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Abstract—A method is proposed to compute robust inner-
approximations to the backward reachable set of nonlinear sys-
tems and to generate a robust control law that drives trajectories
starting in these inner-approximations to a target set. The method
merges dissipation inequalities and integral quadratic constraints
(IQCs) with both hard and soft IQC factorizations, allowing
for a variety of perturbations including parametric uncertainty,
unmodeled dynamics, and uncertain time delays. Computational
algorithms are developed using the generalized S-procedure and
sum-of-squares techniques, and illustrated on a 6-state quadrotor
with actuator uncertainties.

I. INTRODUCTION

The backward reachable set (BRS) is the set of initial
conditions whose successors can be driven to a target set at the
end of a finite time horizon with an admissible controller. The
BRS is of vital importance for safety-critical systems, since it
indicates where the trajectories should start from in order to
reach the target set.

Backward reachability has been studied with several ap-
proaches. Occupation measure-based methods [1]-[3] compute
BRS outer-approximations, but do not guarantee reaching the
target set. In contrast, the exact BRS is computed in [4]-
[6] as the sublevel set of the solution to Hamilton-Jacobi
(HJ) partial differential equations. Other results provide BRS
inner-approximations using relaxed HJ equations [7], [8] and
Lyapunov-based methods [9].

A shortcoming of the existing reachability tools is that they
rely on accurate system models. Only limited forms of un-
certainty have been addressed, such as parametric uncertainty
in [3], [4], [7]-[9] and both parametric uncertainty and Lo
disturbances in our earlier work [10], [11].

In this paper, we propose a method to compute inner-
approximations to the BRS that are robust to a more general
class of perturbations. We model the uncertain nonlinear
system as an interconnection of the nominal system G and
the perturbation A, as in Fig. 1. The input-output relationship
of A is described using the integral quadratic constraint
(IQC) framework [12], [13], which accounts for parametric
uncertainties, unmodeled dynamics, and uncertain time delays.
We characterize BRS inner-approximations by sublevel sets
of storage functions that satisfy a dissipation inequality that
is compatible with IQCs. We then formulate an iterative
convex optimization procedure to compute storage functions
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and associated control laws using the generalized S-procedure
[14] and sum-of-squares (SOS) techniques [15].

The specific contributions of this paper are threefold. First,
we propose a general framework for robust backward reach-
ability of uncertain nonlinear systems, allowing for various
types of uncertainty beyond parametric uncertainty. Second,
we incorporate both hard and soft IQC factorizations in
the framework. The use of dissipation inequalities typically
requires IQCs that are valid over any finite time horizon,
known as hard IQCs. However, many IQCs are specified in the
frequency domain, which are equivalent to time-domain con-
straints over infinite horizons (soft IQCs). We obtain improved
BRS bounds by incorporating soft IQCs by means of the finite-
horizon bound derived in [13]. Third, we overcome a technical
challenge that arises when the input of the perturbation A
depends directly on the control command, as in the case
of actuator uncertainty. This dependence creates a source of
nonconvexity, which we circumvent by introducing auxiliary
states in the control law.

In [16] we employed IQCs for forward reachability analysis
and did not pursue control synthesis. Here we study backward
reachability and produce a control law, while also maximizing
the volume of the BRS inner-approximation.

Notation: S™ denotes the set of n-by-n real, symmetric
matrices. RIL is the set of rational functions with real coeffi-
cients that have no poles on the imaginary axis. RH,, C RL
contains functions that are analytic in the closed right-half of
the complex plane. £5" is the space of measurable functions
ro:[0,00) — R™ with [[r])3 = [r@t)Tr(t)dt < .
Associated with £5" is the extended space £57 of functions
whose truncation rr(t) := r(t) for t < T; rr(t) := 0 for
t > T, is in Ly for all T > 0. Define the finite-horizon

1/2
Ly norm as |rlly gz = (fOTr(t)Tr(t)dt) 2 e,
is the space of finite-horizon Lo-measurable functions r :
[0, 7] — R™ with |[r||, [ 7y < 0. The finite horizon induced
L to Ly norm of an operator is denoted as |||, (o 7)-
For ¢ € R", R[¢] represents the set of polynomials in &
with real coefficients, and R™[¢] and R™*P[¢] denote all
vector and matrix valued polynomial functions. The subset
Y] = {r = M 72 s m, ., € R[E]Y of R[E] s the
set of SOS polynomials in . For n € R, and continuous
g:RxR"™ = R, define Q(g,t,n) := {z € R": g(t,z) < n},
a t-dependent set. K'Y P denotes a mapping to the block 2-
by-2 matrix: KY P(Y, A, B,C, D, M) := [AT”YA YB} +

BTY 0
[cp]"M[cDp].



