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Quantum networks provide a platform for astronomical interferometers capable of imaging faint stellar
objects. In a recent work [E. T. Khabiboulline et al., Phys. Rev. Lett. 123, 070504 (2019)], we presented a
protocol that circumvents transmission losses with efficient use of quantum resources and modest quantum
memories. Here we analyze a number of extensions to that scheme. We show that it can be operated as a truly
broadband interferometer and generalized to multiple sites in the array. We also analyze how imaging based on
the quantum Fourier transform provides improved signal-to-noise ratio compared to classical processing. Finally,
we discuss physical realizations including photon-detection-based quantum state transfer.
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I. INTRODUCTION

Telescope arrays boost the angular resolution in astronom-
ical imaging [1,2]. By interfering the light collected at sites
across the array, a synthetic aperture with resolution propor-
tional to the length of the array and frequency of the light is
realized [3]. In practice, however, transmission losses limit the
separation between sites. The resolution is then restricted, in
particular if the light sources under study are weak, which is
typically the case for imaging in the optical domain [4]. Tsang
[5] demonstrated theoretically that in this setting a nonlocal
measurement, such as in direct detection, is necessary for
good performance. Alternatively, quantum entanglement can
connect sites; quantum teleportation-based interference of the
stellar light via distributed entangled photon pairs was initially
proposed by Gottesman et al. [6]. However, estimates of
the necessary rate of entanglement distribution for such an
approach suggested a high rate exceeding 100 GHz, which
currently is not feasible. The introduction of quantum mem-
ories into the network offers a significant relaxation of this
requirement. In Ref. [7] we showed that the quantum state of
the collected light can be compressed and stored nonlocally
across the network, yielding an exponential reduction in the
consumption of entangled resources, as compared to memory-
less schemes. The necessary rate of entanglement distribution
is reduced by several orders of magnitude, which opens up
realistic prospects for employing near-term quantum networks
[8,9] for high-resolution imaging in the optical domain.

In this article we further develop the scheme presented
in Ref. [7] (see Fig. 1) and analyze a number of possible
extensions relevant to the setting of astronomical interfer-
ometry. In particular, we analyze how the limited bandwidth
of typical quantum memories can be overcome by means of
frequency splitting followed by efficient encoding. Next we
describe how the original two-node scheme can be extended
to a multiple-site array. We also study how processing the
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network’s stored quantum data with a quantum Fourier trans-
form improves imaging. Finally, Ref. [7] suggests initially
transferring the incoming optical modes to an auxiliary atomic
qubit in a Raman-absorption scheme. Here we show how to
eliminate the auxiliary atom, by reflecting the photons off
cavities and interfering them with ancillary photonic states in
a beam splitter, followed by photon detection.

The paper is organized as follows. Section II considers
broadband light and coding of the frequency data. In Sec. III,
operation is generalized to arrays with more than two tele-
scope sites, and the advantage of a quantum Fourier transform
performed over the network is discussed in Sec. IV. State
transfer to memory based on photon detection is elaborated

FIG. 1. Memory-based interferometry scheme from Ref. [7]. The
quantum state of an incoming photon and associated information is
stored nonlocally between telescope sites in a binary qubit encoding
that can be decoded using preshared entangled pairs. Encoding
operations are performed in time bins set by the detector bandwidth,
followed by decoding after one photon is expected to have arrived.
Physical realization may involve qubits housed in cavities: (a) Re-
flecting the photon off cavities, interfering with a coherent state, and
detecting photons performs the encoding, while (b) decoding is done
with qubit-qubit interactions followed by measurement.

2469-9926/2019/100(2)/022316(9) 022316-1 ©2019 American Physical Society

https://orcid.org/0000-0001-9151-6464
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.022316&domain=pdf&date_stamp=2019-08-15
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevLett.123.070504
https://doi.org/10.1103/PhysRevA.100.022316


E. T. KHABIBOULLINE et al. PHYSICAL REVIEW A 100, 022316 (2019)

(a) (b)

FIG. 2. Efficient encoding of photon frequency and time infor-
mation in log2(MR + 1) memory qubits. (a) The incoming photon
arrives in one of M time bins (see Fig. 1) and one of R frequency
bands. The excitation is transferred to a frequency-matched receiving
qubit (red) and later stored in memory qubits (green). (b) The time-
frequency data have MR + 1 possibilities (+1 for vacuum), which
can be mapped to log2(MR + 1) codewords in binary. An example
of the encoding CNOT gates is shown for the fifth time bin and
second frequency band. The number of detectors scales linearly in
R, whereas the coding operation consumes resources logarithmic in
both M and R.

in Sec. V, with further considerations given in Appendices A
and B.

