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ABSTRACT 

NMR spectroscopy is an extraordinarily rich source of quantitative dynamics of proteins 

in solution using spin relaxation or Chemical Exchange Saturation Transfer (CEST) 

experiments. However, 15N-CEST measurements require prolonged multidimensional, 

so-called pseudo-3D HSQC experiments where the pseudo dimension is a radio-

frequency offset  of a weak 15N saturation field. Non-uniform sampling (NUS) 

approaches have the potential to significantly speed up these measurements, but they also 

carry the risk of introducing serious artifacts and the systematic optimization of non-

uniform sampling schedules has remained elusive. It is demonstrated here how this 

challenge can be addressed by using fitted cross-peaks of a reference 2D HSQC 

experiment as footprints, which are subsequently used to reconstruct cross-peak 

amplitudes of a pseudo-3D dataset as a function of  by a linear least-squares fit. It is 

shown for protein Im7 how the approach can yield highly accurate CEST profiles based 

on an absolutely minimally sampled (AMS) dataset allowing a speed-up of a factor 20 – 

30. Spectrum-specific optimized non-uniform sampling (SONUS) schemes based on the 

Cramer-Rao lower bound metric were critical to achieve such a performance, revealing 

also more general properties of optimal sampling schedules. This is the first systematic 

exploration and optimization of NUS schedules for the dramatic speed-up of quantitative 

multidimensional NMR measurements that minimize unwanted errors.   

 

KEYWORDS: 

Protein dynamics, fast multidimensional NMR, CEST, non-uniform sampling, Cramer-

Rao lower bound.  
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INTRODUCTION 

NMR spectroscopy is a major source of experimental information about protein dynamics 

at atomic resolution on a broad range of timescales offering valuable insights about 

protein function. Common NMR experiments that provide such information include R1, 

R2, R1, and CPMG relaxation dispersion experiments1-2 as well as Chemical Exchange 

Saturation Transfer (CEST).3-6 In order to make a maximal number of protein resonances 

accessible to quantitative dynamics analysis, these experiments are performed in a 

pseudo-3D manner in the form of stacks of 2D HSQC-type spectra,7 where 15N or 13C 

nuclei are correlated with their directly attached 1H protons resulting in unique cross-

peaks, while an additional parameter is systematically varied along the “pseudo” 3rd 

dimension. Depending on the experiment, this dimension can correspond to a set of 

relaxation delays (R1 and R2 experiments), the effective radio-frequency (rf) field 

strength (CPMG, R1ρ), or an rf spin-lock offset (CEST, R1ρ).
2 Common to all these 

experiments is that the 2D HSQC-type spectra retain their resonances (cross-peaks) at the 

exactly same positions with identical lineshapes and only their amplitudes (or volumes) 

vary along the pseudo dimension. For some of these experiments the number of points 

probed along the pseudo dimension can be quite large. For example, for a 15N-CEST 

experiment with moderately small rf saturation field strength (gB1 » 25Hz) it is common 

to measure 2D 1H-15N HSQC spectra for 100 or more different rf offsets. This can lead to 

prolonged experiment times of the order of one or several days. For samples with good 

sensitivity, besides the number of points along the pseudo dimension, the measurement 

time is determined by the required number of increments N1 along the indirect 1 

dimension of each of the 1H-15N HSQC-type spectra. For traditional Fourier transform 

NMR data processing, N1 is typically around 128 (complex) increments to ensure a 

digital resolution that exceeds the natural linewidth of most cross-peaks.  

 The standard method used for pseudo-3D experiments measures each 2D HSQC-

type plane separately as a function of the 3rd (pseudo) dimension and subjects it to 2D 

Fourier transform processing. The fact that cross-peak positions and shapes remain the 

same in each 2D plane and can be measured before beginning the full experiment is, 

however, generally not utilized to decrease measurement time or increase the accuracy of 

the final spectrum. In order to make the NMR time manageable, such information has 
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been used in a pseudo-4D CEST experiment.8 A recent approach (MERT NMR) utilizes 

such information by parametrizing cross-peak positions and shapes in a reference 2D 

HSQC plane and determines peak volumes along the pseudo dimension making cross-

peaks in crowded regions better accessible to quantitative analysis.9  

Over the recent past, non-uniform sampling (NUS) has gained significant traction 

in multidimensional NMR applications by measuring only a subset of t1 evolution times 

followed by the reconstruction of the spectra using customized algorithms. For situations 

where sensitivity is not the limiting factor, sampling can be typically reduced to 50% or 

