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ABSTRACT

NMR spectroscopy is an extraordinarily rich source of quantitative dynamics of proteins
in solution using spin relaxation or Chemical Exchange Saturation Transfer (CEST)
experiments. However, '’N-CEST measurements require prolonged multidimensional,
so-called pseudo-3D HSQC experiments where the pseudo dimension is a radio-
frequency offset Am of a weak '°N saturation field. Non-uniform sampling (NUS)
approaches have the potential to significantly speed up these measurements, but they also
carry the risk of introducing serious artifacts and the systematic optimization of non-
uniform sampling schedules has remained elusive. It is demonstrated here how this
challenge can be addressed by using fitted cross-peaks of a reference 2D HSQC
experiment as footprints, which are subsequently used to reconstruct cross-peak
amplitudes of a pseudo-3D dataset as a function of Aw by a linear least-squares fit. It is
shown for protein Im7 how the approach can yield highly accurate CEST profiles based
on an absolutely minimally sampled (AMS) dataset allowing a speed-up of a factor 20 —
30. Spectrum-specific optimized non-uniform sampling (SONUS) schemes based on the
Cramer-Rao lower bound metric were critical to achieve such a performance, revealing
also more general properties of optimal sampling schedules. This is the first systematic
exploration and optimization of NUS schedules for the dramatic speed-up of quantitative

multidimensional NMR measurements that minimize unwanted errors.
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INTRODUCTION

NMR spectroscopy is a major source of experimental information about protein dynamics
at atomic resolution on a broad range of timescales offering valuable insights about
protein function. Common NMR experiments that provide such information include Ry,
R2, Rip, and CPMG relaxation dispersion experiments'*? as well as Chemical Exchange
Saturation Transfer (CEST).>* In order to make a maximal number of protein resonances
accessible to quantitative dynamics analysis, these experiments are performed in a
pseudo-3D manner in the form of stacks of 2D HSQC-type spectra,” where >N or 1*C
nuclei are correlated with their directly attached 'H protons resulting in unique cross-
peaks, while an additional parameter is systematically varied along the “pseudo” 3™
dimension. Depending on the experiment, this dimension can correspond to a set of
relaxation delays (R; and R> experiments), the effective radio-frequency (rf) field
strength (CPMG, Ry,), or an rf spin-lock offset (CEST, Rj,).> Common to all these
experiments is that the 2D HSQC-type spectra retain their resonances (cross-peaks) at the
exactly same positions with identical lineshapes and only their amplitudes (or volumes)
vary along the pseudo dimension. For some of these experiments the number of points
probed along the pseudo dimension can be quite large. For example, for a '’N-CEST

experiment with moderately small rf saturation field strength (B, [125Hz) it is common

to measure 2D '"H-'""N HSQC spectra for 100 or more different rf offsets. This can lead to
prolonged experiment times of the order of one or several days. For samples with good
sensitivity, besides the number of points along the pseudo dimension, the measurement
time is determined by the required number of increments N; along the indirect wi
dimension of each of the 'H-'>’N HSQC-type spectra. For traditional Fourier transform
NMR data processing, Ni is typically around 128 (complex) increments to ensure a
digital resolution that exceeds the natural linewidth of most cross-peaks.

The standard method used for pseudo-3D experiments measures each 2D HSQC-
type plane separately as a function of the 3™ (pseudo) dimension and subjects it to 2D
Fourier transform processing. The fact that cross-peak positions and shapes remain the
same in each 2D plane and can be measured before beginning the full experiment is,
however, generally not utilized to decrease measurement time or increase the accuracy of

the final spectrum. In order to make the NMR time manageable, such information has
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been used in a pseudo-4D CEST experiment.® A recent approach (MERT NMR) utilizes
such information by parametrizing cross-peak positions and shapes in a reference 2D
HSQC plane and determines peak volumes along the pseudo dimension making cross-
peaks in crowded regions better accessible to quantitative analysis.’

Over the recent past, non-uniform sampling (NUS) has gained significant traction
in multidimensional NMR applications by measuring only a subset of t; evolution times
followed by the reconstruction of the spectra using customized algorithms. For situations
where sensitivity is not the limiting factor, sampling can be typically reduced to 50% or
25% of the total number of points amounting to two- to four-fold time savings. NUS
implementation can take different forms, such as multi-dimensional decomposition
(MDD),!® maximum entropy,!! or compressed sensing.!*!?