II. BACKWARD REACHABILITY WITH HARD IQCSs
A. Problem Setup

Consider an uncertain nonlinear system defined on [0, T7:

iG(t) = f(za(t), w(t), d(t)) + g(za(t), w(t), d(t))u(t),

(1a)
o(t) = h(za(t), w(t), d(t)), (1b)
w(-) = Av()), (Io)

which is an interconnection (Fig. 1a) of the nominal system G
and the perturbation A, denoted as F, (G, A). In (1), z¢(t) €
R"™¢ is the state, u(t) € U C R™ is the control input, d(t) €
R™ is the external disturbance, and v(t) € R™ and w(t) €
R™w are the inputs and outputs of A. The mappings f, g, and
h define the nominal system G. The perturbation A : £5¥ —
L5 is a bounded and causal operator. Note that in (1b), v
does not depend directly on u. Well-posedness of F, (G, A)
is defined as follows.

Definition 1. F,, (G, A) is well-posed if for all x¢(ty) € R™¢
and d € L3¢ there exist unique solutions x¢ € L35, v € L5?,
and w € L3> satisfying (1) with a causal dependence on d.

Assumption 1. (i) d satisfies d € L5 with:

ldlly,j0,7) < R, for some R >0, and )

(ii) the set of control constraints is given as a polytope U :=
{u € R™ : Pu < b}, where P € R"*"™ and b € R"».

Let z¢(t; €, u, d) define the solution to the uncertain system
(1), at time ¢ (0 <t < T), from the initial condition &, under
the control « and the disturbance d. Let X7 C R™¢ denote
the target set for x(t; €, u, d) to reach at time 7T

Definition 2. Under Assumption 1, the BRS of F,(G,A) (1)

is defined as BRS(T,Xr,U, R, F,(G,A)) :=

{£€eR™ :Fu, st.u(t) eUVte|0,T], and
va(T; €& u,d) € Xp ¥V d with ||d]|y o 7 < R}

Our goal is to compute an BRS inner-approximation and an
associated controller.

v z
ot with
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v |T| w v E . E w /Uz('r) Mz()dr >0
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(@) Fu(G,A) (b) Extended system

Fig. 1: The original uncertain system F,(G,A) and the
extended system of G and U.

B. Integral Quadratic Constraints

The perturbation A can represent various types of uncer-
tainties and nonlinearities, including parametric uncertainty,
unmodeled dynamics, slope-bounded nonlinearities, and un-
certain time delays [12], [13]. To characterize A with an
integral quadratic constraint (IQC) we apply a ‘virtual® filter

U to the input v and output w of A, and impose quadratic
constraints on its output z. ¥ is an LTI system driven by
(v, w), with zero initial condition x,,(0) = 0, and dynamics:

Ey(t) = Apxy(t) + Byrv(t) + Byaw(t), (3a)
z(t) = Cypxy(t) + Dyrv(t) + Dyow(t), (3b)
where z,(t) € R™ is the state, and z(t) € R™= is the output.

IQCs can be defined in both the time and frequency domain.
The use of time domain IQCs is required for the dissipation-
type results used later in this paper. Time domain IQCs consist
of hard IQCs and soft IQCs, which are quadratic constraints on
z over finite and infinite horizons, respectively. In this section,
we focus on the analysis with hard IQCs.

Definition 3. Given ¥ € RH ™™ and M e s
A bounded, causal operator A : L3* — L3¥ satisfies the
hard 1QC defined by (U, M) if, Vv € L3, and w = A(v),

t
/ 2(1) " Mz(7)dr >0, ¥ t € [0, 7). 4)
0

where z =W [ 2] is defined in (3b).

The notation A € HardIQC (¥, M) indicates that A satisfies
the hard IQC defined by (¥, M).

Example 1. (a) Consider the set of LTI uncertainties with a
given norm bound o > 0: A € RHy, with |All < o. It
is proven in [17] that A € HardIQC(V, Mp), where U =
blkdiag(\llu, \1111) with W1, € RHQSXl and

MD S M1 = {|:0'2](\)411 —]0\411:| : M11 E O} . (5)
A typical choice for Wy [13] is
m 1 1 T .
UE™ = [Vt oz ), with m > 0, (6)

where m and d are selected by the user.

