hamilton’s equations based on the classical limit of the
overall system Hamiltonian in eq 1. In what follows we use the
symmetrized mapping Hamiltonian, which has also been used in
previous studies19,55,62,63

∑

∑

= + ̅ + ℏ − ̅ +

+ ℏ − +

α
αα α α

α α
αα α α α α

≠ ′
′ ′ ′

H

V V V q p

V q ip q ip

R P q p

P R R R

R

( , , , )

2
( ) 1

2
( ( ) ( ))( )

1
2

( )( )( )

N

N

2
2 2

e

e

(15)

where ̅ = ∑α ααV V R( )
N
1

e
. In this way, the resulting diabatic

potential matrix is traceless. It also removes the zero-point
energy terms (resulting from the commutation relations of α̂q
and α̂p ) from the Hamiltonian.
Applying the LSC approximation within mapping #1 (see eq

11) yields the following QC phase-space variables for the
electronic populations and coherences:

[ ̂ ] = ℏ [ + − ℏ]

[ ̂ ] = ℏ [ + ][ − ]

αα α α

α α α α α α′ ′ ′

M q p

M q ip q ip

q p

q p

( , ) 1
2

( , ) 1
2

W

W

(I) 2 2

(I)

(16)

Applying the LSC approximation within mapping #2 (see eq 12)
yields the following QC phase-space variables for the electronic
populations and coherences

ϕ

ϕ

[ ̂ ] = + − ℏ

[ ̂ ] = [ + ][ − ]

αα α α

α α α α α α′ ′ ′

ÄÇÅÅÅÅÅÅÅÅ
ÉÖÑÑÑÑÑÑÑÑM q p

M q ip q ip

q p q p

q p q p

( , ) ( , )
2

( , ) ( , )

W

W

(II) 2 2

(II)
(17)

where

∑ϕ = ℏ − ℏ +
α

α α

+

′=
′ ′q pq p( , ) 2 exp 1 ( )

N N1

1

2 2e e

(18)

At least five different implementations of the above-
mentioned mapping LSC scheme have been proposed. The
first two implementations are based on applying the LSC
approximation in eq 13 to the correlation function ̂ ̂λλ α α′

C t( )M M in

eq 4. Both implementations use mapping #2 for λ̂λM (the
mapping variable evaluated at the initial time). This is because,
even within a fully quantum description, one needs to project
onto the physical subspace at least once. Additionally, ϕ(q, p),
eq 18, provides a well-defined phase-space density for initial
sampling of (q0, p0). The two implementations differ with
respect to which mapping they use for ̂α α′M (the mapping
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variable evaluated at time t). Using mapping #1 for ̂α α′M leads to
an implementation we denote as LSCI (sometimes also referred
to as PBME81). Using mapping #2 for ̂α α′M leads to an
implementation we denote as LSCII (sometimes also referred to
as LSC-IVR52,53). A summary of how to calculate correlation
functions of the form ̂ ̂C t( )AB for these mapping approaches can
be found in Table SI of the Supporting Information.
The third and fourth implementations, introduced in ref 62,

are based on applying the LSC approximation in eq 13 to the
correlation functions ̂ ̂ αC t( )Q1 , ̂ ̂α α′

C t( )M1 , ̂ ̂λ α
C t( )Q Q , and ̂ ̂λ α α′

C t( )Q M

in eqs 8 and 9. These modified LSC implementations
approximate ̂ ̂ αC t( )Q1 and ̂ ̂α α′

C t( )M1 by mapping ̂1 onto 1 and

using mapping #2 for ̂
αQ and ̂α α′M . However, they differ with

respect to how they approximate ̂ ̂λ α
C t( )Q Q and ̂ ̂λ α α′

C t( )Q M . Using

mapping #2 for ̂
λQ and mapping #1 for ̂

αQ and ̂α α′M leads to an
implementation that we denote as mLSC/ϕ1ϕ1. Using mapping
#2 for ̂

λQ , ̂
αQ , and ̂α α′M leads to an implementation that we

denote as mLSC/ϕ1ϕ2.
A fifth possible implementation proposed in ref 62

corresponds to applying the LSC approximation in eq 13 to
the correlation functions ̂ ̂ αC t( )Q1 , ̂ ̂α α′