NUS invariably requires users to select a sampling schedule, i.e. the specific set of
t; evolution time increments that are measured. The choice of the sampling schedule has
important consequences for the final spectrum, since it directly affects the resolution, the
sensitivity, and the possible appearance of artifacts.!*!> The total number of sampling
schedules can be astronomically large, even if one limits oneself to “on-grid sampling”
only, i.e. all sampled time points are integer multiples of the Nyquist dwell time At =
1/SW , i.e. i = k- Ati, where SW is the spectral width along the indirect @1 dimension (in
Hz) and k is an integer between 0 and Ni-1. Specifically, the number of sampling

schedules with 71 increments chosen from a total of N1 equidistantly spaced increments is

Noyys = ]:1 . For Ni = 128 and nm1 = 32 or 64, Nxus is 1.5¢10°° and 2.4-10%,
I
respectively. The very large size of Nxus has prevented the systematic exploration of
sampling schedules and the best sampling schedule for a given experiment and sample
remains unknown. Experience shows that the quality of a sampling schedule depends on
many different factors, such as the number of cross-peaks, their positions in terms of
chemical shifts, resonance linewidths, and amplitudes. Empirical rules have been
developed for the generation of decent sampling schedules along with metrics that allow

one to approximately assess their performance.'* '®!® Randomization of increments has



been found useful to prevent a systematic violation of the Nyquist sampling theorem to
minimize systematic artifacts, e.g., through spectral aliasing.'

Each sampling schedule represents a compromise between (i) a minimal number
of increments to speed up data acquisition (71 < Ni), (ii) the use of increments with short
t1 delays that optimize sensitivity by allowing minimal transverse relaxation, and (iii) the
use of long #1 delays that enhance spectral resolution by disambiguating between cross-
peaks with similar chemical shifts along ®i. Currently, the vast majority of sampling
schedules is generated randomly in either a neutral manner (uniform random sampling'®)
or by introducing a bias that favors short #; delays over longer delays as implemented, for

12° or Poisson-gap sampling.?!

example, in exponentia

We recently introduced the absolute minimal sampling (AMS) strategy to
accurately reconstruct a spectrum with the absolute minimal number of increments.?? In
the present work, we generalize AMS for the reconstruction of peak intensities in pseudo-
3D experiments using extreme NUS for the purpose of spectral collection in a minimal
amount of time without sacrificing accuracy with the NUS schedule spectrum-
specifically optimized based on the Cramer-Rao lower bound metric. Similar to MERT
NMR, the new method uses prior knowledge in the form of the 2D HSQC cross-peak
footprints whose intensities are modulated along the pseudo dimension. Because the
amplitude reconstruction is a linear-least squares problem, it can be solved by linear
algebraic methods with high computational efficiency permitting a more systematic
analysis of the effect of the sampling schedule on the accuracy of the spectral
reconstruction than was previously possible. The new method, which is referred to as
AMSi where “i” stands for intensity reconstruction, is demonstrated here for "N-CEST
where for the best predicted sampling schedule, a speed-up over the standard method of

more than a factor of 20 - 30 is possible without introducing undesirable NUS artifacts.

MATERIAL AND METHODS
AMSi theory

An NMR signal is modeled here as a weighted sum of decaying sinusoids.?*** When a

2D HSQC has been Fourier transformed in the direct dimension, it may be expressed as:
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In this equation, M is the total number of cross-peaks in the 2D HSQC footprint and a;,
£, and R>; are the amplitude, Larmor frequency, and transverse relaxation rate of the ;"
peak, respectively. Superscript values on frequencies and relaxation rates indicate the
dimension for each of these values. p;(@) is the lineshape of the j” peak along the
processed direct dimension. The second equation is the discretized form of the first
equation, where F is a matrix representing the footprint of the spectrum, column vector a
contains the amplitude of each cross-peak as its elements, and the elements of column
vector s represent the ti- and w>-dependence of the signal. If the footprint matrix F is
known, e.g. from fitting a reference 2D HSQC spectrum, then the cross-peak amplitudes

a of any experiment with the identical footprint can be reconstructed according to:

a™ =(Re[F'F])' Re[F's] )

This reconstruction can be performed with no restriction on the sampling schedule, as
long as the number of data points provided is greater than or equal to half the number of
peaks M in the footprint (see Supporting Information).

