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Abstract

Modeling human behaviors and activity patterns has attracted significant research interest in recent years. In order to accurately
model human behaviors, we need to perform fine-grained human activity understanding in videos. Fine-grained activity
understanding in videos has attracted considerable recent attention with a shift from action classification to detailed actor and
action understanding that provides compelling results for perceptual needs of cutting-edge autonomous systems. However,
current methods for detailed understanding of actor and action have significant limitations: they require large amounts of
finely labeled data, and they fail to capture any internal relationship among actors and actions. To address these issues,
in this paper, we propose a novel Schatten p-norm robust multi-task ranking model for weakly-supervised actor—action
segmentation where only video-level tags are given for training samples. Our model is able to share useful information
among different actors and actions while learning a ranking matrix to select representative supervoxels for actors and actions
respectively. Final segmentation results are generated by a conditional random field that considers various ranking scores for
video parts. Extensive experimental results on both the actor—action dataset and the Youtube-objects dataset demonstrate that
the proposed approach outperforms the state-of-the-art weakly supervised methods and performs as well as the top-performing
fully supervised method.

Keywords Weakly supervised learning - Actor—action semantic segmentation - Multi-task ranking

1 Introduction

Observing people and trying to predict what they will per-
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ior understanding. After segmentation of actors in video
sequences, the next step is to recognize and understand the
behaviors of actors. The essence of behavior understanding
may be considered to be a classification problem towards
time varying data. Accordingly, two critical issues need
to be addressed during classification. The first one is to
obtain the reference behavior sequences and the other one
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tive to cope with the minor deviation in both temporal and
spatial scales for similar motion patterns. Understanding fine-
grained activities in videos is gaining attention in the video
analysis community. Over the past decade, we have wit-
nessed the shift of interest in the number of activities, e.g.
from no more than ten (Rodriguez et al. 2008; Laptev et al.
2008) to many hundreds (Karpathy et al. 2014; Caba Heilbron
et al. 2015) and thousands (Abu-El-Haija et al. 2016); in the
scope of activities, e.g. from single person actions (Schuldt
et al. 2004) to person—person interactions (Ryoo and Aggar-
wal 2009), person—object interactions (Gupta et al. 2009),
and even animal activities (Iwashita et al. 2014; Xu et al.
2015); and moreover, in the approaches to model activities,
e.g. from classification (Wang and Schmid 2013; Tran et al.
2015; Simonyan and Zisserman 2014) to localization (Jain
et al. 2014; Yuan et al. 2016; Soomro et al. 2016; Mettes
et al. 2016; Shou et al. 2016), detection (Geest et al. 2016;
Peng and Schmid 2016; Chen and Corso 2015; Tian et al.
2013) and segmentation (Lea et al. 2016; Lu et al. 2015; Guo
et al. 2013). The fine-grained results have also demonstrated
their utilities in various emerging applications such as robot
manipulation (Pinto et al. 2016; Yang et al. 2015) and video-
and-language (Song et al. 2016; Xu et al. 2016).

Among the many fine-grained activities, there is a growing
interest in simultaneously understanding actions and actors,
the agents who perform actions. It opens a new window to
explore inter-agent and intra-agent activities for a compre-
hensive understanding. To address this issue, Xu et al. (2015)
introduced a new actor—action segmentation challenge on a
difficult actor—action dataset (A2D), where they focused on
spatiotemporal segmentation of seven types of actors, e.g.
human adult, dog and cat, performing eight different actions,
e.g. walking, crawling, running. In particular, the method
proposed by Xu and Corso (2016a) sets the state-of-the-art in
this problem where they combine a labeling Conditional Ran-
dom Field with a supervoxel hierarchy to consider adaptive
and long-ranging interactions among various actors perform-
ing various actions. Despite the success in pushing up the
numbers in performance, their method together with many
leading methods in activity segmentation (Lea et al. 2016; Lu
etal. 2015; Guo et al. 2013) suffer largely from the following
two aspects.

First, except (Mosabbeb et al. 2014), most methods in
spatiotemporal activity segmentation (Xu et al. 2015; Lu
et al. 2015; Xu and Corso 2016a; Guo et al. 2013; Lea et al.
2016) are in a fully supervised setting where they require
dense pixel-level annotation or bounding box annotation on
many training samples. These assumptions are not realistic
when we deal with real-world videos where available anno-
tations are at most video-level tags or descriptions and have
extreme diversity in the types of actors performing actions.
Even humans alone can perform many hundreds of actions
(Chao et al. 2015), not to mention the large variety in actors.

Indeed, there are a few methods working on the problem of
action co-segmentation (Xiong and Corso 2012; Guo et al.
2013). However, the ability to use weak supervision with only
video-level tags for spatiotemporal activity segmentation is
yet to be explored.

Second, existing methods in actor—action segmentation
(Xu et al. 2015; Xu and Corso 2016a) train classifiers inde-
pendently for actors and actions, and only model their rela-
tionship in random fields for segmentation output. Despite
the success in considering different actor—action classifi-
cation responses from various video parts, they lack the
consideration of the interplay of actors and actions in fea-
tures and classifiers, which is important as seen from the
recent progress in image segmentation (Long et al. 2015;
Lin et al. 2016). For example, when separating the two fine-
grained classes dog-running and cat-running, we should also
benefit from extra information from all actions performed by
the two actors.

To overcome the above limitations, we present a new
robust multi-task ranking model that shares useful infor-
mation among different actors and actions while learning
a ranking matrix. The learned ranking matrix can be used
for better potential generations due to this feature sharing.
In many real-world applications involving multiple tasks, it
is usually the case that a group of tasks are related while
some other tasks are irrelevant to such a group. Simply
pooling all tasks together and learning them simultaneously
under a presumed structure may degrade the overall learn-
ing performance. Identifying irrelevant (outlier) tasks while
learning multiple tasks referred as robust multi-task learning
(Yu et al. 2007). In our previous work (Yan et al. 2017), we
performed a trace-norm and a £ -norm to capture a com-
mon set of features among relevant tasks and identify outlier
tasks. Although the trace-norm minimization based objec-
tive is a convex problem with global solution, the relaxation
may make the solution seriously deviate from the original
solution. It is desired to solve a better approximation of
the rank minimization problem without introducing much
computational cost. This paper proposed a more flexible reg-
ularization Schatten p-norm term in the objective function.
The regularization terms consist of a Schatten p-norm and
a {1 2-norm, such that the model is able to capture a com-
mon set of features among relevant tasks and identify outlier
tasks; hence, it is robust.