C t( )M1 , ̂ ̂λ α
C t( )Q Q , and

̂ ̂λ α α′
C t( )Q M in eq 8, using mapping #2 for ̂

λQ , ̂
αQ , and ̂α α′M

and also mapping ̂1 onto 2ℏϕ(q, p). We denote this
implementation as mLSC/ϕ2ϕ2.
It is worth noting that, both the Q̂ k and ̂α α′M operators (for α

≠ α′) are traceless and therefore do not contain zero-point
energy terms arising from the commutators of the harmonic-
oscillator mapping variables. As a result of this, the difference
between mapping #1 and #2 for both operators is simply a factor
of 2ℏϕ(q, p). The advantage of the mLSC methods lies in the
splitting of the electronic population operators into the identity
and the traceless Q̂ k operator. By mapping the identity operator
to 1, the potential errors associated with the zero-point energy
terms in the traditional LSC methods is thereby avoided. A
summary of how to calculate correlation functions of the form

̂ ̂C t( )AB for these mapping approaches can be found in Table SII
of the Supporting Information.
The SQCmethod proposed byMiller and co-workers can also

be viewed as alternative implementation of the LSC
approximation.56−61 This method is usually formulated in
terms of action-angle (a-a) variables, rather than in terms of the
above-mentioned Cartesian coordinates and momenta.19,80

Each electronic state α is associated with a classical harmonic
mode whose state is given by the corresponding action, nα, and
angle, uα, variables. Semiclassical expressions for the ground and
first excited wave functions of the α-th harmonic mode in terms
of a-a variables are given byψ =α πu( )0

1
2 andψ =α π

αu e( ) iu
1

1
2 ,

respectively.80 Furthermore, the Wigner transform can also be
cast in terms of a-a variables:

∫= + ̂ −−A n u dy u
y

u
y

( , ) e
2

A
2W

iyn

(19)

Here = n nn ( , ..., )N1 e
and = u uu ( , ..., )N1 e

. Substituting ̂α α′M
from eq 12 for Â in eq 19 then yields the following QC a-a
variables for the electronic populations and coherences:

∏

∏

δ δ

δ δ δ

[ ̂ ] = −

[ ̂ ] = − × −

αα α
α α

α

α α α α
β α α

β

′≠
′

′
−

′
≠ ′

α α′ ikjjj y{zzz ikjjj y{zzz
M n n

M e n n n

n u

n u

( , ) ( 1) ( )

( , ) 1
2

1
2

( )

W

N

W
i u u

N

(SQC)

(SQC) ( )

,

e

e

(20)

The SQC method is based on replacing the delta functions in
action space (see eq 20) with prelimit delta functions. One such
choice, which gives rise to square window functions in action
space, is based on replacing δ(nα − a) with h(γ − |nα − a|)/2γ,
for a given γ, where

= ≥
<

lmonoh x
x
x

( )
1 0
0 0 (21)

Another choice leads to triangular window functions.61 The
a-a variables are related to the corresponding Cartesian
coordinates and momenta in the following manner:

γ

γ

= ℏ +

= ℏ +
α α α

α α α

q n u

p n u

2 ( ) cos( )

2 ( ) sin( ) (22)

Miller and co-workers have recommended setting the value of
the width parameter, γ, to 0.366, since this value has been
observed to give the most accurate results when the method is
applied to benchmark models and can be justified from a
consideration of mapping to a spin-1/2 system.56,70 It was also
reported that replacing the above-mentioned square window
function with a triangular window function can lead to more
accurate results as well as better convergence.61 The SQC
calculations reported in this paper were based on using such
triangular window functions.
The Ehrenfest (mean-field) method can also be cast as a QC/

MH-type method.19 In this case, the electronic state at time t is
given by

∑ψ α=
α

αt c t( ) ( )
Ne

(23)

and the dynamics of the coefficients, {cα(t)}, are dictated by

∑̇ = − ℏα
α

αα α
′

′ ′c t i V c tR( ) ( ) ( )
N

t

e

(24)

Here, Rt is the nuclear coordinates at time t, which are treated
classically. The mean-field approximation is introduced by
assuming that the dynamics Rt is governed by the mean-field
PES, ψ ψ̂t V t( ) ( ) . Letting

=
ℏ

+α α αc q ip1
2

( )
(25)

it can be shown that Ehrenfest dynamics is equivalent to
propagating { }R P q p, , ,t t t t as classical variables subject to the
classical Hamiltonian in eq 15.19 However, in this case {q0, p0} is
uniquely determined by cα(0), as opposed to LSC and SQC
where there is an initial distribution of initial {q0, p0}.
The mapping Hamiltonian methods outlined above are

summarized in Figure 1.