Processing the direct dimension prior to fitting allows for several advantages,
including the better separation of peaks along these dimensions and the application of
common tools such as zero-filling, apodization, baseline correction, and water signal
removal to be used prior to AMSi. However, the shape of the peaks along the Fourier
transformed dimension must be carefully considered. The Voigt profile, which is a
convolution of a Lorentzian and a Gaussian lineshape with unequal line widths,?® has
been previously used in lineshape analysis for apodized signals.?® This lineshape
performed best for AMSi reconstruction and is used throughout this work unless noted
otherwise.

Larmor frequencies and lineshapes are most easily determined by direct peak

fitting as illustrated in Figure 1 for the 2D N-'H HSQC footprint spectrum of Im7



protein. It is important to ensure that all peaks or features are picked for the faithful
representation of the original spectrum and that the peak locations are known with high
accuracy. Uninteresting or artifact peaks may be disregarded further downstream, but
must be included in the footprint. Accurate lineshapes along dimensions that will be
Fourier transformed prior to AMSIi are critically important. However, AMSi is less
sensitive to errors in lineshapes along non-uniformly sampled dimensions.

The following steps summarize the method of AMSi data processing for an '*N-

CEST experiment. They can be directly adopted to other pseudo-3D relaxation

experiments.
1. Collect a 2D HSQC reference spectrum
2. Perform peak fitting and determine a footprint

(Larmor frequencies and lineshapes for all peaks)

3a. Optional: optimize non-uniform sampling schedule
along indirect ti1 dimension

3b. Choose sampling schedule and collect the CEST
experiment using NUS in the indirect dimension

4. Determine the footprint matrix from sampling
schedule and footprint

5. Perform linear least-squares minimization as
described above to extract intensities of each peak

6. Plot CEST profile and subject it to qguantitative

analysis (e.g. by ChemEx software)

Cramer-Rao lower bounds for a priori scoring of NUS schedules

The Cramer-Rao lower bound (CRLB) is a lower bound on the expected error of a
parameter.”’ It is the inverse of the Fisher information, which is a way of determining the
amount of information provided by an observable about a model parameter. When
multiple parameters are being determined, the CRLB is a matrix that is related to the
expected covariance matrix. As a result, each element in the diagonal places a lower
bound on the expected uncertainty in a peak intensity, and the trace of the CRLB places a

lower bound on the expected sum squared error for the estimated parameters.



The CRLB has been used previously in schedule analysis of model-based NMR.®
In the context of NMR signals for which footprints are known, the CRLB is given in Eq.
(3) (see SI for details).

CRLB = Lz(Re[F"'F])’l )
(o}

This value will be used as a metric to predict the scoring of NUS schedules for the

purpose of spectrum-specific optimization with one modification: because additive
random baseline noise is constant, the inverse variance term 1/ o’ is dropped. This

scoring method was tested for accuracy through comparison to RMS error in amplitudes.

Sample Preparation

The DNA fragment encoding Im7 was PCR-amplified and subcloned into a pTBSG
ligation independent cloning vector derivative (pTBSG1).?’ The resulting plasmid
pTBSG1 Im7 was then transformed into Escherichia coli BL21(DE3) strain for protein
overexpression. The expressed fusion protein contains a His¢-tag and a TEV protease
cleavage site N-terminal to Im7. The overexpression was carried out as follows: a single
colony was inoculated to 20 mL LB media under vigorous shaking of 250 rpm overnight
at 37 °C, the overnight culture was then transferred into 1L M9 minimal media with 1g
ISNH4ClI and 5g p-glucose (or 4g p-glucose-*Cs for '*C-labeled samples) as the sole
nitrogen/carbon sources and incubated at 37°C under vigorous shaking. When ODgoo of
the culture reached 0.8—1.0, isopropyl S-D-1-thiogalactopyranoside (IPTG) was added to
it to the final concentration of 0.5mM, and further incubated at 25°C under vigorous
shaking for 18 hours. After overexpression, the cells were then pelleted by centrifugation,
and lyzed by EmulsiFlex-C5 homogenizer (AVESTIN, Inc.) The cell lysate was
subjected to centrifugation at 20,000 xg for 20 minutes. The His¢-tagged Im7 protein in
the supernatant was purified by a Ni-NTA agarose (QIAGEN) affinity column and mixed
with tobacco etch virus (TEV) protease for Hiss-tag cleavage. The final Im7 protein,
which has three non-native residues (SNA) at its N-terminus, was recovered with a
second Ni-NTA affinity column and was concentrated in 50 mM sodium phosphate

buffer at pH 7.0.



