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ABSTRACT

Cross-view image generation has been recently proposed to
generate images of one view from another dramatically dif-
ferent view. In this paper we investigate exocentric (third-
person) view to egocentric (first-person) view image genera-
tion. This is a challenging task since egocentric view some-
times is remarkably different from exocentric view. Thus,
transforming the appearances across the two views is a non-
trivial task. Particularly, we propose a novel Parallel Gener-
ative Adversarial Network (P-GAN) with a novel cross-cycle
loss to learn the shared information for generating egocentric
images from exocentric view. We also incorporate a novel
contextual feature loss in the learning procedure to capture
the contextual information in images. Extensive experiments
on Exo-Ego datasets [1] show that our model outperforms the
state-of-the-art approaches.

Index Terms— Egocentric, Exocentric, Cross-View Im-
age Generation, Parallel GAN

1. INTRODUCTION

Wearable cameras, also known as first-person cameras, nowa-
days are widely used in our daily lives since the appearance of
low price but high quality wearable products such as GoPro
cameras. Meanwhile, egocentric (first-person) vision is also
becoming a critical research topic in the field. As we know,
egocentric view have some unique properties other than ex-
ocentric (third-person) view. Traditional exocentric cameras
usually give a wide and global view of the high-level appear-
ances happened in a video. However, egocentric cameras can
capture the objects and people at a much finer level of gran-
ularity. In the early egocentric vision studies, researchers [2]
found that people perform different activities or interacting
with objects from a first-person egocentric perspective and
seamlessly transfer knowledge between egocentric and exo-
centric perspective. Therefore, analyzing the relationship be-
tween egocentric and exocentric perspectives is an extremely
useful and interesting topic for image and video understand-
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ing. However, there is few research to address this important
problem in literature.

GANs [3] have been shown effectively in image genera-
tion tasks. Isola et al. [4] propose Pix2Pix adversarial learn-
ing framework on paired image generation, which is a super-
vised model and uses a conditional GAN framework to learn
a translation function from input to output image domain.
Zhu et al. [5] introduce cycle-GAN which develops cycle-
consistency constraint to deal with unpaired image genera-
tion. However, these existing works consider an application
scenario in which the objects and the scenes have a large de-
gree of overlapping in appearance and view. Recently, some
works investigate cross-view image generation problems to
generate a novel scene which is drastically different from a
given scene image. This is a more challenging task since dif-
ferent views share little overlap information. To tackle this
problem, Krishna et al. [6] propose X-Fork and X-Seq GAN-
based architecture using an extra semantic segmentation map
to facilitate the generation. Hao et al. [7] propose a multi-
channel attention selection module within a GAN framework
for cross-view image generation. However, these methods are
not able to generate satisfactory results due to the drastically
differences between exocentric and egocentric views.

To bridge egocentric and exocentric analaysis, in this pa-
per we propose a novel Parallel GAN (P-GAN) to generate
exocentric images from egocentric view. P-GAN framework
is able to automatically learn the shared information between
two parallel generation tasks via a novel cross-cycle loss and
hard-sharing of network layers. We also utilize a novel con-
textual loss in our objective function to capture texture infor-
mation over the entire images. To the best of our knowledge,
we are the first to attempt to incorporate a parallel genera-
tive network for exocentric to egocentric image translation.
Our proposed P-GAN is related to CoGAN [8] and Dual-
GAN [9]. However, CoGAN and DualGAN have limited
ability in generating image pairs with dramatically different
viewpoints. As shown in Fig. 1, our architecture is designed
in a bi-directional parallel fashion to discover the shared in-
formation between egocentric and exocentric images. Two
parallel GANs are trained simultaneously with hard-sharing
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Fig. 1. The pipeline of our P-GAN model. It consists of two parallel generators G1, G2, and two discriminators D1, D2. The
total loss contains pairs of L1 loss, contextual loss and adversarial loss.

of certain layers.
In summary, our contributions can be highlighted as fol-

lows. (i) A novel P-GAN is proposed to learn the shared in-
formation between different views simultaneously via a novel
cross-cycle loss. (ii) A novel contextual feature loss is incor-
porated in the training to capture the contextual information.
(iii) Experiments on Exo-Ego dataset show the effectiveness
of our hard-sharing of network layers in multi-directional par-
allel generative models.

