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Cross sections for vibronic excitation of CH+ by low-energy electron impact
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A theoretical approach for the electron-impact vibronic excitation of molecular ions with low-lying excited
electronic states is described. In this approach, the fixed-nuclear R-matrix method is employed to compute
electron-ion scattering matrices in the Born-Oppenheimer approximation. A vibronic frame transformation
and the closed-channel elimination procedure in a spirit of molecular quantum defect theory are employed
to construct an energy-dependent scattering matrix describing interactions between vibronic channels of the
target ion induced by the incident electron. The obtained scattering matrix accounts for Rydberg series of
vibronic resonances in the collisional spectrum. The approach is applied to the CH+ ion of an astrophysical
and technological interest. Cross sections for vibronic excitation for different combinations of initial and final
vibronic states are computed. A good agreement between electronic-excitation cross sections, obtained using the
quantum defect theory and in a direct R-matrix calculation, demonstrates that the present approach provides a
reliable tool for determination of vibronic (de-)excitation cross sections for targets with low-energy electronic
resonances. Such targets were difficult to treat theoretically using earlier methods.
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I. INTRODUCTION

In many fields of research and applications, it is essential
to have accurate cross sections for different processes taking
place in collisions between molecular ions and electrons.
Among such processes are electron-impact rotational (RE),
vibrational (VE), and electronic (EE) excitation of the ions;
dissociative recombination (DR); and photoionization and its
inverse process, radiative recombination. Some cross sections
could be obtained in experiments. However, for many pro-
cesses, especially for the processes involving excited-state
ions (ions here and below are assumed to be molecular ions,
not atomic) or such ions as radicals, which are unstable in
collisions with other species present nearby, an experimental
approach is difficult or impossible. Even for stable ions in
their ground quantum state, an experimental approach is often
very expensive.

On the other hand, for theoretical approaches a significant
complication in computation of the cross sections is the pres-
ence of vibrational and rotational degrees of freedom that have
to be accounted for to obtain an accurate description of the
processes. Electronic excitation and ionization of molecules
can be treated theoretically, at least to some extent in the
Born-Oppenheimer approximation or by taking into account
the Franck-Condon factor. For other processes, such as rovi-
brational excitation or dissociative recombination, non-Born-
Oppenheimer effects should be accounted for explicitly.

With modern development of electron-scattering methods
and abundant computational resources, it became possible
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to compute, with an acceptable uncertainty, cross sections
for many processes in electron-ion collisions. Significant
progress was made for processes in diatomic ions formed
by light elements: H2

+ [1], HeH+ [1], BeH+ [2], BF+ [3],
CH+ [4–7], SH+ [8], N2

+ [9–11], O2
+ [12] with a few

other diatomic ions, and the simplest triatomic ion H3
+

with its isotopologs [13–17], where non-Born-Oppenheimer
effects in electron-ion collisions were accurately accounted
for, typically by using a quantum-defect approach combined
with rotational and vibrational frame transformations. With
some additional simplifications, such processes as rovibra-
tional excitation and dissociative recombination were also
successfully described theoretically for larger molecular ions:
CH3

+ [18], H3O+ [18,19], NH4
+ [20], HCO+ [21–27],

BF2
+ [28], N2H+ [27], HCNH+ [29–32], CH2NH2

+ [33],
and NH2CHOH+ [34].

Theoretically, non-Born-Oppenheimer couplings in
electron-ion collisions are treated differently for the ions with
low-energy electronic resonances appearing for geometries
near the equilibrium of the target ion (in a fixed-nuclei
picture) and for the ions without such low-energy electronic
resonances. In the former case, usually the potential energy
surface (PES) of the doubly excited neutral molecule crosses
the ionic PES near the equilibrium geometry; in the latter
case, there is no such a resonance PES. The ions of the first
type usually (not always) have the first excited electronic state
at a relatively low energy, below 5 eV; the ions of the second
type have the first excited electronic state at a higher energy.

The presence of low-energy electronic resonances in the
first type of the ions increases significantly compared to the
ions of the second type, the DR, EE, VE, and RE cross
sections at low collision energies. Because of the significant
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difference in the physics of couplings in electron-ion colli-
sions in the two types of the ions, one developed two types
of approaches. The first approach, developed for DR, VE, and
RE processes and originated from studies by O’Malley [35]
and Bardsley [36–38], takes into account explicitly the PES
crossing. The second approach, based mainly on studies by
Lee [39], Jungen et al. [40,41], and Giusti [42] and employed
when there is no PES crossing, accounts for the coupling
between the incident electron and the rovibronic Rydberg
resonances of the neutral molecule. In the absence of a PES
crossing, such resonances are responsible for the major con-
tribution to the DR cross section at low energies [13,42,43].
This is especially important for polyatomic ions, listed above.
All these ions have a closed electronic shell, the first excited
electronic state at a high energy, and no PES crossing near the
equilibrium geometry of the ions.

