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ABSTRACT

Speaker diarization, which is to find the speech seg-
ments of specific speakers, has been widely used in human-
centered applications such as video conferences or human-
computer interaction systems. In this paper, we propose a
self-supervised audio-video synchronization learning method
to address the problem of speaker diarization without massive
labeling effort. We improve the previous approaches by intro-
ducing two new loss functions: the dynamic triplet loss and
the multinomial loss. We test them on a real-world human-
computer interaction system and the results show our best
model yields a remarkable gain of +8% F1-scores as well as
diarization error rate reduction. Finally, we introduce a new
large scale audio-video corpus designed to fill the vacancy of
audio-video dataset in Chinese.

Index Terms— Speaker diarization, multi-modal learn-
ing, self-supervised learning, audio-video synchronization

1. INTRODUCTION

Speaker diarization is the process of partitioning an input
audio or video stream into individual segments to match spe-
cific speakers. It is one of the core components for many
human-centered applications such as video conference sys-
tems, human-robot or human-computer interactions, and
video re-targeting problems [1, 2, 3]. For example, in a
human-computer interaction system, multiple people may
talk to the system simultaneously, and we need to identify
individual active speakers and separate their faces/bodies and
audios before analyzing their activities.

The diarization can be performed on video, audio, or both.
Many studies focus on either video-only or audio-only ap-
proaches. Everingham et al. use the movement of lips (i.e.,
video only) to define active speakers [4]. While in most cases,
only audio is used [2, 3, 5, 6]. Recently, multi-modal (e.g.,
audio-video) approaches are attracting more attention [7, 8,
9]. Supervised approaches have been proposed to identify
speakers based on the correlation between the audio and video
features [10, 11, 12], which requires per frame labeling. To
relieve people from massive labeling work, unsupervised or
self-supervised methods are proposed [13, 14]. Chung et al.
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suggest an end-to-end audio-video synchronisation system to
use synchronisation between video and audio as the supervi-
sion signal. In the approach, a 3D convolutional network is
designed to extract video features and contrastive loss is ap-
plied [15]. Recently, Nagrani presents a method for speaker
identification/verification [16]. In 2018, Korbar et al. presents
a self-supervised method is proposed to use curriculum learn-
ing and delicate negative example selection strategy, where
contrastive loss is employed and claimed as a critical compo-
nent [17].

However, a disadvantage of contrastive loss is that all
unsynchronized pairs are treated equally as negative pairs.
Specifically, an audio-video pair with only one frame shift
from each other is treated the same as a heterologous pair
where the audio and video are from different sources, causing
a serious imbalance between positive and negative samples.
Besides, human can barely detect lip-sync errors below 200
ms and the training videos downloaded online are some-
times unsynchronized for a few frames due to recording or
uploading errors. It harms the model performance to treat
these slightly unsynchronized audio-video pairs equally with
largely shifted pairs or heterologous audio/video pairs. To
relief this problem, Chung et al. tried the classification
(i.e., cross entropy) loss but was unable to achieve conver-
gence [15].

In this paper, we first propose to sample three kinds of
audio-video pairs for training: synchronized pairs, shifted
pairs in which audio and video are shifted by j video frames,
and heterologous pairs where audio and video belong to dif-
ferent sources. Then it comes to our major contributions -
to propose two new loss functions: dynamic triplet loss and
multinomial loss. Like standard triplet loss, the distance be-
tween negative pairs should exceeds the positive pairs by a
margin. The difference is that in dynamic triplet loss, positive
pairs and negatives pairs are dynamically determined in each
iteration. Our experiment shows that it achieves better perfor-
mance and converges faster than contrastive loss. But it is still
slow because in each iteration, only one positive pair and one
negative pair are sampled. It takes many iterations to sample
all shifting combinations of each audio-video segment, which
makes it harder to find the global optimum.

To solve the above problems, we further propose the
multinomial loss, where all shifting combinations for an
audio-video pair and all heterologous combinations for audio-
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Fig. 1. Two stream network architecture.

video pairs within a mini-batch are considered simultane-
ously. Specifically, we cluster the negative pairs into groups,
where different margins with LogSumExp (LSE) are em-
ployed to achieve a smooth maximum [18] in each group.
The experiment results show that multinomial loss achieves
even faster convergence and better performance compared
with dynamic triplet loss and contrastive loss.

Finally, we propose a new large scale audio-video corpus
in Chinese [19] to fill the vacancy of such kind of training
data. All our experiments are tested on a real-world human-
computer interaction system and the results show the effec-
tiveness of our proposed method.

2. OUR METHOD

To process multi-modal signals, we use a two-stream network
to extract audio and video features separately. The proposed
dynamic triplet loss and multinomial loss are employed to op-
timize the network.

2.1. Two-stream network structure

To achieve speech diarizaiton, we process audio and video
separately [15], which is a common approach for multi-
modal tasks. For audio stream, the input is first transformed
to MFCC (Mel Frequency Cepstral Coefficient) features, i.e.,
a power spectrum of a sound on a non-linear mel scale of
frequency. Then the MFCC is sent to a 2D convolutional
network to produce speech feature. For video stream, a 3D
convolution module is employed to extract both temporal
information between consecutive video frames and spatial
information in each video frame. We use fa and fv to denote
the audio and video streams, respectively. Figure 1 shows the
structure.