(b) Consider the set of nonlinear, time varying, uncertainties
with a given norm-bound o ||Ally_,5 o 7 < 0. A satisfies the
hard IQCs defined by V = 1,, 4, and

M e Mgy = {[02/\01"” _)\(}nw] A > O} .

)

C. Robust Backward Reachability

As illustrated in the previous examples, each type of A
can be characterized by corresponding hard IQCs associated
with a filter ¥ and a matrix M. The analysis on F, (G, A)
can be instead performed on the extended system shown in
Fig. 1b, with an additional constraint A € HardIQC(¥, M).
The extended system is an interconnection of G and ¥, with
combined state vector = := [xg;zy] € R, n = ng + ny,
whose dynamics can be rewritten as

(1) = F(x(t), w(t),d(t), u(t)), (8a)
z(t) = H(z(t), w(t), d(t), (8b)

where F' and H depend on the dynamics of G and ¥. F is
still affine in u. For any input d € £5? and initial condition
za(to) € R™e, the solutions v € L£5° and w € L3»
to F,(G,A) (1) satisfy the IQC (4). The extended system
(8) with the IQC (4) “covers” the responses of the original



uncertain system F, (G, A). Indeed, given any input d € £5¢
and initial condition zg(tg) € R™C, the input w € L5* is
implicitly constrained in the extended system so that the pair
(v, w) satisfies the IQC (4). This set of (v,w) that satisfies
the IQC (4) includes all input/output pairs of A.

We consider the memoryless, time-varying state-feedback
control u(t) = k(t,z¢(t)), k : R x R"¢ — R™. We don’t
allow k to depend on z,, since xy is introduced by the
virtual filter ¥. The following theorem provides a BRS inner-
approximation for the extended system GG and W, and therefore
for the original uncertain system F, (G, A).

Theorem 1. Let Assumption 1 hold, and further assume (i)
F.(G,A) is well-posed, (ii) A € HardlQC(V, M), with ¥
and M given. Given X7 C R"6, P € R"™*"u p € R"»,
R > 0, F,H defined in (8), T > 0, and v € R, if there
exists a C function V. : R x R® — R, and a control law
k : R x R" — R™ that is continuous in t and locally
Lipschitz in x¢q, such that

OV (t,x) + 0, V(t,x) - Fz,w,d, k) + 2 Mz <d"d,

V (t,z,w,d) € [0,T] x R" x R™ x R",

s.t. V(t,z) < v+ R% 9)
{2 :V(T,z) <vy+R*} C X7, V 2y € R™, (10)
Pik(t,xg) < b;,¥(t,x) € [0,T] x R",

st Vt,z) <y+ R Vi=1,..,n,, (11)

where © = [vg;xy], then the intersection of Q(V,0,7)
with the hyperplane x, = 0 is an inner-approximation to
BRS(T,Xr,U, R, F,,(G,A)) under the control law k.

Proof. Since the dissipation inequality (9) only holds on the
region Q(V,t,y+ R?), we first need to prove that all the state
trajectories starting from Q(V,0,v) won’t leave Q(V, ¢,y +
R?) for all t € [0, T). This is proven by contradiction. Assume
there exists a time instance 7} € [0, T, such that a trajectory
starting from x(0) € Q(V,0,~) satisfies V(T1,z(T1)) > v+
R?. Define T, = infy (¢ 2(t))>v+r2 . and integrate (9) over
[07 TQ} :

VT2, 2(13)) = V(0,2(0))
) 2(t) "Mz ST
+ /0 )T M2(t)dt < /0 AT d(t)dt.
Apply z(0) € Q(V,0,v) and A € HardIQC(¥, M) to show

Ts
V(Ty,z(Ty)) < 7+/ d(t) T d(t)dt.
0
Next recall that d is assumed to satisfy (2):
v+ R =V(Ty,z(Ty)) <~ + R?,

which is a contradiction. As a result, 2(0) € Q(V,0,7)
implies z(t) € Q(V,t,v + R?) for all ¢t € [0,T], and thus
V(T,z(T)) < v+ R% Combining it with (10) shows that
Q(V,0,) is an inner-approximation to the BRS of the ex-
tended system, and the intersection of Q(V,0,v) with z,, =0
is an inner-approximation to BRS(T, Xr,U, R, F,(G, A)).
Lastly, constraint (11) ensures the control signal derived from
u(t) = k(t,za(t)) satisfies the control constraints Pu(t) <
bV tel0,T). O

D. Robust Backward Reachability with SOS Programming

To find a V and a k satisfying (9)—(11), we make use of
sum-of-squares (SOS) programming. To do so, we restrict
the decision variables to polynomials V' € R[(t,z)], k €
R™:[(t, )], and make the following assumption.