2. PARALLEL GENERATIVE ADVERSARIAL
NETWORK

2.1. Network Architecture

Cross-view exocentric to egocentric image synthesis is a chal-
lenging task, because these two views have little overlapping
in image appearance. Most existing works on cross-view im-
age synthesis are based on GANs. A traditional GAN consists
of a generative model and a discriminative model. The objec-
tive of the generative model is to synthesize images resem-
bling real images, while the objective of the discriminative
model is to distinguish real images from synthesized ones.
Both the generative and discriminative models are realized
as multi-layer perceptrons. Since there will be some shared
high-level concept information in a pair of corresponding im-
ages between exocentric and egocentric views, we propose
a P-GAN with two GANs in parallel which is able to learn
the shared high-level semantic information among different
views. Fig. 1 shows our framework which contains two gen-
erators and two discriminators. A set number of layers from
two generators are shared across P-GAN. We force the first
three layers of two generators to have the identical structure
and share the weights, and the rest layers are task-specific.
The experiments show that sharing three layers of generators
yield the best performance.

Particularly, we employ U-Net [10] as the architecture of
our generators G1 and G2. We impose skip connection strat-
egy from down-sampling path to up-sampling path to avoid
vanishing gradient problem. To learn the shared information

between exocentric and egocentric view, we perform hard-
sharing in the first three layers of down-sampling path. We
adopt PatchGAN [4] for the discriminator D1 and D2. The
feature maps for contextual loss are extracted by the VGG-19
network pretrained on ImageNet.

2.2. Overall Optimization Objective

The training objective can be decomposed into four main
components which are contextual loss, adversarial loss, cross-
cycle loss and reconstruction loss.
Contextual loss. Different from the commonly used L1 loss
function which compares pixels at the same spatial coordi-
nates between the generated image and the target image, we
incorporate contextual loss in our P-GAN learning frame-
work. The key idea is to measure similarity between images
at the feature level.

Given a generated fake image I ′ego and a real image Iego
in egocentric view, we obtain a list of VGG-19 [11] features
as Iego = {Ii} and I ′ego = {I ′j}, where Ii = ψi(Iego), I ′j =

ψj(Iego), ψ means VGG-19 feature. i, j are i-th and j-th
layer in the network ψ. The similarity between the generated
image I ′ego and the real image Iego in egocentric view can be
defined as follows,

SIi,I′
j

= exp

(
1− 1− dij

minkdik + ζ

)
/h (1)

where dij is the cosine distance between Iego and I ′ego. We
define ζ = 1e−5, h = 0.5 in our experiments. The similarity
can be normalized as,

S̄ij =
SIi,I′

j∑
k SIi,I′

k

(2)

Then the contextual loss is formulated as follows,

Lcont(Ii, I
′
j) =

1

max(| Iego |, | Iexo |)
∑
j

maxS̄ij (3)

where | · | denotes the numbers of feature maps.
Cross-cycle loss. As shown in Fig. 1, we employ U-Net [10]
as our generators G1 and G2. Each U-Net contains a down-
sampling encoder EN which is a feature contracting path,
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Fig. 2. Results generated by different methods on Side2Ego dataset. These samples were randomly selected for visualization
purposes. Columns from left to right are: Input, Pix2pix [4], Cycle-GAN [5], Ours, X-fork [6], X-Seq [6], Selection-GAN [7],
Ours + Segmentation map, Ground Truth.

and an up-sampling decoder DE which is a feature expand-
ing path. Inspired by the U-net properties, we design a novel
cross-cycle loss as follows,

LX(G1, G2) =EIexo,I′
exo [‖Iexo −DE2(EN1(Iexo))‖1] +

λ1EIego,I′
ego [‖Iego −DE1(EN2(Iego))‖1]