We propose an efficient iterative optimization scheme for
the problem. With this new learning model, we devise a
pipeline to solve the weakly supervised actor—action seg-
mentation problem where only video-level tags are given for
the training videos (see Fig. 1). In particular, we first segment
videos into supervoxels and extract features on supervoxels,
then use the proposed robust multi-task ranking model to
select representative supervoxels for actor and action respec-
tively, and then use a Conditional Random Field (CRF)
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to generate the final segmentation output. Each supervoxel
belongs to one or more parts of actors or scenes, which are
quite different in terms of the contents (e.g. usually roads
are smooth and actors are textured). To understand the con-
tents of each supervoxel, we first collect all the supervoxels
in videos with such label for each semantic category. We
then select representative supervoxels through ranking SVM.
These representative supervoxels selected in each category
are further utilized in CRF, in which we assign each super-
voxel a potential to be a specific category.

We conduct extensive experiments on the recently intro-
duced large-scale A2D dataset (Xu et al. 2015) and Youtube-
objects dataset (Prest et al. 2012). In particular, we compare
our methods against a set of fully supervised methods
including the top-performing grouping process models (Xu
and Corso 2016a). For a comprehensive comparison, we
also compare to a recent top-performing weakly supervised
semantic segmentation method (Tsai et al. 2016), and other
learning methods including ranking SVM (Joachims 2006),
dirty model multi-task learning (Jalali et al. 2010), and
clustered multi-task learning (Zhou et al. 2011a). The exper-
imental results show that our method outperforms all other
weakly supervised methods and achieves performance as
high as the top-performing fully supervised method.

To summarize, the main contributions of this paper are: (i)
a pipeline is proposed to solve the weakly supervised actor—
action segmentation problem where only video-level tags are
given for the training videos; (ii) a new Schatten p-norm
robust multitask ranking model, which shares useful infor-
mation among different actors and actions while learning a
ranking matrix, is presented; (iii) an efficient iterative opti-
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mization scheme for the Schatten p-norm robust multitask
ranking problem is devised.

The paper is organized as follow. Section 2 reviews related
work. Section 3 describes the Schatten p-norm robust multi-
task ranking model. Section 4 introduces our approach for
weakly supervised actor—action segmentation. Experiments
are presented in Sect. 5, and conclusion is stated in Sect. 6.

2 Related Work

In this section, we review the related work from per-
spectives of video segmentation, semantic segmentation,
co-localization, actor—action segmentation and multi-task
learning and ranking, respectively.

2.1 Video Segmentation

Video segmentation is a fundamental and emerging topic
in computer vision which potentially can be used for dif-
ferent applications, such as action and activity recognition,
large-scale video retrieval, video event detection. In liter-
ature, video segmentation can leverage information from
appearance (Brendel and Todorovic 2009; Grundmann et al.
2010), motion (Brox and Malik 2010) and multiple cues
(Galasso et al. 2012). Different approaches have been used
for video segmentation, such as generative layered approach
(Kumar et al. 2005), graph-based approach (Grundmann
et al. 2010), mean-shift approach (Paris 2008), manifold-
embedding approaches (Brox and Malik 2010; Galasso et al.
2012). In particular, Xu and Corso (2012) evaluated dif-
ferent supervoxel methods for video segmentation, such as
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segmentation by weight aggregation (SWA) (Corso et al.
2008), graph-based (GB) (Felzenszwalb and Huttenlocher
2004), hierarchical graph-based (GBH) (Grundmann et al.
2010). They identified GBH and SWA as the most effective
supervoxel methods based on several generic and applica-
tion independent criteria. There are many challenges for
video segmentation. One major difficulty is the burden
of labelling training samples, making the video segmenta-
tion unsolved. Due to this reason, most video segmentation
approaches in literature are in unsupervised settings. How-
ever, unsupervised approaches usually perform not well and
are computational expensive. To address these issue, differ-
ent from previous unsupervised approaches, our approach
leverage video-level label information which prevent us from
tedious labelling work for video segmentation.

2.2 Semantic Segmentation

Semantic segmentation has attracted attention recently in
computer vision. Some deep learning approaches have been
proposed for image semantic segmentation, such as the
famous Fully Convolutional Networks (FCN) (Long et al.
2015). Further, Zheng et al. (2015) introduced a form of
convolutional neural network that combines the strengths
of Convolutional Neural Networks (CNNs) and Conditional
Random Fields (CRFs)-based probabilistic graphical mod-
elling for image semantic segmentation. However, these
approaches are not suitable for video semantic segmenta-
tion partially due to lack of training data and complexity of
the video segmentation problem. For video semantic seg-
mentation, few work has been done in literature. Some exist-
ing works addressed temporal coherence of pixel labelling
(Lezama et al. 2011; Liu and He 2015). Lezama et al. (2011)
used optical flow based long-term trajectories to discover
moving objects. Liu and He (2015) proposed an object-
augmented dense CRF in spatio-temporal domain, which
captured long-range dependency between supervoxels, and
imposed consistency between object and supervoxel labels
for multiclass video semantic segmentation. For actor—action
video semantic segmentation, Xu and Corso (2016a) pro-
posed a grouping process model that combined local labelling
CRFs with a hierarchical supervoxel decomposition. The
supervoxels provided cues for possible groupings of nodes at
various scales in the CRFs to encourage adaptive, high-order
groups for more effective labelling.

2.3 Co-localization

Co-localization is a kind of weakly supervised localization
approach (Deselaers et al. 2012) where strong supervision
is not needed. Tang et al. (2014) proposed a co-localization
approach via combining an image model and box model into
ajoint optimization problem. Joulin et al. (2014) introduced a

formulation for video co-localization that is able to naturally
incorporate temporal consistency in a quadratic program-
ming framework. However, co-localization approaches over-
looked the semantic meaning from superpixels/supervoxels
which prevent them to be used for image and video semantic
segmentation.

