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ABSTRACT: Quasi-classical mapping Hamiltonian methods have Performance of
recently emerged as a promising approach for simulating electronically
nonadiabatic molecular dynamics. The classical-like dynamics of the
overall system within these methods makes them computationally
teasible, and they can be derived based on well-defined semiclassical

quasiclassical
Mapping Hamiltonian

approximations. However, the existence of a variety of different quasi- i: J' ‘L
classical mapping Hamiltonian methods necessitates a systematic Linear Modified Linear Symmetrical
comparison of their respective advantages and limitations. Such a  semiclassical < semiclassical @ quasiclassical
benchmark comparison is presented in this paper. The approaches (LSC) (mLSC) (sQc)

compared include the Ehrenfest method, the symmetrical quasi-classical

(SQC) method, and five variations of the linearized semiclassical (LSC)

method, three of which employ a modified identity operator. The comparison is based on a number of popular nonadiabatic model
systems; the spin-boson model, a Frenkel biexciton model, and Tully’s scattering models 1 and 2. The relative accuracy of the
different methods is tested by comparing with quantum-mechanically exact results for the dynamics of the electronic populations and
coherences. We find that LSC with the modified identity operator typically performs better than the Ehrenfest and standard LSC
approaches. In comparison to SQC, these modified methods appear to be slightly more accurate for condensed phase problems, but
for scattering models there is little distinction between them.

1. INTRODUCTION position and momentum operators and, as such, have a well-
defined classical limit. Within the QC approximation, one

Electronically nonadiabatic dynamical processes constitute an
typically treats the nuclear coordinates and momenta, as well as

important class of inherently quantum-mechanical chemical

phenomena that range from electronic energy and charge the above-mentioned auxiliary coordinates and momenta
transfer to photochemistry.'™'* Electronically nonadiabatic associated with the electronic DOFs, as classical-like. The
dynamics also underlies the functionality of many technologi- dynamics of those phase-space variables is then dictated by
CaHy. and blologlcally relevant systems ranging from photo- classical-like Hamilton equations, with the Hamiltonian given by
voltaic devices'>™ " to the photosynthetic reaction center.'®™"* the classical limit of the mapped Hamiltonian in terms of the
The prohibitive computational cost of quantum-mechanically coordinates and momenta associated with the nuclear and
exact simulations of electronically nonadiabatic dynamics in electronic DOFs. The classical dynamics of the phase-space
complex molecular systems'*~** has led to the development of a variables reproduces exactly the quantum dynamics of the bare
wide variety of approximate approaches,”’ including the electronic-state system, and the approximate nature of the result
Ehrenfest method,”" surface hoppin§ methods,”™*° the mixed emanates from the classical treatment of the nuclear dynamics
quantum-classical Liouville method, ’~* the quantum-classical and their coupling to the electronic states.
path integral methOd:%_bo and quasi-classical mapping It should be noted that QC/MH methods have been shown
Hamiltonian (QC/MH) methods."”***'~" These approximate not to accurately capture nuclear quantum interference such as

methods typically reduce the computational cost by describing
the dynamics of the nuclear degrees of freedom (DOFs) and
sometimes also of the electronic DOFs, in terms of classical-like
trajectories.
In this paper we focus on QC/MH methods,"”***' =% which ]

represent the electronic population and coherence operators, Received: December 19, 2019 ICIC——
whose expectation values correspond to the diagonal and off- Published: March 31, 2020 Y
diagonal electronic density matrix elements, respectively, using
mapping operators. The latter have the same commutation
relations as the original electronic operators. However, unlike
the original operators, they are given in terms of auxiliary

recurrences at longer times, due to the classical nature of the
independent trajectory approximation.”* For systems where
such effects are relevant, more accurate methods such as

&
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semiclassical initial value representation,”*”> multiconfiguration
time-dependent Hartree,”® and matching pursuit or tensor-train
split-operator Fourier transform”””* should be used. We would
like to point out that mapping methods are most useful for the
study of large systems, especially in the condensed phase, where
the aforementioned more accurate methods are not feasible due
to their exponential scaling with system size. We would also like
to highlight that the systems studied in our work are models
either for scattering or for large, condensed phase systems, which
are known not to exhibit such effects.