(4)
Adversarial loss. Recent works [3, 12, 13, 14] have shown
that one can learn a mapping function by tuning a generator
and a discriminator in an adversarial way. Assuming we target
to learn a mapping G : Iexo → Iego from input exocentric
image Iexo to output egocentric image Iego. The generator G
is trained to produce outputs to fool the discriminator D. The
adversarial loss can be expressed as,

LGAN1
(G1, D1) =EIexo,Iego [logD1(Iexo, Iego)] +

EIexo,I′
ego

[log(1−D1(Iexo, G1(Iexo)))]
(5)

LGAN2
(G2, D2) =EIego,Iexo

[logD2(Iego, Iexo)] +

EIego,I′
exo

[log(1−D2(Iego, G2(Iego)))]
(6)

The adversarial loss is the sum of Eqn. 5 and Eqn. 6.

LGAN = LGAN1
(G1, D1) + λ2LGAN2

(G2, D2) (7)

Reconstruction loss. The task of the generator is to recon-
struct an image as close as the target image. We use L1 dis-
tance in the reconstruction loss,

Lre(G1, G2) =EIexo,I′
ego [‖Iego −DE1(EN1(Iexo))‖1] +

λ3EIego,I′
exo [‖Iexo −DE2(EN2(Iego))‖1]

(8)
Overall loss. The total optimization loss is a weighted sum
of the above losses. Generators G1, G2 and discriminators
D1, D2 are trained in an end-to-end fashion to optimize the
following objective function,

L = LGAN + λ4LX + λ5Lre + λ6Lcont (9)

where λi’s are the regularization parameters.

3. EXPERIMENTAL RESULTS

Datasets. To explore the effectiveness of our proposed P-
GAN model, we compare our model with the state-of-the-art
methods on Exo-Ego dataset [1] which contains two different
viewpoint subsets (Side2Ego and Top2Ego). This dataset is
challenging due to two reasons. First, it contains dramatically
different indoor and outdoor scenes. Second, the dataset is
collected simultaneously by an exocentric camera (side and
top view) and an egocentric body-worn wearable camera. It
includes a huge amount of blurred images for egocentric view.
For Side2Ego subset, there are 26764 pairs of images for
training and 13788 pairs for testing. For Top2Ego subset,
there are 28408 pairs for training and 14064 pairs for testing.
All images are in high-resolution 1280 × 720 pixels.
Experimental Setup. We compare our P-GAN with both
single-view image generation methods [4, 5] and cross-view
image generation methods [6, 7]. We adopt the same exper-
imental setup as in [4, 6, 7]. All images are scaled to 256 ×
256 pixels. We enable image flipping and random crops for
data augmentation. To compute contextual loss, we use the
VGG-19 network to extract image feature maps pretrained on
ImageNet as the same as [15, 16]. We train 35 epochs with
the batch size of 4. In our experiments, we set λ1 = 10,
λ2 = 10, λ3 = 100, λ4 = 10, λ5 = 1, λ6 = 1 in Eqn. (4),
(7), (8), (9) respectively. The proposed P-GAN is imple-
mented using Pytorch. The state-of-the-art cross-view gener-
ation methods, i.e., X-fork [6], X-Seq [6] and Selection-GAN
[7] utilize segmentation map to facilitate target view image
generation. To compare with these cross-view methods, we
adopt RefineNet [17, 18, 19] to generate segmentation maps
on Side2Ego and Top2Ego subsets as in [6, 7]. The gener-
ated segmentation maps are used as the conditional input of
G1 and G2. To optimize the proposed P-GAN, we follow the
optimization as in [3], we perform our experiments on Nvidia
Geforce GTX 1080 Ti GPU with 11 GB memory.
Evaluation Metrics. We apply metrics such as top-k pre-
diction accuracy and KL score for evaluations as in [7, 6].
We also employ pixel-level similarity metrics, i.e., Structural-
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Fig. 3. Results generated by different methods on Top2Ego dataset. These samples were randomly selected for visualization
purposes. Columns from left to right are: Input, Pix2pix [4], Cycle-GAN [5], Ours, X-fork [6], X-Seq [6], Selection-GAN [7],
Ours + Segmentation map, Ground Truth.