II. BROADBAND OPERATION

The essence of the scheme in Ref. [7] is to transfer the
quantum state of the photon to a logical qubit with a binary
encoding of the arrival time. Digitization of time is set by
the characteristic scale of the inverse detector bandwidth; this
time bin contains an average number of ε photons (see Fig. 1).
After encoding over ∼1/ε time bins such that one photon
is expected, entanglement-assisted parity checks between the
telescope sites determine its arrival time in a nondestructive
manner. Crucially, this measurement projects out the vacuum
component of the light and fixes the nonlocal quantum state.
The phase information relevant for interferometry can then be
processed without suffering from the vacuum noise that im-
pairs local detection schemes [5]. The binary code means that
only log2(M + 1) memory qubits are needed per site, where
M ∼ 1/ε is the number of time bins integrated over. Conse-
quently, also only ∼ log2 1/ε entangled pairs are consumed
for the parity checks, giving a significant reduction in entan-
glement distribution rate compared to memoryless schemes.

Real stellar light has a broad frequency distribution. Mean-
while, interferometers typically have a small bandwidth [10]
to avoid washing out spatial correlations. Furthermore, detec-
tors operate over a narrow frequency band in order to ensure
high-resolution imaging by, for example, avoiding dark counts
[11]. The amount of light collected in the interferometer is
then limited. Moreover, the broadband information of stellar
light is potentially useful for astronomy [12]. From the point
of view of near-term quantum networks, the multiplexing
scheme developed here can compensate for slow gate time.

A generalization of the protocol to broadband operation is
shown in Fig. 2. The incoming light is split into R frequency
bands. Quantum frequency conversion [13–15] enables oper-
ation at some convenient frequency so that the photons can

be stored in receiving atoms in a Raman-absorption scheme
[16,17] [see Fig. 2(a)]. We assume the incoming light to be
weak (ε � 1) such that at most one photon arrives. Thus,
similar to Ref. [7], M � 1 time bins are integrated over in
order to record, on average, one photon in any of the R
frequency bands.We wish to store both the time and frequency
data of the photon in order to ensure interferometric operation.
The same basic idea of binary encoding can be applied.
Write the time bin m and frequency band r as one string
i = (m, r), which as a whole can be expressed in a binary
expansion. If there are M time bins and R frequency bands,
log2(MR + 1) codewords are needed (the +1 term accounts
for the possibility of no photon arriving) [see Fig. 2(b)].

Consider the encoding operation for the concrete case
of a photon arriving in the fifth time bin and two possi-
ble frequency bands. From the discussion above, the code
requires �log2(5 × 2 + 1)� = 4 memory qubits. Assuming
that the photon is equally likely to fall within either of the
bands, we approximate the photonic state on two telescope
sites as

ρ ≈ (1 − ε)ρ (0) + ε

2
ρ
(1)
1 + ε

2
ρ
(1)
2 , (1)

ρ (0) = |0, 0〉1〈0, 0| ⊗ |0, 0〉2〈0, 0|, (2)

ρ
(1)
1 = 1

2 (|0, 1〉1〈0, 1| + |1, 0〉1〈1, 0| + g1|1, 0〉1〈0, 1|
+ g∗

1|0, 1〉1〈1, 0|) ⊗ |0, 0〉2〈0, 0|, (3)

ρ
(1)
2 = |0, 0〉1〈0, 0| ⊗ 1

2 (|0, 1〉2〈0, 1| + |1, 0〉2〈1, 0|
+ g2|1, 0〉2〈0, 1| + g∗

2|0, 1〉2〈1, 0|), (4)

where |1, 0〉1 denotes the photon arriving at the first telescope
site in the first frequency band while |1, 0〉2 corresponds to
the first site and second band. Thus, ρ (0) denotes vacuum
in all modes and ρ (1) are single-photon states. Since the
incoming light is thermal [5], we have assumed that there
are no correlations between the frequency bands. Spatial
correlations result in the coherences g1 for the first frequency
band and g2 for the second. As described in Ref. [7], the
goal of the interferometer is to extract these coherences. The
photonic state in Eq. (1) can be transferred to an atomic
equivalent by a Raman-absorption scheme at each telescope
site. Subsequent application of logical controlled-NOT (CNOT
or CX) gates between the receiving atom and the four memory
atoms at each site, followed by measurement of the receiving
atom in the X basis, establishes the transfer of the photon
into memory. For our particular example, the logical CNOT

corresponding to two frequency bands and the fifth time bin
makes the transformation

