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Vehicular cyber-physical systems (VCPS), among several other applications, may help address an ever-
increasing challenge of traffic congestion in large cities. Nevertheless, VCPS can be hindered by information
falsification problem, resulting due to the wrong perception of a traffic event or deliberate faking by the
participating vehicles. Such information fabrication causes the re-routing of vehicles and artificial conges-
tion, leading to economic, safety, environmental, and health hazards. Thus, it is imperative to infer truthful
traffic information in real-time to restore the operational reliability of the VCPS. In this work, we propose a
novel reputation scoring and decision support framework, called Spoofed and False Report Eradicator (SAFE),
which offers a cost-effective and efficient solution to handle information falsification problem in the VCPS
domain. The framework includes humans in the sensing loop by exploiting the paradigm of participatory
sensing, a concept of a mobile security agent (MSA) to nullify the effects of deliberate false contribution, and a
variant of the distance bounding mechanism to thwart location-spoofing attacks. A regression-based model
integrates these effects to generate the expected truthfulness of a participant’s contribution. To determine if
any contribution is true or false, a generalized linear model is used to transform the expected truthfulness into
a Quality of Contribution (QoC) score. The QoC of different reports is aggregated to compute user reputation.
Such reputation enables classification of different participation behaviors. Finally, an Expected Utility Theory
(EUT)-based decision model is proposed which utilizes the reputation score to determine if event-specific
information should be published or dropped. To evaluate the SAFE framework through experimental study,
we used both simulated and real data to compare its reputation-based user segregation performance with state-
of-the-art frameworks. Experimental results exhibit that SAFE captures the fine differences in participants’
behavior through the quality and quantity of participation, and the accuracy of their informed location. It also
significantly improves operational reliability through publishing the information of only legitimate events.
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1 INTRODUCTION

According to a survey of the United Nations, more than 54% of the world’s population lives in
urban areas, a proportion that is expected to increase to 66% by 2050'. Transportation systems have
always been an indispensable part of urban life for many decades. With the current surge in urban
population, the number of both private and public vehicles are growing at an alarming rate. This
is evident from the annual increase in the number of vehicles in developing countries like India,
which is approximately 11%, as opposed to 4% growth in the road infrastructure?. Irrespective of
the geographical location, the biggest problem faced by the current transportation management
system is managing traffic congestion, which has cascading effects on the economy, public safety,
environment, and health.

Traffic congestion causes approximately $87.2 billion annual drains on the US economy, with
4.2 billion work-hours and 2.8 billion gallons of fuel wasted waiting in traffic, which is equivalent
to one work week and three weeks worth of gas per year [Ekedebe et al. 2015]. Congestion
increases the error in driving, which accounts for 93% of approximately 6 million annual automobile
crashes [Malta et al. 2009] [Ekedebe et al. 2015] causing loss of human lives and damage of properties.
As per the report published by the US Federal Highway Administration, traffic accidents account for
approximately 50-60% of traffic congestions in cities [Reiss 1991] [Zhang et al. 2011]. Thus, besides
traffic jam, an accident can also cause congestion which entails the need for accurate and up-to-
date information for its prevention. Moreover, tailpipe emission is the single largest man-made
source of carbon dioxide, nitrous oxides, and methane that can increase the air pollution index by
many-fold [Zhang et al. 2011] and it can also increase the risk of health hazards, as identified by
several medical reports [Peters et al. 2004]. Thus, there is an increasing need for addressing the
traffic congestion problem in order to improve safety, the efficiency of the transportation sector,
and protection of the environment as well as human health.

Expansion of roads and developing new infrastructures can offer an immediate solution to address
this problem. However, such approaches are costly and challenging because, with the increase in
urban population, land resources are fast diminishing. During the 2008 Beijing Olympics, the city
administration imposed the restriction on private cars based on odd/even license plate numbers to
keep 50% traffic off the road. This policy is still followed in Beijing and a few other cities around the
world and can reduce congestion and the associated air pollution problem to some extent. However,
enforcing such a policy may not be convenient across all geographical regions [Zhang et al. 2011].

The concept of a cyber-physical system (CPS) may help address the above-mentioned challenges to
a great extent. A CPS is a next-generation integrated system with sensors (including human users),
actuators, and computation/control core. It is designed to sense and interact with the physical
world (including human users) and support real-time, guaranteed performance in safety-critical
applications [Rajkumar et al. 2010]. The application of CPS in the transportation or vehicular sector,
henceforth called vehicular CPS (VCPS), is expected to transform the way people interact with
highway transportation systems. VCPS will connect vehicles, infrastructures, and drivers, and
provide a centralized platform for dissemination of up-to-date and accurate traffic information

Thttp://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.html
http://www.indiaspend.com/investigations/indias-traffic-nightmare-roads-grow-4-vehicles-grow-11-2
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which can provide real-time route guidance, thus avoiding congestion and potentially reducing
accidents caused due to human errors.

1.1 Next Generation Vehicular CPS

In general, vehicular ad hoc networks (VANETs) or Internet of Vehicles (IoVs) forms the networking
infrastructure of VCPS [Rawat and Bajracharya 2017] [Ekedebe et al. 2015]. In VANET the nodes
(vehicles) communicate with each other (without disclosing individual identities) using vehicle-
to-vehicle (V2V) and/or vehicle-to-infrastructure (V2I) communications through dedicated short-
range communications (DSRC) technology [Jiang and Delgrossi 2008]. This often restricts the
VCPS service to only high-end vehicles (a small fraction of traffic worldwide) and also requires
the establishment of dedicated road-side infrastructures. This necessitates a novel sensing and
communication framework for VCPS.

Alongside, recent years have also seen a massive proliferation of smartphone technology. Indeed,
their widespread adoption has thrived mobile sensing and mobile Internet, which was previously
envisioned as the Participatory Sensing (PS) [Burke et al. 2006]. According to Ericsson’s Mobility
Report (2016)°, the number of smartphone users has been projected to be 6.3 billion by the end of
2021, suggesting almost one for every person on the planet. Thus, it is imperative that smartphones
will soon become the most powerful sensing device and may replace the traditional sensory data
collection infrastructure.

In the PS paradigm, smartphone users can register to a PS application and voluntarily contribute
(in the form of a report, image, audio. etc.) certain observations, typically in lieu of rewards computed
by different incentive schemes [Restuccia et al. 2016] [Luo et al. 2017]. The PS system filters and
analyzes such contributions to generate a piece of summarized information and disseminates
it to enable better decision making. As the PS paradigm fuses human intelligence (sensing and
information gathering) with machine intelligence (analysis and filtering), its utility in social space
has increased by many folds. The real benefit of PS paradigm is that none of its functionalities (i.e.,
sensing, information gathering, analysis, and publishing of information) need the establishment of
a dedicated infrastructure [Restuccia and Das 2014], thereby reducing overheads associated with
sensor deployment, management, and periodic maintenance. Moreover, for reaping the benefits
of VCPS services, smartphone-based participatory sensing is definitely a cost-effective choice as
compared to other options such as owning a high-end car.

Fig. 1 shows the architecture of our envisioned PS-based VCPS. As evident, the paradigm of
participatory sensing and its associated app is expected to enrich the human-assisted data collection
and message exchanging aspect of VCPS environment. The PS-supported VCPS will reduce the
sensing costs for both the service provider and consumers. In this system, vehicle drivers will
sense the traffic condition (viz., traffic jam, accident, weather hazard, road condition etc.) and
generate reports using a smartphone application. These reports will be submitted to the PS server
in the cloud via the cellular network, which in turn, will publish a summarized alert as broadcast
notification. Based on the received alert, the vehicles will actuate their movements that ultimately
change the traffic dynamics.

However, the realization of VCPS using the PS paradigm is poised to introduce new security
challenges. Owing to the “open” nature of the PS paradigm, the application may get exposed to false
contributions [Huang et al. 2010] [Wang et al. 2016], resulting in the dissemination of erroneous
information and thus aggravating the congestion problem. In general, PS applications incentivize
users so that they remain motivated to persistently contribute useful sensory data. For example.