25% of the total number of points amounting to two- to four-fold time savings. NUS 

implementation can take different forms, such as multi-dimensional decomposition 

(MDD),10 maximum entropy,11 or compressed sensing.12-13 

NUS invariably requires users to select a sampling schedule, i.e. the specific set of 

t1 evolution time increments that are measured. The choice of the sampling schedule has 

important consequences for the final spectrum, since it directly affects the resolution, the 

sensitivity, and the possible appearance of artifacts.14-15 The total number of sampling 

schedules can be astronomically large, even if one limits oneself to “on-grid sampling” 

only, i.e. all sampled time points are integer multiples of the Nyquist dwell time t1 = 

1/SW , i.e. t1 = k . t1, where SW is the spectral width along the indirect 1 dimension (in 

Hz) and k is an integer between 0 and N1-1. Specifically, the number of sampling 

schedules with n1 increments chosen from a total of N1 equidistantly spaced increments is 

NNUS =
N1

n1

æ

è

ç
ç

ö

ø

÷
÷

. For N1 = 128 and n1 = 32 or 64, NNUS is 1.5•1030 and 2.4•1034, 

respectively. The very large size of NNUS has prevented the systematic exploration of 

sampling schedules and the best sampling schedule for a given experiment and sample 

remains unknown. Experience shows that the quality of a sampling schedule depends on 

many different factors, such as the number of cross-peaks, their positions in terms of 

chemical shifts, resonance linewidths, and amplitudes. Empirical rules have been 

developed for the generation of decent sampling schedules along with metrics that allow 

one to approximately assess their performance.14, 16-18 Randomization of increments has 
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been found useful to prevent a systematic violation of the Nyquist sampling theorem to 

minimize systematic artifacts, e.g., through spectral aliasing.15 

Each sampling schedule represents a compromise between (i) a minimal number 

of increments to speed up data acquisition (n1 < N1), (ii) the use of increments with short 

t1 delays that optimize sensitivity by allowing minimal transverse relaxation, and (iii) the 

use of long t1 delays that enhance spectral resolution by disambiguating between cross-

peaks with similar chemical shifts along 1. Currently, the vast majority of sampling 

schedules is generated randomly in either a neutral manner (uniform random sampling19) 

or by introducing a bias that favors short t1 delays over longer delays as implemented, for 

example, in exponential20 or Poisson-gap sampling.21 

We recently introduced the absolute minimal sampling (AMS) strategy to 

accurately reconstruct a spectrum with the absolute minimal number of increments.22 In 

the present work, we generalize AMS for the reconstruction of peak intensities in pseudo-

3D experiments using extreme NUS for the purpose of spectral collection in a minimal 

amount of time without sacrificing accuracy with the NUS schedule spectrum-

specifically optimized based on the Cramer-Rao lower bound metric. Similar to MERT 

NMR, the new method uses prior knowledge in the form of the 2D HSQC cross-peak 

footprints whose intensities are modulated along the pseudo dimension. Because the 

amplitude reconstruction is a linear-least squares problem, it can be solved by linear 

algebraic methods with high computational efficiency permitting a more systematic 

analysis of the effect of the sampling schedule on the accuracy of the spectral 

reconstruction than was previously possible. The new method, which is referred to as 

AMSi where “i” stands for intensity reconstruction, is demonstrated here for 15N-CEST 

where for the best predicted sampling schedule, a speed-up over the standard method of 

more than a factor of 20 - 30 is possible without introducing undesirable NUS artifacts.  

 

MATERIAL AND METHODS 

AMSi theory 

An NMR signal is modeled here as a weighted sum of decaying sinusoids.23-24 When a 

2D HSQC has been Fourier transformed in the direct dimension, it may be expressed as: 
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In this equation, M is the total number of cross-peaks in the 2D HSQC footprint and aj, 

j, and R2,j are the amplitude, Larmor frequency, and transverse relaxation rate of the jth 

peak, respectively. Superscript values on frequencies and relaxation rates indicate the 

dimension for each of these values. pj() is the lineshape of the jth peak along the 

processed direct dimension. The second equation is the discretized form of the first 

equation, where F is a matrix representing the footprint of the spectrum, column vector a 

contains the amplitude of each cross-peak as its elements, and the elements of column 

vector s represent the t1- and 2-dependence of the signal. If the footprint matrix F is 

known, e.g. from fitting a reference 2D HSQC spectrum, then the cross-peak amplitudes 

a of any experiment with the identical footprint can be reconstructed according to: 

 a fit = (Re[F†F])-1Re[F†s] (2) 

 

This reconstruction can be performed with no restriction on the sampling schedule, as 

long as the number of data points provided is greater than or equal to half the number of 

peaks M in the footprint (see Supporting Information). 