Various QC/MH methods have been proposed, which differ
with respect to the choice of mapping variables, as well as the
sampling used to determine the values of the corresponding
electronic variables at different times throughout the dynamics.
The goal of this paper is to present a comprehensive comparison
of different QC/MH methods. This comparison is based on a
number of benchmark models (spin-boson, biexciton
model,®>””* and Tully’s models®”). The various mapping
approaches compared include the Ehrenfest method, the
symmetrical quasi-classical method (SQC), the linearized
semiclassical method (LSC-IVR),”>* the Poisson-bracket
mapping equation (PBME),***>"! and three versions of the
modified mapping ayproach recently proposed by Saller, Kelly,
and Richardson.®”®* The relative accuracy of these methods is
tested by comparing their results with the quantum-mechan-
ically exact dynamics of both the electronic populations and
coherences.

The rest of this paper is organized as follows. The theoretical
framework underlying QC/MH methods and the different
formulations that lead to different methods are outlined in
Section 2. The benchmark models used are described in Section
3. The results are presented and discussed in Section 4.
Concluding remarks are given in Section S.

2. THEORY

2.1. Preliminary Considerations. We focus on systems
that can be described by a Hamiltonian of the following
commonly encountered form:

PN
A=—+ YV, R))Xa
2 a',a (1)

Here, P = (B, P, -~ IA’Nn) and R = (R, liz-"IA{N") denote the
N, mass-weighted coordinates and momenta of the nuclear
DOFs. The electronic Hilbert space is spanned by {la)} for a =
1, .., N, which is assumed to constitute an orthonormal R-
independent basis, also known as a diabatic basis. It should
however be noted that none of the QC/MH methods under
consideration are limited to this type of basis.”” Here we choose
to work in terms of such a basis since the benchmark models we
use are given in this form.

Within this representation, {la)(al} corresponds to electronic
population operators, and {la){a’'l} corresponds to electronic
coherence operators (@ # @'). V,,(R) is the potential energy
surface (PES) associated with the a-th electronic state, and
V,(R) is the electronic coupling between the a-th and the a'-th
electronic states (a # a’). Some of our models also make use of
the Condon approximation, which corresponds to replacing the
electronic coupling operator V,«(R) by the constant electronic
coupling coefficient V.. This however is not a restriction for the
approaches we discuss here.
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We will study initial states of the overall system that have the
following form:

p(0) = 5,(0) ® 6(0) )

Here, p (0) = Tr,[$(0)] and 6(0) = Tr,[5(0)] are the reduced
density operators that describe the initial states of the nuclear
DOFs and electronic DOFs, respectively (Tr,[-] and Tr,[-]
stand for partially tracing over the electronic Hilbert space and
the nuclear Hilbert space, respectively). Note that we choose
both p (0) and 6(0) to be normalized such that Tr,[ (0)] = 1

and Tr[6(0)] = 1. For the sake of concreteness, we will also
restrict ourselves to the commonly encountered case where
6(0) = |A){4], which implies that the initial state of the
electronic DOFs corresponds to being in one of the basis states,
{la)}.

The state of the electronic DOFs at a later time ¢ is then given
by the electronic reduced density operator

5(t) = Tr[p()] = ), Ge(Dla)(a'l “
aa’ 3

where
Gu(t) = THlA, () (Ae™ Mar ) (ale™ /")

= CMA}.Ma'a(t) 4)

is the aa’ electronic density matrix element. Here, Tr[-]
Tr,[Tr,[---]] is the overall (electronic + nuclear) trace,

M, = la’){al, and C;4(t) is the correlation function defined
by

Cislt) = T, (VA Be™/"| )
Importantly, 6,,(t) corresponds to the population of the a-th
electronic state, and 6,,(t) corresponds to the electronic
coherence between the a’-th and a-th electronic states (@ # a’).

Following refs 62 and 63, we also note that the electronic
population operator can be cast in the following alternative form,

as the sum of the identity operator, 1, and a traceless term

1~ A
lo)(al = i(l +Q,) ©

where

N,
Qa = NM,, - Z My o
o (7)
As a result, one can cast the electronic populations and
coherences in the following alternative, yet completely
equivalent, form:
1
%lt) = [N, + Cig (t) + Cg 4 (0)]
aa I\’ez 1Q, R, (8)

1
O (t) = E[Cm,,,,(t) + Ca i, (1)] )
2.2. Mapping Variables and the Quasiclassical
Approximation. MH methods are often based on casting the
electronic population and coherence operators, {|a’){a|}, onto
an isomorphic set of operators, {M,,(§, p)}, that satisfy the

. . 19,52,53,55,62—68,68,69,80—91
same commutation relations:

https://dx.doi.org/10.1021/acs.jctc.9b01267
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|a/><a| - Ma’a((i) f’) (10)

Here, {q, p} represents a set of auxiliary Cartesian coordinate
and momentum operators associated with the mapping (not to
be confused with the coordinate and momentum operators of
the actual electrons). The motivation for replacing the original
set of electronic operators with the mapping operators can be
traced back to the fact that unlike {|a’){al}, {M, ,(§, p)} has
classical-like analogues. As a result, QC approximations become
possible.