NMR data collection and processing

SN-CEST spectra were collected with a 25 Hz and 100 Hz saturation field on the
colicin E7 immunity protein Im7 at 298 K on a Bruker AVANCE III 850 MHz
spectrometer equipped with a cryogenically cooled TCI probe using 128 (complex)
indirect time points. This data was processed using NMRPipe,*® and the cross-peaks were
assigned using assignments reported in the literature®! and confirmed by 3D HNCA and
HNCOCA experiments. Kinetic and thermodynamic parameters were extracted from

CEST profiles using ChemEx* (http://www.github.com/gbouvignies/chemex).

For AMSIi processing, the data was subsampled to n1 = 2, 3, 4, 6, 8, 12, 16
complex time points. A footprint was determined from a high-resolution H-">"N HSQC
and fit using an in-house program capable of Voigt lineshape fitting. Schedules were
selected and AMSi was performed with an in-house program utilizing the nmrglue
Python library.** The root mean square error (RMSE) of the amplitudes was calculated

according to:

\/M : 4)
RMSE — D ( a‘;ec _ a;rue)

Jj=1

In addition, the data was fit with ChemEx for validation of the method and compared

with the fully sampled results.

RESULTS

A fully sampled 2D '"N-'H HSQC spectrum of Im7 was collected with 2048 direct time
points and 128 indirect time points to extract the spectral footprint (all data points
indicate complex points, unless noted otherwise). After standard spectral processing
using apodization, zero-filling, and traditional Fourier transform and phasing, the
resulting spectrum can be seen in Figure S6. The spectrum has generally a low degree of

overlap, but has traces in the indirect dimension with up to 5 peaks making extreme time-


http://www.github.com/gbouvignies/chemex)

saving methods, such as SPEED??, inapplicable. Peak picking found 102 peaks, 84 of
which were successfully assigned to backbone amides covering all non-proline residues
of Im7. Peak fitting was performed using Voigt profiles in both dimensions. The indirect
dimension was found to be adequately reconstructed by a Lorentzian lineshape. However,
the full Voigt profile was needed along the direct dimension for optimal reconstruction.
This information was used to create a footprint of the spectrum for subsequent AMSi
processing.

A fully sampled CEST spectrum of Im7 was collected with 128x2048 complex
time points along the indirect and direct dimensions. Two B; fields were used (target
field strengths 25 Hz and 100 Hz, with calibrated field values of 27.4 Hz and 110 Hz),
and 116 B, offsets used for the 25 Hz experiment and 41 offsets used for the 100 Hz
experiment. Four reference planes with no saturation transfer delay were taken
throughout the experiment as reference. The 25 Hz experiment took 38.5 hours and the
100 Hz experiment 14.5 hours to collect (the 100 Hz experiment covered a wider range of
offset values with fewer increments). Upon fitting with ChemEx, 7 peaks (144, T45, E46,
L53, 154, Y55, Y56) were determined to undergo exchange with a large change in
chemical shift (>5.5 ppm), and 13 additional peaks were determined to undergo exchange
with a smaller change in chemical shift.

We subsampled the data with n; = 2, 3, 4, 6, 8, 12, 16 increments using the
CRLB-based prediction of the best sampling schedule and recreated the CEST data using
AMSi. The n; = 6 point AMSi reconstruction can be seen in Figure 2 for an overlapped
spectral region against the fully sampled spectrum and the fit of individual cross-peaks
used for footprinting. It shows that the AMSi reconstructed spectrum represents a highly
accurate depiction of both the original spectrum and the derived footprint. The
amplitudes for the different numbers of n; increments are plotted as complete CEST
profiles in Figure 3 for four representative residues 172, L53, E21, and Y55 in
comparison with the fully sampled result. All features of the CEST profiles are well-
reproduced, including an asymmetry of the main peak (Figure 3b) and the appearance of
a minor CEST peak (Figures 3c,d) for all sampling schedules using as few increments as
n; = 2 (magenta line). The same profiles are overlaid in Figure S1, with numerical values

of select points listed in Table S1, demonstrating excellent agreement among the profiles
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even for n; = 2. The only visually noticeable feature of smaller numbers of t; increments
is the increase in noise, which reflects the shorter total acquisition time. For n1 =2, 8, 16
the data acquisition requires 50 minutes, 3.3 hours, and 6.6 hours vs. 53 hours for the
fully-sampled reference spectrum.