Assumption 2. The nominal system G given in (1)
has polynomial dynamics: f € R"¢[(xg,w,d)], g €
Rre*"u[(xg,w,d)], and h € R™|[(xq,w,d)]. Therefore, F
and H in (8) are polynomials. Xt is a semi-algebraic set:
Xr :={zqg : ps(zg) < 0}, where p, € Rlxg] is provided.

In Example 1, we have seen that for each type of pertur-
bation, any IQC defined by a properly chosen ¥ and a M
drawn from the constraint set M is valid. Therefore, along
with V' and k, we also treat M € M as a decision variable.
Assume M is described by linear matrix inequalities [13].
Define p; := t(T — t), which is nonnegative for all ¢ € [0,T].
By applying the generalized S-procedure [14] to (9)—(11), and
choosing the volume of Q(V,0,~) as the objective function
(to be maximized), we obtain the following optimization:

sup Volume(Q(V,0,~))
V,M k,s:
st. VeR[(t )],k eR™|[(t,xq)],M € M,

—(OV + 0,V - Fly—p + 2" Mz —d"d) — sipy

+(V =~ = R%sy € 2[(t, z,w,d)], (12a)
— 83pz + Vl]p=r — v — R?* € 2[x], (12b)
— (Pik — b)) — saipe + (V — v — R?)s5,4

€ X[(t,x)], Vi=1,...,ny, (12¢)

where s1, 52 € X[(¢, z, w,d)], (s3—¢) € X[z, and s4,, 55, €
Y[(t,x)]. The positive number ¢ ensures that s3 is uniformly
bounded away from 0. The optimization (12) is nonconvex,
since it is bilinear in two sets of decision variables, V' and
(k,s2,s54). As summarized in Algorithm 1, the nonconvex
optimization (12) is handled by alternating the search over
these two sets of decision variables, since holding one set fixed
and optimizing over the other results in a convex problem.
Since an explicit expression is not available for the volume
of Q(V,0,7) for a generic V, we instead enlarge it by
maximizing ~ in the (k,~)-step when V is fixed. Combining
it with the constraint (13) in the V-step, which enforces
QVI=10,47) C Q(V7,0,77), we are able to prove that
the volume of the inner-approximations will not decrease with
each iteration [11, Theorem 2]. A linear state feedback for the
linearization about the equilibrium point was used to compute
the initial iterate V0.

III. EXTENSION TO ACTUATOR UNCERTAINTY

This section considers the case where the control inputs
are subject to actuator uncertainty. For example, unmodeled
actuator dynamics can be modeled by a plant input e given
as the sum of the controller command u and a norm-bounded
nonlinearity A: upey = w + A(u). The input v to A and
the IQC filter output z were previously defined (Equations
(1b) and (8b)) to be independent of the control command wu.



Algorithm 1: Alternating direction method for hard IQCs

Input: function V9 such that constraints (12) are feasible by
proper choice of s;, k,v, M.
Output: k,~,V, M.
1: for ) =1 : Nier do
2: (k,~)-step: decision variables (s;, k,~y, M).
Maximize v subject to (12) using V = Vi1
This yields (s3, s} ;, k7) and optimal reward 7.
3: V -step: decision variables (s, s1, 3, 544, V, M);
Maximize the feasibility subject to (12) as well as
8o € X[x], and

(7 = Vle=o) + (VI M=o — 7/)s0 € Zfa],  (13)

using (y =7, 59 = s}, 55,5 = séz, k = k7). This
yields V7.
4: end for

However, the inclusion of the actuator uncertainty implies that
v and z must now depend on wu.

This motivates the following generalization of the proposed
method. Assume the entire input vector u is subject to the ac-
tuator uncertainty. The perturbation input and IQC filter output
are now given by the following modifications to Equations (1b)
and (8b):

v(t) = h(za(t), w(t), d(t), u(t)),
z(t) = H(z(t),w(t),d(t), u(t)).