The actual choice of mapping variables is not unique, and
multiple choices of magzpin‘g variables have been proposed and
employed.*® 7080828792798 this paper, we focus on methods
based on the mapping proposed by Stock and Thoss’'
(sometimes also referred to in the literature as the Meyer-Miller
mapping, due to its similarity to the mapping proposed earlier by
Meyer and Miller'”).

Within this Meyer-Miller-Stock-Thoss (MMST) mapping,
one represents the system of N, electronic states, {la)}, in terms
of an isomorphic system of N, independent harmonic modes

with creation and annihilation operators {¢)} and {t,},

respectively, such that [C,, 6,:] = 0, The electronic operators,
{la’}{al} (with @ = a' for populations and a # o' for
coherences), can then be mapped onto the harmonic oscillator

At . . . .
operators {¢,<C, }, which satisfy the same commutation relations.

¢, and ¢, can also be cast in terms of Cartesian coordinates, {q },

A A1 A N
and momenta, {p }, such that ¢, = ﬁ(qa - lpa) and
R 1

=7

for the electronic population and coherence operators in terms

of{d, B, ):

(qa + ip, ). This results in the following expressions

1, .
aa_)E(qaz P; _h)
~ 1
M, —(@4,+pp, —idp, +ipq
wa = 2h(qaq,,, pb, —iqp, +ipq,) (1)

We denote the mapping relations in eq 11 as mapping #1.

An alternative mapping can be obtained by noting that the
quantum dynamics in terms of the MMST mapping variables is
restricted to the subspace spanned by the singly excited states,
{10, 05, «ry 1y sy 0M>} Here, 10, 0,, ..., 1, ., ON) corre-
sponds to the a-th mode being in the first excited state, while
all the other modes are in the ground state. This leads to the
following mapping of the electronic population and coherence
operators:

)

My = [0 035 oy Ly oy Oy ) (O s Ty oy 03, 0
(12)

We denote the mapping relations in eq 12 as mapping #2.

Ap lyin%_ the linearized semiclassical (LSC) approxima-
tion""”>~'% to eq 5 leads to the following QC approximation
for the correlation function C 45(t):

Cap(t) » (ﬁ)N deo /dpo /dqo /dPO

X [,5,, (0)Iy (R0; Po)AW(qO) PO)BW(qt) Pt) (13)

Here, N = N, + N, is the total number of DOFs of the overall
system, while [ (0)1y (R, P) and Aw(qo, po) are the Wigner
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transform of the nuclear operator 4 (0) and electronic operator

)

A, respectively:

—iz z A A
Ay(q p) = /dze "/"<q + E‘A(q, pla- =

2

H —i yA
5Oy (& P) = [aze zw<R+ z

o)

(14)

Importantly, {R,, P, q, pt} is obtained by starting at the
initial state {R, Py, q, Po} and evolving a classical trajectory by
solving Hamilton’s equations based on the classical limit of the
overall system Hamiltonian in eq 1. In what follows we use the

symmetrized magpin Hamiltonian, which has also been used in
. . 19,55,62,63
previous studies

H(R, P, q, p)

=L rm - %Z (Vaul®) = T(R))(g? + p2)

N,
1 ¥ . )
o 2 VR, — i), + i)
2h a#a’' (15)
%Za V.o(R). In this way, the resulting diabatic
potential matrix is traceless. It also removes the zero-point
energy terms (resulting from the commutation relations of q,

where V =

and ﬁa) from the Hamiltonian.