Shttps://www.ericsson.com/res/docs/ 2016/ericsson-mobility-report-2016.pdf
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Fig. 1. Envisioned VCPS Architecture

real-life traffic monitoring application like Waze* practices “gamification” by rewarding the quantity
of participation, rather than the quality of contribution [Barnwal et al. 2016] [Bhattacharjee et al.
2017a]. This implicitly motivates dishonest users to generate intermittent false reports to gain
undue incentives. Moreover, there can be spoofers who pretend to be present in the vicinity of
actual events by camouflaging their GPS locations and then generate reports for earning incentives.
Finally, there may be malicious users who collude among themselves to generate false reports in
bulk (spam) and overwhelm the PS system. Occasionally, false contributions may also be generated
owing to the wrong perception of the event. Regardless of the motive, information falsification
invariably incurs loss of revenue owing to distribution of undue incentives, and defiles the overall
reliability of the VCPS services.

We argue that besides the quantity, assessing the quality of contribution (QoC) is equally neces-
sary [Restuccia et al. 2017]. This QoC is essentially an indicator of truthfulness of user participation
and is similar to its trust score. Moreover, participant reputation generated from his truthful con-
tribution helps to classify him as honest or dishonest (e.g., liar, spoofer, malicious). To make the
VCPS resilient to false information, QoC also helps to decide if future reports from that user will be
considered for publishing or dropping [Bhattacharjee et al. 2019].

1.2 Contributions of this Work

This paper proposes a framework, called Spoofed and False report Eradicator (SAFE), which attempts
to address the problem of information falsification in vehicular CPS. First, we propose a QoC measure
for each user contribution based on two mechanisms: (i) mobile security agents (MSAs) [Restuccia
and Das 2014] to validate the user contributions, and (ii) a variant of distance bounding method [He
et al. 2011] to verify user’s locations. Deployment of MSAs weakens the effect of deliberate false
contributions by using a customized version of Jesang’s opinion and trust model [Josang 1999].
On the other hand, the distance bounding method thwarts location spoofing attacks. Henceforth,
we model the expected truthfulness of the contribution as a regression score using Gompertz and
inverse sigmoid functions as the weights (coefficients) for MSAs and distance bounding effects,
respectively. Subsequently, we transform the expected truthfulness to a QoC (trustworthiness)
measure using the logit link function that captures the odds of a contribution being true or false.

4www.waze.com
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Second, we aggregate the QoC measures of all the contributions made by a user to compute a
raw user reputation score. A normalized reputation score is generated in the interval [-1, +1] by
means of a scaling function. It is used for classifying users as honest, liars and spoofers.

Third, we propose an expected utility theory (EUT)-based two-level decision-making model that
makes use of the reputation scores and other contextual information to publish only true events.

Finally, we use both simulated and real data for extensive performance evaluation of the SAFE
framework. We show that our approach outperforms two state-of-the-art PS reputation scoring
mechanisms: (i) Jesang’s opinion and trust model-based FIDES system [Restuccia and Das 2014], and
(if) Gompertz function-based model [Huang et al. 2010] [Huang et al. 2014], in terms of distinctly
identifying different user behaviors based on their reputations. Experimental results depict that
SAFE provides a reputation score which renders fair distinction among different participating
behaviors. Furthermore, our EUT-based decision-making model guarantees accuracy by publishing
only true events.

The rest of this paper is organized as follows. Section 2 discusses the existing works on handling
information falsification problem in VCPS as well as reputation-based PS systems. Section 3 presents
the system and threat models and discusses the design principle of the PS sub-system, contained
in the VCPS. Section 4 proposes the SAFE framework for generating user reputation scores while
Section 5 presents an application of SAFE by proposing an EUT-based decision-making model.
Section 6 discusses the results and Section 7 offers conclusions.

2 RELATED WORK

This section reviews different centralized mechanisms to prevent information falsification attacks
in vehicular CPS. Further, in the context of our participatory sensing (PS)-based approach, we also
identify the limitations with the existing related works.

2.1 Handling Information Falsification in Vehicular CPS

As mentioned, information falsification is a major security challenge in VCPS, where the underlying
network model is a VANET [Krishna et al. 2015] [Barnwal and Ghosh 2016]. In such attacks,
compromised nodes and adversaries create a large number of pseudo-identities and disseminate
false information [Park et al. 2009] [Qu et al. 2015]. The objective behind this deceptive behavior
is to disturb normalcy for specific illegal purposes and generate a fake consensus among other
vehicle drivers. Indeed, Waze was the subject of such a Sybil attack in Israel, where the adversary
generated a large number of fake traffic jam reports and orchestrated artificial roadblocks and
subsequent re-routing [Sinai et al. 2014].

Tackling information falsification issue in VANETSs is predominantly done by the following
mechanisms [Hubaux et al. 2004]: (i) source authentication, and (ii) message integrity. For a
centralized approach, these requirements are implemented by proposing a Trusted third party (TTP),
which is supported by multiple road side units or RSUs [Raya and Hubaux 2005]. For authenticating
the legitimacy of vehicles, the TTP maintains a certificate revocation list (CRL) which contains the
identities of the misbehaving vehicles. One possible approach to identify them is to compute the
trust scores based on their past behavior [Raya et al. 2007]. The enlisted vehicles are revoked from
accessing the VANET resources.

The TTP updates the CRL periodically and shares it with the co-located RSUs, in turn, check
the latest CRL and authenticate the vehicles before broadcasting the messages generated by
them [Huang et al. 2011] [Shim 2012]. This will implicitly ensure that the fabricated messages do
not get disseminated in the VANET. However, the major issue with the CRL-based authentication is
its scalability, particularly storing, searching, and distributing the list in real-time as its size grows.
Moreover, significant infrastructure cost will be incurred to deploy RSUs for hosting the TTPs. For
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ensuring message integrity, a digital signature enabled VANET Public Key Infrastructure (VPKI) has
been proposed, the details of which are available in [Ekedebe et al. 2015] [Qu et al. 2015].

2.2 Handling Information Falsification in Participatory Sensing

State-of-the-art literature shows that prevention of information falsification in the PS paradigm is
done by three primary approaches: (i) recruitment of trustworthy participants, (ii) truth inference
by reliability assessment of sources, and (iii) establishing a trust relationship with the participants.

Establishing trust relationships in the PS paradigm is an essential requirement as the sensing
platform has to depend on the contributions from its participants in absence of the real-time ground
truth. Thus, our proposed work explicitly falls under the purview of the third category. A few
relevant works in this area are as follows.

2.2.1 Gompertz Function-based Reputation. Gompertz function models a time series, where the
growth is slowest at the start and end of a time period. Such a function has been used in [Huang
et al. 2010] [Huang et al. 2014] [Yu et al. 2014] to compute the participants’ reputation in the PS
paradigm. For example, in [Huang et al. 2010] [Huang et al. 2014], reputations of devices reporting
environmental noise data have been computed. The model takes as input past cooperation levels
and maps them into a cumulative reputation score. The level of cooperation is determined by a
“watchdog” module which runs an outlier detection algorithm to measure the distance between the
submitted data and the consensus.

A major limitation of Gompertz-based reputation models is that they do not consider the un-
certainty factor in the trust assessment. Handling uncertainty is an important aspect as far as
traditional trust definition is concerned [Josang 1999]. Furthermore, it does not unify the quality
and quantity of contributions and is not also fair to different participating behaviors.

2.2.2  Fuzzy Inference-based Reputation. In [Amintoosi and Kanhere 2013] [Amintoosi and
Kanhere 2014] [Amintoosi et al. 2015], the authors leverage fuzzy logic to compute trust scores
based on the collected trustworthiness evidence. They assumed that every participant is a part of
an existing on-line social network platform and his friendship relations are depicted by a social
graph. The system works in a publish/subscribe manner where a requester publishes a sensing
task with a fixed deadline. A set of contributors, known as participants, who are friends with the
requester, report their observations related to the sensing task.

Trustworthiness of a contributing user depends upon the combination of the following five
personal and social factors: expertise, timeliness, location, friendship duration, and interaction time
gap. A Trust of Participant (ToP) metric is derived from the weighted sum of these five factors.
Another metric, called Quality of Contribution (QoC), which reflects the quality of sensing report
in terms of accuracy, precision, and timeliness, is determined by an outlier detection algorithm.
Finally, Trust of contribution (ToC) is computed by designing a fuzzy inference system where the
antecedents are different fuzzy sets formed by partitioning the crisp values of ToP and QoC.