Next, the CEST profiles were subjected to a fully quantitative chemical exchange
analysis according to the same ChemEx analysis protocol. The number of peaks found to
have significant chemical exchange for each value of n; is shown in Table 1. All peaks
appearing to undergo chemical exchange in the NUS schedule were also found in the
fully sampled spectrum, i.e. no artificial chemical exchange effect was introduced due to
NUS reconstruction. When only the 7 peaks with a relatively large change in >N
chemical shift difference > 5.5 ppm between ground and excited states are fit globally,
there was no noticeable trend in error of each parameter as the number of time points
increased (Table S2). Thus, the major benefit of collecting more data points is the
improved recovery of exchange effects, especially for some of the most difficult peaks
where the secondary CEST dip is close to the main peak (low Aw).

We were able to perform AMSi reconstruction and evaluation for all possible
schedules with n1 = 2, 3, and 4 indirect time points collected, with the requirement that
the first point (t; = 0) always be included. We also performed AMSi reconstruction and
evaluation for 1 million randomly selected schedules with n; = 6, 8, 12, and 16 time
points. The total RMS error of all amplitudes for each schedule is rank-ordered and
plotted in Figure 4. For all sets of schedules, except n1 = 2, the majority of random
schedules have similar error, with a small but non-negligible fraction of schedules
performing significantly better or worse than others (left and right tails of curves). This
change is so significant that an optimal choice of a schedule outperforms a median
schedule with a 2 — 3 times larger number of indirect points taken. Similarly, a poorly
chosen schedule will result in a performance comparable to a median schedule with 2 — 3
times fewer indirect points.

The best schedules as determined by true error in amplitude are given in Table 2.
They show a clear preference for early time points and for relatively large gaps between
sampled increments. The relative frequency of each time point occurring in the top and

bottom 0.5% of the schedules is plotted in Figure 5 for n1 = 4, 8, and 16. The best
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schedules have a similar shape to an exponential distribution with a finite offset, similar
to exponential sampling as has been previously suggested for standard NUS
applications.!!>2% 34 The decay of this distribution becomes steeper when focusing on the
absolute best set of schedules (see Figure S2). There is also an initial buildup of fractional
occurrence in time points 1-3, with time point 4 being the most likely point chosen in all
three displayed schedules, which is reflected in the set of best NUS schedules. For the
0.5% of the best sampling schedules, certain pairs of time points show distinct
preferences and anti-preferences to be co-sampled (see SI Figure S3).

Although the CRLB-based scoring method does not identify the absolute best
sampling schedules for each of the different n; values, it predicts very good sampling
schedules as can be seen in Figure 4 where the best CRLB-based schedules (filled circles)
are close to the left end. This is further corroborated in Figure 6 where for each of the
schedules tested the RMS error is plotted against the CRLB trace. For all n; values (4, 8,
16), the relationship is funnel shaped where schedules with low predicted CRLB scores
possess also low RMS errors. For all n; values (except n1 = 2), the best schedule by
CRLB score is within the top 5% of schedules by RMS error with the best scores
obtained for larger n; values. As a demonstration of the accuracy of these predicted
schedules, they were used for the AMSi CEST profiles depicted in Figure 3.

On the other end, schedules with poor CRLB scores have a much broader RMS
error distribution, which is however inconsequential for practical applications. The
consequences of the best, median, and worst sampling schedule are illustrated in Figure 7
for the reconstruction of CEST profiles of E25 and D35. As can be seen, the best
sampling schedule reproduces the reference profile very accurately, whereas the median
and worst schedules show shoulder effects, which may be misinterpreted as excited
states.

Taken together, our results suggest that CRLB-based scoring of schedules is a
reliable method for the generation of spectrum-specifically optimized NUS schedules
(SONUS) avoiding schedules with high RMS errors that can produce misleading artifacts
in CEST profiles. Especially for small n; values, which promise the largest gain in
measurement time, the choice of a purely random schedule is nof recommended. Instead,

the CRLB-based scoring method is capable of correctly predicting very good schedules.
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DISCUSSION

Non-uniform sampling permits the substantial shortening of the measurement
time of multidimensional NMR spectra when the measurement is dictated by sampling of
indirect time points rather than sensitivity. NUS is now routinely applied to many
multidimensional NMR experiments, especially those that provide NMR resonance
assignment information of proteins in solution.*> By contrast, NUS is only rarely applied
to pseudo-3D experiments, such as protein spin relaxation or CEST experiments, for the
fully quantitative biophysical characterization of structural dynamics. Application of
standard NUS to each HSQC plane is possible, but allows only a relatively modest speed-
up. For ’N-'H HSQC planes a reduction of the total number of t; increments to 64 or 32
may be possible resulting in a speed-up of a factor 2 — 4.