Applying the LSC approximation within mapping #1 (see eq
11) vyields the following QC phase-space variables for the
electronic populations and coherences:

N 1
Mool (9 p) = S la; + p; = ]

N 1
[Ny ol (q, p) = 19, +inllg, - i,

(16)
Applying the LSC approximation within mapping #2 (see eq 12)
yields the following QC phase-space variables for the electronic
populations and coherences

. h
[V, 1% (@, p) = d(g, p)[qf +p, - ;]
[Ma/a]gll)(qi P) = d’(q; P)[qa + "Pa][qa/ - iPa,] (17)
where
N 1
#(q, p) = exp—— Y (a2 +p.)
h iz (18)

At least five different implementations of the above-
mentioned mapping LSC scheme have been proposed. The
first two implementations are based on applying the LSC
approximation in eq 13 to the correlation function C; y; (t) in

eq 4. Both implementations use mapping #2 for Z\?IM (the
mapping variable evaluated at the initial time). This is because,
even within a fully quantum description, one needs to project
onto the physical subspace at least once. Additionally, ¢(q, p),
eq 18, provides a well-defined phase-space density for initial
sampling of (qq, po). The two implementations differ with

respect to which mapping they use for M, (the mapping

https://dx.doi.org/10.1021/acs.jctc.9b01267
J. Chem. Theory Comput. 2020, 16, 2883—2895
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variable evaluated at time t). Using mapping #1 for M, leads to
an implementation we denote as LSCI (sometimes also referred
to as PBME®"). Using mapping #2 for Ma,a leads to an
implementation we denote as LSCII (sometimes also referred to
as LSC-IVR*>**). A summary of how to calculate correlation
functions of the form C;5(t) for these mapping approaches can
be found in Table SI of the Supporting Information.

The third and fourth implementations, introduced in ref 62,
are based on applying the LSC approximation in eq 13 to the
correlation functions CiQ“(t), Cigr,, (1), CQ;Q,,(t)’ and C@M,m(t)
in eqs 8 and 9. These modified LSC implementations
approximate Ciq (t) and Cyy (t) by mapping 1 onto 1 and
using mapping #2 for Qu and M,,,. However, they differ with
respect to how they approximate CQAQa(t) and CQ,Mafa(t)‘ Using

mapping #2 for Q& and mapping #1 for Qa and M, leads to an
implementation that we denote as mLSC/¢'¢'. Using mapping
#2 for Q/P Qa, and M, leads to an implementation that we
denote as mLSC/¢'¢*.

A fifth possible implementation proposed in ref 62
corresponds to applying the LSC approximation in eq 13 to
the correlation functions Cida(t)1 Cigr,, (1), CQAQA—a(t), and

CQJM,,',,(t) in eq 8, using mapping #2 for Q,V Qa, and M,

and also mapping 1 onto 27A¢(q, p). We denote this
implementation as mLSC/¢*¢”.

It is worth noting that, both the Qk and 1\710,/  operators (for a
# a') are traceless and therefore do not contain zero-point
energy terms arising from the commutators of the harmonic-
oscillator mapping variables. As a result of this, the difference
between mapping #1 and #2 for both operators is simply a factor
of 2h1p(q, p). The advantage of the mLSC methods lies in the
splitting of the electronic population operators into the identity
and the traceless Qk operator. By mapping the identity operator
to 1, the potential errors associated with the zero-point energy
terms in the traditional LSC methods is thereby avoided. A
summary of how to calculate correlation functions of the form
C;5(t) for these mapping approaches can be found in Table SII
of the Supporting Information.

The SQC method proposed by Miller and co-workers can also
be viewed as alternative implementation of the LSC
approximation.’*”®" This method is usually formulated in
terms of action-angle (a-a) variables, rather than in terms of the
above-mentioned Cartesian coordinates and momenta.'”*’
Each electronic state |a) is associated with a classical harmonic
mode whose state is given by the corresponding action, n,, and
angle, u,, variables. Semiclassical expressions for the ground and
first excited wave functions of the @-th harmonic mode in terms

1 1
T and l//l(ua) = Ee"‘“,
respectively.”” Furthermore, the Wigner transform can also be
cast in terms of a-a variables:
y >
a-— <
2

Here n = (ny, .., ny) and u = (uy, ..., uy). Substituting Maa
from eq 12 for A in eq 19 then yields the following QC a-a
variables for the electronic populations and coherences:

of a-a variables are given by y;,(1,) =

Ayy(n, u) = fdye_im<u + % A

(19)
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N,
(¥, 5% (0, w) = 6(n, — 1) T 8(n,)

a'#a

o (520 = g, _ L AN
My iy (n,u) =e E(na 2) X 5(1101' 2) ﬂgd 5(71/,)

(20)

The SQC method is based on replacing the delta functions in

action space (see eq 20) with prelimit delta functions. One such

choice, which gives rise to square window functions in action

space, is based on replacing 6(n, — a) with h(y — In, — al)/2y,

for a given y, where

1
i) = {0 (21)

Another choice leads to triangular window functions.®* The
a-a variables are related to the corresponding Cartesian
coordinates and momenta in the following manner:

q,= \J2h(n, + y) cos(u,)
p, = \J2h(n, + y) sin(u,)

Miller and co-workers have recommended setting the value of
the width parameter, y, to 0.366, since this value has been
observed to give the most accurate results when the method is
applied to benchmark models and can be justified from a
consideration of mapping to a spin-1/2 system.’®’° It was also
reported that replacing the above-mentioned square window
function with a triangular window function can lead to more
accurate results as well as better convergence.61 The SQC
calculations reported in this paper were based on using such
triangular window functions.