Processing the direct dimension prior to fitting allows for several advantages, 

including the better separation of peaks along these dimensions and the application of 

common tools such as zero-filling, apodization, baseline correction, and water signal 

removal to be used prior to AMSi. However, the shape of the peaks along the Fourier 

transformed dimension must be carefully considered. The Voigt profile, which is a 

convolution of a Lorentzian and a Gaussian lineshape with unequal line widths,25 has 

been previously used in lineshape analysis for apodized signals.26 This lineshape 

performed best for AMSi reconstruction and is used throughout this work unless noted 

otherwise.  

 Larmor frequencies and lineshapes are most easily determined by direct peak 

fitting as illustrated in Figure 1 for the 2D 15N-1H HSQC footprint spectrum of Im7 
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protein. It is important to ensure that all peaks or features are picked for the faithful 

representation of the original spectrum and that the peak locations are known with high 

accuracy. Uninteresting or artifact peaks may be disregarded further downstream, but 

must be included in the footprint. Accurate lineshapes along dimensions that will be 

Fourier transformed prior to AMSi are critically important. However, AMSi is less 

sensitive to errors in lineshapes along non-uniformly sampled dimensions. 

The following steps summarize the method of AMSi data processing for an 15N-

CEST experiment. They can be directly adopted to other pseudo-3D relaxation 

experiments.  

1. Collect a 2D HSQC reference spectrum 

2. Perform peak fitting and determine a footprint 

(Larmor frequencies and lineshapes for all peaks) 

3a. Optional: optimize non-uniform sampling schedule 

along indirect t1 dimension 

3b.  Choose sampling schedule and collect the CEST 

experiment using NUS in the indirect dimension 

4. Determine the footprint matrix from sampling 

schedule and footprint  

5. Perform linear least-squares minimization as 

described above to extract intensities of each peak 

6. Plot CEST profile and subject it to quantitative 

analysis (e.g. by ChemEx software)  

 

Cramer-Rao lower bounds for a priori scoring of NUS schedules 

The Cramer-Rao lower bound (CRLB) is a lower bound on the expected error of a 

parameter.27 It is the inverse of the Fisher information, which is a way of determining the 

amount of information provided by an observable about a model parameter. When 

multiple parameters are being determined, the CRLB is a matrix that is related to the 

expected covariance matrix. As a result, each element in the diagonal places a lower 

bound on the expected uncertainty in a peak intensity, and the trace of the CRLB places a 

lower bound on the expected sum squared error for the estimated parameters.  
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The CRLB has been used previously in schedule analysis of model-based NMR.28 

In the context of NMR signals for which footprints are known, the CRLB is given in Eq. 

(3) (see SI for details).  

 
CRLB =

1

s 2
(Re[F†

F])-1  
(3) 

This value will be used as a metric to predict the scoring of NUS schedules for the 

purpose of spectrum-specific optimization with one modification: because additive 

random baseline noise is constant, the inverse variance term 1 s 2  is dropped. This 

scoring method was tested for accuracy through comparison to RMS error in amplitudes. 

  

Sample Preparation 

The DNA fragment encoding Im7 was PCR-amplified and subcloned into a pTBSG 

ligation independent cloning vector derivative (pTBSG1).29 The resulting plasmid 

pTBSG1_Im7 was then transformed into Escherichia coli BL21(DE3) strain for protein 

overexpression. The expressed fusion protein contains a His6-tag and a TEV protease 

cleavage site N-terminal to Im7. The overexpression was carried out as follows: a single 

colony was inoculated to 20 mL LB media under vigorous shaking of 250 rpm overnight 

at 37 °C, the overnight culture was then transferred into 1L M9 minimal media with 1g 

15NH4Cl and 5g ᴅ-glucose (or 4g ᴅ-glucose-13C6 for 13C-labeled samples) as the sole 

nitrogen/carbon sources and incubated at 37°C under vigorous shaking. When OD600 of 

the culture reached 0.8–1.0, isopropyl -D-1-thiogalactopyranoside (IPTG) was added to 

it to the final concentration of 0.5mM, and further incubated at 25°C under vigorous 

shaking for 18 hours. After overexpression, the cells were then pelleted by centrifugation, 

and lyzed by EmulsiFlex-C5 homogenizer (AVESTIN, Inc.) The cell lysate was 

subjected to centrifugation at 20,000 xg for 20 minutes. The His6-tagged Im7 protein in 

the supernatant was purified by a Ni-NTA agarose (QIAGEN) affinity column and mixed 

with tobacco etch virus (TEV) protease for His6-tag cleavage. The final Im7 protein, 

which has three non-native residues (SNA) at its N-terminus, was recovered with a 

second Ni-NTA affinity column and was concentrated in 50 mM sodium phosphate 

buffer at pH 7.0.  
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NMR data collection and processing 

15N-CEST spectra were collected with a 25 Hz and 100 Hz saturation field on the 

colicin E7 immunity protein Im7 at 298 K on a Bruker AVANCE III 850 MHz 

spectrometer equipped with a cryogenically cooled TCI probe using 128 (complex) 

indirect time points. This data was processed using NMRPipe,30 and the cross-peaks were 

assigned using assignments reported in the literature31 and confirmed by 3D HNCA and 

HNCOCA experiments. Kinetic and thermodynamic parameters were extracted from 

CEST profiles using ChemEx4 (http://www.github.com/gbouvignies/chemex).  