By definition, NUS requires a user to make a choice between many possible
sampling schemes carrying the risk of spectral artifacts caused by the sampling scheme,
rather than random noise. The sampling scheme must be good or, at least, acceptable,
because after a NUS dataset has been collected, standard Fourier transform is not
available any longer for the independent assessment of the accuracy of reconstructed
spectrum.

Among the many pseudo-3D experiments used in protein NMR, CEST is one of
the most challenging experiments as in many proteins the vast majority of cross-peaks do
not show chemical exchange effects and those that do need to be identified with high
accuracy. Hence, for any NUS-CEST scheme reliability is paramount whereby the
number of both false positive and false negative CEST effects are to be kept extremely
small and, if possible, at zero. NUS-CEST also provides a challenge for reconstruction as
CEST planes invariably include a very wide range of peak amplitudes, including some
near-zero amplitudes, that must be accurately reconstructed, while most other pseudo-3D
experiments display a much more limited dynamic range.

The AMSIi strategy introduced here promises to meet this challenge as it permits
the very reliable reconstruction of pseudo-3D CEST spectra with n; in the single digits
and some instances as small as n; = 2 increments. This reduction in n; allows an NMR

time speed up from over 2 days to under an hour.
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For AMSi to be successful, the following conditions need to be met and key steps
need to be followed. First, the reference HSQC spectrum needs to be footprinted
accurately by decomposing it into a sum of cross-peaks with Voigt profiles. For this
purpose, a high-quality 2D HSQC spectrum has to be collected first and a non-linear least
squares fitting problem has to solved to obtain the resulting footprints. Since such a 2D
SN-'H HSQC is typically one of the first NMR spectra recorded for any given protein
system, it does not add to the total NMR time of the project. This step needs to be done
only once and the cross-peak footprints can subsequently be applied to any other pseudo-
3D experiment based on the same HSQC spectrum (Ri, R2, CPMG, CEST, DOSY)
provided that the HSQC closely matches the reference plane of the pseudo-3D
experiment.

Next, a NUS schedule needs to be chosen that ensures good performance. For
many NUS applications with a relatively large number of increments (n; > 32) of
increments, a randomized selection usually works just fine. However, for the kind of
extreme speed-up described here with n; in the single digits, a randomly selected
schedule has a non-negligible chance to have poor performance with major consequences
on the quality of the resulting CEST profiles. We show that the Cramer-Rao lower bound
(CRLB) metric permits the spectrum-specific optimization of sampling schedule
performance allowing one to choose a very good to excellent schedule. Because the
spectral reconstruction can be expressed in terms of linear algebra with good
computational efficiency, an unprecedented large number of schedules can be tested and
the one with the best CRLB metric can then be used for the actual experiment.

The analysis of a large number of sampling schedules performed here allowed, for
the first time, an independent assessment of commonly used NUS strategies, such as
exponential and Poisson gap sampling. Statistically, the best sampling schedules
identified here sample early ti increments significantly more frequently than later time
points in order to optimize the sensitivity. The frequency drops approximately
exponentially toward a plateau value, which approaches zero for small #;. It is interesting
to note that certain t; increments are much more frequently found than others. For
example, t1 = 4At;, 8At1, 16At;, 25At; are increments that have a significantly higher

chance to be found in some of the best performing schedules than other increments,
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whereas some increments, such as t; = Aty, 17At;, are clearly unfavorable. We expect that
these “special” increments directly depend on the actual cross-peak distribution and are
not transferrable between spectra.

The theoretical minimal number of increments is determined by:

2N,n, > M (%)
where M is the total number of footprinted cross-peaks, including spurious peaks, and N>
is the number of direct time points collected. As there is essentially no time cost when
increasing N, this requirement can be simplified to n; > 1 (see Supporting Information).
This assumes a sufficiently high signal-to-noise, which in practice may not be fulfilled.
Such effects are reflected in higher CEST baseline noise levels (Figure 3) and the lower
recovery (by software such as ChemEXx) of small CEST effects, especially shoulder peaks
of the main CEST peak (Table 1). The fitting errors of CEST-derived thermodynamic and
kinetic parameters obtained using ChemEx (Table S2) do not follow any trend with the
number of peaks fitted. In most cases, the error is less than 5%, which is larger than the
errors in the traditionally constructed CEST profiles supplied by ChemEx (1.2% for kex,
0.76% for po).