3. MODELS
Below, we compare results obtained by applying the above-
mentioned seven methods (LSCI, LSCII, mLSC/ϕ1ϕ1, mLSC/
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ϕ1ϕ2, mLSC/ϕ2ϕ2, SQC, and Ehrenfest) to the following
benchmark models, for which quantum-mechanically exact
results can be obtained: (1) the spin-bosonmodel; (2) a Frenkel
biexciton model; and (3) Tully’s models 1 and 2.
All models are based on a Hamiltonian of the form of eq 1 and

include two electronic states (Ne = 2), which we will denote 1
and 2 . We assume that the system starts out in state 1 , so that
σ ̂ =(0) 1 1 . For each model, we compare the expectation
values of σ⟨ ̂ ⟩t( )x , σ⟨ ̂ ⟩t( )y , and σ⟨ ̂ ⟩t( )z as obtained via the
above-mentioned methods. Here, σ ̂ = +1 2 2 1x ,
σ ̂ = − +i i1 2 2 1y , and σ ̂ = −1 1 2 2z . These expect-
ation values are defined by σ ρ σ̂ = [ ̂ ]t t( ) Tr (0) 1 1 ( )i n i .
σ⟨ ̂ ⟩t( )z corresponds to the population difference, while σ⟨ ̂ ⟩t( )x
and σ⟨ ̂ ⟩t( )y correspond to the real and imaginary parts of the
coherence. Note that we set ℏ = 1 throughout the following
sections.
3.1. Spin-Boson Model. For the spin-boson model

∑ ∑

∑ ∑

ω

ω

= + + ϵ

= − − ϵ

= = Δ

= =

= =

V R g R

V R g R

V V

R

R

R R

( ) 1
2

( ) 1
2

( ) ( )

k

N

k k
k

N

k k

k

N

k k
k

N

k k

11
1

2 2

1

22
1

2 2

1

12 21

n e

n n

(26)

The frequencies of the harmonic nuclear modes and
corresponding coupling coefficients, {ωk} and {gk}, respectively,
are obtained from the Ohmic spectral density

∑ω π
ω δ ω ω π ηω= − → ω ω−J
g
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k
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2
/

n
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following the discretization approach outlined in ref 106. Here
the Kondo parameter η and cutoff frequencyωc are related to the
reorganization energy ζ = 2ηωc which characterizes the overall
electron−phonon coupling strength. The initial state of the

nuclear DOFs is given by ρ ̂ = β β− ̂ − ̂e e(0) /Tr ( )n
H

n
H0 0 with

ω̂ = ∑ [ ̂ + ̂ ]=H P Rk
N

k k k0 1
1
2

2 2 2n .
Below, we report results obtained for the following four sets of

parameters: (a) symmetric high T: ϵ = 0, Δ = 1, η = 0.09,

ωc = 2.5, β = 0.1; (b) symmetric low T: ϵ = 0, Δ = 1, η = 0.09,
ωc = 2.5, β = 5; (c) asymmetric high T: ϵ = 1, Δ = 1, η = 0.1,
ωc = 1, β = 0.25; (d) asymmetric low T: ϵ = 1, Δ = 1, η = 0.1,
ωc = 2, β = 5. We have also included a parameter set
corresponding to the critical damping regime in the Supporting
Information: ϵ = 1, Δ = 1, η = 0.4, ωc = 2, β = 5. This particular
parameter set has previously been studied using mapping
approaches, see for example refs 107 and 62. Compared to the
parameters in (d), the Kondo parameter is increased from 0.1 to
0.4 with overall coupling strength ζ/Δ increased from 0.4 to 1.6.