For AMSi processing, the data was subsampled to n1 = 2, 3, 4, 6, 8, 12, 16 

complex time points. A footprint was determined from a high-resolution 1H-15N HSQC 

and fit using an in-house program capable of Voigt lineshape fitting. Schedules were 

selected and AMSi was performed with an in-house program utilizing the nmrglue 

Python library.32 The root mean square error (RMSE) of the amplitudes was calculated 

according to:  

 

 
RMSE = (a j

rec - a j
true )2

j=1

M

å  

 

(4) 

In addition, the data was fit with ChemEx for validation of the method and compared 

with the fully sampled results. 

 

RESULTS 

A fully sampled 2D 15N-1H HSQC spectrum of Im7 was collected with 2048 direct time 

points and 128 indirect time points to extract the spectral footprint (all data points 

indicate complex points, unless noted otherwise). After standard spectral processing 

using apodization, zero-filling, and traditional Fourier transform and phasing, the 

resulting spectrum can be seen in Figure S6. The spectrum has generally a low degree of 

overlap, but has traces in the indirect dimension with up to 5 peaks making extreme time-

http://www.github.com/gbouvignies/chemex)
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saving methods, such as SPEED33, inapplicable. Peak picking found 102 peaks, 84 of 

which were successfully assigned to backbone amides covering all non-proline residues 

of Im7. Peak fitting was performed using Voigt profiles in both dimensions. The indirect 

dimension was found to be adequately reconstructed by a Lorentzian lineshape. However, 

the full Voigt profile was needed along the direct dimension for optimal reconstruction. 

This information was used to create a footprint of the spectrum for subsequent AMSi 

processing. 

A fully sampled CEST spectrum of Im7 was collected with 128x2048 complex 

time points along the indirect and direct dimensions. Two B1 fields were used (target 

field strengths 25 Hz and 100 Hz, with calibrated field values of 27.4 Hz and 110 Hz), 

and 116 B1 offsets used for the 25 Hz experiment and 41 offsets used for the 100 Hz 

experiment. Four reference planes with no saturation transfer delay were taken 

throughout the experiment as reference. The 25 Hz experiment took 38.5 hours and the 

100 Hz experiment 14.5 hours to collect (the 100 Hz experiment covered a wider range of 

offset values with fewer increments). Upon fitting with ChemEx, 7 peaks (I44, T45, E46, 

L53, I54, Y55, Y56) were determined to undergo exchange with a large change in 

chemical shift (>5.5 ppm), and 13 additional peaks were determined to undergo exchange 

with a smaller change in chemical shift.  

We subsampled the data with n1 = 2, 3, 4, 6, 8, 12, 16 increments using the 

CRLB-based prediction of the best sampling schedule and recreated the CEST data using 

AMSi. The n1 = 6 point AMSi reconstruction can be seen in Figure 2 for an overlapped 

spectral region against the fully sampled spectrum and the fit of individual cross-peaks 

used for footprinting. It shows that the AMSi reconstructed spectrum represents a highly 

accurate depiction of both the original spectrum and the derived footprint. The 

amplitudes for the different numbers of n1 increments are plotted as complete CEST 

profiles in Figure 3 for four representative residues I72, L53, E21, and Y55 in 

comparison with the fully sampled result. All features of the CEST profiles are well-

reproduced, including an asymmetry of the main peak (Figure 3b) and the appearance of 

a minor CEST peak (Figures 3c,d) for all sampling schedules using as few increments as 

n1 = 2 (magenta line). The same profiles are overlaid in Figure S1, with numerical values 

of select points listed in Table S1, demonstrating excellent agreement among the profiles 
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even for n1 = 2. The only visually noticeable feature of smaller numbers of t1 increments 

is the increase in noise, which reflects the shorter total acquisition time. For n1 = 2, 8, 16 

the data acquisition requires 50 minutes, 3.3 hours, and 6.6 hours vs. 53 hours for the 

fully-sampled reference spectrum. 