2.2. Sampling strategy

Suppose we have a visual segment Vn, where n ∈ {1, 2...N},
N is the total number of visual segments. Then we define its
correspondent synchronized audio segment as AS

n . A shifted

Fig. 2. Examples of audio-video synchronized, shifted, and
heterologous pairs. W denotes the lenght of visual clip. T is
the shifting range.

audio segment from the same video but with j shifted frame
is denoted by Aj

n, where j ∈ {−T, ...− 1, 1...T − 1, T}, T is
the pre-defined shifting range, which is 10 in our experiment.
Let AH

n denote a heterologous audio segment from another
video. Specifically, we consider three types of audio-video
pairs: synchronized pairs (V,AS), shifted pairs (V,Aj), and
heterologous pairs (V,AH). All visual and audio segments
have consistent length (5 video frames in our experiment).
The sampled pairs are demonstrated in Figure 2.

2.3. Dynamic triplet loss

In contrastive loss, the distance between unsynchronized
audio-video pairs are pushed larger than synchronized audio-
video pairs. The loss is as follows:

Lcon =
1

2N

N∑
n=1

(yn)d
2
n + (1− yn)max(α− dn, 0)2 (1)

dn = ||fv(Vn)− fa(An)||2 (2)

where y ∈ [0, 1] is the binary similarity metric denoting
whether the visual and audio segments are synchronized, and
y = 1 means synchronized.

A problem in the contrastive loss is that it equally treats
all unsychronized pairs. Since negative pairs are sampled
by shifting the audio/visual segment or replacing the au-
dio/visual clips from another video. Serious imbalance
lies between the number of positive and negative pairs. In
other words, there are much more shifted and heterolo-
gous pairs than positive synchronized pairs. In addition,
the model would more likely be dominated by easy negatives
(e.g.(Vn, AH

n ) from different videos) rather than hard nega-
tives (e.g.(Vn, Aj

n) with small shifts). Finally, the training
samples downloaded online could be slightly unsynchronized
due to possible recording/uploading error, which may also
cause the algorithm to diverge.



Fig. 3. Comparison of loss functions. (a): The negative pair is separated by a margin. (b): Negative pairs are separated with
each other by a margin. (c): Negative pairs with different shifts or heterologous audio are separated by separate margins.

In this paper, we propose dynamic triplet loss together
with ,.the aforementioned sampling strategy to solve these
problems. Specifically, we first sample audio-video train-
ing data using the three sampling methods introduced in Sec-
tion 2.2 to obtain synchronized pairs (Vn, A

S
n), shifted pairs

(Vn, A
j
n), and heterologous pairs (Vn, AH

n ). During the train-
ing, the positive and negative pairs are dynamically defined
according to their relative distance, as shown in Table 1, i.e.,
a positive pair in one iteration could be a negative pair in an-
other iteration. Finally, the model is optimized with Equa-
tion 3.

LD tri =
N∑

n=1

[||fv(Vn)− fa(A′n)||22

− ||fv(Vn)− fa(A′′n)||22 + α]+

(3)

where (V,A′) refers to a positive pair, (V,A′′) refers to
a negative pair, and α is the pre-defined margin. By us-
ing the dynamic triplet loss, the algorithm progressively
learns the following distance rule: D(fv(Vn), fa(A

S
n)) <

D(fv(Vn), fa(A
j′

n )) < D(fv(Vn), fa(A
j′′
n )) < D(fv(Vn),

fa(A
H
n )) , where j′, j′′ ∈ {−T, ... − 1, 1...T − 1, T} and

|j′| < |j′′|. D denotes the distance function measured by
l2. fa and fv denote the audio and visual feature extraction
functions, respectively.

Table 1. Definition of positive and negative pairs according
to their relative distance.

Index Positives (Vn, A′n) Negatives (Vn, A′′n)
Case-1 (V,AS) (V,Aj)

Case-2 (V,Aj′) (V,Aj′′)(|j′| < |j′′|)
Case-3 (V,Aj) (V,AH)

2.4. Multinomial loss

In dynamic triplet loss, only two pairs are sampled in each
iteration. However, for each audio-video pair, there are C2

2T

shifting options and more heterologous options. To best take

advantage of these combinations during each training iter-
ation, we further propose an improved loss called multino-
mial loss by optimizing the positive pairs and negative pairs
by clusters, while each cluster has its own optimization mar-
gin. In this way, the negative pairs with different specialities
(e.g.shifting range) would be treated differently. We propose
to cluster the negative pairs into groups and apply separate
margins for each group. Equation 4 defines the loss.