There are situations where there is a PES crossing near
the ion equilibrium geometry and, in addition, there are one
or several low-energy electronic resonances in the collisional
spectrum. Many open-shell ions are of this type, for exam-
ple. The two approaches mentioned above are not able to
describe satisfactory the DR and excitation processes. On
the basis of an earlier theory suggested by Giusti [42,44],
Jungen et al. have developed an efficient approach that can
deal with such a situation. The approach was applied to
several diatomic ions for which the dissociative electronic
PES of the neutral molecule crosses the ionic PES near the ion
equilibrium [6,45–47]. The approach is based on the quantum
defect theory (QDT), where, in addition to one or several
electronic states of the ion, the dissociative state is explic-
itly included into the coupling scheme [42,44]. Couplings
between different electronic states of the target ion are derived
from ab initio calculations of electronic (Rydberg) bound
states of the neutral molecule. Couplings between the ionic
and dissociative states are obtained from the autoionization
widths of dissociative states of the neutral molecule (where
autoionization is allowed). The widths are typically obtained
in electron-scattering calculations.

The above theoretical approach is the only one able to
describe non-Born-Oppenheimer effects on electron-ion col-
lisions in the presence of coupled electronic channels of
the target. One significant limitation of the approach is the
difficulty in obtaining couplings between the electronic states.
The procedure of diabatization of coupled Rydberg states
obtained in ab initio calculations, used in the approach, is
laborious, not unique, and sometimes not accurate. It becomes
even more ambiguous and very complicated for polyatomic
ions, such that an extension of the approach to polyatomic
ions becomes impractical.

In this study, we propose another approach, which com-
bines some of the original ideas from the molecular quantum
defect theory [40,42,48], more recent DR and VE studies
in polyatomic ions [14,21,25,27,43], and recent progress in
electron-scattering calculations. The approach can be applied
to determine EE, VE, RE, and DR cross sections for a wide
range of small polyatomic ions, including the ions with one or
several low-energy excited ionic and/or resonant states of the
system. In this article, we focus on the VE process and, for
the simplicity of discussion, on a particular case of a diatomic
ion CH+. However, the treatment can easily be applied to
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FIG. 1. Potential energy curves for the X 1�+ (black curve),
a 3� (red curve), A 1� (blue curve), b 3�− (green curve), and c 3�+

(purple curve) electronic states of CH+. Four lowest vibrational
levels for the four lowest electronic states are shown by horizontal
thin lines in potential wells of the states. The inset displays the
four vibrational states v = 0–3 of the X 1�+ state. The CH 2 2�

resonance state is plotted as thin dashed (violet) line. The CH 2 2�

resonance energies are obtained in fixed-nuclei R-matrix calculations
at R varying from 1.137 to 1.737 bohrs with an interval of 0.1 bohrs.

small polyatomic ions and, with some additions similar to
Refs. [42,44], for the DR process.

II. ELECTRON-CH+ COLLISIONS

Collisions of the CH+ ion with electrons have been studied
theoretically since, at least, 1951 [38,49–51]. The interest was
motivated by the detection of the ion in diffuse interstellar
clouds, made initially by Douglas and Herzberg [52] and by
Adams [53] in 1941. These and later detections confirmed that
CH+ is ubiquitous as a major constituent of interstellar clouds.
The ion is also an important intermediate in combustion and
in the formation of large hydrocarbons in the interstellar
medium (ISM). Reactive collisions of CH+ with a low-energy
electron determine the energy balance and evolution of low-
temperature hydrocarbon plasmas such as in the ISM. The
theoretical study of the e−-CH+ collision system is thus of
considerable astrophysical interest. Processes taking place
in e−-CH+ collisions are also of interest for technological
plasmas: For example, they play an important role in plasma
processing of diamond films [54] and at the edge plasma of
fusion reactors [55], where graphite is used as plasma-facing
material.

A theoretical description of low-energy e−-CH+ collisions
is complicated due to the presence of a low-energy electronic
22� resonance and several low-energy excited electronic
states of CH+ [4,51,56] (see Fig. 1). The excited ionic states
produce series of Rydberg resonances that influence all col-
lisional processes. In this situation, the standard vibrational-
frame-transformation approach by Chang and Fano [57],
used in many theoretical studies on electron-molecule colli-
sions [48,58], is not well adapted: The approach requires that
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the scattering matrix or, alternatively, the matrix of quantum
defects, obtained for fixed internuclear positions (in the Born-
Oppenheimer approximation), to be a smooth function of the
collision energy—ideally, to be energy independent. However,
the presence of the 2 2� resonance and the low-energy excited
electronic states makes the fixed-nuclei scattering matrix to be
strongly energy dependent.