(14)
(15)

A consequence of this generalization is that optimization over
k is nonconvex even when V is fixed, since z' Mz in (9)
depends nonlinearly on k. A remedy is to introduce auxiliary
state € R™ for the perturbed control input u, and to design
a dynamic controller of the form

B(t) = k(t, za(t), £ (t)),
u(t) = & (1),

where k£ : R x R"6 x R"™ — R™ is to be determined. If
we restrict the initial condition of Z to be zero: Z(0) = 0™,
allow k to depend on Z, but not on zy, and V' to depend on
the new state 2: V : R x R” x R™* — R, then the dissipation
inequality becomes:

(16a)
(16b)

OV (t,z,z)+ 0. V(t,z,Z) - Flz,w,d,T)
+ 0V (t,x, &) - k(t,zq, &) + 2 Mz <d'd,
YV (t,x, Z,w,d) € [0,T] x R" x R™ x R™ x R™,
st. V(t,2,7) < v+ R% (17)

The term z' Mz in (17) is then nonlinear in the state variable
z, rather than in the control law. The dissipation inequality
is therefore bilinear in V and k, and can be solved in a way
similar to Algorithm 1. Next, we provide the theorem that
incorporates actuator uncertainties.

Theorem 2. Let Assumption 1 hold, and further assume (i)
F.(G,A) is well-posed, (ii) A € HardIQC(V, M), with ¥
and M given. Given X7 C R"6, P € R™*" | € R",

R > 0, F defined in (8a), H defined in (15), T > 0, and
v € R, if there exists a C! function V : R x R" x R™ — R,
and control law k : R x R™"¢ x R™ — R™, such that (17),

{zg :V(T,z,%) <~v+ R*} C X7,

V (zy,%) €R™ x U, (18)
Pz < b, ¥(t,z,%) € [0,T] x R™ x R™,
st V(t,x,7) <y+ R*Vi=1,...n, (19)

where x = [xq; Ty, then the intersection of Q(V,0,v) with
the hyperplane (xy,%) = 0 is an inner-approximation to

BRS(T,Xr,U,R, F,,(G,A)) under the control (16).

The conditions of Theorem 2 can be formulated as an
SOS optimization similar to (12), and is omitted. Although
we assumed all control inputs are perturbed by uncertainty,
the results can be extended to the case where a subset of
the actuators are perturbed. This extension involves mainly
notational changes and is also omitted.

IV. BACKWARD REACHABILITY WITH SOFT IQCS

Previously we assumed A € HardIQC(W, M). However,
many IQCs are specified in the frequency domain [12]. Their
time domain representation results in so called ‘soft IQC’. The
definitions for frequency domain and time domain soft IQCs
are given below.

Definition 4. Let IT = IT* € RL{ ™)X (otnw) 4o ojpen,
A bounded, causal operator A : L3 — L3* satisfies the
frequency domain IQC defined by the multiplier 11 if, Yv €

L3, and w = A(v),
= oG9 1 110w [ #69)
/ﬂo [w(jw)} TI(je) [w(m} dw 20,
where U and W are Fourier transforms of v and w.

Definition 5. Given ¥ € RHu*""*") and M € S™.
A bounded, causal operator A : L3 — L3* satisfies the

soft 1QC defined by (U, M) if, Vv € L3, and w = A(v),

(20)

/ 2(1) " Mz(t)dr >0, where z =¥ [Y]. (21)
0

Let A € FreqIQC(II) and A € SoftIQC(¥, M) indicate
that A satisfies corresponding frequency domain and time
domain soft IQCs, respectively. Note that if A satisfies a
time domain (hard or soft) IQC defined by (¥, M), then
A € FreqIQC(U*MW). Conversely, any frequency domain
multiplier IT can be factorized (non-uniquely) as: [T = U* MW
with U stable. By Parseval’s theorem [18], A € FreqIQC(II)
implies A € SoftIQC(¥, M) for any such factorization. How-
ever, A € FreqIQC(II) doesn’t imply A € HardIQC(¥, M)
in general. Hence, the library of IQCs specified in frequency
domain can always be translated into soft IQCs, but not into
hard 1QCs. For example, the Popov multiplier doesn’t have
a hard factorization [12]. In addition, when both hard and
soft factorizations exist, the latter is usually less restrictive.
Therefore, it is helpful to incorporate soft IQCs in the analysis.
Here, we provide one type of uncertainty and its frequency and
time domain IQCs.