2.4 Actor-Action Segmentation

Recently, there are many emerging works on action detec-
tion (Geest et al. 2016; Peng and Schmid 2016; Chen and
Corso 2015; Tian et al. 2013) and localization (Yuan et al.
2016; Mettes et al. 2016; Soomro et al. 2016; Shou et al.
2016; Jain et al. 2014; Bojanowski et al. 2014). We differ
from them by considering pixel-level segmentation accu-
racy. There are only a few methods on spatiotemporal action
segmentation (Lea et al. 2016; Lu et al. 2015; Guo et al.
2013; Mosabbeb et al. 2014). However, they all assumed
single type of actor and differ from our goal of actor—action
segmentation. The actor—action segmentation problem was
first introduced in Xu et al. (2015), where a set of CRFs
was proposed to consider various actor—action interactions in
labeling supervoxels. Later, Xu and Corso (2016a) presented
a grouping process model that combined local labelling CRFs
with a supervoxel hierarchy. The supervoxel hierarchy pro-
vided cues for possible groupings of nodes at various scales
in the CRFs to encourage adaptive long-ranging interactions.
This method sets the state-of-the-art on the A2D dataset. In
line with our work, there are several other work about actor—
action semantic segmentation. For example, Kalogeiton et al.
(2017) introduced an end-to-end multitask objective that
jointly learned object—action relationships and compared
with different training objectives. Gavrilyuk et al. (2018) pro-
posed a fully-convolutional model for pixel-level actor and
action segmentation using an encoder—decoder architecture
optimized for video. They inferred the segmentation from
a natural language input sentence. Dang et al. (2018) pro-
posed an end-to-end region-based actor—action segmentation
approach which relied on region masks from an instance seg-
mentation algorithm. Compared with our proposed method,
Dang et al. (2018) is a supervised approach rather than a
weakly-supervised approach which means more supervision
is needed using their proposed semantic proposals approach.
Moreover, as indicated in Dang et al. (2018), to generate
accurate region masks, the method needs fully convolution
instance segmentation (FCIS) model trained on specific A2D
dataset rather than more generic COCO dataset. Otherwise,
too much irrelevant background region will appear in the final
results which significantly harm the actor—action segmenta-
tion performance. This actually prevents their method to be
used in practical since they need FCIS model trained on the
specific dataset. However, there is no these requirements for
our proposed method.

@ Springer



1418

International Journal of Computer Vision (2020) 128:1414-1432

Our work is also related to many works in semantic
video segmentation. Liu and He (2015) proposed an object-
augmented dense CRF in the spatio-temporal domain, which
captured long-range dependencies between supervoxels and
imposed consistency between object and supervoxel labels
for multiclass video semantic segmentation. Kundu et al.
(2016) extended the fully connected CRF (Krihenbiihl and
Koltun 2011b) to work on videos. Ladicky et al. (2014) built
a hierarchical CRF on multi-scale segmentations that lever-
aged higher-order potentials in inference. Despite the lack
of explicit consideration of actors and actions, we compare
to a representative subset of these methods (Krihenbiihl and
Koltun 2011b; Ladicky et al. 2014) in Sect. 5.

There are many weakly supervised video segmentation
methods (Zhong et al. 2016; Zhang et al. 2015, 2017; Liu
et al. 2014; Tang et al. 2013; Hartmann et al. 2012) and co-
segmentation methods (Tsai et al. 2016; Fu et al. 2014; Wang
et al. 2014; Zhang et al. 2014; Chen and Fritz 2013). Zhong
etal. (2016) proposed a scene co-parsing framework to assign
semantic pixel-wise labels in weakly-labeled videos. Zhang
etal. (2017) proposed a novel self-paced fine-tuning network
(SPFTN)-based framework, which can learn to explore the
context information within the video frames and capture ade-
quate object semantics without using the negative videos.
Zhang et al. (2015) proposed a segmentation-by-detection
framework to segment objects with video-level tags. Chen
and Fritz (2013) studied multi-class video co-segmentation
where the number of object classes and number of instances
at the frame and video level are unknown. Tsai et al. (2016)
proposed an approach to segment objects and understand
the visual semantics from a collection of videos that link
to each other. However, these co-segmentation approaches
lacked any consideration of the internal relationship among
different object categories, which is an important cue in
the weakly-supervised segmentation approaches. In contrast,
our framework is able to share useful information among
different objects leading to better performance than the top-
performing co-segmentation method (Tsai et al. 2016) (see
Sect. 5).

2.5 Multi-task Learning and Ranking

Multi-task learning (MTL) is effective in many applications,
such as object detection (Salakhutdinov et al. 2011) and clas-
sification (Luo et al. 2013; Yan et al. 2013, 2014, 2016). The
idea is to learn models jointly that outperforms learning them
separately for each task. To capture the task dependencies,
a common approach is to constrain all the learned models
to share a common set of features. This constraint motivates
the introduction of a group sparsity term, i.e. the £1 /¢>-norm
regularizer as in Argyriou et al. (2007). However, in prac-
tice, the £1/€>-norm regularizer may not be effective since
not every task is related to all the others. To this end, the
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MTL algorithm based on the dirty model is proposed in Jalali
et al. (2010) with the goal of identifying irrelevant (outlier)
tasks. In some cases, the tasks exhibit a sophisticated group
structure and it is desirable that the models of tasks in the
same group are more similar to each other than to those
from a different group. To model complex task dependen-
cies, several clustered multi-task learning methods have been
introduced (Jacob et al. 2008; Zhang and Yeung 2010; Zhou
et al. 2011a). Different from previous multi-task classifica-
tion and regression problems, we propose a Schatten p-norm
robust multi-task ranking model with the ability to identify
outlier tasks. Meanwhile, an efficient solver is devised in this
paper.

Ranking SVM is a typical method of learning to rank and
has been widely used in information retrieval (CAO et al.
2006). Learning to rank can be categorized into point-wise,
pair-wise and list-wise approaches. In point-wise methods,
the higher ranked items are assigned higher target scores.
Pair-wise methods capture some structure by posing the task
as a classification problem over all pairs. List-wise methods
wrestle with the full combinatorial structure and thus have to
deal with formidable optimization problems. Sculley (2010)
proposed using stochastic gradient descent to optimize a lin-
ear combination of a pointwise quadratic loss and a pairwise
hinge loss from ranking SVM. Amini et al. (2008) presented
a boosting based algorithm for learning a bipartite ranking
function with partially labeled data. Different from existing
ranking methods, we extended ranking SVM to a multi-task
setting and provided an efficient solver.