|0, 0〉|0, 0〉|0000, 0000〉 → |0, 0〉|0, 0〉|0000, 0000〉, (5)

|1, 0〉|0, 0〉|0000, 0000〉 → |1, 0〉|0, 0〉|1010, 0000〉, (6)

|0, 1〉|0, 0〉|0000, 0000〉 → |0, 1〉|0, 0〉|0000, 1010〉, (7)

|0, 0〉|1, 0〉|0000, 0000〉 → |0, 0〉|1, 0〉|1011, 0000〉, (8)

|0, 0〉|0, 1〉|0000, 0000〉 → |0, 0〉|0, 1〉|0000, 1011〉, (9)
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FIG. 3. Encoding of the time bin (m = 5) for each frequency
band in parallel. To keep track of frequency, the receiving atom is
copied to another atom before being reinitialized. Before decoding,
these ancillary atoms are compressed to log2(R + 1) memory atoms
(the nontrivial CNOT for frequency band r = 2 is shown). Once the
frequency is determined via nonlocal parity checks, only the corre-
sponding time memory is decoded, so total entanglement expenditure
scales logarithmically in both M and R. Memory qubits scale as
R log2 M, to leading order.

where the notation is

freq. 1︷ ︸︸ ︷
|0, 0〉

freq. 2︷ ︸︸ ︷
|1, 0〉

memories︷ ︸︸ ︷
|1011, 0000〉, (10)

memories︷ ︸︸ ︷
| 101︸︷︷︸

time

1︸︷︷︸
freq.

, 0000〉, (11)

i.e., the first four qubits denote the state of the two receiving
atoms at the respective sites separated into the two frequency
bands while the remaining qubits are the memories. As before,
we use commas to delimit qubits at separate sites. Within
the memory, the first three qubits encode the time bin (5 →
101), while the fourth encodes the frequency band. Time and
frequency are encoded separately for simplicity, which does
not incur a real penalty here.

Note that the logical CNOT gate described above requires
each of the R receiving qubits to interact with the same
memory qubits, i.e., the encoding will happen sequentially.
The operation needs to be fast compared to the detection band-
width such that dead time is negligible. Instead, the encoding
can be done in parallel by allotting each of the R receiving
qubits its own memory, which now encodes exclusively the
time bin, as in Ref. [7] (see Fig. 3). Another R ancillary qubits
are used to store the frequency information since the receiving
qubits are reinitialized for each time bin. After M time bins,
the frequency information is first read out using log2(R + 1)
entangled pairs: Compress the information stored in the R
ancillary qubits into log2(R + 1) qubits and then read them
out through nonlocal parity checks as before. The arrival time
is subsequently read out from the identified frequency band’s
memory using log2 M entangled pairs. This variant of our
scheme has parallel operation over frequencies, at the expense
of memories scaling as R log2 M. Note, however, that the
entanglement consumption still scales only logarithmically in
R and M.

III. MULTIPLE-SITE ARRAY

So far, we have focused on two-site interferometry, but
realistic astronomical interferometers require many nodes to
reconstruct the stellar brightness distribution [10]. An array of
sites with different spatial separation x provides samples of the
visibility g(x). From these samples, the intensity distribution
I (y) is obtained through a Fourier transform as specified
by the van Cittert–Zernike theorem [18]. Here we describe
in detail how the scheme in Ref. [7] can be generalized
to networks with multiple nodes. We restrict the discussion
to a single frequency band, but the extension to broadband
operation is straightforward.

For a weak source, we can model the light impinging on
N telescope sites with a density matrix [5] ρ ≈ (1 − ε)ρ (0) +
ερ (1), where ε � 1, ρ (0) denotes vacuum in all modes, and

ρ (1) = 1

N

⎛
⎜⎜⎜⎜⎜⎜⎝

1 g0,1 g0,2 · · · g0,N−1

g1,0 1 g1,2 · · · g1,N−1

g2,0 g2,1 1 · · · g2,N−1

...
...

...
. . .

...

gN−1,0 gN−1,1 gN−1,2 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

in the basis {|1i〉} where i = {0, . . . ,N − 1} and |1i〉 is the
state with a photon at the ith site and vacuum in the remaining
modes. We have assumed that the probability for each tele-
scope site to record the photon is the same and have defined
gi, j = g(xi − x j ) as the visibility at separation xi − x j , where
xi is the position of the ith site; for simplicity of notation
assume a linear array, distributed between x = 0 and x = d ,
where d is the maximal length. Note that gi, j = g∗

j,i and
gi,i = 1.