Poor footprinting or poor schedules may have a detrimental effect on CEST
profiles. Beyond an increase in noise due to sampling low signal-to-noise time points, a
poor schedule can also cause instability in the shoulder of the main CEST peak (Figure
7). Even more notable are the effects of using a poor footprint, often due to inaccurate R
or lineshape in the direct dimension. The most commonly observed artifacts were
“shadow features”, which is the effect of one peak subsuming a part of another peak
within the same trace. For example, when Lorentzian lineshapes are used for the spectra
processed above for the best schedule, systematic artifacts such as those seen in Figure
S4 occur. Fortunately, these shadow peaks have consistent behavior, causing the
appearance that the main peak either oversaturated or failed to fully saturate, and causing
a secondary peak to appear in the profile either as a rise or dip, respectively. In addition,
footprints can be improved or reconstructed after an experiment has been run in case that
it is discovered that the original footprint is inadequate.

It is noteworthy that the majority of schedules perform remarkably similarly

(Figure 4), especially for larger n1, with only significant changes in error occurring in the
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best and worst few percent. However, for all sets of schedules (except n1 = 2) the best two
schedules only differ by at most 3% error, i.e. there is only limited benefit by identifying
the very best schedule among ~10° candidate schedules. It is noted that the baseline noise
in the best schedule does not scale with the square root of the number of points (Figure
S5) and, instead, performs significantly better than would be expected from square root
scaling. This suggests that the substantial speed-up of AMSi afforded over traditionally
sampled experiments can also be leveraged for the reduction of noise by using the extra
time to collect more scans.

The CRLB-based method for predicting the best schedule presented in this work
is highly suitable for the optimization of NUS schedules, but there still exists some room
for improvement in prediction of the absolute best schedule and, less importantly, in
prediction of poor schedules. For those who intend to search for the absolute best
schedule, we note that the time points of top schedules significantly differ from each
other (Table S3) and there is only little correlation between chosen points in optimal
schedules (Figure S3). This suggests that “greedy” search methods are unlikely to
converge to the global optimum.

AMSi shares features with other NUS methods in the literature. It is
algorithmically similar to MDD if peak positions and lineshapes were separately supplied
and held constant, and it is the final result of AMS when restraining both frequencies and
relaxation constants. Most notably, it is conceptually similar to the pseudo-4D method by
Long et. al,® from which it differs by its use of varying lineshape for the direct
dimension, and its removal of the option for small corrections in frequency in order to
optimize speed and interpretability of the process. AMSi is also similar to MERT, but
AMSIi uses an interferogram instead of full time-domain data and samples the indirect
time-domain non-uniformly to achieve large time reductions.

In this work, we restricted ourselves to the analysis of CEST data as this pseudo-
3D experiment has the greatest potential for time savings through NUS. However, AMSi
is capable of being used with any pseudo-3D experiment where peaks do not drift or
change shape between planes, including Ri, Rip, DEST, CPMG relaxation experiments,
and DOSY. Although these experiments typically collect fewer 2D planes, and thus are

shorter experiments with less absolute time to be saved by NUS, we expect AMSi to
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achieve the same 20-30 fold time reduction without compromising the quality of the data.
It can also be combined with multi-frequency saturation methods that improve CEST

speed by reducing the number of planes taken, such as cos-CEST and D-CEST.3¢-3

CONCLUSIONS

AMSIi provides a general framework for the speed-up of CEST or any other
pseudo-3D experiment. We anticipate this method to be especially useful for the rapid
and yet accurate dynamic screening of cohorts of protein samples for alternative
conformational states under different conditions (free vs. ligand bound, wild-type vs.
mutants, variable temperature, etc.) and the simultaneous determination of R; and R»
relaxation parameters for model-free analysis.* It will also be useful for the analysis of
CEST spectra with very low B fields that would typically require a week or longer by
traditional sampling. The CRLB-based scoring method is designed to be performed with
an AMSi experiment, but may be also applicable to other NUS experiments, and the
identification of trends displayed by good schedules can be used for future schedule

generators.