The PES of the 22� resonance crosses the PES of the
ground electronic state X 1�+ of the CH+ ion slightly to
the left of the CH+ equilibrium geometry. As Giusti has
pointed out [51], the electronic configuration of the resonance
is mainly due to the coupling between the 3σ1π (1�)4σ and
3σ1π (3�)4σ orbitals of the CH+ + e− system. The reso-
nance at small internuclear distances has a Rydberg character
and is produced by the a 3� and A 1� parent states of the CH+

ion. These states are the first and second electronically excited
states of the ion. Near and to the left of the crossing of the res-
onance and ionic X 1�+ PES, the character of the resonance
is mainly 3σ1π (1�)4σ (see Fig. 1 of Ref. [51]). Therefore,
the resonance could be included in the QDT description of
the CH+ + e− scattering if the a 3� and A 1� excited ionic
states are accounted for in the complete scattering matrix.
Of course, at low scattering energies at fixed geometries to
the left of the crossing, these two electronic channels are
closed for ionization and should be accounted for using the
closed-channel elimination procedure [59], often employed in
the QDT studies. Below, we describe in detail the developed
theoretical approach.

III. QDT DESCRIPTION OF ELECTRONIC RESONANCES

In applications of the theoretical method presented below,
one needs scattering matrices obtained numerically for fixed
geometries of the target ion. The scattering matrices could
be obtained in different ways. We used the UK R-matrix
code [60]. The details of the numerical calculations using the
R-matrix code for e−-CH+ collisions are given in Sec. V.

As mentioned above, the geometry-fixed scattering matrix
is strongly energy dependent for e−-CH+ collisions. This is
demonstrated in Fig. 2, showing derivatives of the eigenphase
sums for the three symmetries 2�+, 2�, and 2�− of the
e−-CH+ system computed at the equilibrium with internu-
clear distance Re = 2.137 bohrs. Several series of Rydberg
resonances converge to the electronic states a 3� and A 1�

as marked by the blue vertical lines in Fig. 2.
To describe low-energy electronic resonances in different

e−-CH+ scattering processes, we use the QDT approach and
need an energy-independent scattering matrix, which includes
not only the ground electronic state of CH+ but a few more
states that can produce resonances at scattering energies of
the interest. In the e−-CH+ case, low-energy resonances are
well reproduced if one takes into account only three electronic
states of the ion. Figure 2 shows derivatives of eigenphase
sums in two calculations. In one calculation (black solid
curves), only the three lowest X 1�+, a 3�, and A 1� states
are included. In the second calculation (red dashed lines),
14 lowest states were included. As one can see, at low en-
ergies, below the A 1� ionization limit, the two calculations
agree quite well with each other. In the second calculation
with a larger number of ionic states, there are a few narrow
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FIG. 2. Derivatives of the eigenphase sum for three symmetries
2�+, 2�, and 2�− of e−-CH+ obtained for the equilibrium internu-
clear distance Re = 2.137 bohrs in two different calculations: Black
solid curves show the results obtained taking into account only three
lowest electronic states of CH+. Red dashed curves are obtained
with 14 states. The differences between the curves are subtle and
can hardly be seen in the figure.

resonances at low scattering energies that are not reproduced
in the first, smaller calculation. These resonances are attached
to very excited electronic states of the ion and do not influence
significantly the low-energy spectrum.

Therefore, the electronic scattering matrix at low energies
could well be represented by the three states X 1�+, a 3�, and
A 1� of the ion. With this set of electronic states, the above-
mentioned 22� resonance is included in the scattering model.

In order to account for vibrational and rotational excitation
of the target, the standard QDT approach is to use vibrational
and rotational frame transformations [40,57]. The approach is
applicable only if the electronic scattering matrix, obtained for
a number of different geometries of the ion, is energy indepen-
dent. As Fig. 2 shows, the e−-CH+ scattering matrix depends
strongly on energy below the A 1� ionization limit and cannot
be immediately used in the frame transformation. A possible
solution is to take the (almost) energy-independent scattering
matrix, obtained at an energy above the A 1� ionization
limit, and use it at energies below the limit. Therefore, the
vibrational (and rotational) frame transformation is performed
on a 3 × 3 electronic scattering matrix, which produces a
N × N matrix with N vibronic (rovibronic) channels. Such a
rovibronic scattering matrix is essentially energy independent
and a QDT closed-channel elimination procedure [59,61]
should be performed to obtain the physical energy-dependent
matrix, which can be used to compute cross sections for
various processes.