The photon is encoded at each site in the same way as for
two-site operation, using the protocol of Ref. [7]. After M
time bins of encoding, the arrival time of the single photon
is again decoded with nonlocal parity checks. Only the par-
ticular registers flipped for the codeword corresponding to the
photon’s time bin will have odd parity. The Bell states |φ±〉 =
(|0, 0〉 ± |1, 1〉)/√2 from Ref. [7], providing the nonlocality
for the parity checks, are promoted to Greenberger-Horne-
Zeilinger (GHZ) states of the form |GHZ±〉 = (|0, . . . , 0〉 ±
|1, . . . , 1〉)/√2 distributed across the array [see Fig. 4(a)].1

The qubits from parallel registers will have either even
parity corresponding to the state |0, . . . , 0〉 or odd parity
corresponding to a W state |W 〉 = 1√

N

∑
i |1i〉. Performing

local controlled-Z (CZ) gates between the memory qubits
in a register and the qubits of the GHZ state gives the
transformation

|0, . . . , 0〉|GHZ+〉 N×CZ−−−→ |0, . . . , 0〉|GHZ+〉, (12)

|W 〉|GHZ+〉 N×CZ−−−→ |W 〉|GHZ−〉. (13)

1Note that teleporting a single qubit around the array and per-
forming local controlled-Z gates would act similarly to the GHZ
approach.
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(a)

(b)

FIG. 4. Interferometry in a multiple-site array. (a) The photon
arrival data are decoded using log2(M + 1) GHZ states. A CZ gate
is performed between the memory register at each site and the qubit
of the GHZ state. For those registers corresponding to a photon,
the phase of the GHZ state is flipped from + to −, which can
be read by measuring the qubits of the GHZ state in the X basis.
(b) For pairwise readout, acting on a shared W state with local
CNOT gates and measuring its qubits in the Z basis projects the
network state onto two sites, with probability 1 − 1/N . Otherwise,
the W state is transformed into |0, . . . , 0〉 and measurement can be
retried with another W state. Two-side readout proceeds as before,
using Bell states for the other registers. After pairwise visibilities
are collected, a classical Fourier transform is applied to acquire the
desired intensity distribution.

Subsequently measuring the qubits of the GHZ state in the
X basis reveals the parity of the register without leaking
information about photon location. Using log2(M + 1) GHZ
states, one for each register, the arrival time can thus be de-
coded while preserving full interferometric operation. When
a photon is recorded, all but one of the odd-parity registers
are redundant and can be measured out in the X basis, similar
to the procedure in Ref. [7]. The even-parity registers are all
in a product state of |0〉’s and can be traced out. Thus, the
single-photon component of the photonic density matrix ρ (1)

is mapped to an atomic equivalent at the telescope sites.
The visibilities gi, j can be extracted one at a time using

W states, similar to the approach in Ref. [6]. A W state is
first distributed across the network. Next, local CNOT opera-
tions are performed between each memory qubit in a register
(control) and the corresponding qubit from |W 〉 (target). All
qubits in |W 〉 are subsequently measured in the Z basis, with
two possible outcomes. First, all qubits may be found in state
|0〉, in which case ρ (1) is left intact and the procedure should
be retried with a new W state. This outcome happens with
probability 1/N . Second, with probability 1 − 1/N , two qubits
are in state |1〉 with the rest in state |0〉. If qubits i and j are
found in state |1〉, then ρ (1) is transformed into

1
2 (|0, 1〉i j〈0, 1| + |1, 0〉i j〈1, 0| + gi, j |1, 0〉i j〈0, 1|

+ g∗
i, j |0, 1〉i j〈1, 0|) ⊗ ρ

(N−2)
0 , (14)

where |0, 1〉i j is the state with the memory qubit at the ith ( jth)
telescope in state |0〉 (|1〉). Here ρ

(N−2)
0 denotes that all other

memory qubits are in state |0〉. As in Ref. [7], the visibility gi, j
of this two-site state can be extracted by means of one-qubit
measurements.

The W state operation may be done directly, to perform
the parity check instead of using a GHZ state [see Fig. 4(b)].
If the register has no excitation, then the W state remains
unchanged; otherwise, it transforms into one of the two possi-
bilities described above. After collapse of the network state to
two sites, the other registers can be processed as in Ref. [7],
using Bell states.

Following either of the above procedures, the visibilities
in the array are sampled randomly, similar to the protocol
of Ref. [6]. Repeating the procedure gives a distribution
of samples across all possible pairwise combinations in the
array. Fourier transforming this classical data then yields the
intensity distribution of the source.