One prominent limitation with fuzzy inference-based approaches is that they need regular
monitoring of the locations and other personal information of the participants, and thus not privacy
preserving. Such location tracking may not be acceptable to most of the participants, leading
to in-feasibility in practical usage. Another issue is the requirement for a fairly high degree of
subjectivity while assigning weights to the social factors and forming the fuzzy sets. The final trust
score is highly sensitive to the choice of these weights and the partitioning scheme of the domain
of ToP and QoC.

2.2.3 Feedback Distribution-based Reputation. Several works in the literature [Restuccia and Das
2014] [Ganeriwal et al. 2008] [Xiang et al. 2017] have used feedback distribution-based approach to
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compute trust scores of the participants in the realm of participatory sensing. These works have
explicitly used Josang’s belief models [Josang 1999] [Josang and Ismail 2002] which considered the
state space of trustworthiness evidence to be feedback-based rating. Depending on the binary or
ternary nature of the feedback domain, trust modeling is done by Beta or Dirichlet distribution.
Even some real PS applications, viz., FourSquare, Waze, and Yelp, use rating feedback mechanism,
whereby consumers of the service provide positive, negative or neutral ratings against a published
information. The benefit of using a feedback rating paradigm is that it is easy, fast, less expensive
and exudes the essence of the PS paradigm.

However, there exist several limitations with reputation scoring done based on Jgsang’s belief
models [Josang 1999] [Josang and Ismail 2002]. Besides being less aggressive in penalizing users
that contribute corrupted data, these models neither take into account the confidence of the
rating community on a particular event nor have any provision to control the effect of deliberate
“undecided” ratings, leading to an undue increase in the trust score [Bhattacharjee et al. 2017b].
Rating-based systems expect a significant proportion of feedbacks within a short time span to
dynamically compute accurate trust scores, which may not be necessarily true for all real-time
applications. Moreover, providing ratings is mostly voluntary and does not fetch any incentive,
which demotivates users from submitting feedbacks. Table 1 summarizes the limitations of the
state-of-the-art reputation scoring methodologies in participatory sensing paradigm.

Table 1. Handling Information Falsification by Reputation Scoring: Summary

Underlying Approach Evidence Collection Remarks

Gompertz function [Huang et al. | Outlier detection Gompertz function does not handle un-
2010] [Huang et al. 2014] [Yu et al. certainty in trust computation and is also
2014] not fair to different participating behav-

iors.

Fuzzy logic [Amintoosi and Kan- | Spatio-temporal location, endorse- | Potential privacy breach due to trajectory

here 2013] [Amintoosi and Kanhere | ment, expertise tracking and a higher degree of subjec-

2014] [Amintoosi et al. 2015] tivity in deciding membership functions
and fuzzy sets.

Feedback distribution [Restuccia and | Ratings submitted by participants Sufficient feedback may not be always

Das 2014] [Ganeriwal et al. 2008] [Xi- available. Non-consideration of both

ang et al. 2017] quality and quantity of contributions can

lead to colluding attacks.

Thus, it is clear that the existing literature does not address one or more of the following issues: (i)
uncertainty in trust computation, (ii) avoid tracking of participants’ trajectory to preserve privacy,
and (iii) leverage both “quality” and “quantity” of participation to thwart colluding attacks.

Nevertheless, to address the problem of location spoofing and false-event report generation by
considering all of the above-mentioned issues, there is a need for a comprehensive QoC-aware
decision-making framework for participatory sensing-based VCPS. Our proposed framework
is expected to mitigate the effect of spoofers and liars. Further, to supplement the limitations
of Gompertz-based reputation models while utilizing its strength, the framework must devise
a mechanism for fusion of Gompertz-based reputation models with Jesang’s belief model for
computing the reputation score. Finally, it is imperative for the framework to constitute a robust
decision-making model to filter out false and spoofed reports in real-time by utilizing the prior
event-occurrence knowledge and reputation of the participants, resulting from the fusion model.
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3 SYSTEM AND THREAT MODELS

In this section, we present the system model, threat model, and the design principle of the proposed
SAFE framework.

3.1 System Model

As depicted in Fig. 2, the system model captures a particular urban area, divided into multiple sensing
regions. Let the sensing regions contain U users and E events. Each user possesses smartphone(s)
and is registered to a PS application supported by the vehicular CPS. The major components of this

Urban Area

suolbay Buisuag

)
A TrueEvent A False Event @& Honest User

& Liarispoofer & Mobile Security Agent (MSA) O Event Boundary

Fig. 2. System Model

model are as follows:

Report: A report r; is a notification generated by a user in response to his perception of a traffic
incident (viz., accident, jam, road closure, weather hazard, etc.) at a particular time epoch (defined
below). Modern-day smartphone apps get complete access to built-in sensors (with user consent)
once they are installed. Likewise, we assume that at the time of submitting reports, the PS application
reads the data generated by low-level sensors like GPS, accelerometer, gyroscope, and so on. For ease
of representation, we will use the notation j to denote a report. The terms ‘report’, and ‘contribution’
have been used to refer ‘means of participation’.

Event: An event e; € E is an alert to publish information related to a traffic incident after the PS
application receives a pre-defined number of “similar” reports and verifies their truthfulness. This
information sent to the rest of the VCPS system for analysis, decision making, and actuation in the
physical space (refer Fig.3). If reports from two participants are similar in terms of location, time
epoch, and incident type, they are considered to be generated for the ‘same’ event instance. For
notational convenience, we will use [ to represent an event.

Generally, each event [ should belong to a set of potential event types Z, indexed by z €
{1,---,|Z|}. As illustrated in Fig. 2, an event can be either reported truthfully (True Event) or
falsely (False Event) by the participant and present within a fixed boundary. Reports from the
registered participants within that boundary will be only considered for that event. This boundary
may be generated after the PS system extracts an expected event location (as the center of the circle)
from the set of geo-tagged reports. Some common approaches to construct the event boundary
are the various geospatial clustering methods ranging from GPS stamps to MGRS (Military Grid
Reference System) conversion [Huang et al. 2010].
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Time epoch: A time epoch ti is the fixed temporal window during which the sensing reports from
different users are accepted, their reputation scores are updated, and the decision about publishing
the event is taken. It is noted that the reputation scores of only those users who have generated
reports in the current time epoch will be updated. For simplicity of notation, we will denote an
epoch as k.

The system model consists of two types of users:
Participant: A participant u; € U is a participating user who is commuting (in a vehicle) along
the vicinity of an event and has the proclivity to generate report(s). Any participant who has
generated at least one report is liable to have a reputation score which reflects the overall quality
of contribution as well as the degree (quantity) of participation. We refer a user simply as i for
notational convenience.
Mobile security agent (MSA): A mobile security agent (MSA) is a trusted user who moves across dif-
ferent sensing regions and reports reliable information about his surroundings to the PS application.
He cannot be sabotaged to either move out of a region intentionally or submit false information
to generate a wrong consensus about the occurrence of an event. Depending on the requirement,
the VCPS can deploy multiple MSAs. However, it is not necessary to have MSAs present in all the
sensing regions at a given time epoch which can restrict the PS platform from receiving truthful
information. In practical scenarios, the reliability of the MSAs may be guaranteed by some sort of
reward provided upfront by the VCPS administrator. For example, MSAs could be taxicab or bus
drivers who drive across different sensing regions all over the day.

3.2 Threat Model

In general, neutral users do not have any selfish intent to generate multiple reports during the same
time epoch as it will be considered as a single contribution to the PS system. However, malicious
users can take advantage of the absence of MSAs at a particular region during a time epoch and
pose the threat of generation of rogue reports. Although it is completely non-deterministic if any
region will be devoid of MSAs at a particular time epoch, still such users can exhibit the following
types of participation:

False participation: This participation occurs if a dishonest participant (termed as a liar) generates

intermittent false reports to increase his degree of participation with the goal of gaining undue
incentives. Such participation may or may not be verified at a particular time epoch depending on
the presence or absence of MSAs in the event vicinity. The liar may or may not spoof his location
while generating false reports.

Side-channel participation: Such participation can occur when a rogue user intends to earn undue
incentives through proxy participation. The user (termed as spoofer) exercising this participation
will undergo social engineering to know about a true event, and then generate reports in spite of
not being physically present in that sensing region. This can be done by spoofing the GPS of his
smartphone using various location faking apps and masquerade himself to be present at the actual
event site.