ASSOCIATED CONTENT
Additional information showing the method used for automated CEST fitting, along with
a discussion of the linear least squares approach used to obtain Eq. (2) and a derivation of
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Tables and Figures with Captions
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Figure 1. Section of 2D "N-'H HSQC “footprint” spectrum of Im7 protein (blue-to-
yellow contours) with fitted footprints (red). A footprint of cross-peak, which is
independent of its intensity (volume), captures the location and lineshape, including
linewidth. The crosshairs (red) represent “footprints”, i.e. peak positions (centers) and
effective R> relaxation parameters (cross-hair widths) along each dimension. AMSi uses

parametrized footprints to reconstruct peak volumes in pseudo-3D experiments.
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Figure 2. Portion of the (a) original Im7 spectrum, (b) fitted spectrum generated as a
superposition of individual fitted cross-peaks using Voigt profiles, and (c¢) reconstructed
spectrum via AMSi using 4.7% sampling along indirect t; dimension. The spectra are
displayed as 3D surface plots to allow for a detailed visual comparison of peak

amplitudes.
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Figure 3. "’N-CEST profiles of 4 cross-peaks of Im7 using both fully sampled and
traditionally processed data (black, solid line), and NUS data with AMSi processing
using 2 (magenta), 3 (cyan), 4 (blue), 6 (green), 8 (orange), 12 (yellow), and 16 (red)
indirect complex t; time points for each of the 116 CEST offset frequency. NUS
schedules were chosen using the best predicted schedule of a total of 10° randomly
chosen schedules according to the CRLB trace metric, except for Ni = 2, 3, 4 where all
schedules were systematically enumerated and tested. The same data without vertical

displacement are depicted in Figure S1.
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Figure 4. Rank-ordered RMS errors of CEST amplitudes for different values of Ni. The
fully sampled (N1 = 128) and standard 2D FT processed dataset was used as reference for
the determination of errors. Displayed curves belong to N; = 2 (magenta), 3 (cyan), 4
(blue), 6 (green), 8 (orange), 12 (yellow), and 16 (red). N; = 2, 3 and 4 data sets include
all possible schedules, while the other data sets represent 10° randomly chosen schedules.
Large dots indicate the best predicted schedules. Vertical and horizontal axes have been
restricted to better display the majority of schedules. Typical peak amplitudes vary
between 30 and 50.
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Figure 5. Fractional occurrence (relative frequency) of each data point in the best (a) and

worst (b) NUS schedules. Best and worst schedules are the top and bottom 0.5% of all

schedules tested as determined by RMS error in amplitude (with the fully sampled and

standard 2D FT processed data taken as reference). Points displayed belong to schedules

with N1 =4 (blue), 8 (orange), and 16 (red) indirect t; time points.
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Figure 6. RMS error in amplitude plotted against the CRLB trace metric for large
number of schedules (up to 10°) using N; = 4 (blue), 8 (orange), and 16 (red) (with the
fully sampled and traditionally processed amplitudes taken to be the standard for
determination of error). The Ni = 4 data set includes all 333,375 possible schedules,
whereas other data sets have 10° randomly selected schedules plotted. Large dots indicate
the schedule with lowest true error for each N1 value and “x” symbols indicate the best
scoring schedule for each N; value according to the CRLB trace. Vertical axis has been

restricted to allow better comparison of schedules.
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Figure 7. Demonstration of the effect of poor sampling schedules on the corruption of
ISN-CEST profiles. The panels belong to Im7 spectra of (a) residue Glu25 and (b) residue
Asp35 using both fully sampled and traditionally processed data (black, solid line) and
NUS data with AMSi processing using N1=6 indirect complex time points using the best
(red), median (green), and worst (blue) schedules (according to their errors with respect

to the full sampling) (see also Table 2).
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Table 1. Number of peaks that undergo chemical exchange detected for different values

of Ni.

Ny 128 2 3 4 6 8 12 16
No. of peaks with Ao 7 5 6 6 6 7 6 7
>35.5 ppm

No. of peaks with Ao 13 2 3 7 8 10 11 12
<5.5 ppm

? Processed by traditional FT



Table 2. Absolute best and worst schedules for different values of N; based on RMS

error in amplitude. Each number corresponds to the evolution delay t; expressed as

integer multiple of the dwell time At; (by default, t; = 0 is included in each schedule).

16

best NUS schedule

, 9,11, 20, 24, 26
8,12, 16, 22,25
,11,12,13,17, 18, 21, 24,

7,9,10,11, 12, 13, 16,

worst NUS schedule

0, 90

0, 60, 122

0, 86, 90, 91

0,53,56,107, 110, 111

0,110,111, 119,123, 124, 125, 126

0, 89,91,98, 105, 115, 118, 121, 122, 125,
126, 127

0, 38, 67,77, 85,87,95,99, 104, 109, 113,
114, 117,118, 120, 121

® For schedules with Ni < 4, all possible schedules (with the first time point always taken)

were analyzed.
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