The Ehrenfest (mean-field) method can also be cast asa QC/
MH-type method."? In this case, the electronic state at time # is
given by

x>0
x<0

(22)

N,

e

() = Y c(Bla)

a (23)
and the dynamics of the coefficients, {c,(t)}, are dictated by

. N
. i
Ca(t) = _%Z Vaa’(Rt)ca’(t)
a (24)
Here, R, is the nuclear coordinates at time t, which are treated
classically. The mean-field approximation is introduced by

assuming that the dynamics R, is governed by the mean-field
PES, (y(t)[V]w(t)). Letting

(= (g +ip)
(] \/ﬁqa D,

it can be shown that Ehrenfest dynamics is equivalent to
propagating {R;, P, q,, p,} as classical variables subject to the

(25)

classical Hamiltonian in eq 15."” However, in this case {qq, po} is
uniquely determined by c,(0), as opposed to LSC and SQC
where there is an initial distribution of initial {qq, po}-

The mapping Hamiltonian methods outlined above are
summarized in Figure 1.

3. MODELS

Below, we compare results obtained by applying the above-
mentioned seven methods (LSCI, LSCII, mLSC/¢'¢", mLSC/

https://dx.doi.org/10.1021/acs.jctc.9b01267
J. Chem. Theory Comput. 2020, 16, 2883—2895
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Ehrenfest SQC LSC
y Binning Wigner transform in
Mean field of action-angle variables positions and momenta

sy —

Figure 1. Mapping Hamiltonian methods studied in this work.

Improved

population

¢'¢*, mLSC/¢*®*, SQC, and Ehrenfest) to the following
benchmark models, for which quantum-mechanically exact
results can be obtained: (1) the spin-boson model; (2) a Frenkel
biexciton model; and (3) Tully’s models 1 and 2.

All models are based on a Hamiltonian of the form of eq 1 and
include two electronic states (N, = 2), which we will denote |1)
and [2). We assume that the system starts out in state|1), so that
6(0) = [1)(1]. For each model, we compare the expectation
values of (G,(t)), (6,(t)), and (&(t)) as obtained via the
Here, 8x = |1><2| + |2><1|r
6, = —il1){2] + il2)(1], and 6, = [1){1] — [2){2]. These expect-
ation values are defined by (6(t)) = Trlp (0)|1)(1]6(t)].
(6,(t)) corresponds to the population difference, while (6,(t))

above-mentioned methods.

and (@(t)) correspond to the real and imaginary parts of the

coherence. Note that we set /i = 1 throughout the following
sections.
3.1. Spin-Boson Model. For the spin-boson model

N, N,
L 4

Vi(R) = Z zwszkz + ngRk +e€
k=1 k=1

N, N,
k1 A
Vi(R) = )7 —o/R — Y g Ry — €
2
k=1 k=1
Via(R) = V5,(R) = A (26)

The frequencies of the harmonic nuclear modes and
corresponding coupling coefficients, {®;} and {g.}, respectively,
are obtained from the Ohmic spectral density

N, .2
J@) = 23 2 b0 — 1) » Ly
2 k k 2 (27)

following the discretization approach outlined in ref 106. Here
the Kondo parameter # and cutoff frequency w, are related to the
reorganization energy { = 2nw, which characterizes the overall
electron—phonon coupling strength. The initial state of the

nuclear DOFs is given by p(0) = e_ﬁﬁo/Trn(e_ﬁg") with
A N, 1152, 252
HO = Zk=1 E[Pk + kak ].

Below, we report results obtained for the following four sets of
parameters: (a) symmetric high T: ¢ = 0, A = 1, n = 0.09,
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®.=2.5, f=0.1; (b) symmetric low T: ¢ =0, A = 1, 1 = 0.09,
®,=2.5, f=5; (c) asymmetric high T: e = 1, A = 1, 5 = 0.1,
=1, f=0.25; (d) asymmetric low T: e = 1, A = 1,7 = 0.1,
®w.=2, f=5. We have also included a parameter set
corresponding to the critical damping regime in the Supporting
Information: € =1, A =1, 7 = 04, o, =2, f = S. This particular
parameter set has previously been studied using mapping
approaches, see for example refs 107 and 62. Compared to the
parameters in (d), the Kondo parameter is increased from 0.1 to
0.4 with overall coupling strength {/A increased from 0.4 to 1.6.