3.3 Design Principle

Vehicular CPS conceived in this work includes humans (drivers) in the feedback loop. They act
as sensors and contribute data in the form of reports on the status of the traffic at different
sensing regions by using smartphone-based PS application. Such sensing task may be either explicit
(i-e., done directly by humans) or implicit via the sensors (e.g., sensors equipped to smartphones,
wearables, vehicles, etc.) the humans own [Guo et al. 2015]. The sensed information contributed by
the humans is analyzed and aggregated by the VCPS to trigger and publish an event. This facilitates
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better decision making in the physical space. Fig. 3 presents a schematic representation of the
vehicular CPS.
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Fig. 3. Design Principle of the Proposed SAFE Framework

As evident from Fig. 3, four major components of the VCPS forming a loop are: (i) PS participants,
(ii) the PS sub-system, (iii) the vehicle compute/control core, and (iv) physical environment. The
PS sub-system is an important component in the VCPS loop. It collects rich sensory information
generated by human users via smartphone applications and relieves the VCPS from the deployment
of any road-side infrastructure. However, to ensure the operational reliability of the VCPS loop,
there is a need to ensure that the information generated by the PS sub-system is accurate and
up-to-date. As the latter provides an interface to receive data from the crowd, evaluating the
quality of contribution (QoC) needs to be done here to ensure dissemination of correct information
onto the other parts of the VCPS loop. To address the above challenge, we propose the SAFE
framework, which is a module within the PS sub-system. Fig.3 shows two major modules in the
SAFE framework:

e QoC and Reputation Scoring: It computes the QoC for each contribution (report) generated
by a participant. Next, it aggregates the QoC scores of all the reports which the participant
has generated to compute his own reputation score.

o Automated Decision-Making Model: It publishes the final event by computing the expected
utility on each event type using the number of reports received and the reputation scores of
the contributors.

4 SAFE: SPOOFED AND FALSE REPORT ERADICATOR FRAMEWORK

In this section, we present the modules of our proposed framework SAFE, which aims to provide
QoC and reputation scoring,.

4.1 Modeling Opinion on User Generated Report

As discussed in Section 3.1, the VCPS deploys a few mobile security agents (MSAs) who move across
different sensing regions at various time epochs. These MSAs provide truthful feedback based on
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which the SAFE framework decides whether a user report is to be believed or not. However, regions
where none of the MSAs is present during a time epoch, it is uncertain about the participants’
contributions. Depending on the feedback of the MSAs, the framework develops an opinion for
each user report generated during a particular time epoch [Restuccia and Das 2014]. Formally, an
opinion is defined as follows [Jesang 1999]:

DEeFINITION 1. (Opinion). An opinion foj is a vector 0 = [b,d,u], such thatb +d +u = 1,
{b,d,u} €[0,1], whereb, d, and u are respectively the probabilities of belief, disbelief, and uncertainty
on report j generated by user i during time epoch k.

Initially, if any user i has just registered with the PS application but is yet to contribute any
information, the opinion vector will assign equal probabilities to belief, disbelief, and uncertainty.
In other words,b =d =u = % and the opinion vector will be given as: 920 = [%, %, %] We introduce
two distrust rates 0 < jq, ptz < 1 which will increase or decrease the influences of the probability
masses on the overall opinion. We adopt the strategy used in [Restuccia and Das 2014] to vary the
impacts on belief, disbelief, and uncertainty, depending on the nature of participation, i.e., if it is
true, false, or unknown.

If any MSA endorses a user contribution as true or false, then belief or disbelief will be changed
by the factor p; depending on the MSA’s feedback about that report generated at a given time
epoch. However, if MSAs are not available in the event boundary, and the user contribution cannot
be verified, the uncertainty measure on the overall opinion will boost up by the factor p,, while the
impacts on the other two masses will be diminished. As the feedbacks from MSA is considered to
be more truthful, we have p; < p,.

Thus, if report j generated at time epoch k is declared to be true based on the MSA’s observation,
the opinion vector will be updated as follows:

61y = (O (@), (uf =) (1)

where bf‘l, dg‘_l, and uf.‘_l are the belief, disbelief, and uncertainty measures on user i, computed
till the (k — 1) time epoch.
Similarly, if a report has been found to be false according to the MSA’s feedback, the opinion
vector becomes:
B, = LB, (i, (] @)
Finally, if the truthfulness of a report cannot be verified due to the absence of MSAs at a particular
event boundary, the opinion vector is given as:

B = LB e (e (] )
If a user does not generate any report during a particular time epoch, it will carry forward the
existing opinion vector to the future epochs.
After each update, the measures are normalized such that they sum up to 1. Finally, the expectation
on report j can be derived by considering the probability expectation value of its opinion as
follows [Josang 1999]:

b+u
ky
A0 = ds o

4)

4.2 Truthfulness of a User Contribution

The opinion vector derived on the basis of MSA feedbacks is one of the important components
to determine the truthfulness of a user contribution. However, as the MSA cannot validate the
reports in all regions and at all time-epochs, we also need to determine if the user is exercising any
side-channel participation. The veracity of the user location can be determined by the distance
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bounding method. It computes the spatial distance between the event location (given by the GPS
values in the report) and the participant’s spatial coordinates retrieved from the access points [He
et al. 2011]. These access points are the interfaces through which the PS sub-system communicates
with cellular tower data driver’. We model the problem similar to a weighted regression approach
where the expectation from the opinion about a report and the spatial distance are the predictor
variables, and truthfulness is a dependent variable. Thus, if w, and wy are the coefficients (or
weights) of expectation from the opinion and spatial distance, respectively, the truthfulness for any
report j, generated by user i at time epoch k will be given as:
k

k
Ti’jzwo-g{ei,j}+ws~ ||9,’~C,j_cﬁj||2 5)

where, || gf j —cf.“ il |2 is squared L2-norm to compute the distance between the GPS-based location gl’.‘ ;
and the cellular tower-based location cf ;» while user i generated report j at epoch k. The L2-norm

function is given by the Euclidean® distance between two points p = (x1,y;) and g = (x2, y») as:

llp = qll® = (x2 = x1)* + (y2 — 1) (6)
For the convenience of representation, we use 5g‘j =, /||gfj - cf.‘j||2 and express Eqn.(5) as:
tf; = wo.e{0F} + wi.8F; (7)

The spatial distance between two locations can take up any value from the real domain, thus
making the expected truthfulness unbounded. In order to ensure that the value of truthfulness lies
within the interval [0, 1], the distance factor in Eqn.(7) needs to be normalized. We consider 8,,,x
to be the maximum tolerable distance between the location of the event and that of the nearest
cellular tower using which the participant has sent the report. Thus, the modified expression for
expected truthfulness is as follows:

k

k k )
T = wo.e{0; ;} + Ws. s (8)
max

It is evident from Eqn. (8) that if a user is reporting from a location which is nearer to the cellular
tower, then (ng ; will be low. Further, on normalization by &4, the expected truthfulness will be
further reduced and this is a contradiction to our notion of side-channel participation. Therefore,
to prevent higher truthfulness on location-spoofed reports, we further modify the expression as
follows:
k
B ot {05} + B()we(1 = 52L), i 6, < Sman o

ij
Wo ‘f{e,k,j }s Otherwise

We introduce € < §,4x to handle the boundary case where 6{"1. = Smax- The binary function f(j)
returns 1 if the report j is either verified to be true (by the MSA) or considered undecided due
to the absence of MSAs. However, for false contributions, the function will return 0 and nullify
the impact of the location veracity. The second condition of Eqn. (9) shows that the effect of the
location veracity is also invalidated if the distance between the event site (as obtained from the
GPS value) and the nearest cellular tower location is greater than the maximum tolerable distance.

Shttps://security.stackexchange.com/questions/65181/how-do-location-based-apps-avoid-getting-cheated-by-emulated-

gps
6 Assuming the UTM coordinates, otherwise Haversine formula can be used.
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4.2.1 Estimation of Opinion Expectation Coefficient. Besides the expectation from an opinion
about report j, truthfulness should also consider the quality of prior participation for its acceptance.
This is essential as the PS sub-system must reward users with a higher degree of quality participation.
In practice, a user does not have a high reputation at the initial stage. It takes considerable time
and a fairly large number of positive interactions to build a good reputation. This resembles some
social aspects where the trust depends on factors, such as friendship duration, the number, and
frequency of interactions, and so on.