IV. QUANTUM FOURIER TRANSFORM

The GHZ approach maintains coherence across the net-
work, in the form of a nonlocal state ρ (1). The quantum data
can be processed with a quantum Fourier transform (QFT), as
was initially suggested in Ref. [6]. First transfer the N qubits
to one site via quantum teleportation, in order to perform all
subsequent operations locally (see Fig. 5); this step is more
a matter of practicality than necessity. A QFT coherently
interferes the off-diagonal elements of ρ (1), corresponding to
the pairwise visibilities in the array, such that the intensity
distribution I (y), where y is the stellar coordinate, can be
extracted from the resulting density matrix directly. Measure-
ment noise only enters in the direct measurement of I (y), in
contrast to the classical approach above where the visibilities
are first sampled from the density matrix via measurement
and then interfered in a classical Fourier transform (FT) to
obtain I (y). The extra measurement noise will add in the FT,
resulting in a more noisy estimate of I (y) than with the QFT.

To quantify the possible gain of using a QFT, we assume a
situation where the array sites are equally distributed along a
line segment of length d . We can then label the N − 1 sample
points of the visibility as g( j) = gi,i− j , where i > j. Perform-
ing the QFT on the memories amounts to the operation

UQFTρ
(1)U †

QFT = ρ (I ), (15)

FIG. 5. After transferring the memory qubits to one site via
quantum teleportation, a quantum Fourier transform is applied. The
measurement probabilities pj of finding the excitation at site j map
directly to the source intensity distribution I(y).

022316-4



QUANTUM-ASSISTED TELESCOPE ARRAYS PHYSICAL REVIEW A 100, 022316 (2019)

where the QFT unitary is

UQFT(N ) = 1√
N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

...
...

...
. . .

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(16)

with ω = exp(2π i/N ). Here ρ (I ) has diagonal elements

ρ
(I )
j, j = 1

N
+ 2

N2

N−1∑
k=1

(N − k)Re{g(k)e2π ixky j }, (17)

where xk = d
N−1k and y j = N−1

Nd j. The diagonal elements thus
directly correspond to estimates Ie(y j ) of I (y) for a finite
number of sample points and where the visibilities g(k) have
been weighted according to how much information is con-
tained about them in ρ (1). For example, g(N−1) only appears
once in ρ (1) while g(1) appears N − 1 times. This structure is
referred to as natural weighting in the literature and results in
the minimum error in the estimate for I (y) for point sources
[19]. The measurement of Ie(y j ) simply consists of projecting
onto the Z-basis states of ρ (1); the diagonal elements ρ

(I )
j, j are

precisely the probabilities pj of finding the excitation at site
j. Assuming that l � N samples of ρ (1) are measured, the
variance of the QFT estimate will follow that of a multino-
mial distribution: [�Ie

q (y j )]
2 = Ie(y j )[1 − Ie(y j )]/l . For the

classical approach, where the same natural weighting as in
Eq. (17) is employed in the FT, we can bound the variance of
the estimate of the intensity distribution by [�Ie

c (y j )]
2 � 1/l

as a consequence of the standard propagation of errors [20] in
the classical FT.

The advantage of the QFT in general depends on the
number of sample points N − 1 of the visibility and the actual
intensity distribution being imaged. These factors determine
the number of terms being coherently interfered in the QFT
as opposed to incoherently interfered in a classical FT. For
intuition, consider the example of a flat intensity distribution,
corresponding to nonzero elements only on the diagonal of
ρ (1). For an array size N , the density matrix contains N
diagonal elements, which are coherently summed in the QFT.
The variance is proportional to Ie(y j ), which is normalized
such that

∑
i Ie(yi ) = 1; for a flat distribution, Ie(y j ) = 1/N .

With the classical approach, however, we have an incoherent
sum and consequently the variance is a factor of N larger
than for the QFT. Another illustrative example is the imaging
of a point source. The spatial correlations are maximal and
completely described by relative phases. After performing the
QFT, a single qubit is flipped corresponding to the position of
the point source, similar to how a lens, via coherent interfer-
ence of the paths, focuses light from different directions onto
different spots in the focal plane. Since the qubit is excited
with unity probability, the variance is zero: The QFT perfectly
identifies the position of the point source. In contrast, classical
processing would result in fluctuations since the visibilities
are measured and subject to shot noise.