Lmul =
N∑

n=1

(D(fv(Vn), fa(A
S
n))

+
K∑
k

log(

u∈cluster{k}∑
u

exp(αk −D(fv(Vn), fa(A
u
n))))

(4)

Lmul =
N∑

n=1

(D(fv(Vn), fa(A
S
n))

+ log(

0<|j′|≤m1∑
j′

exp(α1 −D(fv(Vn), fa(A
j′
n )))

+ log(

m1<|j′′|≤m2∑
j′′

exp(α2 −D(fv(Vn), fa(A
j′′
n )))

+ log(

H 6=n∑
H

exp(α3 −D(fv(Vn), fa(A
H
n ))))

(5)

Specifically, in our audio-video synchronization learning
method, we separate our loss into four parts, which is shown
as Equation 5. The first part is to minimize the distance of
the synchronized pairs D(fv(Vn), fa(A

S
n)). The second part

denotes the loss for shifted pairs when the shifting distance is
within m1. We set m1 to be equal to the size of video seg-
ment, which is 5 frames in our experiment. LogSumExp [18]
is applied to achieve a smooth maximum and α1 is a mar-
gin to this loss. The third and fourth loss functions are sim-
ilar but for different audio-video pairs. The third loss is for



shifted audio-video pairs where the shifting range from m1 to
m2, when the shifted audio and visual segments are from the
same video but not temporally overlapped. We set m2 to be
10 frames and α2 is the corresponding margin. The forth loss
and margin α3 is for heterologous pairs, i.e., visual and audio
segments from different videos in the mini-batch.

3. EXPERIMENTS

In this section, we describe the dataset we uses, the test met-
rics and the experimental results.

3.1. Dataset and baselines

Our training dataset contains over 140 thousand video clips,
about 100 hours long in total. All video clips are from
YouTube with the front face facing the camera. The test-set
includes 12 videos. Each is 40-60s long and contains 3 to
4 people talking in turn. Our data would be described in
details and released soon in another paper [19]. We compare
our results with SyncNet [15] and UIS-RNN (unbounded
interleaved-state recurrent neural networks) [5]. UIS-RNN
is a fully-supervised audio-only speaker diarization system
which takes d-vector embedding as input and each individual
speaker is modeled by a parameter-sharing RNN, while the
RNN states for different speakers interleave in the time do-
main. We also extended the UIS-RNN [5] with the number of
detected faces as the interleaved-state upbound in RNN. This
means the number of faces in the video are used to indicate
the number of potential speakers.

3.2. Testing results

Table 2. Model Comparison (%))
# Method F1-scores DER
1 SyncNet [15] 76.4 23.1
2 UIS-RNN [5] 70.0 25.6
3 face-bounded UIS-RNN 72.6 22.2
4 ours-triplet 75.3 22.9
5 ours-triplet-LipNet[20] 76.8 21.7
6 ours-cluster 84.9 17.0

In this section, we compare our results with the base-
lines. For all the models, the faces are detected with Dlib [21].
Gray-scale images of the lower half face is resized to be 112×
112 for training. For the audio part, a 13 mel MFCC feature
are used in our methods. We use 25FPS for the visual clips
and 100Hz for the audio segments. Therefore the length of
visual and audio input is 5-frame and 20-frame respectively.
The value of α1, α2andα3 are set to be 1,2 and 10 respec-
tively. A batch-size of 16 is used for all experiments and no
data augmentation is implemented. Besides, the distances are
generated through a per-frame evaluation of the l2 distance

between the audio and visual feature for each speaker in the
video. The speaker (i.e.face) feature which has the lowest dis-
tance with the audio feature would be identified as the active
speaker. Table 2 shows the results.

We use DER (Diarization Error Rate) and F1-scores to
evaluate the performance of each model. Compared with
SyncNet [15], our best model improved 8% and 6% on F1-
scores and DER, respectively. To make it clear, the same MLP
network is employed in model #1 (“SyncNet” ) and model #6
(“ours-cluster”). However we find incorporating LipNet [20]
is also beneficial to the performance since LipNet has a
more complex architecture (i.e.ResNet [22]) compared with
6-layer MLP (multi layer perceptron) we used in model #4
(“ours-triplet” in Table 2). Figure 4 shows the visualization of
per-frame audio-video distances generated by our proposed
multinomial model (“(a)”) and SyncNet (“(b)”). From which
we can find: for our model, the distance of the active speaker
is significantly below the distance of non-active speakers.
While for SyncNet, the distances of different speaker could
hardly be distinguished. While in More video demos can be
found from the project homepage.1

Fig. 4. Per-frame test distances. (a): Ours. Different colors
denote the a-v distance of different speakers. The curve with
lowest distance is the predicted active speaker. (b): SyncNet.
(c): GT. (d): Visualization of GT. The red box frames the face
of active speakers.

4. CONCLUSION

In this paper, we propose two new losses: the dynamic triplet
loss and multinomial loss, and a large scale dataset in Chi-
nese for self-supervised audio-video synchronization learn-
ing. The work can benefit the task of speaker diarization,
which is an important basic task for many human-centered
applications. We demonstrate experiments on a real-world
human-computer interaction system and compare our results
with several baselines. The results show the proposed meth-
ods outperforms both the audio-only and multi-modal previ-
ous approaches.

1 https://yifan16.github.io/av-spk-diarization
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