Similarly, if a user frequently interacts with the PS sub-system by submitting truthful information,
a trust relationship gets rapidly developed. Such relationship plays a pivotal role in scenarios where
the PS system cannot verify the correctness of reports due to unavailability of MSAs at certain
sensing regions. Users with a higher degree of truthful participation are expected to submit true
information than the ones with sporadic contributions. Hence, the coefficient of opinion expectation
should take this notion into consideration.

As mentioned in Section 2.2.1, the Gompertz function dynamically reflects the changes in the
user’s behavior along with different participation. Mimicking the reputation building process in real
life, the initial value grows slowly during the gestation period, followed by the period of growth
and then reaching to the points of steady state. Such behavior is reflective of trust build-up in
multi-user systems like PS applications. The weight w, will give higher weight to the opinion if
the contributor has a higher number of previous truthful participation. This motivates us to model
W, in terms of the Gompertz function:

_Be C(@i-9i)
wy=A-e BT

(10)

where, A is the upper asymptote which decides the maximum value the output can attend, B is
positive constant which controls the displacement of the reputation score, C adjusts the growth
rate. The input functions ¢; and ¢; denote respectively, the frequencies of previous truthful and
untruthful interactions of user i. The factor (¢; — ¢;) penalizes deceptive behavior and reduces
the trust developed upon the participant i through prior contributions. Untruthful interactions are
determined from the MSA endorsements and location spoofing evidences.

g 24 0’0,‘,,.g_-_gzg;nzlﬂ—c—o—o—o- g 2 naggs'°°°°°::gggseeenunoo
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Fig. 4. Parameters for w,

Parameter recommendations for w, (A, B, C): The upper asymptote A determines the maxi-
mum value which the coefficient w, can attain. Since the expected truthfulness of a contribution
lies within the interval [0, 1], the maximum value is w, = 1. Thus, we fixed the value as A = 1.
Fig. 4(a) illustrates the effect of B on the initial values of w, before the latter enters into the
exponential phase. This parameter is used to remove uncertainties due to varying participation
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behaviors. For example, a user who has contributed with all true reports during first few participa-
tions yields a higher trust which implicitly reduces uncertainty. Thus, B can be set to a lower value
to make w, start from a high value. Conversely, if any participant has generated false reports or a
mixture of true/false reports, the PS system will be skeptical regarding the quality of his future
contributions and can assign a larger B to prevent w, from attaining higher values at a smaller
number of truthful participation.

Fig. 4(b) shows the effect of C that regulates the rate of growth of w, with respect to the number
of truthful participation. As evident, the lower the value of C, the higher is the number of true
contributions expected from a user. For example, if any user has a history of generating false reports,
then C should be small such that w, attains highest value only after adequate truthful reports are
received. However, if the VCPS system is non-restrictive, it can diminish the value of C. Conversely,
for genuine participants, the PS sub-system can afford to maintain a higher C.

4.2.2  Estimation of Spatial Distance Coefficient. As evident from Eqn. (7), the normalized spatial
distance factor has an inverse effect on the overall truthfulness of the contribution. The larger
the spatial distance between the two points, the higher will the conviction of a potential side-
channel participation. Consequently, the confidence on the contribution will be reduced. Thus,
the coefficient needs to be modeled in such a way that it gives higher weight to smaller spatial
distances and vice-versa. For the smallest distance, we must have maximum confidence which
should persist until the distance remains relatively low. However, as the distance gradually increases,
the confidence should also amortize and diminish once the former attains a very high value. The
following equation models the spatial distance coefficient in the light of the above arguments:

A

e 5k
i . Y
1—e Jmax+e if 0 < S < 1
Ws = P _ (11)
1, if e = 0
sk
0, if 5 > 1

where, 0 < A < 1is the decay rate which needs to be tuned to accommodate different participating
behaviors.
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Parameter recommendations for w; (1): Fig. 5 shows the effect of A that controls the decay of
ws with respect to the normalized distance between the cellular base station and the participant. In
general, if the participant’s report contains an event location that is close to a base station, the PS
sub-system tends to give the benefit of the doubt and believes that there may not be any location
spoofing attempt, resulting in a higher w;. In contrast, if the distance increases, the perception of
risk magnifies as the possibility of location spoofing attack looms large. Hence, a higher A may
be set for a participant from whom the system frequently finds the mismatch in reported event
location and the site of the closest base station. For predominantly honest contributors, A can be
low to restrict rapid decay of trust.

4.3 Quality of a Contribution
Eqn. (9) defines ¥ as the expected truthfulness on a report j, contributed by user i at time epoch k.

Now, the system ’rjleeds to perform a regression to determine the odds of the contribution j being
true or false, which we model as the quality of contribution (QoC). Although the MSAs are deployed
to get reliable feedbacks, there still exists uncertainty due to the absence of MSA from a sensing
region under contention, and side-channel participation of the user. We have used the generalized
linear models (GLM) for mapping the truthfulness value to QoC. If Ql’." ;s the QoC of the report j
generated by participant i in time epoch k, then we use the logit function to establish a link between

it and Tik ; [Bhattacharjee et al. 2017a]:

k.
QF; =In|—= (12)
’ 1-17;
J
Note that Qf ; has value in the interval [—co, +00]. The logit function gives monotonically decreasing

weights to all ‘['l.k ; < 0.5, and monotonically increasing ones to the rest.

4.4 User Reputation

The QoCs of the reports generated by a participant (or user) are aggregated to generate a raw

reputation score. For the most general case, if the participant i has generated n reports at a particular
. . k . .

time epoch k, we aggregate the QoCs of reports (each given by Q; j) to derive an updated reputation

score till the current time, say T*” time epoch. Thus:
T n

R} = Z Z QF ;- P(i. j. k) (13)

k=1 j=1
where, ) )
1, If user i generated report j at epoch k

0, Otherwise (14)

P(i,j, k) = {
4.5 Normalized Reputation
The aggregated reputation score RiT obtained from Eqn. (13) can have any value in the interval

[—00, +00]. In order to give a bound to it, we use a scaling function which converts the raw RiT score
into a normalized score pl.T € [-1,+1], given as:

1- e @RI if RT >0
pi =1 —(1-e @R, ifRT <0 (15)
0, if RI =0
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Here 0 < a < 1 is the parameter to control the rate of growth of the reputation score within [-1,
+1].

5 APPLICATION OF THE REPUTATION SCORE: DECISION MODEL

The SAFE framework so far was committed to forming a base of reasonably genuine users by
computing their QoC with the help of MSA feedbacks and location veracity. The truthfulness of
the published information was dependent on the endorsements made by the MSAs. However, once
the framework builds a pool of users with a good reputation scores, the information publishing
step itself could be automated, without MSA interventions. In this section, we show how the SAFE
framework can be applied to infer true events and support dependable decisions for publication of
‘event’. As discussed in Section 3, the PS sub-system in the VCPS may receive reports that indicate
an event type belonging to Z from a prospective event boundary, say r. Ideally, we should only be
relying on the reports from those users, who have p; > 0 (the genuine participants) and currently
present within the boundary r. However, there are following possibilities which make the decision
process non-trivial in the absence of the ground-truth.

First, different types of event reports can be received within the given event boundary r, which
may be relevant or irrelevant in reality. Human perception difference might be the reason for
reporting of irrelevant event report by a genuine user. Moreover, due to lack of previous interactions,
handling new users (without any reputation score) may be a difficult proposition. Additionally, the
rare event’s true report may not be considered as genuine reporting based on prior, if malicious
users can successfully manipulate and report more likely event falsely.

Mistakes in decision making and publishing fake events or dropping true events may result
in the wasteful expenditure on incentives to the malicious users. Wrong decision also decreases
the reliability of the overlall participatory VCPS application. This entails that even if the reports
suggesting two or more event types may be received from the boundary r at the same time epoch,
it has to be decided at runtime which among them is most likely to be accurate. To address these
challenges, we propose a simplified two-level decision model as presented below, which is inspired
by our previous work [Bhattacharjee et al. 2019]. Here, we proposed a Prospect theory-based decision
model which is complex and needs to handle multiple parameters. In contrast, this work presents a
simpler model based on Expected utility theory.