Next, the CEST profiles were subjected to a fully quantitative chemical exchange 

analysis according to the same ChemEx analysis protocol. The number of peaks found to 

have significant chemical exchange for each value of n1 is shown in Table 1. All peaks 

appearing to undergo chemical exchange in the NUS schedule were also found in the 

fully sampled spectrum, i.e. no artificial chemical exchange effect was introduced due to 

NUS reconstruction. When only the 7 peaks with a relatively large change in 15N 

chemical shift difference > 5.5 ppm between ground and excited states are fit globally, 

there was no noticeable trend in error of each parameter as the number of time points 

increased (Table S2). Thus, the major benefit of collecting more data points is the 

improved recovery of exchange effects, especially for some of the most difficult peaks 

where the secondary CEST dip is close to the main peak (low ). 

We were able to perform AMSi reconstruction and evaluation for all possible 

schedules with n1 = 2, 3, and 4 indirect time points collected, with the requirement that 

the first point (t1 = 0) always be included. We also performed AMSi reconstruction and 

evaluation for 1 million randomly selected schedules with n1 = 6, 8, 12, and 16 time 

points. The total RMS error of all amplitudes for each schedule is rank-ordered and 

plotted in Figure 4. For all sets of schedules, except n1 = 2, the majority of random 

schedules have similar error, with a small but non-negligible fraction of schedules 

performing significantly better or worse than others (left and right tails of curves). This 

change is so significant that an optimal choice of a schedule outperforms a median 

schedule with a 2 – 3 times larger number of indirect points taken. Similarly, a poorly 

chosen schedule will result in a performance comparable to a median schedule with 2 – 3 

times fewer indirect points.  

The best schedules as determined by true error in amplitude are given in Table 2. 

They show a clear preference for early time points and for relatively large gaps between 

sampled increments. The relative frequency of each time point occurring in the top and 

bottom 0.5% of the schedules is plotted in Figure 5 for n1 = 4, 8, and 16. The best 
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schedules have a similar shape to an exponential distribution with a finite offset, similar 

to exponential sampling as has been previously suggested for standard NUS 

applications.11, 20, 34 The decay of this distribution becomes steeper when focusing on the 

absolute best set of schedules (see Figure S2). There is also an initial buildup of fractional 

occurrence in time points 1-3, with time point 4 being the most likely point chosen in all 

three displayed schedules, which is reflected in the set of best NUS schedules. For the 

0.5% of the best sampling schedules, certain pairs of time points show distinct 

preferences and anti-preferences to be co-sampled (see SI Figure S3).  

Although the CRLB-based scoring method does not identify the absolute best 

sampling schedules for each of the different n1 values, it predicts very good sampling 

schedules as can be seen in Figure 4 where the best CRLB-based schedules (filled circles) 

are close to the left end. This is further corroborated in Figure 6 where for each of the 

schedules tested the RMS error is plotted against the CRLB trace. For all n1 values (4, 8, 

16), the relationship is funnel shaped where schedules with low predicted CRLB scores 

possess also low RMS errors. For all n1 values (except n1 = 2), the best schedule by 

CRLB score is within the top 5% of schedules by RMS error with the best scores 

obtained for larger n1 values. As a demonstration of the accuracy of these predicted 

schedules, they were used for the AMSi CEST profiles depicted in Figure 3. 

On the other end, schedules with poor CRLB scores have a much broader RMS 

error distribution, which is however inconsequential for practical applications. The 

consequences of the best, median, and worst sampling schedule are illustrated in Figure 7 

for the reconstruction of CEST profiles of E25 and D35. As can be seen, the best 

sampling schedule reproduces the reference profile very accurately, whereas the median 

and worst schedules show shoulder effects, which may be misinterpreted as excited 

states. 

Taken together, our results suggest that CRLB-based scoring of schedules is a 

reliable method for the generation of spectrum-specifically optimized NUS schedules 

(SONUS) avoiding schedules with high RMS errors that can produce misleading artifacts 

in CEST profiles. Especially for small n1 values, which promise the largest gain in 

measurement time, the choice of a purely random schedule is not recommended. Instead, 

the CRLB-based scoring method is capable of correctly predicting very good schedules.  
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DISCUSSION 

Non-uniform sampling permits the substantial shortening of the measurement 

time of multidimensional NMR spectra when the measurement is dictated by sampling of 

indirect time points rather than sensitivity. NUS is now routinely applied to many 

multidimensional NMR experiments, especially those that provide NMR resonance 

assignment information of proteins in solution.35 By contrast, NUS is only rarely applied 

to pseudo-3D experiments, such as protein spin relaxation or CEST experiments, for the 

fully quantitative biophysical characterization of structural dynamics. Application of 

standard NUS to each HSQC plane is possible, but allows only a relatively modest speed-

up. For 15N-1H HSQC planes a reduction of the total number of t1 increments to 64 or 32 

may be possible resulting in a speed-up of a factor 2 – 4.  