Before discussing the vibronic frame transformation ap-
plied to the e−-CH+ collisions, we compare the fixed-nuclei
electronic scattering matrices obtained (1) using the elimi-
nation procedure of the closed electronic states and by (2) a
direct scattering R-matrix calculation at the same internuclear
distance.
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of closed electronic channels (black solid curve). The inset shows an
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The elimination of closed electronic channels at a geome-
try R is given by [59,61]

Sphys(Eel) = Soo − Soc[Scc − e−2iβ(Eel )]−1Sco , (1)

where Eel is the scattering energy and Soo, Soc, Scc, and
Sco are submatrices of the weakly dependent electronic scat-
tering matrix (3 × 3 in the present case of the e−-CH+

system),

S(Eel) =
(

Soo Soc

Sco Scc

)

. (2)

Partition of matrix elements in the o and c parts is made on
the basis of whether the corresponding channels are open or
closed for excitation for the particular scattering energy Eel.
The quantity of β(Eel) in Eq. (1) is a diagonal Nc × Nc matrix

β(Eel, R) =
π

√
2[Ei(R) − Eel]

δi′,i, (3)

where Ei(R) denotes the energy values of the ith electronic
states at internuclear distance R.

Figure 3 shows derivatives of eigenphase sums obtained
from the scattering matrices computed at the equilibrium dis-
tance Re. The red dashed curve is the result from the R-matrix
calculation; the black solid curve is the calculation using
the energy-independent 3 × 3 electronic scattering matrix and
the closed-channel elimination procedure. Overall, positions
of the resonances in the two calculations are the same but
widths in the R-matrix calculation are wider. This means
that diagonal elements of the scattering matrices in the two
calculations are very similar but the nondiagonal elements, re-
sponsible for channel couplings and widths of the resonances,
are slightly different, suggesting that highly excited electronic
states, neglected in the 3 × 3 channel elimination procedure,
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FIG. 4. Comparison of eigenphase-sum derivatives computed for
a fixed CH+ geometry using three different energy-independent 3 ×
3 scattering matrices and the procedure of elimination of closed elec-
tronic channels. The three matrices are taken at energies 3.413 eV
(black solid curve), 3.563 eV (red dashed curve), and 3.713 eV (green
dotted curve). The inset shows an enlarged view for 2.1- to 2.4-eV
energies.

have non-negligible contributions to the coupling between the
lowest channels.

The choice of the 3 × 3 scattering matrix used in the
channel-elimination procedure is not unique, because the
matrix depends on energy, even above the A 1� electronic
state. To assess the result of uncertainty in the choice of
the energy at which the 3 × 3 scattering matrix is taken, we
plot in Fig. 4 eigenphase-sum derivatives obtained for 3 × 3
scattering matrices taken at three different energies above the
A 1� state: at 3.413, 3.563, and 3.713 eV. Positions and the
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widths of the resonances are nearly the same in the three
calculations.

An important conclusion from the results discussed above
is that the e−-CH+ scattering physics below the A 1� state
can be represented using an energy-independent multichannel
scattering matrix evaluated at a higher energy, above the A 1�

ionization limit in a combination with the closed-channel
elimination.

A rough idea about the magnitude of cross sections for
electron-impact electronic excitation of a molecule is obtained
from a fixed-geometry calculation. Here, for a comparison
between the QDT and direct R-matrix approaches, we present
such excitation cross sections. The vibrational dynamics dur-
ing the process is discussed in the next section.

Using the physical scattering matrix Sphys(Eel, Re) of
Eq. (1) describing electronic transitions at the equilibrium
geometry Re of CH+, the fixed-nuclei cross section of the
electronic excitations from the X 1�+ state to the a 3� state is

computed in the QDT approach as [14]

σi′,i(Eel, Re) =
π h̄2

2meEel

×
∑

l ′m′,lm

∣

∣S
phys
l ′m′i′,lmi

(Eel, Re) − δl ′m′i′,lmi

∣

∣

2
, (4)

where me is the reduced mass of electron and i and i′ refer
to the initial (X 1�+ in this case) and final (a 3� here)
electronic states. Indexes lm and l ′m′ numerate initial and
final angular momenta and their projections in the molecular
reference frame (where ab initio calculations are performed).
The cross section in the R-matrix approach is obtained by the
same formula, except that the scattering matrix in the above
equation is replaced with the one obtained directly in the
R-matrix calculations at the corresponding energy Eel.

Figure 5 compares the cross sections for the X 1�+ →
a 3� transition obtained in the two approaches. The general
agreement between the two curves is good, even for the widths
of the resonances. One noticeable difference is in the position
of the minimum near 1.5 eV: In the QDT calculations, it is
shifted slightly to the left. The agreement is better at energies
approaching the a 3� ionization limit.

Differences observed in the cross sections obtained by the
two methods are smeared out in the thermally averaged rate
coefficient

ki′,i(T, Re) =
8π

(2πkbT )3/2

∫ ∞

0
σi′,i(Eel, Re)e

−Eel
kbT EeldEel, (5)

computed from the cross sections. In the above equation, kb

is the Boltzmann coefficient and T is the temperature. The
obtained rate coefficients, shown in Fig. 6, are in very good
agreement with each other. This confirms that major couplings
between electronic channels are accurately represented in the
QDT approach and validates the approach.