Example 2. Consider the set of real constant parametric un-
certainties: w(t) = A(v(t)) = dv(t), satisfying § < 0. A soft
1QC for § is given by a filter ¥ = blkdiag(W%™ wh™),
where \Ilf’lm is defined in (6), and Mpg = [Uj\/[]\ﬁl f‘ﬁfl ,
where decision matrices are subject to My, = MlTl, My =
—M],, and W™ My UE™ > 0, which can be enforced
by a KYP LMI [19]. Notice that § is a special case of the
perturbation considered in Example 1 (a), and thus 6 €
HardIQC(¥, Mp) as well. However, since Mp is a special
case of Mpqg with M1y = 0, the analysis using Mpg can
be less conservative than using Mp. A method is proposed in
[20] to iteratively refine the choice of V.

Since soft IQCs hold over the infinite horizon, they cannot
be incorporated in the analysis based on a finite-horizon
dissipation inequality directly. To alleviate this issue, we use
the following lemma which provides lower bounds for soft
IQCs over all finite horizons, and thus allows for soft IQCs
in the finite horizon reachability analysis. Let IT = gil g”

12 4122
be a partition conformal with the dimensions of v and w.

Lemma 1. (/21]) Let U € RHZ " ™) and M € S™* be
given. Define 11 := U* M. If T3 (jw) < 0 Vw, then

o D;ZQMDW < 0 and there exists a Yoo € S™ satisfying

KYP(YQQ,A¢,B¢2,C¢7D¢2,M) < 0. (22)
o If A € SoftiQC(V, M) then for all t > 0, v € L3,
w = A(v), and Ya3 € S™ satisfying (22),

/0 ) TMa( ) >~ () Yoz (t).  (23)

Based on this lemma, the following theorem provides a BRS
inner-approximation for F,(G, A) with A € SoftIQC(¥, M),
also allowing for actuator uncertainties.

Theorem 3. Let Assumption 1 hold, and further assume (i)
F.(G, A) is well-posed, (ii) A € SoftIQC(¥, M), with ¥ and
M given, (iii) Il = U*MV satisfying 1lss < 0 Vw. Given
Xy C R, P e Rw»*" b e R"™, R >0, F defined in
(8a), H defined in (15), T' > 0, and v € R, if there exists a
C! function V : R x R® x R™ — R, a matrix Yay € S™
satisfying (22), and a k:R x R x R — R™ such that

OV (t,x,z)+ 0, V(t,z,2) - Fla,w,d,T)
+0:V(t,x, &) - k(t,zq, &) + 2 Mz <d'd,
Y (t, 2, w,d) € [0,T] x R" x R™ x R™ x R™,

s.t. V(t,x, ) <+ R?, (24a)
{xg: V(T,z,%) < v+ R*} C Xr,

V (24,%) € R™ x U, (24b)
Py < b;,Y(t,z,%) € [0,T] x R" x R,

st V(t,z,7) <vy+REVi=1,..,n,, (24c)

whereV =V — .IT;ZYQQJT'(/,, x = [xq; xy), then the intersection
of QV,0,v) with the hyperplane (xy,%) = 0 is an inner-
approximation to BRS(T, Xr,U, R, F, (G, A)) under (16).

The proof is given in the extended version [22] of this paper.
Similar to (12), we formulate an SOS optimization using the
constraints of Theorem 3 :

sup  Volume(Q(V,0,7))

V,M,Y22,k,s;
st. VeR[(t )],k e R™[(t,zq,T)],
M € M and Yy, € S™ satisfy (22),
—(BV 40,V - Fly—z + 0:V - k
+2"Mz—d"d)+(V —v— R%)sy

— s1pt € B(t, x, %, w, d)], (25a)
— 83pz + V)= — v — R?
+ Z?;I(Pl.f — b,‘)867i S E[(QJ, 5?)], (25b)

— (P& — b)) + (V — v — R%)ss5;
— sqipr € X[(t,2,2)],V i =1,...,npy, (25c)

where s1, s2 € X[(t,z, &, w,d)], (s3 —¢€), s6,; € X[(x,Z)] and
S4,i,85: € B|[(t,z,%)]. The optimization (25) is bilinear in
(V,Ya2) and (s2, S5, l;:) Similar to Algorithm 1, Algorithm 2
tackles (25) by decomposing it into convex subproblems,
and it also guarantees the improvement of the quality of
the inner-approximation through iterations. Y5, = 0¥ and
a M° € M can be used as initializations. It is demonstrated
in [22, Section V (A)] that soft IQCs have richer knowledge of
uncertainties than hard IQCs, and thus yield less conservative
inner-approximations.