 By definition, NUS requires a user to make a choice between many possible 

sampling schemes carrying the risk of spectral artifacts caused by the sampling scheme, 

rather than random noise. The sampling scheme must be good or, at least, acceptable, 

because after a NUS dataset has been collected, standard Fourier transform is not 

available any longer for the independent assessment of the accuracy of reconstructed 

spectrum.  

 Among the many pseudo-3D experiments used in protein NMR, CEST is one of 

the most challenging experiments as in many proteins the vast majority of cross-peaks do 

not show chemical exchange effects and those that do need to be identified with high 

accuracy. Hence, for any NUS-CEST scheme reliability is paramount whereby the 

number of both false positive and false negative CEST effects are to be kept extremely 

small and, if possible, at zero. NUS-CEST also provides a challenge for reconstruction as 

CEST planes invariably include a very wide range of peak amplitudes, including some 

near-zero amplitudes, that must be accurately reconstructed, while most other pseudo-3D 

experiments display a much more limited dynamic range. 

The AMSi strategy introduced here promises to meet this challenge as it permits 

the very reliable reconstruction of pseudo-3D CEST spectra with n1 in the single digits 

and some instances as small as n1 = 2 increments. This reduction in n1 allows an NMR 

time speed up from over 2 days to under an hour. 
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For AMSi to be successful, the following conditions need to be met and key steps 

need to be followed. First, the reference HSQC spectrum needs to be footprinted 

accurately by decomposing it into a sum of cross-peaks with Voigt profiles. For this 

purpose, a high-quality 2D HSQC spectrum has to be collected first and a non-linear least 

squares fitting problem has to solved to obtain the resulting footprints. Since such a 2D 

15N-1H HSQC is typically one of the first NMR spectra recorded for any given protein 

system, it does not add to the total NMR time of the project. This step needs to be done 

only once and the cross-peak footprints can subsequently be applied to any other pseudo-

3D experiment based on the same HSQC spectrum (R1, R2, CPMG, CEST, DOSY) 

provided that the HSQC closely matches the reference plane of the pseudo-3D 

experiment.  

Next, a NUS schedule needs to be chosen that ensures good performance. For 

many NUS applications with a relatively large number of increments (n1 > 32) of 

increments, a randomized selection usually works just fine. However, for the kind of 

extreme speed-up described here with n1 in the single digits, a randomly selected 

schedule has a non-negligible chance to have poor performance with major consequences 

on the quality of the resulting CEST profiles. We show that the Cramer-Rao lower bound 

(CRLB) metric permits the spectrum-specific optimization of sampling schedule 

performance allowing one to choose a very good to excellent schedule. Because the 

spectral reconstruction can be expressed in terms of linear algebra with good 

computational efficiency, an unprecedented large number of schedules can be tested and 

the one with the best CRLB metric can then be used for the actual experiment.  

The analysis of a large number of sampling schedules performed here allowed, for 

the first time, an independent assessment of commonly used NUS strategies, such as 

exponential and Poisson gap sampling. Statistically, the best sampling schedules 

identified here sample early t1 increments significantly more frequently than later time 

points in order to optimize the sensitivity. The frequency drops approximately 

exponentially toward a plateau value, which approaches zero for small n1. It is interesting 

to note that certain t1 increments are much more frequently found than others. For 

example, t1 = 4t1, 8t1, 16t1, 25t1 are increments that have a significantly higher 

chance to be found in some of the best performing schedules than other increments, 



   
 

 
15 

whereas some increments, such as t1 = t1, 17t1, are clearly unfavorable. We expect that 

these “special” increments directly depend on the actual cross-peak distribution and are 

not transferrable between spectra.   

 The theoretical minimal number of increments is determined by: 

 2𝑁2𝑛1 ≥ 𝑀 (5) 

where M is the total number of footprinted cross-peaks, including spurious peaks, and N2  

is the number of direct time points collected. As there is essentially no time cost when 

increasing N2, this requirement can be simplified to 𝑛1 ≥ 1 (see Supporting Information). 

This assumes a sufficiently high signal-to-noise, which in practice may not be fulfilled. 

Such effects are reflected in higher CEST baseline noise levels (Figure 3) and the lower 

recovery (by software such as ChemEx) of small CEST effects, especially shoulder peaks 

of the main CEST peak (Table 1). The fitting errors of CEST-derived thermodynamic and 

kinetic parameters obtained using ChemEx (Table S2) do not follow any trend with the 

number of peaks fitted. In most cases, the error is less than 5%, which is larger than the 

errors in the traditionally constructed CEST profiles supplied by ChemEx (1.2% for kex, 

0.76% for pb). 