IV. VIBRONIC EXCITATION

The energy-dependent physical scattering matrix for vi-
bronic transitions is obtained in two steps. First, one computes
the energy-independent vibronic scattering matrix assuming
that all vibronic channels are open. In the second step, an
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FIG. 7. Cross sections for vibronic excitations of CH+ from the ground vibrational level v = 0 of the X 1�+ state to v = 1, 2, 3 of the
X 1�+ state (left panel), to v = 0, 1, 2, 3 of the a 3� state (middle panel), and for vibronic de-excitations from the ground vibrational level
v = 0 of a 3� to v = 0, 1, 2, 3 of the X 1�+ state (right panel).
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FIG. 8. Rate coefficients for same vibronic transitions as shown in Fig. 7.

elimination of closed vibronic channels is applied, producing
the required energy-dependent vibronic scattering matrix.

The first step is performed by the vibronic frame transfor-
mation

Sl ′m′
v

′i′,lmvi(Eel) = 〈ϕv
′i′ (R)|Sl ′m′i′,lmi(Eel, R)|ϕvi(R)〉, (6)

where ϕvi(R) and ϕv
′i′ (R) are wave functions of the initial

and final vibrational states. Index v or v
′ corresponds to the

number of vibrational quanta in initial i or final i′ electronic
states. The brackets imply an integration over the vibrational
coordinate R.

In the second step, the energy-dependent physical scatter-
ing matrix Sphys(Eel) is obtained by the QDT vibronic closed-
channel elimination procedure, described by the same Eqs. (1)
and (3), except that the energies Ei(R) of closed channels are
replaced with energies of vibronic channels Evi, i.e.,

β(Eel) =
π

√
2(Evi − Eel)

δv
′i′,vi . (7)

The cross sections σv
′i′,vi(Eel) for vibronic excitation or

de-excitation of CH+ are computed using Eq. (4), where
S

phys
l ′m′i′,lmi

(Eel, Re) is replaced with S
phys
l ′m′

v
′i′,lmvi

(Eel).
Figure 7 illustrates cross sections obtained for different

combinations of initial and final vibronic states. Figure 7(a)
shows results for pure vibrational excitations between levels
of the ground electronic state X 1�+. As expected, the cross
section for the transition with 	v = 1 is the largest one
between inelastic processes. Figure 7(b) gives cross sections
from the ground vibronic state X 1�+, v = 0 to several vi-
brational levels of the a 3� state. Since the potential curves
of the X 1�+ and a 3� states have similar shapes near the
equilibrium, the largest X 1�+ → a 3� cross section is ex-
pected to be for 	v = 0, as the present calculation indeed
demonstrated. Figure 7(c) gives cross sections for the de-
excitation process a 3�, v = 0 → X 1�+, v′ = 0 − 3.

Cross sections for vibronic excitations were recently es-
timated by Chakrabarti et al. [5] using a rough theoretical
approach, in which cross sections for electronic excitations
computed at the CH+ equilibrium geometry were multiplied
with Franck-Condon overlaps for various combinations of
initial and final vibrational levels to obtain the cross sections
for vibronic transitions. In that study, vibronic Feshbach res-
onances as well as differences in vibrational excitation ener-
gies were neglected. The cross sections obtained in Ref. [5]
differ significantly—more than an order of magnitude for
several transitions—from the present results. We attribute the

disagreement to the mentioned approximations employed in
Ref. [5]: (1) neglected differences in vibrational excitation
threshold energies, (2) neglected dependence of e−-CH+ scat-
tering parameters with the internuclear distance, and (3) the
neglected resonances in closed vibronic channels.

Thermally averaged rate coefficients kv
′i′,vi(T ) for these

vibronic (de-)excitations from 10 to 10 000 K are then com-
puted using Eq. (5), where σi′,i(Eel, Re) is substituted with
σv

′i′,vi(Eel). Figure 8 shows computed rate coefficients for the
same transitions as the cross sections in Fig. 7.