3 Schatten p-Norm Robust Multi-task
Ranking

Our core technical emphasis builds on the current methods
in learning a preference function for ranking, which has been
widely used across fields (Liu 2009). To obtain good poten-
tials for segmentation and select representative supervoxels
and action tubes for specific categories (details in Sect. 4),
we propose a Schatten p-norm robust multi-task ranking
approach to share features among different actors and actions.
In the rest of this section, we first give some background about
SVM ranking, and then introduce our Schatten p-norm robust
multi-task ranking.

3.1 Ranking SVM

Denote X € IR? as a d-dimensional feature vector and
w € IR? as the learned weight parameter, the ranking SVM
optimization problem is formulated as follows:
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min > wll*+ ngij
st wix; > waj +1—g;
gij >0 (D

where ¢;; are slack variables measuring the error of distance
of the ranking pairs (x;, X;). ||-|| is the £2-norm of a vector.
The notation (-)7 indicates the transpose operator. C is the
regularization parameter.

3.2 Robust Multi-task Ranking

Given a set of related tasks, multi-task learning seeks to
simultaneously learn a set of task-specific classification or
regression models. The intuition behind multi-task learning
is that a joint learning procedure accounting for task relation-
ships is more efficient than learning each task separately. We
first extend the ranking SVM to the multiple-task setting via
the following optimization problem:

1

nin_~ W% + Ci Z Yijk + C2 Z eijk + 2P (W)
Ve ijes i,jeD

s.t. Wka,-k — WZXjk‘ = Vijk

T T
Wi Xik — Wi Xjk = 1 — &iji

&ijk 20

Yijk = 0 2
where W € IR?*K is the learned ranking matrix as
[wlT, e, wkT, e, w[T(]. wy, is the k-th column of W. K is the

number of tasks. C1, C3 and A are regularization parameters.
&ijk and y; ji are slack variables in the k-th task measuring the
error of the distance between dissimilar pairs (i, j) in D sat-
isfying w;X; > w;X; and similar pairs (i, j) in S satisfying
w;X; ~ W;X;. ®(W) is the regularization term of W.

The regularization term used in most traditional multi-
task learning approaches assumes that all tasks are related
(Argyriou et al. 2007) and their dependencies (Jacob et al.
2008; Zhang and Yeung 2010; Zhou et al. 2011a) can be
modelled by a set of latent variables. However, in many real
world applications, such as our actor—action semantic seg-
mentation problem, not all tasks are related. When outlier
tasks exist, enforcing erroneous and non-existent dependen-
cies may lead to negative knowledge transfer. Take actions
as an example, action tasks climb, crawl, jump, roll, run,
walk may share useful information among each other, while
the action task eat seems to be an outlier task. Incorporating
eat in the multi-task learning may bring negative knowledge
sharing.

In contrast, Chen et al. (2011) propose regularization
terms with a trace-norm plus a £; 2-norm that simultane-
ously captures a common set of features among relevant tasks

and identifies outlier tasks. They also theoretically proved a
bound to measure how well the regularization terms approx-
imate the underlying true evaluation. Inspired by them, we
decompose our regularization term into two terms. One term
enforces a trace norm on L € IR?*X to encourage the desir-
able low-rank structure in the matrix to capture the shared
features among different actions and actors. The other term
enforces the group Lasso penalties on E € IR?*X which
induces the desirable group-sparse structure in the matrix to
detect the outlier tasks. This formulation is robust to outlier
tasks and effectively achieves joint feature learning based
on the assumption that the same set of essential features are
shared across different actions and actors with the existence
of outlier tasks.
We hence propose the following optimization problem:

1 2
i,jeS i,jeD
+ A1 Ll + A2 [[Elly 2

s.t. w,{x,-k —wkTXjk’ = Vijk

Wl xi — Wik > 1 —eij

&ijk = 0

Yijk = 0

W=L+E 3)

In Eq. 3, the learned weighted matrix W is decomposed into
L + E. The notation ||L||, = trace(+/L*L) is trace norm and

1/2
IEl = [Zle(Zle |eij|)2] s €1 2-norm.

Although we adopt the same regularization term as Chen
et al. (2011), our proposed optimization is different in three
critical aspects: (i) the optimization problem in Chen et al.
(2011) is a regression problem while ours is a ranking opti-
mization problem. This makes (Chen et al. 2011) unsuitable
to be used in our actor—action video semantic segmentation
with weakly supervised setting where good potentials for
segmentation and representative supervoxels are needed. (ii)
The loss function in Chen et al. (2011) is a least-squared loss,
which sometimes does not work well for real-world datasets
because the least-squared loss has the tendency to be domi-
nated by outliers. In our actor—action analysis, outlier tasks
exist which further exaggerates this effect; (iii) the optimiza-
tion method itself is different between (Chen et al. 2011) and
our problem.

3.3 Schatten p-Norm Robust Multi-task Ranking
Although the trace norm in Eq. 3 is a convex problem, the
relaxation may make the solution seriously deviate from the

original solution. It is desired to solve a better approxima-
tion of the rank minimization problem without introducing
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much computational cost. We reformulate the robust multi-
task ranking problem using the Schatten p-norm.

The Schatten p-norm (0 < p < co)of amatrix A € IR'*™
is defined as

1/p

- (lr(AT A)p/z)l/p 4)

min{l,m}

P
}:Ui

i=1

IAlls, =

where o; is the i-th singular value of A and tr(-) means the
trace operator.
The Schatten p-norm of matrix A € IR"™ to the power

pis

min{l,m}

JAIE = Z o =1r (ATA)p/2 )

while p = 1, the Schatten p-norm becomes trace norm that
denoted by |||, and while p = 2, the Schatten p-norm
becomes Frobenius norm that denoted by ||-|| ¢.