Algorithm 2: Alternating direction method for soft IQCs

Input: V9 M° and Y3} such that constraints (25) are feasible
by proper choice of s;, k, 5.
Output: ]~€, v, V, M, Yas.
1: for j =1 : Nier do ~
2: (k,~)-step: decision variables (s;, k, ). Maximize
7 subject to (25) using V = VI~ M = M7,
and Yy, = Y3, . This yields (s3, 53 ;, k7, ~%).
3: V-step: (so, $1, 53, S4,i, S6,i, Vs M, Yaz) are decision
variables. Maximize the feasibility subject to (25)
as well as sg € X[(z, Z)], and

(’YJ - V‘t:o) + (Vj71|t:O - ’YJ)SO S E[(Jf, j)]a
using v =7, 50 = 83,55, = sgz,lz: = k.

This yields V7, M7 and Y,.
4: end for

Computational complexity: A polynomial decision variable

of degree 2dyo1y in My, variables has a m x m Gram matrix

Tovar+dpoly
dpoly

O(m?) decision variables due to the Gram matrix. Using

higher-degree polynomial decision variables can provide a less
conservative BRS estimate, but it takes longer to solve and
might be intractable for high-dimensional systems.

representation where m := ( ), and thus introduces

V. QUADROTOR EXAMPLE

Consider the 6-state planar quadrotor dynamics [23]:

i‘l = I‘g,i'g = %4,1‘3 = ulein(xg,),Jm =



u1 K cos(x5) — gn, &5 = o6, L6 = —doxs — d126 + nous,

where xg = [x1,...,x¢] is the state, z; to xg are horizontal
position (m), vertical position (m), horizontal velocity (m/s),
vertical velocity (m/s), roll (rad), and roll velocity (rad/s),
respectively. u; and uo are total thrust and desired roll angle.
Control saturation limits are u;(t) € [-1.5,1.5] + g,/ K, and
us(t) € [-7/12,7/12]. g, = 9.8, K = 0.89/1.4, dy = 70,
dy = 17, and ny = 55 are taken from [23].

The control objective of this example is to design
controllers for u; and ue to maintain the trajectories of
the quadrotor starting from the BRS to stay within the
safe set X, during the time horizon [0,7] with T = 2.
X, is given as X; = {xg : v;/Nzg < 1}, where N =
diag(1/1.7%,1/0.852,1/0.82,1/12,1/(7/12)2,1/(7/2)?).
sin(ws) is approximated by (—0.166z3 + z5) and cos(zs)
is approximated by (—0.498z2 + 1), using least squares
regression for x5 € [—7/12,7/12]. The validity of this bound
on x5 is guaranteed by the state constraint X;. Assume
that the control input us is perturbed by an additive norm-
bounded nonlinearity [|All,_5 o) < 0.2, which introduces
one auxiliary state  to the analysis. We use the hard 1QC
discussed in Example 1(b) with a fixed filter ¥ and search for
M over the constraint set given in (7). The SOS optimization
problem was formulated using the SOS module in SOSOPT
on MATLAB, and solved by the SDP solver MOSEK. The
computation of BRS inner-approximations takes 1.1 x 10% and
3.6 x 10* seconds using degree-2 and degree-4 polynomial
storage functions.

Fig. 2 shows the projections of the resulting inner-
approximations. The one computed using degree-2 storage
function is shown with the solid magenta curve, and the one
computed using degree-4 storage function is shown with the
red dash-dotted curve. The projections of X; are shown with
the blue solid curves.

1

degree 2
—X
—-—-degree 4 P

0.5
5 0 g0
-0.5
-1
-1
-1 0 1 0.2 0 0.2
T T5

Fig. 2: BRS inner-approximations for the quadrotor

VI. CONCLUSIONS

A method is proposed to compute the BRS inner-
approximations and control laws for uncertain nonlinear sys-
tems. The proposed framework merges dissipation inequalities
and IQCs, with both hard and soft factorizations, allowing for
a large class of perturbations. The effectiveness of the method
is illustrated on a 6-state quadrotor example.
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