V. PHOTON-DETECTION-BASED STATE TRANSFER

In Ref. [7] we suggested transferring the photonic excita-
tion to an auxiliary atom through a Raman-absorption scheme.
Atom-atom gates then realize the CNOT gates in the memory
encoding [see Fig. 6(a)]. Note that the auxiliary atom can
be reused for each time bin, with the requirement of fast
two-qubit gates and measurement. Other methods of opera-
tion may be desirable depending on the experimental details.
Instead of transferring the photonic excitation to an atom right
away, the CNOT gates may be realized by reflecting the photon
off cavities [21] specified by the binary code [see Fig. 6(b)].
As argued in Ref. [7], only the nontrivial CNOT operations that
cause a bit flip should introduce error in order for the scheme
to have efficient error accumulation. In this photon-atom gate
implementation, the absence of a photon does not introduce
any error on the atoms. The quantum state transfer to memory
is completed by measuring the photonic qubit in the X basis,
where the measurement result determines a phase correction
to be applied to the atomic state [7]. Similar to before, the
photon may be absorbed by an auxiliary atom, which is then
straightforward to measure in the X basis. However, quantum
state transfer without the need for atomic absorption and
measurement may be desirable: The experimental setup is
simplified and fast photonic detection can be employed. We
show that the photonic X -basis measurement can be approxi-
mately realized by local beam splitter interference.

The purpose of the X -basis measurement is to erase the
which-path information of the photon, allowing for a coherent
transfer of the state to the atomic qubits up to a phase cor-
rection (similar to one-bit teleportation [22]). The particular
difficulty comes from the photonic qubit states corresponding
to the absence |0〉 or presence |1〉 of a photon, for which a pro-
jection onto the X basis, |±〉 = (|0〉 ± |1〉)/√2, is not readily
available. In contrast, atomic qubits can be manipulated via
spin rotations. An approximate rotated-basis measurement
can nonetheless be achieved by mixing the incoming light
with an ancillary photonic state on a 50:50 beam splitter and
counting the photons at the outputs [see Fig. 6(c)]. For illus-
tration purposes, we first describe how to emulate photonic X -
basis measurements with an ancillary photonic superposition

(a) (b) (c)

FIG. 6. The stellar photon’s state is transferred to memory in
three ways. (a) The photon is absorbed by an auxiliary atom. In-
teractions with code-specified memory atoms realize CNOT gates.
An X -basis measurement decouples the atom and imposes a phase
correction on the memory to complete state transfer, as described in
Ref. [7]. (b) The CNOT gates are realized by reflecting the photon off
cavities [21]. The photon is subsequently absorbed by an auxiliary
atom to perform the X -basis measurement. (c) In photon-detection-
based state transfer, measurement of the photonic qubit in the X basis
is approximately realized by interference at a beam splitter with an
ancillary photonic state, followed by photon counting.

022316-5



E. T. KHABIBOULLINE et al. PHYSICAL REVIEW A 100, 022316 (2019)

state |+〉. We then extend the results to the experimentally
more feasible situation where the ancillary states are coherent
states.

The photonic state |+〉 has equal weight of vacuum and
photon and can be used to obscure the absence or presence
of the stellar photon when mixed with the incoming light in
a beam splitter. If both photodetectors measure no photons or
one measures two photons and the other zero (the Hong-Ou-
Mandel effect), we can tell exactly whether a stellar photon
arrived or not. However, if one detector measures no photons
and the other detects one, then we cannot determine if the pho-
ton came from the locally injected light or the stellar source.
There is a subtlety: Reflection off the beam splitter imparts an,
in principle, distinguishable phase shift. Concretely, the beam
splitter action is

|0+〉 BS−→ |0′
+〉 = 1√

2

[
|00〉 + 1√

2
(|01〉 + |10〉)

]
,

|1+〉 BS−→ |1′
+〉 = 1√

2

[
1√
2
(|01〉 − |10〉)+ 1√

2
(|02〉−|20〉)

]
,

(18)

where, e.g., |0+〉 ≡ |0〉1 ⊗ |+〉2 are the beam splitter modes.
Including the memory qubits with logical states {|0̄〉, |1̄〉}, the
full state after the CNOT operation and beam splitter interfer-
ence is (|0′

+〉|0̄〉 + eiθ |1′
+〉|1̄〉)/√2, where θ is the phase of

the incoming light, assumed to be in state (|0〉 + eiθ |1〉)/√2.
Postselecting on measuring only one photon in either of the
detectors, we obtain the atomic state (|0̄〉 − eiθ |1̄〉)/√2 if the
first detector clicks (|10〉 is measured) and (|0̄〉 + eiθ |1̄〉)/√2
if the second detector clicks (|01〉 is measured). Consequently,
perfect state transfer is obtained if a logical phase-flip gate
Z is applied on the memory conditional on measuring a
photon only in the first detector. The success probability of
the operation is 1/2.