Poor footprinting or poor schedules may have a detrimental effect on CEST 

profiles. Beyond an increase in noise due to sampling low signal-to-noise time points, a 

poor schedule can also cause instability in the shoulder of the main CEST peak (Figure 

7). Even more notable are the effects of using a poor footprint, often due to inaccurate R2 

or lineshape in the direct dimension. The most commonly observed artifacts were 

“shadow features”, which is the effect of one peak subsuming a part of another peak 

within the same trace. For example, when Lorentzian lineshapes are used for the spectra 

processed above for the best schedule, systematic artifacts such as those seen in Figure 

S4 occur. Fortunately, these shadow peaks have consistent behavior, causing the 

appearance that the main peak either oversaturated or failed to fully saturate, and causing 

a secondary peak to appear in the profile either as a rise or dip, respectively. In addition, 

footprints can be improved or reconstructed after an experiment has been run in case that 

it is discovered that the original footprint is inadequate. 

It is noteworthy that the majority of schedules perform remarkably similarly 

(Figure 4), especially for larger n1, with only significant changes in error occurring in the 
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best and worst few percent. However, for all sets of schedules (except n1 = 2) the best two 

schedules only differ by at most 3% error, i.e. there is only limited benefit by identifying 

the very best schedule among ~106 candidate schedules. It is noted that the baseline noise 

in the best schedule does not scale with the square root of the number of points (Figure 

S5) and, instead, performs significantly better than would be expected from square root 

scaling. This suggests that the substantial speed-up of AMSi afforded over traditionally 

sampled experiments can also be leveraged for the reduction of noise by using the extra 

time to collect more scans. 

The CRLB-based method for predicting the best schedule presented in this work 

is highly suitable for the optimization of NUS schedules, but there still exists some room 

for improvement in prediction of the absolute best schedule and, less importantly, in 

prediction of poor schedules. For those who intend to search for the absolute best 

schedule, we note that the time points of top schedules significantly differ from each 

other (Table S3) and there is only little correlation between chosen points in optimal 

schedules (Figure S3). This suggests that “greedy” search methods are unlikely to 

converge to the global optimum.  

AMSi shares features with other NUS methods in the literature. It is 

algorithmically similar to MDD if peak positions and lineshapes were separately supplied 

and held constant, and it is the final result of AMS when restraining both frequencies and 

relaxation constants. Most notably, it is conceptually similar to the pseudo-4D method by 

Long et. al.,8 from which it differs by its use of varying lineshape for the direct 

dimension, and its removal of the option for small corrections in frequency in order to 

optimize speed and interpretability of the process. AMSi is also similar to MERT, but 

AMSi uses an interferogram instead of full time-domain data and samples the indirect 

time-domain non-uniformly to achieve large time reductions. 

In this work, we restricted ourselves to the analysis of CEST data as this pseudo-

3D experiment has the greatest potential for time savings through NUS. However, AMSi 

is capable of being used with any pseudo-3D experiment where peaks do not drift or 

change shape between planes, including R1, R1, DEST, CPMG relaxation experiments, 

and DOSY. Although these experiments typically collect fewer 2D planes, and thus are 

shorter experiments with less absolute time to be saved by NUS, we expect AMSi to 
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achieve the same 20-30 fold time reduction without compromising the quality of the data. 

It can also be combined with multi-frequency saturation methods that improve CEST 

speed by reducing the number of planes taken, such as cos-CEST and D-CEST.36-38 

 

CONCLUSIONS 

AMSi provides a general framework for the speed-up of CEST or any other 

pseudo-3D experiment. We anticipate this method to be especially useful for the rapid 

and yet accurate dynamic screening of cohorts of protein samples for alternative 

conformational states under different conditions (free vs. ligand bound, wild-type vs. 

mutants, variable temperature, etc.) and the simultaneous determination of R1 and R2 

relaxation parameters for model-free analysis.39 It will also be useful for the analysis of 

CEST spectra with very low B1 fields that would typically require a week or longer by 

traditional sampling. The CRLB-based scoring method is designed to be performed with 

an AMSi experiment, but may be also applicable to other NUS experiments, and the 

identification of trends displayed by good schedules can be used for future schedule 

generators. 
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Tables and Figures with Captions 

 

 