3.2. Frenkel Biexciton Model. For the Frenkel biexciton
model

N, N,
41 ol !
Vi(R) =€ + Z zwkz(Rm - D)’ + Z EwkZsz,z
k k

N N,

. k1
V,(R) =€, + Z Ewkz(Rk,z - D) + Z za)kZsz,l

k k

Vi(R) = V(R) = A
(28)

Here, ¢, denotes the k-th site energy (k = 1, 2). Each site is
coupled to an independent bath with N, harmonic modes. The
displacements {D;} are given by D, = g/ a)kz. {w} and {g;} are
obtained from the Debye spectral density

N 2
T~ & o,
w=—§—5a)—w - 22—
]( ) 2 T O ( k) Ca)2+a)f (29)

following the discretization approach outlined in ref 106. Here {
denotes reorganization energy. Again, the initial state of the

nuclear DOFs is given by ﬁn(O) = e_ﬁH"/Trn(e_ﬂH") with
Hy=Y,", %[ﬁ,f + w2R]].

Below, we report calculations for this model with the
following parameters: €, = SO cm™', ¢, = —50 cm™,
A=100cm™}, @, = 200 cm™}, T = 72 K, and ¢ = 10, 50, or
150 cm ™!, where the strength of coupling to the environment
can be measured respectively through the coefficients {/A = 0.1,
0.5, and 1.5.

3.3. Tully’s Models 1 and 2. For Tully’s single avoided

. 25
crossing model 1

®) A[l — exp(-BR)] R >0
Vi(R) =
H —A[l — exp(BR)] R <0

sz(R) =-V 1(R)

Via(R) = V3(R) = C exp(~DR’) (30)
with A = 0.01, B = 1.6, C = 0.00S, and D = 1.0.

For Tully’s dual avoided crossing model 2*°

Vn(R) =0

Viy(R) = —A exp(~BR’) + E,

Vi(R) = V31(R) = C exp(—DR?) (31)

with A = 0.10, B = 0.28, C = 0.015, D = 0.06, and E, = 0.05.
For these models, we calculate the final population of the two

channels as a function of the initial momentum.>® The initial

nuclear coordinate is sampled according to the

https://dx.doi.org/10.1021/acs.jctc.9b01267
J. Chem. Theory Comput. 2020, 16, 2883—2895
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Figure 2. Population and coherence dynamics of spin-boson models with variant parameters: (a) € =0, A= 1,7 =0.09, w.= 2.5, =0.1; (b) € = 0,
A=1,71=009,w.=25p=5(c)e=1,A=1,n=01,0,=1,=025;and (d) e=1,A=1,5y=0.1, =2, f = 5. In SQC, we employ triangular

windows with width y = 0.366.

Wigner transform of a Gaussian wavepacket®’
exp(iBR)exp[—(R — R,)*/c*], with Ry = —20, P, is the initial
momentum, and ¢ = 20/P,. The nuclear mass is set to 2000 au.”
The simulation of the mapping variables was performed in the
diabatic representation starting in the lower diabatic state. The
asymptotic populations in the transmission channels of ground
adiabatic state (T1) and excited state (T2) are then calculated.

In addition, we also calculate the population and coherence
dynamics. To this end, we start out with Ry = =9, 6 = J2 fora
range of values of Py, and in each case sample R, is based on

exp(~2(P - B)* = Z(R - R,)'),

4. RESULTS AND DISCUSSION

4.1. Spin-Boson Model. The results for the spin-boson
model are shown in Figure 2. The quantum-mechanically exact
results for this case were calculated via the dissipation equation
of motion (DEOM) method of Yan et al.'"”® Inspection of the
results gives rise to the following observations:

e The LSCI, LSCII, and Ehrenfest methods are the least
accurate methods. Interestingly, while those methods are
able to reproduce (6,(t)) and (@(t)) rather accurately for
the high-temperature, symmetric model, this is not the
case for (6,(t)).