Based on the above definition, we extend our robust
multi-task ranking with the Schatten p-norm version. The
optimization problem becomes

min LWz + ¢ Y ik +C Y e

i,jesS i,jeD
P
+ AL, + 22 [El; 2
T T
S.t Wi Xik — Wy, Xjk‘ = Vijk
T T
W Xik — Wi Xje > 1 —gji
&ijk 20
Vijk =0
W=L+E. (6)

3.4 Optimization

The proposed optimization problem in Eq. 6 is hard to solve
due to the mixture of different norms and constraints. To
facilitate solving the original problem, we introduce a slack
variable S to solve the optimization problem in an alternat-
ing way. S is used to replace the explicit decomposition of
W in Eq. 6. Then the mixture of norms can be placed on
S which suggests an update independent from W. Thus, the
optimization can be facilitated. The optimization problem
can be decomposed into two separate steps by iteratively
updating W and S respectively. We adopt Proximal Operator
Computation approach (Parikh and Boyd 2013). The benefit
is that the column vectors of W can be optimized separately.
Specifically, each vector of the optimal W can be obtained
via solving sub-problems. With the slack variable, the opti-
mization problem becomes,

@ Springer
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+ W —S||% +22(S)
s.t. w,{x,-k - wkTXjk’ = Vijk
Wl xi — WXk > 1 — eiji
gijk =0
Yijk = 0 @)

The term |W — S ||% in Eq. 7 enforces the solution of S to be
close to W. The term @ (S) is the regularization on S. There
are two major steps to optimize Eq. 7 as follows:

Step 1 Fix S, optimize W. Equation 3 becomes,

HllIl —Z“Wk”Z"r‘Cl Z Yijk + C2 Z Eijk

i,jes i,jeD
2
+Z Iwi — sl
k=1
T T
s.t. ‘wk Xik — Wy, Xjk’ = Yijk
T T
Wi Xik — W Xjk = 1 — &k
&ijk =0
Yijk >0 (8)

Equation 8 can be decomposed into K separate single-task
SVM ranking sub-problems and therefore can be solved via
a standard SVM ranking solver (Joachims 2006).

Step 2 Fix W, optimize S. Equation 3 becomes,

min IS — W7 + 2&(S) ©)

The first term in Eq. 9 penalizes the learned slack weight
matrix S to be close to the original matrix W. @(S) can
be ||S||§p. Solving the problem Eq. 9 is challenge since the
nonsmooth and intractable of Schatten p-norm. We use the
augmented Lagrangian multiplier (ALM) method (Dp 1996)
to solve this problem.

The Eq. 9 can be equivalently rewritten as

P|> Z” 10
. énw I| 1%+ v IZII§ (10)

Based on Augmented Lagrangian Multiplier method, we
solve the following problem:

2
. " 1
P|> ZI? +Z | P—(S—W)+ —A
SIflplgll I +v IZIlg, + H ( )+u

F
2

1
EHS—ZJr—Z (11)
"

2

F
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We use alternating direction method (ADM) (Gabay and
Mercier 1976) to solve the problem with respect to S, P, Z.

(i) While fixing P, Z, the problem (11) is simplified to the
following problem:

min IS — Q7 + IS — RI% 12)

where Q = P+W+%A and R = —ﬁz. The
optimal solution to problem (12) can be easily obtained
by S = (Q + R)/2.

(i) While fixing S, Z, the problem (11) is simplified to the
following problem:

. ®
min [P/ + 7 P — HII% (13)

where H =S — W — iA, the optimal solution P =
1 H
24p

(iii) While fixing S, P, the problem (11) is simplified to the

following problem:

; p L Hyg g2
min y I1Zllg, + > IZ —Bll% (14)

where B = S + &E. The optimal solution for Z is
U1V7, where U and V are the left and right singular
vector matrices of B, respectively, and the i-th diagonal
element §; of the diagonal matrix A.

The algorithm solving the proposed problem is summarized
as in Algorithm 1.

Algorithm 1 Solving Eq. 7

INPUT: Dy, Sk, Vk=1,..., K. 1,22, Cy, Ca.

Initialize W, So.

LOOP:

1. Fix S, optimize W
fork=1to K

Fix s, optimize Eq. 8 using Joachims (2006), update wy

end

2. Fix W, optimize S
Optimize Eq. 9 using Augmented Lagrangian Multiplier (ALM)
(i) Fix P,Z, update S with (Q + R)/2
(i) Fix S,Z, update P with /(2 + w)H
(iii) Fix S,P, update Z with UAV

Until Convergence

Output: W

4 Weakly Supervised Actor-Action
Segmentation

In this section, we describe how we tackle the weakly super-
vised actor—action segmentation problem with our robust
multi-task ranking model. The goal is to assign an actor—
action label (e.g. adult-eating and dog-crawling) or a back-
ground label to each pixel in a video. We only have access to
the video-level actor—action tags for the training videos. This
problem is challenging as more than one-third of videos in
A2D have multiple actors performing actions.

4.1 Overview

Figure 2 shows an overview of our framework. We first
segment videos into supervoxels using the graph-based hier-
archical supervoxel method (GBH) (Grundmann et al. 2010).
Meanwhile, we generate action tubes as the minimum bound-
ing rectangles around supervoxels. We extract features at
different GBH hierarchy levels to describe supervoxels and
action tubes (see Sect. 4.2). Three different kinds of poten-
tials (action, actor, actor—action) are computed via our robust
multi-task ranking model by considering information sharing
among different groups of actors and actions (see Sect. 4.3).
Finally, we devise a CRF model for actor—action segmenta-
tion (see Sect. 4.4).

4.2 Supervoxels and Action Tubes

4.2.1 Supervoxels

Supervoxel segmentation defines a compact video represen-
tation where pixels in space—time with similar color and
motion properties are grouped together. Various supervoxel
methods are evaluated in Xu and Corso (2016b). Based on
their work, we adopt the GBH supervoxel segmentation and
consider supervoxels from three different levels in a hier-
archy. The performance of different levels are evaluated in
Sect. 5. We extract CNN features from three time slices of
a supervoxel, i.e. three superpixels, sampled from the begin-
ning, the middle and the ending of supervoxel. We zero out
pixels outside the superpixel boundary and use the rectangle
image patch surrounding the superpixel as input to a pre-
trained CNN to get fc vectors, similar to R-CNN (Girshick
etal. 2016). The final feature vector representing the actor of
a superpvoxel is averaged over the three time-slices as shown
in Fig. 2b.