3.2. Frenkel Biexciton Model. For the Frenkel biexciton
model
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Here, ϵk denotes the k-th site energy (k = 1, 2). Each site is
coupled to an independent bath with Nn harmonic modes. The
displacements {Dk} are given by ω=D g /k k k

2. {ωk} and {gk} are
obtained from the Debye spectral density
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ω ω
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following the discretization approach outlined in ref 106. Here ζ
denotes reorganization energy. Again, the initial state of the

nuclear DOFs is given by ρ ̂ = β β− ̂ − ̂e e(0) /Tr ( )n
H

n
H0 0 with

ω̂ = ∑ [ ̂ + ̂ ]=H P Rk
N

k k k0 1
1
2

2 2 2n .
Below, we report calculations for this model with the

following parameters: ϵ1 = 50 cm−1, ϵ2 = −50 cm−1,
Δ = 100 cm−1, ωc = 200 cm−1, T = 72 K, and ζ = 10, 50, or
150 cm−1, where the strength of coupling to the environment
can be measured respectively through the coefficients ζ/Δ = 0.1,
0.5, and 1.5.

3.3. Tully’s Models 1 and 2. For Tully’s single avoided
crossing model 125
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with A = 0.01, B = 1.6, C = 0.005, and D = 1.0.
For Tully’s dual avoided crossing model 225
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(31)

with A = 0.10, B = 0.28, C = 0.015, D = 0.06, and E0 = 0.05.
For these models, we calculate the final population of the two

channels as a function of the initial momentum.25 The initial
nuclear coordinate is sampled according to the

Figure 1. Mapping Hamiltonian methods studied in this work.
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Wigner t r ans fo rm of a Gaus s i an wavepacke t 2 9

σ[− − ]iP R R Rexp( )exp ( ) /0 0
2 2 , with R0 = −20, P0 is the initial

momentum, and σ = 20/P0. The nuclear mass is set to 2000 au.25

The simulation of the mapping variables was performed in the
diabatic representation starting in the lower diabatic state. The
asymptotic populations in the transmission channels of ground
adiabatic state (T1) and excited state (T2) are then calculated.
In addition, we also calculate the population and coherence

dynamics. To this end, we start out with R0 = −9, σ = 2 for a
range of values of P0, and in each case sample R0 is based on

− − − −σ
σ( )P P R Rexp ( ) ( )

2 0
2 2

0
22

2 .

4. RESULTS AND DISCUSSION
4.1. Spin-Boson Model. The results for the spin-boson

model are shown in Figure 2. The quantum-mechanically exact
results for this case were calculated via the dissipation equation
of motion (DEOM) method of Yan et al.108 Inspection of the
results gives rise to the following observations:

• The LSCI, LSCII, and Ehrenfest methods are the least
accurate methods. Interestingly, while those methods are
able to reproduce σ⟨ ̂ ⟩t( )z and σ⟨ ̂ ⟩t( )y rather accurately for
the high-temperature, symmetric model, this is not the
case for σ⟨ ̂ ⟩t( )x .

• The mLSC/ϕ1ϕ1, mLSC/ϕ1ϕ2, and mLSC/ϕ2ϕ2 meth-
ods are the most accurate. Notably, for σ⟨ ̂ ⟩t( )x in the
symmetric low T case, mLSC/ϕ2ϕ2 is seen to be

significantly more accurate than mLSC/ϕ1ϕ1 and
mLSC/ϕ1ϕ2.

• Both the mLSC methods and SQC constitute an
improvement over LSCI and LSCII. mLSC/ϕ1ϕ1,
mLSC/ϕ1ϕ2, and mLSC/ϕ2ϕ2 perform at least as well
as SQC in all cases, often yielding more accurate results.

These observations demonstrate the importance of compar-
ing the dynamics of the entire electronic density matrix, as
opposed to just the populations (as captured by σ⟨ ̂ ⟩t( )z ). They
also point to mLSC/ϕ1ϕ1, mLSC/ϕ1ϕ2, and mLSC/ϕ2ϕ2 as the
methods of choice, since they are more accurate than LSCI and
LSCII and do not involve choices regarding window shape and
width in SQC.
In addition to considering the correlation functions shown in

Figure 2, we can further analyze these results by breaking each
into constituent correlation functions. The LSCI, LSCII, and
modified LSC correlation functions in Figure 2 are each
calculated as a sum of two constituents, such that

σ⟨ ̂ ⟩ = = +σ σ σ σ⟩⟨ ̂ ̂ ̂ ̂ ̂t C t C t C t( ) ( ) 1
2
( ( ) ( ))i 1 1 1i i z i (32)

where i∈{x, y, z}. Note that as per eq 7, σ̂ ≡ ̂Q z1 . Plots of the full
Pauli-space of correlation functions computed can be found in
the Supporting Information. Notably, in the case of the spin-
boson systems studied here, LSCI and LSCII actually perform
extremely well for correlation functions of the form σσ̂ ̂C t( )

i j
but

have larger errors for correlation functions of the form σ̂ ̂C t( )1 i
.