Table 1. SSIM, PSNR, Sharpness Difference (SD), KL score (KL) and Accuracy of different single-view image generation
methods. For these metrics except KL score, higher is better.

Dataset Method SSIM PSNR SD KL
Top-1 Top-5

Accuracy (%) Accuracy (%)

Top2ego
Pix2pix[4] 0.2514 15.0532 18.1002 62.74 ± 1.78 1.24 1.22 4.21 4.35
Cycle [5] 0.2806 15.5486 18.5678 52.09 ± 1.69 2.10 0.99 5.37 2.72

Ours 0.3098 17.0236 18.6043 31.46 ± 1.74 1.81 5.90 5.74 9.17

Side2ego
Pix2pix [4] 0.3946 16.0716 19.8664 75.27 ± 2.01 3.20 5.18 8.41 13.30
Cycle [5] 0.4017 15.9678 19.7533 62.41 ± 2.41 4.18 7.60 15.62 21.45

Ours 0.4908 17.9951 20.6521 13.92 ± 1.53 16.21 30.80 27.57 46.51

Table 2. SSIM, PSNR, Sharpness Difference (SD), KL score (KL) and Accuracy of different cross-view image generation
methods. For these metrics except KL score, higher is better.

Dataset Method SSIM PSNR SD KL
Top-1 Top-5

Accuracy (%) Accuracy (%)

Top2ego
X-Fork [6] 0.2952 15.8849 18.7349 63.96±1.74 0.8 1.22 3.16 4.08
X-Seq [6] 0.3522 16.9439 19.2733 54.91 ± 1.81 1.07 1.77 4.29 6.94

SelectionGan [7] 0.5047 22.0244 19.1976 10.07 ± 1.29 8.85 16.55 24.32 33.90
Ours 0.5287 22.2891 19.2389 12.07 ± 1.69 9.76 29.67 24.80 51.79

Side2ego
X-Fork [6] 0.4499 17.0743 20.4443 51.20 ± 1.94 4.49 9.76 11.63 19.44
X-Seq [6] 0.4763 17.1462 20.7468 45.10 ± 1.95 6.51 12.70 11.97 19.36

SelectionGan [7] 0.5128 18.3021 20.9426 7.26 ± 1.27 20.84 37.49 42.51 65.22
Ours 0.5205 19.4521 20.9684 25.25 ± 1.88 20.96 39.08 42.58 66.00

Similarity (SSIM), Peak Signal-to-Noise Ratio (PSNR) and
Sharpness Difference (SD). These metrics evaluate the gener-
ated images in a high-level feature space.
Quantitative Results. The quantitative results are presented
in Table 1 and Table 2. We observe that our P-GAN network
achieves better results than state-of-the-art methods in most
cases. Compared with single-view image generation meth-
ods, our P-GAN outperforms Pix2pix [4] and Cycle-GAN [5].
On the other hand, we also achieve better results than other
cross-view image generation methods in most metrics while
incorporating semantic segmentation map as in the Selection-
GAN [7].
Qualitative Results. Qualitative results are shown in Fig. 2
and Fig. 3. The results confirm that the proposed P-GAN net-
work has the ability to transfer the image representations from
exocentric to egocentric view, i.e., objects are in the correct
positions for generated egocentric images. Results show that
egocentric images generated by P-GAN are visually much
better compared with other baselines.

4. CONCLUSIONS

In this paper we introduce a novel P-GAN which is able to
learn shared information between cross-view images via a
novel cross-cycle loss for a challenging exocentric to egocen-
tric view image generation task. The proposed method uti-
lizes both pixel level and contextual level information. More-
over, we incorporate a novel contextual feature loss to capture
the contextual information in images. Experimental results
demonstrate that the hard-sharing of network layers in multi-
directional parallel generative models can be used to increase
the performance of cross-view image generation.
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