The mLSC/¢'¢"', mLSC/¢p'¢* and mLSC/¢’p* meth-
ods are the most accurate. Notably, for (6,(t)) in the
symmetric low T case, mLSC/¢*p* is seen to be
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significantly more accurate than mLSC/¢'¢p' and
mLSC/¢'¢™

Both the mLSC methods and SQC constitute an
improvement over LSCI and LSCIL. mLSC/¢'¢’,
mLSC/¢'¢* and mLSC/¢*¢p* perform at least as well
as SQC in all cases, often yielding more accurate results.

These observations demonstrate the importance of compar-
ing the dynamics of the entire electronic density matrix, as
opposed to just the populations (as captured by (5,(t))). They
also point to mLSC/¢'¢", mLSC/¢'¢?* and mLSC/¢p*p* as the
methods of choice, since they are more accurate than LSCI and
LSCII and do not involve choices regarding window shape and
width in SQC.

In addition to considering the correlation functions shown in
Figure 2, we can further analyze these results by breaking each
into constituent correlation functions. The LSCI, LSCII, and
modified LSC correlation functions in Figure 2 are each
calculated as a sum of two constituents, such that

1
6.(t)) = C A(t) = —(Ci.(t) + CoA(t
<01( )> |1)(l|q( ) 2( lq( ) o-zo-x( )) (32)
where i €{x, y, z}. Note that as per eq 7, Ql = 6,. Plots of the full

Pauli-space of correlation functions computed can be found in
the Supporting Information. Notably, in the case of the spin-
boson systems studied here, LSCI and LSCII actually perform
extremely well for correlation functions of the form C;, (t) but

have larger errors for correlation functions of the form Cj, ().

https://dx.doi.org/10.1021/acs.jctc.9b01267
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Figure 3. Population and coherence dynamics of 2-site exciton models at €, = 50 em™) e, ==50cm™, A =100 cm™, @, = 200 cm™, T =72 K, and
¢=10,50,and 150 cm™" (from top to bottom). Here for SQC, we employ triangular windows with width y = 0.366. (We also checked square windows
with the same width and have not found obvious differences between the two results.)

The fact that the inaccuracy of the traditional mapping
approaches, LSCI and LSCII, is isolated to the identity
containing correlation functions explains the drastic increase
in accuracy achieved by the modified mapping approaches, given
that the latter are based on a different treatment of this operator.

For the critical damping parameter set mentioned above, we
note that these observations appear to also apply. We report the
results in Figure S5 of the Supporting Information.

4.2. Frenkel Biexciton Model. The results for the Frenkel
biexciton model are shown in Figure 3. Exact results for this
model were adopted from ref 79, where they were calculated
using the HEOM method. We also note that SQC results for this
model were previously reported by Cotton and Miller.””*
However, the model parameters used in refs 60 and 80 were
®./A =0.53 and 0.106, which correspond to the slow bath limit,
and kyT/A ~ 2 (T = 300 K and A = 100 cm™), which
corresponds to the high-temperature limit. In contrast, here we
consider model parameters that correspond to the fast bath
limit, w.,/A = 2, and the low temperature limit, kgT/A ~ 0.5,
which are expected to provide a more challenging test case for
the approximate methods under consideration. For those model
parameters, we report results obtained for three values of
electron—phonon coupling coefficients: {/A = 0.1, 0.5, and 1.5.

The results are plotted in Figure 3. Inspection of the results
gives rise to the following observations:

e For(6,(t)), mLSC/¢'¢', mLSC/¢'¢p*, mLSC/¢p*¢p* and
SQC are accurate at the weak electron—phonon coupling
regime ({ = 10 cm™") but become increasingly inaccurate
with increasing electron—phonon coupling strength
((=150cm™). This is because one would need a
quantum description of the bath modes in this limit.
Somewhat surprisingly, the prediction for (4,(t))
obtained via the mLSC/¢’¢* method is seen to nearly
coincide with the exact results for all coupling strengths.
Finally, the accuracy of (6,(t)) predicted by the LSCI,
LSCII, and Ehrenfest methods is seen to deteriorate with
increasing time.

e For (6,(t)), all methods are seen to capture the initial
dynamics rather well but deteriorate in accuracy with
increasing time. This can be attributed to the quantum
nature of the nuclear DOFs in the fast bath and low
temperature limits. However, for weak electron—phonon
coupling, mLSC/¢'¢', mLSC/¢'¢*, mLSC/¢*¢* and
SQC are seen to be rather accurate throughout the entire
simulation time, while LSCI, LSCII, and Ehrenfest are

https://dx.doi.org/10.1021/acs.jctc.9b01267
J. Chem. Theory Comput. 2020, 16, 2883—2895
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Figure 4. Tully’s model of single avoided crossing. Panel A: adiabatic potential energy curves (E; and E,) and first-order nonadiabatic coupling
strength (d,,). Panel B: population versus initial momentum of the wavepacket which started from the left side of the ground state. The wavepacket
transmission at the lower and upper energy curves are denoted as T1 and T2, respectively. Panel C: population and coherence dynamics with P, =S, 10,
and 20. In SQC, we employ triangular windows with width y = 0.366. The total number of trajectories is 10°.