Figure 2. Population and coherence dynamics of spin-boson models with variant parameters: (a) ϵ = 0, Δ = 1, η = 0.09, ωc = 2.5, β = 0.1; (b) ϵ = 0,
Δ = 1, η = 0.09, ωc = 2.5, β = 5; (c) ϵ = 1, Δ = 1, η = 0.1, ωc = 1, β = 0.25; and (d) ϵ = 1, Δ = 1, η = 0.1, ωc = 2, β = 5. In SQC, we employ triangular
windows with width γ = 0.366.
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The fact that the inaccuracy of the traditional mapping
approaches, LSCI and LSCII, is isolated to the identity
containing correlation functions explains the drastic increase
in accuracy achieved by themodifiedmapping approaches, given
that the latter are based on a different treatment of this operator.
For the critical damping parameter set mentioned above, we

note that these observations appear to also apply. We report the
results in Figure S5 of the Supporting Information.
4.2. Frenkel Biexciton Model. The results for the Frenkel

biexciton model are shown in Figure 3. Exact results for this
model were adopted from ref 79, where they were calculated
using the HEOMmethod.We also note that SQC results for this
model were previously reported by Cotton and Miller.60,80

However, the model parameters used in refs 60 and 80 were
ωc/Δ = 0.53 and 0.106, which correspond to the slow bath limit,
and kBT/Δ ∼ 2 (T = 300 K and Δ = 100 cm−1), which
corresponds to the high-temperature limit. In contrast, here we
consider model parameters that correspond to the fast bath
limit, ωc/Δ = 2, and the low temperature limit, kBT/Δ ∼ 0.5,
which are expected to provide a more challenging test case for
the approximate methods under consideration. For those model
parameters, we report results obtained for three values of
electron−phonon coupling coefficients: ζ/Δ = 0.1, 0.5, and 1.5.

The results are plotted in Figure 3. Inspection of the results
gives rise to the following observations:

• For σ⟨ ̂ ⟩t( )z , mLSC/ϕ1ϕ1, mLSC/ϕ1ϕ2, mLSC/ϕ2ϕ2, and
SQC are accurate at the weak electron−phonon coupling
regime (ζ = 10 cm−1) but become increasingly inaccurate
with increasing electron−phonon coupling strength
(ζ = 150 cm−1). This is because one would need a
quantum description of the bath modes in this limit.
Somewhat surprisingly, the prediction for σ⟨ ̂ ⟩t( )z
obtained via the mLSC/ϕ2ϕ2 method is seen to nearly
coincide with the exact results for all coupling strengths.
Finally, the accuracy of σ⟨ ̂ ⟩t( )z predicted by the LSCI,
LSCII, and Ehrenfest methods is seen to deteriorate with
increasing time.

• For σ⟨ ̂ ⟩t( )x , all methods are seen to capture the initial
dynamics rather well but deteriorate in accuracy with
increasing time. This can be attributed to the quantum
nature of the nuclear DOFs in the fast bath and low
temperature limits. However, for weak electron−phonon
coupling, mLSC/ϕ1ϕ1, mLSC/ϕ1ϕ2, mLSC/ϕ2ϕ2, and
SQC are seen to be rather accurate throughout the entire
simulation time, while LSCI, LSCII, and Ehrenfest are

Figure 3. Population and coherence dynamics of 2-site exciton models at ϵ1 = 50 cm−1, ϵ2 = −50 cm−1, Δ = 100 cm−1, ωc = 200 cm−1, T = 72 K, and
ζ = 10, 50, and 150 cm−1 (from top to bottom). Here for SQC, we employ triangular windows with width γ = 0.366. (We also checked square windows
with the same width and have not found obvious differences between the two results.)
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seen to significantly deviate from the exact results on the
same time scale. Finally, mLSC/ϕ2ϕ2 is again seen to
provide the most accurate results when the electron−
phonon coupling strength is increased.