5.1 Two-Level Model

In simplified two-level decision-making model, there are two steps. First level, namely D1, filters
the one most probable event among the several reported event and decides which event to publish.
Whereas, second level, namely D2, decides whether there is a sufficient evidences in support of
the filtered out event from the decision level D1. A schematic representation of the two-level
decision-making model is depicted in Fig. 6.

The first level decision is necessitated if the PS sub-system of the participatory VCPS receives
reports of multiple types of events for the same spatio-temporal window. This could be either due
to a legitimate wrong perception or a mixture of rogue and honest observations. Note that, even if
prior reputation scores are used to ignore reports from very low reputation users, there is still a
possibility of zero-day attacks in which devices of some of the participants may be compromised in
the current time epoch. Therefore, it is imperative to decide the most likely event type among the
set of reported events. The requirement of decision making in the near real-time boundary poses
non-trivial challenge.

The second level decision is postulated by the fact that even if we got the most probable event type,
there may be insufficient evidences in support of its occurrence. For example, in a situation where
reports notifying different event types have been received in similar proportions, it implies that
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Fig. 6. Two-level Decision Model

the participants are themselves uncertain about the actual event, which tilts the odds towards not
publishing anything. Depending on the VCPS’s risk policy, avoiding a false event may sometimes come
at the expense of not publishing true events. Nevertheless, in vehicular domain, the non-publication
of a true event has much less impact in comparison to publication of a false event. This is owing to
the fact that the latter causes unnecessary inconvenience for commuters at multiple locations and
thus results in decrease in the reliability of the system. Thus, the objective of a two-level decision
process will be to avoid publishing false events, while maximizing successful publishing of true
events.

We have adopted an Expected Utility Theory (EUT)-based approach to compute a value for each
reported event types (which are outcomes in this context). This value is based on the available
pieces of evidence (viz., the number of supporting reports, aggregated reputation score of the
reporters) received in the current time epoch, and essentially measures the confidence of the PS
sub-system on the occurrence of a particular event type. The values of each event type are further
weighed by their prior likelihood of occurrences to generate corresponding expected utilities. In
the next section, we present the mathematical formulations to the utility and the value functions.

5.1.1 Expected Utility on Event Types. Expected Utility Theory (EUT) [Mongin 1997] gives a
measure of the utility to be achieved by playing an n-outcome risky prospect g = {p1, X1; - . . ; Pn> Xn }»
where p; is the likelihood of receiving outcome x;, and x;’s are in descending order of attractiveness.
The expected utility function is given as:

EUy = ) pi-olx) (16)
i=1

where, v(x;) is monotonic value function and p; is the outcome probability.

However, in the context of deciding whether or not to publish the traffic events, two subtle
differences exist compared to the above mentioned expected utility function: (i) unlike the outcomes
(x;) in EUT, the outcomes (e.g., jam, accident, etc.) in our case are unordered, and (ii) the outcomes are
independent and mutually exclusive of one another. There may exist location-specific correlations
between different event types, but their generalization is beyond our scope. Thus, the n-outcome
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risky prospect is reduced to one-outcome prospect, viz., whether a jam has occurred or not, whether
an accident has occurred or not, and so on.

As mentioned in Section 3.1, Z is the set of all traffic event types for which the reports can be
generated. Then for any event type z € Z, if its evidences generate a value v, then the one-outcome
expected utility function is given as:

EU, = p,.v, (17)

where, p, denotes the prior likelihood of occurrence of event type z in a given sensing region
and at a particular time epoch. Such prior likelihood value can be considered as the ground truth
which changes over time. It provides additional support for the belief that a particular incident has
occurred or not.

5.1.2  Value Function. The PS sub-system, due to its prior interactions with the users in any
event boundary r, generates reputation score for each of them based on the quantity and quality
of their contributions. For any event type, the available evidences are the number of supporting
reports and the aggregated reputation scores of the participants. Thus, for a particular event type
z € Z, the corresponding number of reports N, and the aggregated reputation score R, form the
SN and Z\{Z:; 7 are the measures of the event type’s relative
support and trustworthiness, respectively [Bhattacharjee et al. 2019].

We use a weighted regression approach to model the overall value (v,) gained from the evidences
in support of the event type z. It is expressed as a weighted sum of support and trustworthiness
and is given as:

current pieces of evidence, and

z RZ

YIZVZGZ N; ’ (1 Y).ZVZEZ'RZ (18)
where, 0 < y < 1 is the preference factor which the PS administrator assigns to two evidence
types. Such preferences are controlled by the context-sensitive inputs such as the location, temporal
biases, and other such information. For instance, if an event report received from a historically
crowded spatiotemporal window, the PS system may assign more weight to the support (reports).
However, for the sparse spatiotemporal window, when and where participation is expected to be
low, more emphasis will be given to the trustworthiness (reputation). Finally, we compute the
expected utility EU, of event type z by using Eqn.(17).

Uz

5.1.3 Decision Level D1. In the decision-level D1, we search for a reported event which has the
maximum utility value. The event with such maximum value is declared as the winner from this
level and qualifies for decision-level D2. However, in the case of contradiction between two or
more different event types, when they have the same utility value, all the events are discarded as
the uncertainty in decision making process is not resolved. Formally, the first level decision process
is defined as:

Select z, iff EUpax = EU,
D1 = (19)
No z is selected, Otherwise

5.1.4 Decision Level D2. The decision-level D2 gets invoked only based on the positive output
from D1. If an event type is getting qualified at decision-level D1, the same is passed to D2 to check
its utility value in comparison to a pre-defined threshold. The final decision for publishing the
event or dropping the same gets guided by the Eqn.( 20).

Publishz,  if EUnax = EUshres
D2 = (20)
Drop z, Otherwise
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Choosing an appropriate EU;p,.s is subjective and also application-specific, but it should never
be fixed at any absolute value. Low values can result in publishing either rogue events (generated
by dishonest users), or events whose veracity cannot be determined due to the lack of sufficient
evidences. Similarly, higher EU,p,.s will drop most of the events whose evidences are not significant.

It is to be understood that EU, ;. is also a utility similar to that for different event types, and
it will vary with different decision-making tasks rendered at other time epochs. The variation is
due to the evidences, based on which the utility is estimated, and will most often be different at
different time epochs.

One possible evidence-aware heuristic is to set up EU;p,es as a significant fraction/percentage of
the sum of the utilities for all event types estimated at the current time epoch. This ensures that
the winner event type will only be published if its utility forms the majority share of the sum of
current utilities. Thus, if the PS administrator sets y as the threshold percentage, then EU,p; s will
be given as:

Y
EUshres = 7o5 X > EU, (21)
€Z

6 PERFORMANCE EVALUATION

The primary objective of the proposed SAFE framework is to ensure that the users in the VCPS
are segregated based on the quality of their participation. Such segregation will enable prevention
of information falsification attacks. The efficacy of this framework has been extensively studied
through the development of a customized simulator (details explained in Section 6.1) using the
R-tools’. Both synthetic as well as real data have been used to evaluate the performance of the
proposed framework. The data considered for experimentation consist of a large number of mobility
traces of the participating vehicles, MSAs, randomly generated events, and the locations of fixed
cellular towers.

6.1 Simulation Settings

We have implemented the random waypoint mobility model to replicate the movement of the
participating vehicles. The experiment has been divided into two parts. In the first part, we study
the performance of SAFE framework in classifying genuine and dishonest participants based on
dynamic reputation. The performance has been evaluated using both synthetic and real datasets.
The second part studied the performance of the decision-making model using SAFE-generated
reputation scores to support publishing or dropping of the events under contention.

Table 2 presents the basic simulation and system parameters used for experimental purpose.
For synthetic dataset, we generated randomly distributed cellular base-stations (having a sensing
radius of 30km) across the simulation area and stored their coordinates in a file for finding out the
normalized distance between the participants and their nearest base-station. Under the normal
situation, a participant’s report has been taken into account only if its location is within the sensing
range of the base station. We followed the distribution function proposed in [Barnwal et al. 2018]
for random event generation across different regions of the simulation area. After an event gets
generated at a particular location, we construct a circular boundary around that point with a fixed
radius of 2km.