We propose mixing with the more practical coherent
states |α〉 = e−|α|2/2 ∑∞

i=0
αi√
i!
|i〉, which can be readily pro-

duced classically. For a two-site telescope array, consider the
transfer of a state of the form |ψ〉 = (|0, 1〉 + eiθ |1, 0〉)/√2
to the atomic memories. After the logical CNOT operation
with the memory atoms, the combined state will be |�〉 =
(|0, 1〉|0̄, 1̄〉 + eiθ |1, 0〉|1̄, 0̄〉)/√2. Mixing the stellar light
with a coherent state |α〉 in a beam splitter at each site makes
the transformation

|0, 1〉|α, α〉 2×BS−−−→ |0′
α, 1′

α〉, (19)

|1, 0〉|α, α〉 2×BS−−−→ |1′
α, 0′

α〉, (20)

where each {|0′
α〉, |1′

α〉} describes the two output modes of a
beam splitter. Detection of (i, i′) photons at the first site and
( j, j′) photons at the second site is specified by the measure-
ment operator |ii′, j j′〉〈ii′, j j′|. The atomic state following the
measurement is

ρ = 1

p(ii′, j j′)
〈�|ii′, j j′〉〈ii′, j j′|�〉, (21)

where p(ii′, j j′) = tr{〈�|ii′, j j′〉〈ii′, j j′|�〉} is the probabil-
ity of measuring the combination (i, i′) photons at the first
site and ( j, j′) photons at the second site. The off-diagonal

1 2 3 4 5
lαl

0.7

0.75

0.8

f(a)

0.82

0.6 0.8 1. 1.2 1.4
lαl

0.16

0.18

0.2

0.22

p(b)

(0.88,0.219)

FIG. 7. Extremal regimes for mixing at a beam splitter with the
coherent state |α〉 in the two-site case: accepting (a) all measurement
outcomes (success probability p = 1) and (b) only |i − i′| = | j − j ′|
(fidelity f = 1).

terms in ρ, describing the coherence between the two sites,
are proportional to (i − i′)( j − j′). Hence, a corrective Z gate
should be applied to the memory at each site based on which
port detects more photons.

For deterministic operation, all measurement outcomes
are accepted with corresponding phase corrections to the
memory. For this approach, strong coherent states are de-
sirable for which the state transfer fidelity saturates at 0.82
[see Fig. 7(a)]. The fidelity can be boosted by heralding
on particular detection outcomes similar to the operation
with ancillary |+〉 states. In particular, perfect state transfer
is achievable with weak coherent states by conditioning on
events where the difference in photon number between the
two output ports of a beam splitter is the same between
sites. Here the maximum success probability is ∼0.22 [see
Fig. 7(b)]. This success probability enters in the two-site
protocol in the following way. The arrival time of the photon
is first decoded via nonlocal parity checks with Bell pairs. For
successful operation, the photonic erasure for that particular
time bin must have succeeded at both sites, which happens
with probability ∼0.22 for coherent state inputs.

While so far we have considered a two-site array for
simplicity, similar principles apply for general N nodes in
the network. For the deterministic operation, the state trans-
fer fidelity of the total network state is f (N ; f2) = [1 +
(N − 1)(2 f2 − 1)]/N , where f2 is the fidelity for the two-
site operation. Here we have assumed that the multiple-site
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photonic state is a W state, reflecting equal probability of
the photon arriving at any node. The fidelity decreases with
N toward a constant 2 f2 − 1. For the probabilistic operation
where perfect state transfer can be obtained, the multiple-site
operation will reflect the possible outcomes of N probabilistic
measurements. Let p1 be the success probability per site
(p1 ≈ √

0.22). Clearly, the probability for the measurements
to succeed at all N nodes is pN1 , which decreases exponentially
with N . Nonetheless, even though some measurements fail,
there can still be coherence between the sites with successful
measurements. All coherence is lost only in the cases where
all but one measurement fail or where the stellar photon is
found at a site where the measurement fails. Notably, the
second situation can be discriminated by the protocol by a
measurement of the atomic memories. After decoding the
arrival time of the photon, memories corresponding to failed
photon erasure are measured to determine if a photon inter-
acted with them. The probability of a failed total measurement
over the array is

pfail = p1(1 − p1)
N−1 +

N∑
i=1

(
N

i

)
(1 − p1)

i pN−i
1

i

N

= (1 − p1)[1 + p1(1 − p1)
N−2]. (22)

For large N , pfail → (1 − p1). Thus, while the deterministic
operation maintains coherence over the full network, prob-
abilistic operation will in general preserve k � N sites with
success probability ∼p1. The probability to have coherence
between k � 2 sites given a successful measurement is

p(N, k; p1) =
(
N

k

)
pk1(1 − p1)

N−k k

N (1 − pfail )
. (23)

The interferometric information can be extracted from the
k successful sites via either the W state or QFT approach
described earlier.