4.2.2 Tubes

Each supervoxel defines an action tube that is the sequence
of minimum bounding rectangles around the supervoxel over
time. Jain et al. (2014) use such action tubes to localize
human actions in videos. Here, we use them as proposals for
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(b) Supervoxels

(e) Semantic Label Inference

(d) Robust Actor-Action Ranking
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Fig. 2 Overview of our proposed weakly supervised actor—action
segmentation framework. a Input videos from the video dataset. b
Supervoxel generation and feature extraction. ¢ Action tube genera-

general actions, e.g. walking and crawling, as well as fine-
grained actor—actions, e.g. cat-walking, dog-crawling. We
extract CNN features (fc vectors) from three sampled time
slices of an action tube. The final feature vector representing
action or actor—action of the action tube is a concatenation
of the FC vectors as shown in Fig. 2c.

4.3 Robust Actor-Action Ranking

It is our assumption that information contained in supervoxel
segments in adult-running videos should be correlated with
supervoxel segments in adult-walking videos as they share
same actor adult. Similarily, the correlation of action tubes
among fine-grained actions in a same general action, e.g.
cat-walking and dog-walking, should be larger than the cor-
relation among non-relevant action pairs.

In the weakly supervised setting, we only have access
to video-level tags for training videos. To better use this
extremely weak supervision, we propose a robust multi-task
ranking approach as described in Sect. 3 to effectively search
for representative supervoxel segments and action tubes for
each category and meanwhile, consider the sharing of useful
information among different actors and actions. Three differ-
ent sets of potentials (actor, action, actor—action) are obtained
by sharing common features among tasks via the multi-task
ranking approach by setting each task as action category (e.g.
walking, running and climbing), actor category (e.g. adult,
cat and bird) and actor—action category (e.g. adult-walking,
bird-climbing and car-rolling).

@ Springer

tion and feature extraction. d Sharing features among different actors
and actions. e Semantic label inference for actor—action segmentation.
Figure is best viewed in color and under zoom (Color figure online)

4.4 Semantic Label Inference

We construct a CRF on the entire video. We denote S =
{s1,82,...,58,} as a video with n supervoxels and define a
set of random variables x = {x1, x2, ..., X, } on supervoxels,
where x; takes a label from the actors. Similarly, we denote
T ={t1,t, ..., 1y} as a set of m action tubes and define a
set of random variablesy = {y1, y2, ..., y,} on action tubes,
where y; takes alabel from the actions. A graphis constructed
with three sets of edges: a set of edges £s linking neigh-
boring supervoxels, a set of edges £ linking neighboring
action tubes, and a set of edges £s_,7 linking supervox-
els and action tubes. Our goal is to minimizes the following
objective function:

x*,y) =argmin Y Y, x)+ Y YY)
Y pegs (.)€
) b)Y el
ieS ieT
+ ) &y .

(i,))e€sT

(15)

where ¢(-), ¢(-) and &(-) are the negative log of the nor-
malized ranking scores for actor, action and actor—action
respectively, and ¥/ (-, -) takes the form of a contrast-sensitive
Potts model to encourage smoothness. Following (Xu and
Corso 2016a), we also use video-level potentials as an addi-
tional global labeling cost. Comparing to the models in Xu
et al. (2015), our model is more flexible and allows separate
topologies for supervoxels and action tubes (see Fig. 2e).
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Fig.3 Examples from actor-action (A2D) video dataset
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Fig. 4 The overall pixel accuracy for different GBH hierarchy super-
voxels on A2D dataset

Finally the segmentation is generated by mapping action
tubes to supervoxels.

CRF models are the most effective approaches for image
and video segmentation (Fulkerson et al. 2009). Basic
CRF models are composed of unary potentials on indi-
vidual pixels/voxels or superpixels/supervoxels, and pair-
wise potentials on neighboring pixels/voxels or superpix-
els/supervoxels. Inspired by Xu et al. (2015), we represent
actor nodes and action nodes as two separate CRF layers to
perform actor—action semantic segmentation. Bi-layer CRF
model connects each pair of random variables with an edge
encodes the potentials. The unary and pair-wise potentials
are learned via proposed multi-task ranking approach.

5 Experiments

We perform extensive experiments on the A2D dataset and
Youtube-objects dataset to evaluate our proposed method
for weakly supervised actor—action segmentation. We first
describe our experimental settings, and then present our
results.

5.1 Dataset

Fine-grained actor—action segmentation is a newly proposed
problem. To the best of our knowledge, there is only one
actor—action video dataset, i.e. A2D (Xu et al. 2015) as shown
in Fig. 3, in literature. The A2D dataset contains 3782 videos
that are collected from YouTube. Both the pixel-level labeled
actors and actions are available with the released dataset.
The dataset includes eight different actions, e.g. climbing,
crawling, eating, flying, jumping, rolling, running, walking,
and one additional none action. The none action class means
that the actor is not performing an action or is performing an
action that is outside their consideration. Meanwhile, seven
actor classes, e.g. adult, baby, ball, bird, car, cat, dog, are
considered in A2D to perform those actions.

Another dataset used in the experiments is Youtube-
objects dataset (Prest et al. 2012) which contains 10 object
categories, e.g. aeroplane, bird, boat, car, cat, cow, dog,
horse, motorbike, train, and the length of each sequence is
up to 400 frames. Since there are no action labels for videos
in the Youtube-objects dataset, we extend the dataset for
actor—action analysis by adding action labels to videos, e.g.
climbing, crawling, eating, flying, jumping, rolling, running,
walking. We evaluate the proposed algorithm in a subset of
126 videos with more than 20,000 frames, where the pixel-
wise annotations in every 10 frames are provided by Jain and
Grauman (2014).