Each experiment has been performed with 100-500 participants, and to minimize random effects,
results are obtained by taking the average. The optimal values for distrust rates y; and y,, at which
minimal fluctuation of reputation occurs are empirically determined. It has been found that y; and
2 give reasonably smooth reputation profiles at 0.2 and 0.8, respectively. The simulations have

Thttps://www.rstudio.com/
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Table 2. Basic Simulation Parameters

Parameter Value
Simulation Area (km?) 150 x 150
Number of Participants 100-500
MSAs (in %) 5-25
Node’s Min Speed (km/time epoch) 20
Node’s Max Speed (km/time epoch) 100
Pause Time between Trips (in time epoch) 10
Communication range of Base-station (km) 50
Simulation Time (in time epochs) 100
Distrust rate (1, p2) 0.2,0.8
Maximum asymptote for w,, A 1
Displacement factor for w,, B 0.8
Growth rate for w, (C) 0.45
Decay rate for ws (1) 0.2
Growth rate for p («) 0.01

been conducted assuming time epoch as a unit for discrete experimentation. If two or more reports
are generated during a particular time epoch and within the same event boundary, then they are
considered for the same event instance. The size of the time epoch in real implementation may
vary based on the historical data.

To simulate the spoofing activity, we induced the event report submissions by those participants
who are not within the communication range of any of the base-stations presents within the event
boundary. During the experiments, we fixed the percentage of the total participants who can be the
spoofers. Further, to simulate false contributors, some of the participants within the communication
range of the base-stations near the site of the event have been selected randomly with a predefined
probability and replaced their event reports with the false one.

6.2 Reputation-aware User Profiling

One of the primary objectives of the SAFE framework is to profile a user based on the reputation
computed from his participating behavior. To study different user profiles created by the framework,
we maintain the reputations of users generated overall time epochs. Fig. 7 shows that with time,
SAFE is able to identify six different user profiles based on their nature of participation. We consider
the score 0 to be a neutral reputation, i.e., the reputation of newly registered participants. The
profiles of the participating users are identified as follows:

1) Earlier Spoofing then Genuine Reporting (ESTG): In this behavior profile, the participant spoofed

his location in the initial few contributions, then started generating true reports. This is reflected in
the reputation score, which dropped to low values owing to spoofing and then gradually increased
with a higher number of true participation.

2) Sometimes True Sometimes False (STSF): This type of participant launches on-off attacks by in-
termittently generating true and false reports with certain probabilities. The average reputation
score of these participants never attained positive value which implies that SAFE is robust against
on-off attacks.

3) Always Spoofing with True/False Reporting (ASTF): Such participant always spoofs his locations

and occasionally succeed in generating reports for true events. The average reputation score of
this class of users is low although their contributions are true. However, since they exercised proxy
participation, our framework penalized them.

4) Always True but Lower Participation (ALTP): These users are honest but their contribution to the
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Fig. 7. User Profiles based on their Reputation

PS sub-system is sporadic. Such users end up with good reputation score, but not as high as the
ones who have a higher degree of participation.

5) Always False but Not Spoofing (AFNS): Such participants always lie and generate fake reports.
But they do not spoof to camouflage their locations. The average reputation score of this profile
gradually decreases over time.

6) Always True with Higher Participation (ATHP): The participants belonging to this profile are gen-
uine and also contribute persistently. The average reputation scores of these users are on the higher
side compared to the ALTP profile.

6.3 Effect of MSAs on User Classification

This section studies the effect of increasing the number of mobile security agents (MSAs) on user
classification in presence of varying fractions (10%, 20%, and 30%) of different forms of rogue
participations. The objective here is to study the optimal percentage of MSAs that are sufficient to
achieve higher classification accuracy with less false positives and false negatives at the end of the
simulation time. Since we measure and compare the performance of the SAFE framework in terms
of the classification accuracy, we use the widely accepted F1-score [Fawcett 2006] as the metric.
The F1-score is a balanced measure of precision and recall, where a score of 1 and 0 imply best and
worst classification performances, respectively. It can be expressed in terms of precision and recall
by their harmonic means as:

precision x recall

F1score =2 (22)

precision + recall

P _ TruePositive TruePositive
Where’ precision = TruePositive+FalsePositive TruePositive+FalseNegative®

For experiments, we randomly choose 10%, 20% and 30% of participants as rogue at a time, and
make them contribute false and spoofed reports with probability 1. The objective here is to find
out the effect of MSA percentage on the segregation of true report contributors among the total
reporters comprising of honest, liars and spoofers. The general notion is that if the number of

and recall =

MSAs increases in the sensing regions, the detection rate of false contribution will also improve
considerably. However, we observed that this may not always be true as depicted in Fig. 8.
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Fig. 8. Classification Performance w.r.t Varying Proportions of MSAs

Fig. 8 shows the F1-score for gradually increasing fractions of MSAs. From the plots, we observe
an interesting fact that on some occasions, with the increase in the percentage of MSA, the F1-score
gets affected in an adverse manner. This appears counter-intuitive. A possible reason behind this
behavior is that the mobility of MSAs is independent of that of the participants. An increase in
the MSA’s percentage means there is comparatively fewer participants in each area of interest,
whose reputation needs to be adjudged. This phenomenon may be referred to as the saturation
effect. Since the time of simulation is fixed during our experiments, the participation frequencies of
all users (honest, liars and spoofers) are also limited. As a result, the number of rogue participations
is also on the lower side, and thus it remains undetected over the simulation window. However, it
has been observed that if we run the simulation for longer durations, the F1-score improves with
the increasing percentage of MSAs. Hence, there is a trade-off between the malicious-participant
detection time and its accuracy.

Figs. 8(a) and 8(b) demonstrate that for different fractions of liars, the F1-score is optimal when
the number of MSAs constitutes 10% of all participants in the present simulation setup. For other
MSA percentages, the performance was not stable. However, the optimal percentage of MSAs may
vary depending on the size of the simulation area to provide a sufficient shield for each sensing
region. Thus, to study the effect of other parameters, we have taken the optimal percentage of
MSAs as 10% of total population for the rest of the experiments.

The above experiment has been further conducted with different proportions of spoofer partici-
pants, with the probability of spoofing being 1. We randomly selected those participants as spoofers,
who are presently not within the communication range of base-station at the event location. Fig. 8(c)
shows that the MSA percentage does not significantly affect the classification performance if only
the spoofers constitute the rogue participants. Except for some random effects, the result is more or
less constant for varying proportions of MSAs. This is intuitive because, in the SAFE framework,
MSAs do not validate if any report is generated by spoofing the location of an event.

6.4 Effect of Rogue Participation on User Classification

In this section, we evaluate the performance of SAFE and compare its user classification performance
with two state-of-the-art reputation models proposed for participatory sensing paradigm: (i) Jesang’s
opinion and trust model-based FIDES system [Restuccia and Das 2014], referred to as FJOS, and
(if) Gompertz function-based model [Huang et al. 2010] [Huang et al. 2014], which we refer to as
HGOM.

Fig. 9(a) shows the classification accuracy of three methods when dishonest participants are
present as both liars and spoofers. Clearly, SAFE yields maximum accuracy even if the rogue users
sum up to 50% of the total contributors. The Gompertz function-based HGOM achieved an FI-score
of 0.75 but mostly failed to capture the spoofing behavior. On the contrary, the performance of
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Fig. 9. Classification of Participants in presence of Rogue Contributions

FJOS is poor due to its failure in classifying the spoofing behavior. Additionally, FJOS cannot
penalize those contributions which are not endorsed by the MSAs, or if the liar is generating false
reports intermittently.

In Fig. 9(b), we depict the performances of the methods in the presence of only liars. Interestingly,
the accuracies achieved by both SAFE and HGOM are comparable for varying proportion of
lying participants. The performance of FJOS has considerably improved due to its capability of
identifying liars with the help of MSAs. However, it suffers from the lack of consideration of
previous participation behaviors while assessing reports currently not validated by the MSAs.

In a situation where spoofers are the primary rogue contributors, SAFE comprehensively outper-
forms the other two methods (refer to Fig. 9(c)). The reason is that neither HGOM nor FJOS has the
provision to detect location faking attacks and they consider all such contributions to be genuine.
Conversely, our SAFE framework succeeds in achieving F1-score of 0.9. This reflects the balance
between high precision and recall in accurately classifying spoofed and genuine participation.