• For σ⟨ ̂ ⟩t( )y , all of the methods under consideration are
seen to give a more reasonable description of the exact
results.

As for the spin-boson model, those observations demonstrate
the importance of comparing the dynamics of the entire
electronic density matrix, as opposed to just the populations (as

captured by σ⟨ ̂ ⟩t( )z ). They also point to mLSC/ϕ2ϕ2 as the
method of choice.

4.3. Tully’s Models 1 and 2. The results for the single
avoided crossing and dual avoided crossing Tully’s models 1 and
2 are shown in Figures 4 and 5, respectively. Panels (A) in these
figures show the adiabatic ground and excited energies (E1 and
E2, respectively) and the nonadiabatic coupling coefficient (d12).
Panels (B) of these figures show that all the methods under
consideration reproduce the quantum-mechanically exact
asymptotic populations rather accurately when P0 > 10, i.e.,
when the description of the nuclear DOFs as classical becomes

Figure 4. Tully’s model of single avoided crossing. Panel A: adiabatic potential energy curves (E1 and E2) and first-order nonadiabatic coupling
strength (d12). Panel B: population versus initial momentum of the wavepacket which started from the left side of the ground state. The wavepacket
transmission at the lower and upper energy curves are denoted as T1 andT2, respectively. Panel C: population and coherence dynamics with P0 = 5, 10,
and 20. In SQC, we employ triangular windows with width γ = 0.366. The total number of trajectories is 105.
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justified. The results for σ⟨ ̂ ⟩t( )z in Panels (C) of these figures

show that the methods accurately reproduce not just the final
populations but also their intermediate dynamics, when P0 > 10.

Furthermore, the results for σ⟨ ̂ ⟩t( )x and σ⟨ ̂ ⟩t( )y reveal that the

methods also reproduce the quantum-mechanically exact
coherences rather accurately. Results for Tully’s model 3
(extended coupling) are not reported since none of the methods
discussed in this paper are able to produce a reasonable
description of the quantum dynamics for this challenging model.
It should be noted that the mLSC methods do not yield a

major improvement in this case, although they also do not
significantly degrade the quality of the results.

5. CONCLUDING REMARKS
Various QC/MH methods for simulating electronically non-
adiabatic molecular dynamics have been proposed over the last
two decades, which are based on MMST mapping variables, but
differ with respect to the way in which the operators are
evaluated at different times. The comprehensive comparison
presented in this paper aims at estimating the relative accuracy of
several of those methods. This is made possible by the
availability of quantum-mechanically exact results for the
benchmark models under consideration and extending the
comparison beyond the electronic populations to electronic
coherences.
The above-mentioned comparison lends further weight to the

modified LSC methods recently introduced by Saller, Kelly, and
Richardson62,63 (mLSC/ϕ1ϕ1, mLSC/ϕ1ϕ2, and mLSC/ϕ2ϕ2),

Figure 5. Tully’s model of dual avoided crossing. As described in Figure 4 except for panel C, P0 = 5, 15, and 30.
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which are shown to be significantly more accurate in comparison
to the more traditional LSCI, LSCII, and Ehrenfest methods.
The accuracy of themLSCmethods is also comparable to that of
SQC, even exceeding it in certain cases. Among the modified
LSC methods, mLSC/ϕ2ϕ2 appears to be somewhat more
accurate in comparison to mLSC/ϕ1ϕ1 and mLSC/ϕ1ϕ2,
although results for different benchmarks63 suggest this is not
always the case.
Comparing the performance of the mLSC approaches to

SQC, it could be argued that since the SQC windows prevent
averaging of trajectories which have strayed into unphysical
regions of phase space, therefore preventing spurious nuclear
dynamics, SQC might be expected to perform better in
scattering type problems such as the Tully’s models studied
here and can be applied with photoexcited problems with extra
adjustments.109 The mLSC methods, on the other hand, appear
to perform better than SQC for condensed phase problems.
It should be noted that the enhanced accuracy of the mLSC

methods does not come at the expense of computational cost,
which remains comparable to that of the Ehrenfest, LSCI, and
LSCII methods. It would therefore be highly desirable to extend
the range of applicability and accessibility of the mLSCmethods
to complex molecular system, as well as to the calculation of
quantities other than the electronic populations and coherences.
Work toward those goals is currently underway in our groups
and will be reported in future papers.
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