As in previous studies [62–65] and for convenience of
use, the computed thermally averaged rate coefficients kv

′i′←vi

were fitted using the following analytical formula,

kfit
v

′i′←vi(T ) =
1

√
T

e−
	

v
′ i′,vi
T Pfit

v
′i′,vi(x), (8)

where Pfit
v

′i′,vi(x) is a quadratic polynomial

Pfit
v

′i′,vi(x) = a0 + a1x + a2x2 and x = ln(T ) (9)

with Pfit
v

′i′,vi(x) ≈ Pfit
vi,v′i′ (x). This quantity could be viewed

as the (de-)excitation probability. 	v
′i′,vi in Eq. (8) is the

threshold energy defined as

	v
′i′,vi =

{

Ev
′i′ − Evi > 0 for excitation,

0 for de-excitation.
(10)

Numerically fitted parameters for vibronic transitions are
given in Tables I–VI. When the parameters given in the tables
are used in the fitting formulas of Eqs. (8) and (9) with T in K,
obtained numerical values of rate coefficients will be in units

TABLE I. Parameters a0, a1, and a2 of the polynomial Pfit
vi,v′i′ (x)

of Eqs. (8) and (9) for several pairs of initial and final vibrational
levels of the ground electronic state X 1�+ of CH+. We specify the
threshold energy 	v

′ i′,vi for the excitation process in the pair v
′i′, vi

in the second column of each table. For the de-excitation process,
	vi,v′i′ = 0.

v
′i′ ↔ vi 	v

′i′,vi (K) a0 a1 a2

10 ↔ 00 3 934 2.90 × 10−6 −1.20 × 10−7 2.30 × 10−9

20 ↔ 00 7 700 1.10 × 10−6 1.60 × 10−8 −6.60 × 10−9

30 ↔ 00 11 299 2.90 × 10−7 5.00 × 10−8 −5.10 × 10−9

20 ↔ 10 3 766 7.85 × 10−7 2.17 × 10−7 −1.22 × 10−8

30 ↔ 10 7 365 4.57 × 10−7 1.02 × 10−7 −8.64 × 10−9

30 ↔ 20 3 599 2.39 × 10−6 2.51 × 10−8 −5.26 × 10−9
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TABLE II. Same as Table I for the electronic state a 3�.

v
′i′ ↔ vi 	v

′ i′,vi (K) a0 a1 a2

11 ↔ 01 3 633 5.43 × 10−6 4.68 × 10−7 −4.41 × 10−8

21 ↔ 01 7 039 2.01 × 10−6 5.14 × 10−9 −3.18 × 10−9

31 ↔ 01 10 216 1.17 × 10−6 −3.37 × 10−8 −2.65 × 10−9

21 ↔ 11 3 405 7.53 × 10−6 6.95 × 10−8 −2.30 × 10−8

31 ↔ 11 6 583 2.99 × 10−6 3.58 × 10−8 −2.48 × 10−9

31 ↔ 21 3 178 6.55 × 10−6 2.04 × 10−7 −8.40 × 10−9

of cm3/s. In the tables, the electronic states are numerated
with index i (or i′) with i = 0 corresponding to X 1�+, i = 1
to a 3�, and i = 2 to A 1�.

V. CALCULATIONS OF ELECTRONIC STRUCTURE,

SCATTERING, AND VIBRATIONAL

DYNAMICS OF THE PROCESS

In this section, we provide details about numerical calcula-
tions of the vibrational wave functions of the ion and ab initio

calculations performed for the bound electronic states of the
ion and the e−-CH+ scattering.

The configuration of the ground electronic state X 1�+ of
CH+ is 1σ 22σ 23σ 2 in the C∞v symmetry group of the ion.
The potential energy curves V (R) of CH+ were calculated
using the C2v symmetry group with a multireference config-
uration interaction (MRCI) method and the cc-pV5Z basis set
using the MOLPRO code [66]. We kept the 1σ orbital of carbon
doubly occupied and used 14 orbitals, i.e., 2σ -7σ , 1π -3π ,
and 1δ as the complete active space (CAS). The calculated
potential energy curves of the X 1�+, a 3�, A 1�, b 3�−, and
c 3�+ electronic states are shown in Fig. 1. The X 1�+, a 3�,
A 1�, and c 3�+ curves correlate with the C+(2P) + H(2S)
dissociation limit at large internuclear distances.

In order to determine the vibrational energies Ev and the
corresponding vibrational wave functions ϕv (R) within these
electronic states of CH+, we solved the Schrödinger equation
for vibrational motion along R

[

−
h̄2

2μ

d2

dR2
+ V (R)

]

ϕv (R) = Evϕv (R), (11)

using a discrete variable representation (DVR) method [67].
In the above equation, μ denotes the reduced mass of CH+.
The lowest four vibrational energy levels v = 0, 1, 2, 3 of the
X 1�+ state are listed in Table VII. As one can see, the present
computed energies agree well with the theoretical calculations
by Biglari et al. [68].