Figure 1. Section of 2D 15N-1H HSQC “footprint” spectrum of Im7 protein (blue-to-

yellow contours) with fitted footprints (red). A footprint of cross-peak, which is 

independent of its intensity (volume), captures the location and lineshape, including 

linewidth. The crosshairs (red) represent “footprints”, i.e. peak positions (centers) and 

effective R2 relaxation parameters (cross-hair widths) along each dimension. AMSi uses 

parametrized footprints to reconstruct peak volumes in pseudo-3D experiments.  
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Figure 2. Portion of the (a) original Im7 spectrum, (b) fitted spectrum generated as a 

superposition of individual fitted cross-peaks using Voigt profiles, and (c) reconstructed 

spectrum via AMSi using 4.7% sampling along indirect t1 dimension. The spectra are 

displayed as 3D surface plots to allow for a detailed visual comparison of peak 

amplitudes. 
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Figure 3. 15N-CEST profiles of 4 cross-peaks of Im7 using both fully sampled and 

traditionally processed data (black, solid line), and NUS data with AMSi processing 

using 2 (magenta), 3 (cyan), 4 (blue), 6 (green), 8 (orange), 12 (yellow), and 16 (red) 

indirect complex t1 time points for each of the 116 CEST offset frequency. NUS 

schedules were chosen using the best predicted schedule of a total of 106 randomly 

chosen schedules according to the CRLB trace metric, except for N1 = 2, 3, 4 where all 

schedules were systematically enumerated and tested. The same data without vertical 

displacement are depicted in Figure S1.  
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Figure 4. Rank-ordered RMS errors of CEST amplitudes for different values of N1. The 

fully sampled (N1 = 128) and standard 2D FT processed dataset was used as reference for 

the determination of errors. Displayed curves belong to N1 = 2 (magenta), 3 (cyan), 4 

(blue), 6 (green), 8 (orange), 12 (yellow), and 16 (red). N1 = 2, 3 and 4 data sets include 

all possible schedules, while the other data sets represent 106 randomly chosen schedules. 

Large dots indicate the best predicted schedules. Vertical and horizontal axes have been 

restricted to better display the majority of schedules. Typical peak amplitudes vary 

between 30 and 50.  
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Figure 5. Fractional occurrence (relative frequency) of each data point in the best (a) and 

worst (b) NUS schedules. Best and worst schedules are the top and bottom 0.5% of all 

schedules tested as determined by RMS error in amplitude (with the fully sampled and 

standard 2D FT processed data taken as reference). Points displayed belong to schedules 

with N1 = 4 (blue), 8 (orange), and 16 (red) indirect t1 time points. 
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Figure 6. RMS error in amplitude plotted against the CRLB trace metric for large 

number of schedules (up to 106) using N1 = 4 (blue), 8 (orange), and 16 (red) (with the 

fully sampled and traditionally processed amplitudes taken to be the standard for 

determination of error). The N1 = 4 data set includes all 333,375 possible schedules, 

whereas other data sets have 106 randomly selected schedules plotted. Large dots indicate 

the schedule with lowest true error for each N1 value and “x” symbols indicate the best 

scoring schedule for each N1 value according to the CRLB trace. Vertical axis has been 

restricted to allow better comparison of schedules. 
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Figure 7. Demonstration of the effect of poor sampling schedules on the corruption of 

15N-CEST profiles. The panels belong to Im7 spectra of (a) residue Glu25 and (b) residue 

Asp35 using both fully sampled and traditionally processed data (black, solid line) and 

NUS data with AMSi processing using N1=6 indirect complex time points using the best 

(red), median (green), and worst (blue) schedules (according to their errors with respect 

to the full sampling) (see also Table 2). 
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Table 1. Number of peaks that undergo chemical exchange detected for different values 

of N1.  

 
N1 128a 2 3 4 6 8 12 16 

No. of peaks with  

> 5.5 ppm 

7 5 6 6 6 7 6 7 

No. of peaks with  

< 5.5 ppm 

13 2 3 7 8 10 11 12 

 

a Processed by traditional FT 
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Table 2. Absolute best and worst schedules for different values of N1 based on RMS 

error in amplitude. Each number corresponds to the evolution delay t1 expressed as 

integer multiple of the dwell time t1 (by default, t1 = 0 is included in each schedule).  

N1 best NUS schedule  worst NUS schedule  

2b 0, 13 0, 90 

3b 0, 6, 24 0, 60, 122 

4b 0, 4, 9, 14 0, 86, 90, 91 

6 0, 9, 11, 20, 24, 26 0, 53, 56, 107, 110, 111 

8 0, 4, 8, 12, 16, 22, 25 0, 110, 111, 119, 123, 124, 125, 126 

12 0, 3, 8, 11, 12, 13, 17, 18, 21, 24, 

31, 102 

0, 89, 91, 98, 105, 115, 118, 121, 122, 125, 

126, 127 

16 0, 1, 3, 6, 7, 9, 10, 11, 12, 13, 16, 

17, 32, 34, 35, 56 

0, 38, 67, 77, 85, 87, 95, 99, 104, 109, 113, 

114, 117, 118, 120, 121 
 

b For schedules with N1  4, all possible schedules (with the first time point always taken) 

were analyzed. 
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