seen to significantly deviate from the exact results on the
same time scale. Finally, mLSC/¢’¢* is again seen to
provide the most accurate results when the electron—
phonon coupling strength is increased.

For <5y(t) ), all of the methods under consideration are

seen to give a more reasonable description of the exact
results.

As for the spin-boson model, those observations demonstrate
the importance of comparing the dynamics of the entire
electronic density matrix, as opposed to just the populations (as
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captured by (6,(t))). They also point to mLSC/¢*p* as the
method of choice.

4.3. Tully’s Models 1 and 2. The results for the single
avoided crossing and dual avoided crossing Tully’s models 1 and
2 are shown in Figures 4 and S, respectively. Panels (A) in these
figures show the adiabatic ground and excited energies (E; and
E,, respectively) and the nonadiabatic coupling coefficient (d;,).
Panels (B) of these figures show that all the methods under
consideration reproduce the quantum-mechanically exact
asymptotic populations rather accurately when P, > 10, i.e.,
when the description of the nuclear DOFs as classical becomes

https://dx.doi.org/10.1021/acs.jctc.9b01267
J. Chem. Theory Comput. 2020, 16, 2883—2895
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Figure S. Tully’s model of dual avoided crossing. As described in Figure 4 except for panel C, Py = §, 15, and 30.

justified. The results for (6,(¢)) in Panels (C) of these figures
show that the methods accurately reproduce not just the final
populations but also their intermediate dynamics, when P, > 10.

Furthermore, the results for (6,(t)) and (6,(t)) reveal that the

methods also reproduce the quantum-mechanically exact
coherences rather accurately. Results for Tully’s model 3
(extended coupling) are not reported since none of the methods
discussed in this paper are able to produce a reasonable

description of the quantum dynamics for this challenging model.
It should be noted that the mLSC methods do not yield a

major improvement in this case, although they also do not

significantly degrade the quality of the results.

2891

5. CONCLUDING REMARKS

Various QC/MH methods for simulating electronically non-
adiabatic molecular dynamics have been proposed over the last
two decades, which are based on MMST mapping variables, but
differ with respect to the way in which the operators are
evaluated at different times. The comprehensive comparison
presented in this paper aims at estimating the relative accuracy of
several of those methods. This is made possible by the
availability of quantum-mechanically exact results for the
benchmark models under consideration and extending the
comparison beyond the electronic populations to electronic
coherences.

The above-mentioned comparison lends further weight to the
modified LSC methods recently introduced by Saller, Kelly, and
Richardson®”®* (mLSC/¢'¢", mLSC/¢'¢? and mLSC/¢p*p?),

https://dx.doi.org/10.1021/acs.jctc.9b01267
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which are shown to be significantly more accurate in comparison
to the more traditional LSCI, LSCII, and Ehrenfest methods.
The accuracy of the mLSC methods is also comparable to that of
SQC, even exceeding it in certain cases. Among the modified
LSC methods, mLSC/¢*¢* appears to be somewhat more
accurate in comparison to mLSC/¢'¢' and mLSC/¢'¢?
although results for different benchmarks® suggest this is not
always the case.

Comparing the performance of the mLSC approaches to
SQC, it could be argued that since the SQC windows prevent
averaging of trajectories which have strayed into unphysical
regions of phase space, therefore preventing spurious nuclear
dynamics, SQC might be expected to perform better in
scattering type problems such as the Tully’s models studied
here and can be applied with photoexcited problems with extra
adjustments.'”” The mLSC methods, on the other hand, appear
to perform better than SQC for condensed phase problems.

It should be noted that the enhanced accuracy of the mLSC
methods does not come at the expense of computational cost,
which remains comparable to that of the Ehrenfest, LSCI, and
LSCII methods. It would therefore be highly desirable to extend
the range of applicability and accessibility of the mLSC methods
to complex molecular system, as well as to the calculation of
quantities other than the electronic populations and coherences.
Work toward those goals is currently underway in our groups
and will be reported in future papers.
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