6.5 Evaluation of SAFE with Real Data

We have used the real dataset publicly available in the CRAWDAD archive ® for extensive evaluation
of the SAFE framework. The dataset consists of a smartphone app-generated GPS traces of 289
taxicabs across different regions of Rome, collected during the period 01-Feb-2014 to 04-Feb-2014. The
data has been collected for the purpose of research on participatory sensing [Alswailim et al. 2016].
To realize the data generated by participatory sensing, the taxicabs are equipped with peripheral
temperature sensors, and while moving the taxi collects timestamped temperature of its current
location.

For our experiment, we divided the city area of 22.5km X 22.5km into nine sensing regions (each
of 7.5km x 7.5km) and simulated a cellular base-station at the center of each region. The sensing
time of the temperature report has been discretized into four temporal bins per day, each bin being
six hours duration. We generate a temperature value for every active taxicab in a certain temporal
bin by applying Gaussian distribution. The mean temperature at a particular region and during a
given temporal bin has been considered as the ground truth. The taxicabs have been configured to
generate temperature values with the random Gaussian error of 10% on either side of the mean. If
the value is generated within this range, we considered that the contribution is true, otherwise false.
For convenience, we discretized the real value with 0 and 1, depending on if the contribution is false
or true, respectively. Some of the randomly selected taxi cabs have been designated as the MSAs,
who always contribute true temperature readings of the regions through which they travel. Rest of
the taxicabs have been divided into honest (50%), liar (25%), and spoofers (25%) which respectively
generate true, false, and spoofed values depending upon their predefined rates.

8https://crawdad.org/queensu/crowd_temperature/20151120/
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Below we present the performance of the three methods in terms of the FI-score. It is worth
noting that the accuracy obtained with the help of real dataset is on the lower side, compared to
the synthetic data. This can be attributed to the fact that the mobility model considered in the
implementation of our framework is the random waypoint, while in the real dataset it is modeled
by the trajectories of the participating vehicles.
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Fig. 10. Classification of Participants in the Presence of Rogue Contributions (Using Real Data)

Fig. 10(a) shows the classification accuracy of the three methods when both liars and spoofers
are present. Although the FI-score is on the lower side, it is evident that SAFE yields the highest
accuracy, with gradual improvement in performance as the percentage of rogue users increases.
Interestingly, with the real data FJOS performed better than HGOM, but both ended up with low
F1-score as they cannot penalize spoofed reports.

Fig. 10(b) presents the performance of the methods in the presence of only liars. It is worth noting
that unlike Fig. 9(b), FJOS again outperforms HGOM by a significant margin as it can identify liars
based on the MSA feedbacks. Nevertheless, SAFE outperforms FJOS under different proportions of
lying participants due to better penalization scheme for contributions not endorsed by the MSAs.

SAFE comprehensively outperforms FJOS and HGOM (refer to Fig. 10(c)) if the rogue participants
are only spoofers. The reason is that neither HGOM nor FJOS has the provision to detect the
location faking attacks and they consider all such contributions to be genuine.

6.6 Decision Making Accuracy

In the decision model, our objective is to show how the PS sub-system makes trustworthy decisions,
and thus ensures better operational accuracy through the publishing of only true events. We
measure the performance of the EUT-based decision model by means of the following metric: (i)
Success rate: It is the proportion of the total true events which gets successfully published after
passing through the two levels of decision-making module, and (ii) Error rate: It is the proportion
of the total true events which get dropped due to either of the decision level mechanism. The aim
of the proposed two-level decision-making model is to inhibit the publication of false events and
successfully publish the potential true events (rare or frequent) for the benefit of the participants.
Unless otherwise mentioned, the values of the parameters considered for evaluating the decision
model are: y = 0.5, and EUypres = 50% of the sum of the utilities.

Publishing True Events: Fig. 11(a) shows the success and error rates in publishing true events with

increasing prior likelihoods of occurrence (p;). For very rare events (i.e., p, < 0.2), the proposed
decision model fails to publish the majority of them, yielding a significantly high error rate. This is
because, low likelihood reduces the overall expected utilities of the rare events, thus disqualifying
them in the second level of the decision making. In contrast, as the prior likelihood of events
becomes greater than 0.2, the success rate increases many-folds and attains the near-maximum
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Fig. 11. Performance of EUT-based Decision Model

value for all events with a likelihood of occurrence greater than 0.4. As the likelihood of occurrence
increases, even with a moderate confidence value, the expected utility also increases and surpasses
the threshold. This ensures that relatively frequent true events will not remain unpublished.

Success/Error Rates vs % of Genuine Participation: As mentioned earlier, the SAFE framework seg-
regates genuine participants from dishonest ones by means of reputation scores. However, in
practice, these genuine participants may get subverted at the current time epoch (zero-day attack)
or wrongly perceive a true event. Thus, we vary the percentages of genuine participation to study
the performances of the decision model (refer to Figs. 11(b) and 11(c)). It is evident that for low EU
thresholds (0.25 and 0.50), the success rate increases rapidly even if the fraction of genuine partici-
pation is on the lower side. This is intuitive, as low threshold entails a non-restrictive PS sub-system
that allows the events to easily qualify decision level D2 even with the smaller confidence value.
However, with a smaller fraction of genuine participation, the higher success rate is not always

guaranteed as potential sabotaging can be achieved. Conversely, the conservative system expects
significant support from the participants to make publish/drop decisions and uses higher EU, 5.
It is noted that the error rates for all thresholds are very high at low participation. This is due to not
allowing the true events (which has yielded relatively lesser confidence values) to get published.
However, the error rates gradually decrease as the higher number of genuine participants starts
contributing. Thus, the choice of EUyp, is subjective to the VCPS and it depends upon whether it
is risk-seeking (liberal) or risk-averse (conservative).
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Fig. 12. Effect of EUT Threshold (Genuine Participation = 85%)
Effect of EUT Threshold on Frequent and Rare Events: The EU threshold percentage is one of the
important factors that influence successful publishing of true events. Thus, to study the effect
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of EUT threshold, we conducted experiments for both frequent (i.e., p, > 0.6) and rare events
(i-e., p; < 0.4) under a situation where 85% of the participants are genuine, which we believe
is a reasonable assumption for any realistic system. Fig. 12(a) demonstrates that for frequently
occurring events, the decision module of the SAFE framework achieves 100% success rate even
if we fix the EU threshold as high as 80% of the sum of all event confidences. However, for rare
events, a maximum of 60% of the sum of confidence values needs to be set to achieve the highest
success rate. Thus, for all events, the minimum threshold to be maintained is 60% which is still on
the higher side. This is because, as we have shown in Fig. 11(b) that to achieve significant success
rate backed up with substantial evidences (from genuine participants), the EU;p,.s needs to be set
at a higher value. Thus, it is a configuration parameter which the VCPS has to adjust depending
upon its risk attitude (risk-seeking or risk-averse) and the percentage of genuine participation
available. Interestingly, for both rare and frequent events, the error rates are negligible, implying
that irrespective of the thresholds the proposed decision model does not miss out publishing true
events (rare or frequent).

7 CONCLUSION

In this work, we handled the problem of information falsification in a participatory sensing-based
vehicular cyber-physical system (VCPS) and proposed a regression-based reputation framework,
called SAFE. The framework utilizes the participatory sensing paradigm and mobile security agents
(MSAs) to detect rogue contributions; it also uses a modified distance bounding method to address
the location spoofing attacks. The SAFE framework assesses the quality of contribution (QoC) of
a given participant by building an MSA-supported opinion and measuring the spatial similarity
between the reported event location and the site of the actual cellular base station. The reputation
score of the participating user is calculated as the aggregation of the QoCs based on contributed
reports. The normalized reputation score is then utilised for profile-based segregation of honest, liar
and location spoofer. The proposed approach ensures fairness within different segregated groups by
taking both, participation (i.e., quantity) and quality into account. We further proposed a decision
model based on expected utility theory. The decision model takes the users’ reputation score as an
input and make decision for publishing or drop-out the events to enhance the operational reliability
of the system. Extensive experiments with synthetic and real dataset demonstrates that the SAFE
framework is efficient in terms of user behavior classification and decision accuracy as compared
to the state-of-the-art participatory sensing-based reputation models.
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