5.2 Experimental Settings

We use GBH (Grundmann et al. 2010) to generate hierar-
chical supervoxel segmentations. We evaluate our method
on three GBH hierarchy levels (fine, middle, coarse) where
the number of supervoxels varies from 20 to 200 in each
video. The action tubes are generated with minimum bound-
ing rectangles around supervoxels. For supervoxel and action
tube features, we use pretained GooglLeNet (Szegedy et al.
2015) to extract CNN deep features of the average pooling
layer 1024-dimensional feature vector. GoogleNet is a 22-
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layer deep network which has achieved good performance
in the context of image classification and object detection.
Parameter p in Schatten p-norm is grid-searched via range
[0.1,0.2,...,0.9, 1] in the experimental setting. The reg-
ularization parameters Ay, Ao and Cy, C; are grid-searched
viarange [0.01, 0.1, 1, 10, 100] for training our robust multi-
task ranking model. We use multi-label graph cuts (Delong
etal. 2012) for CRF inference and empirically set the param-
eters by hand. We follow the same setup as Xu et al. (2015)
for the training/testing split of the dataset.

5.3 Evaluation Metrics

For actor—action segmentation, pixel-level accuracy is the
most commonly used measurement in literature. We use two

Fig.5 The overall pixel
accuracy for different GBH
hierarchy supervoxels on

Youtube-objects dataset Actor-Action

Action

40 45

Fig.6 The overall pixel Accuracy
accuracy for different value of p 85
on both A2D and
Youtube-objects dataset 83
81
79
77
75
73

metrics in the paper: (i) the Overall Pixel accuracy mea-
sures the proportion of correctly labeled pixels to all pixels
in ground-truth frames. (ii) The per-class accuracy measures
the proportion of correctly labeled pixels for each class and
then averages over all classes.

5.4 Comparison to Variations of Our Method

We evaluate our approach with different GBH hierarchy
supervoxels. The overall pixel accuracy of segmentation
results are shown in Fig. 4 for A2D dataset and Fig. 5 for
Youtube-objects dataset, respectively. We observe that the
fine-level GBH hierarchy achieves considerably better results
than coarser-level GBH hierarchies. This is probably because
fine-level GBH hierarchy has a reasonable number of super-

r
. r

50 55 60 65 70 75 80
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voxels (100-200) for each video, which leads to the best raw
segmentation result among the three. We use fine-level GBH
hierarchy supervoxels in the rest of our experiments.

We also perform experiments to show the impact of dif-
ferent types of potentials used. We achieve overall pixel
accuracy of 83.6% on A2D dataset and 71.3% on Youtube-
objects dataset when we use both coarse labels (actor and
action) and fine-grained labels (actor—action). Meanwhile,
we only achieve overall pixel accuracy of 72.6% on A2D
dataset and 57.4% on Youtube-objects dataset when we use
only fine-grained labels. In the latter case, a simple pair-
wise CRF is constructed for action tubes. The results support

the explicit consideration of information sharing among fine-
grained actions.

We evaluate the performance w.r.t different p values in our
Schatten p-norm robust multi-task ranking framework. We
vary the value of p in the range of {0.1, 0.2, ..., 1}. Fig. 6
shows the performance of overall pixel accuracy for A2D and
Youtube-objects datasets. We observe that the overall pixel
accuracy increase when the value of p decreases. This result
clearly justifies the effectiveness of the proposed Schatten
p-norm in the proposed robust multi-task ranking approach.

Table 1 Comparison of overall

pixel accuracy on the A2D Action Actor Actor—action Label

dataset (the top pixel-level, AHRF (Ladicky et al. 2014) 63.9 64.9 63.0 Pixel-level

frame-level and video-level .

results are high-lighted) GPM (Xu and Corso 2016a) 824 82.2 80.8 Pixel-level
FCRF (Krihenbiihl and Keltun 2011a) 77.6 779 76.2 Pixel-level
JSS (Ji et al. 2018) 92.6 94.5 92.5 Pixel-level
Pixel-level 92.6 945 925 -
RM (Dang et al. 2018) 93.4 95.3 93.0 Frame-level
Frame-level 934 953 93.0 -
RSVM (Joachims 2006) 70.1 70.8 68.8 Video-level
DM-MTL (Jalali et al. 2010) 72.3 72.9 71.4 Video-level
C-MTL (Zhou et al. 2011a) 73.1 73.5 72.7 Video-level
MT-Lasso (Tibshirani 1996) 67.3 68.1 65.2 Video-level
MR-MTL (Evgeniou and Pontil 2004) 68.1 68.6 66.7 Video-level
‘WSS (Tsai et al. 2016) 71.5 71.9 70.4 Video-level
Ours (p = 1) (Yan et al. 2017) 83.8 83.1 81.7 Video-level
Ours (p =0.1) 85.7 86.2 83.6 Video-level
Video-level 85.7 86.2 83.6 -

;?):le :CCl(l:r(::yp ?);ist(l)lz of overall Action Actor Actor—action Label

Youtube-objects dataset (the top  AHRFE (Ladicky et al. 2014) 62.6 63.7 60.1 Pixel-level

pixel-level, frame-level and .

video-level results are GPM (Xu and Corso 2016a) 70.1 73.2 66.8 Pixel-level

high-lighted) FCRF (Krihenbiihl and Keltun 2011a) 64.6 64.9 59.2 Pixel-level
JSS (Jietal. 2018) 74.6 78.1 72.5 Pixel-level
Pixel-level 74.6 78.1 72.5 -
RM (Dang et al. 2018) 75.9 78.5 73.6 Frame-level
Frame-level 75.9 78.5 73.6 -
RSVM (Joachims 2006) 56.1 57.2 51.5 Video-level
DM-MTL (Jalali et al. 2010) 69.3 68.9 63.1 Video-level
C-MTL (Zhou et al. 2011a) 69.5 69.3 63.4 Video-level
MT-Lasso (Tibshirani 1996) 62.3 63.1 60.7 Video-level
MR-MTL (Evgeniou and Pontil 2004) 63.3 64.2 61.4 Video-level
WSS (Tsai et al. 2016) 64.5 65.3 61.3 Video-level
Ours (p = 1) (Yan et al. 2017) 71.3 75.8 68.5 Video-level
Ours (p =0.1) 73.1 77.4 71.3 Video-level
Video-level 731 77.4 71.3 -
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Fig.7 Convergence of schatten p-norm robust multi-task ranking algorithm on (left) A2D dataset and (right) Youtube-object dataset