By removing the need for auxiliary receiving atoms, we
circumvent atomic state detection, which may be advanta-
geous in terms of experimental control and operation time.
The requisite levels for photonic technology have already
been demonstrated in tests of Bell inequality violations [23]
and boson sampling [24]. Number-resolving detectors [25]
in practice do not work perfectly; in this application, only
the difference in photon number between beam splitter ports
is relevant, which may ease implementation. However, the
simulated X -basis measurement is imperfect, operating with
subunity fidelity or success probability. The operation could
be improved by mixing more photonic states in a multiple-port
beam splitter (see Appendix A). Experimentally, the main
limitation of the photonic state transfer approach will likely be
imperfect photon detection. While a detailed study is beyond
the scope of this article, we note that, in general, imperfect
detection will decrease the visibility since unsuccessful events
can be mistaken as successful (see Appendix B).

VI. CONCLUSION

We have analyzed refinements of our quantum network-
assisted interferometry proposal [7] for realistic broadband
operation, multiple-site (N > 2) telescope arrays, and cir-
cumvention of auxiliary atoms. The generalization to R fre-

quency bands was demonstrated, maintaining efficient scaling
of entangled resources. For multiple-site operation, coherent
extraction of the stellar intensity distribution by a direct
implementation of the van Cittert–Zernike theorem via the
quantum Fourier transform was shown to yield significant
improvement in signal-to-noise ratio compared to visibility
readout and classical postprocessing. This result was obtained
assuming perfect operation. An interesting extension of this
work would be to study the effect of a noisy QFT on the
imaging capabilities. We also analyzed an implementation
of our proposal using direct photon-memory interaction. In
particular, a photonic X -basis measurement is accomplished
by mixing with ancillary photonic states at beam splitters
followed by photon counting. The scheme then minimizes the
need for atomic measurement, at the expense of introducing
photon-resolving detectors, beam splitters, and ancillary pho-
tonic states. The considerations in this article reinforce the
power of quantum networks as a platform for astronomical
interferometry and provide a path toward implementation.
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APPENDIX A: MULTIPLE-PORT BEAM SPLITTER

The photon-detection-based state transfer can be viewed
like a quantum teleportation [26]. The entangled resource state
is the stellar photon entangled with the quantum memory,
and the beam splitter with the ancillary input state realizes
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0.5

0.6
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0.8

0.9

1
f
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0.25

0.5

0.75

1
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FIG. 8. Fidelity f and success probability p of photonic state
transfer when mixing with an ancillary |+〉 state and detecting
photons with efficiency η. Measurement outcomes of zero or two
total photons are postselected out. The performance of the operation
drops with η.
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an (imperfect) Bell measurement. Upon applying a corrective
unitary based on the measurement outcomes registered by
the detectors, the state of the stellar light is transferred to
memory. The operation can be improved with a better Bell
measurement, but a no-go theorem [27] excludes a perfect
deterministic measurement for single-photon qubits and lin-
ear optics. Nonetheless, an approximation arbitrarily close
to ideal may be constructed, like in the famous protocol of
Knill et al. [28]. The idea is to better hide the which-path
information of the photon by sending it through a multiple-
port beam splitter, which may be constructed from layers of
ordinary two-port beam splitters. A P + 1 port realizes the
QFT unitary UQFT(P + 1) [Eq. (16)], which generalizes the
Hadamard gate and provides a change of basis. Generalizing
the above procedure, the photon reflected off the memory
cavities is input along with P ancillary photonic states into
a (P + 1)-port beam splitter. Again, the detector measurement

outcomes determine the phase correction to apply to complete
state transfer.

APPENDIX B: IMPERFECT PHOTON COUNTING

The phase correction necessary to complete photon-
detection-based state transfer depends on the measurement
outcome. Detector errors decrease the coherence of the target
qubit through the application of incorrect recovery operations.
Ultimately, the visibility is reduced. We consider this effect in
the case of operation with ancillary |+〉 states. The inefficient
detectors are modeled as beam splitters with transmission
amplitude η. The signal comes in one port and vacuum in
the other, followed by perfect detection of one output mode
while the lossy mode is traced over. As expected, the fidelity
and success probability of the state transfer decrease with η

(see Fig. 8).
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