TABLE III. Same as Table I for the electronic state A 1�.

v
′i′ ↔ vi 	v

′ i′,vi (K) a0 a1 a2

12 ↔ 02 2 290 5.44 × 10−6 1.74 × 10−7 −1.09 × 10−8

22 ↔ 02 4 271 2.16 × 10−6 −1.24 × 10−8 −6.08 × 10−10

32 ↔ 02 5 971 1.49 × 10−6 −8.82 × 10−9 5.33 × 10−10

22 ↔ 12 1 981 1.33 × 10−5 −1.13 × 10−7 −3.47 × 10−10

32 ↔ 12 3 680 7.74 × 10−6 8.39 × 10−9 −8.35 × 10−10

32 ↔ 22 1 699 3.48 × 10−6 −1.17 × 10−8 6.50 × 10−10

TABLE IV. Same as Table I for vibronic transitions vX 1�+ ↔
v

′a 3�.

v
′i′ ↔ vi 	v

′i′,vi (K) a0 a1 a2

01 ↔ 00 13 572 5.10 × 10−6 −1.20 × 10−8 2.30 × 10−9

11 ↔ 00 17 205 3.50 × 10−7 2.70 × 10−7 −2.20 × 10−8

21 ↔ 00 20 610 5.00 × 10−7 3.80 × 10−9 −3.80 × 10−10

31 ↔ 00 23 788 2.00 × 10−7 5.70 × 10−8 −5.70 × 10−9

01 ↔ 10 9 638 4.90 × 10−7 2.57 × 10−7 −1.84 × 10−8

11 ↔ 10 13 271 4.30 × 10−6 5.30 × 10−8 −2.80 × 10−9

21 ↔ 10 16 677 7.13 × 10−7 1.72 × 10−8 −6.09 × 10−10

31 ↔ 10 19 854 6.00 × 10−7 1.98 × 10−8 −5.12 × 10−10

01 ↔ 20 5 872 7.06 × 10−7 1.55 × 10−7 −1.78 × 10−8

11 ↔ 20 9 505 1.93 × 10−6 −3.01 × 10−8 −5.86 × 10−9

21 ↔ 20 12 910 3.97 × 10−6 −7.95 × 10−8 6.09 × 10−9

31 ↔ 20 16 088 9.13 × 10−7 2.49 × 10−8 −2.09 × 10−9

01 ↔ 30 2 273 3.24 × 10−7 4.24 × 10−8 −2.23 × 10−9

11 ↔ 30 5 906 8.23 × 10−7 1.61 × 10−8 −3.03 × 10−9

21 ↔ 30 9 311 1.77 × 10−6 −1.22 × 10−8 −4.08 × 10−9

31 ↔ 30 12 489 3.31 × 10−6 −4.24 × 10−8 3.17 × 10−10

The e−-CH+ scattering calculations were carried out
using the UK R-matrix code [60,69] with the help
of the Quantemol-N interface [70]. The cc-pVQZ ba-
sis set and CAS configuration interaction (CI) method
in the C2v Abelian subgroup were used in the calcula-
tions. The inner orbital 1a1

2 of CH+ was frozen, and
four external electrons were distributed in the space of
the [2a1, 3a1, 4a1, 5a1, 6a1, 7a1, 8a1, 1b1, 2b1, 3b1, 1b2, 2b2,

3b2, 1a2] orbitals (2σ, 3σ, 4σ, 5σ, 6σ, 7σ, 1π, 2π, 3π, 1δ in
C∞v symmetry group). We chose an R-matrix sphere of
radius 13 bohrs and continuum Gaussian-type orbitals with
partial waves l � 4. The two different R-matrix calculations
described in Sec. III closed-coupling expansions with 3 and
14 lowest electronic states of CH+ were used for construct-
ing the total wave functions for the e−-CH+ system. In the

TABLE V. Same as Table I for vibronic transitions vX 1�+ ↔
v

′A 1�.

v
′i′ ↔ vi 	v

′ i′,vi(K) a0 a1 a2

02 ↔ 00 34 147 3.30 × 10−6 −2.10 × 10−7 9.90 × 10−9

12 ↔ 00 36 437 1.70 × 10−6 −7.70 × 10−8 2.90 × 10−9

22 ↔ 00 38 418 6.70 × 10−7 −1.20 × 10−8 4.70 × 10−10

32 ↔ 00 40 117 3.40 × 10−7 −2.70 × 10−9 1.50 × 10−10

02 ↔ 10 30 213 1.21 × 10−6 4.41 × 10−8 −3.94 × 10−9

12 ↔ 10 32 503 8.20 × 10−7 −2.90 × 10−8 −9.71 × 10−10

22 ↔ 10 34 484 1.01 × 10−6 2.69 × 10−9 −3.61 × 10−10

32 ↔ 10 36 183 7.74 × 10−7 1.83 × 10−8 −9.69 × 10−10

02 ↔ 20 26 446 4.39 × 10−7 2.69 × 10−8 −1.11 × 10−9

12 ↔ 20 28 737 1.17 × 10−6 −2.14 × 10−8 7.31 × 10−10

22 ↔ 20 30 718 2.36 × 10−7 8.67 × 10−10 −5.88 × 10−11

32 ↔ 20 32 417 3.82 × 10−7 −5.63 × 10−9 3.06 × 10−10

02 ↔ 30 22 847 4.27 × 10−7 −1.51 × 10−8 −5.84 × 10−11

12 ↔ 30 25 138 1.46 × 10−6 2.16 × 10−8 −2.89 × 10−9

22 ↔ 30 27 119 7.21 × 10−7 1.48 × 10−9 −3.23 × 10−10

32 ↔ 30 28 818 1.19 × 10−6 −1.90 × 10−8 1.04 × 10−9
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TABLE VI. Same as Table I for vibronic transitions va 3� ↔
v