5.5 Comparison to State-of-the-Art Methods

We compare our method to state-of-the-art fully supervised
segmentation methods, such as Associate Hierarchical Ran-
dom Fields (AHRF) (Ladicky et al. 2014), Grouping Process
Models (GPM) (Xu and Corso 2016a), fully-connected CRF
(FCRF) (Krihenbiihl and Keltun 2011a), Region Mask (RM)
(Dang et al. 2018) and Joint Semantic Segmentation (JSS)
(Ji et al. 2018). Since our method is in the weakly super-
vised setting, we also compare against a recently published
top-performing method in weakly supervised semantic video
segmentation (WSS) (Tsai et al. 2016). For a comprehensive
understanding, we also compare our robust multi-task rank-
ing model with other learning models, including single-task
learning and multi-task learning approaches, such as Rank-
ing SVM (RSVM), Multi-task Lasso (MT-Lasso) (Tibshirani
1996), mean-regularized multi-task learning (MR-MTL)
(Evgeniou and Pontil 2004), dirty model multi-task learn-
ing (DM-MTL) (Jalali et al. 2010), and clustered multi-task
learning (C-MTL) (Zhou et al. 2011a). For fair comparison,
we use author-released code for methods (Xu and Corso
2016a; Tsai et al. 2016). For Ranking SVM, we use the
released implementation in Joachims (2006). For multi-task
learning approaches (Jalali et al. 2010; Zhou et al. 2011a;
Tibshirani 1996; Evgeniou and Pontil 2004), we use the
MALSAR toolbox (Zhou et al. 2011b). We use the same
experiment setup as ours for the learning models and weakly
supervised method. Notice that the fully supervised methods
have access to pixel-level annotation for the training videos.

Tables 1 and 2 show the overall pixel accuracy for all
methods on A2D and Youtube-objects datasets respectively.
We observe that our method outperforms all other baselines

@ Springer

except JSS (Ji et al. 2018) and RM (Dang et al. 2018).
However, we note that JSS is a fully supervised approach,
i.e. it needs tedious pixel-level human labelling for training
samples. We performed additional experiments on adopting
semantic proposals as in Dang et al. (2018) in the experi-
mental section. As we observed from Tables 1 and 2, there
is 9% and 2% performance increasing on A2D and Youtube-
objects datasets respectively by adopting semantic proposals.
However, there are additional costs for the semantic propos-
als approach. First, this is a supervised approach rather than a
weakly-supervised approach. This means more supervision
is needed using the semantic proposals approach. Second, as
indicated in Dang et al. (2018), to generate accurate region
masks, the method needs fully convolution instance seg-
mentation (FCIS) model trained on specific A2D dataset
rather than more generic COCO dataset. Otherwise, too
much irrelevant background region will appear in the final
results which significantly harm the actor—action segmen-
tation performance (3% and 8% lower than our approach
on A2D and Youtube-objects datasets). This actually pre-
vents their method to be used in practical since they need
FCIS model trained on the specific dataset. Our approach has
13%/10% higher accuracy than the other weakly supervised
approach (WSS) (Tsai et al. 2016) on A2D/Youtube-objects
datasets. Their approach is unable to share feature similarity
among different actions and actors which is very impor-
tant in the weakly-supervised setting. Moreover, our method
outperforms other single task learning (RSVM) and multi-
task learning (DM-MTL, C-MTL, MT-Lasso, MR-MTL)
approaches by up to 15%, 12%, 11%, 18%, 17% (A2D
dataset) and 20%, 8%, 8%, 11%, 10% (Youtube-objects
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2010) and AHRF (Ladicky et al. 2014) respectively. Our method is able
to generate correct actor—action segmentation expect for cat-jumping
and adult-running in these examples
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dataset) respectively, which shows the robustness of our
approach.

Table 3 shows the per-class accuracy for all actor—action
pairs on the A2D dataset. We observe that our approach out-
performs all other baselines in averaged performance except
JSS (Ji et al. 2018). However, we note that JSS is a fully
supervised approach, i.e. it needs tedious pixel-level human
labelling for training samples. In addition, our method works
well on the actor categories ‘dog’ and ‘cat’ which shows the
ability of our method to identify outlier tasks to better share
features among different tasks.

We also analyze the convergence rate and computational
cost for our proposed Schatten p-norm Robust Multi-task
Ranking approach. The proposed iterative approach mono-
tonically decreases the objective function value in Eq. 7 until
convergence. Figure 7 shows the convergence curves of our
algorithm on A2D dataset and Youtube-objects dataset. It
can be observed that the objective function value converges
quickly and our approach usually converges after 5 iterations
at most (precision = 1077). Regarding the computational
cost of our proposed algorithm, we train our model on A2D
dataset in 9min without cross-validation on a workstation
with Intel Core i7 (8th Gen) 17-8700K 3.70 GHz CPU proces-
sor and NVIDIA GeForce GTX 1080 Ti GPU. This means our
algorithm would be scalable for large-scale video problems.
We also compare our Schatten p-norm Robust Multi-task
Ranking approach with Yan et al. (2017), where we train
the model on A2D dataset in 8 min without cross-validation.
Since the more advanced alternating direction optimization
method adopted, the computation cost of our proposed Schat-
ten p-norm version is in the same computational level as Yan
etal. (2017).

Figure 8 shows qualitative results of our approach and
other methods. We observe that our approach can generate
better visual qualitative results than other approaches. How-
ever, our method fails in some cases, such as cat-jumping.
This is probably because there are several cats jumping simu-
taneously and motion is significant in the video.

6 Conclusion

In conclusion, modeling and generating realistic human
behavior data is an important research topic in literature.
Fine-grained activity understanding in videos is a key step
to achieve this goal. In this paper, we propose a novel
weakly supervised actor—action segmentation method. Par-
ticularly, a Schatten p-norm robust multi-task ranking model
is devised to select the most representative supervoxels
and action tubes for actor, action and actor—action respec-
tively. Features are shared among different actors and actions
via multi-task learning by simultaneously detecting outlier
tasks. A CRF model is used for semantic label inference.

@ Springer

The extensive experiments on both the large-scale A2D
dataset and Youtube-objects dataset show the effectiveness
of our proposed approach. Our approach is able to gener-
ate fine-grained actor—action video semantic segmentation
maps which can be further used for behavior understanding.
After segmentation of actors in video sequences, the next
step is to recognize and understand the behaviors of actors.
The essence of behavior understanding may be considered
to be a classification problem towards time varying data.
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