′A 1�.

v
′i′ ↔ vi 	v

′ i′,vi (K) a0 a1 a2

02 ↔ 01 20 575 3.28 × 10−6 4.81 × 10−8 −7.56 × 10−9

12 ↔ 01 22 865 7.02 × 10−7 2.32 × 10−9 −1.11 × 10−9

22 ↔ 01 24 846 5.83 × 10−7 −4.73 × 10−9 −2.56 × 10−11

32 ↔ 01 26 545 4.43 × 10−7 2.81 × 10−9 −1.53 × 10−10

02 ↔ 11 16 941 5.03 × 10−6 2.61 × 10−7 −1.85 × 10−8

12 ↔ 11 19 232 1.08 × 10−6 1.17 × 10−8 −3.14 × 10−9

22 ↔ 11 21 213 1.52 × 10−6 −4.00 × 10−9 −3.32 × 10−10

32 ↔ 11 22 912 6.47 × 10−7 −3.27 × 10−9 1.69 × 10−10

02 ↔ 21 13 536 1.39 × 10−6 1.24 × 10−7 −6.56 × 10−9

12 ↔ 21 15 826 3.69 × 10−6 −1.94 × 10−8 9.08 × 10−10

22 ↔ 21 17 807 7.26 × 10−7 −2.50 × 10−8 1.19 × 10−9

32 ↔ 21 19 507 5.32 × 10−7 6.38 × 10−9 −3.78 × 10−10

02 ↔ 31 10 358 1.30 × 10−6 −9.89 × 10−8 2.13 × 10−9

12 ↔ 31 12 649 2.41 × 10−6 7.13 × 10−8 −5.00 × 10−9

22 ↔ 31 14 630 1.54 × 10−6 9.42 × 10−9 −6.05 × 10−10

32 ↔ 31 16 329 1.08 × 10−6 −1.35 × 10−9 4.25 × 10−11

vibrational frame transformation of Eq. (6), the electron scat-
tering calculations were performed in the interval between
1.537 and 3.937 bohrs with a step of 0.1 bohrs along the
internuclear coordinate R.

VI. CONCLUSIONS

In conclusion, cross sections and rate coefficients for vi-
bronic excitation and de-excitation of CH+ by electron impact
were computed in a framework using first principles only.
The theoretical approach combines fixed-nuclei scattering
matrices obtained for a number of internuclear distances using
the UK R-matrix code, the vibronic frame transformation, and
the QDT closed-channel elimination procedure. The approach
is validated in model calculations for electronic excitation,
performed for a single fixed internuclear distance of the target,
comparing the results from a direct R-matrix calculation and
the QDT channel elimination procedure. The main advantage
of this method compared with the previous state of theory is
that it can be applied to collisions of electrons with molecular

TABLE VII. Comparison of the four lowest vibrational energy
levels (in eV) of the X 1�+ state obtained in this study with the
calculations by Biglari et al. [68].

Ref. v = 0 v = 1 v = 2 v = 3

Biglari et al. [68] 0.175218 0.514360 0.838974 1.149288
This work 0.175189 0.514102 0.838515 1.148720
Relative error 0.017% 0.050% 0.055% 0.054%

ions with low-lying excited electronic states, including open-
shell ions. The approach is quite general and can be applied
for a number of different processes, taking place in colli-
sions of molecular ions with electrons, including rovibronic
excitation, dissociative excitation (DE), photoionization, and
dissociative recombination (DR).

In this study, we took into account only the electronic
and vibrational structure of the target ion. The rotational
structure of each vibrational level was neglected. The de-
scription of the rotational structure and couplings could be
included into the treatment in the same way as was made
in many previous treatments (see, for example, Ref. [65] and
references therein). Therefore, the obtained cross sections and
rate coefficients should be viewed as averaged over initial
rotational states and summed over final rotational states of
the corresponding vibrational levels. The inclusion of the
rotational structure and couplings is important if one needs
rotationally resolved cross sections or thermally averaged rate
coefficients at temperatures T comparable or smaller than the
CH+ rotational constant, i.e., at T � 20 K. An extension of
this method to include nuclear rotation will be discussed in a
later publication.
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