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ABSTRACT  

Intrinsically disordered proteins (IDPs) can display a broad spectrum of binding modes and 

highly variable binding affinities when interacting with both biological and non-biological 

materials. A quantitative model of such behavior is important for the better understanding of the 

function of IDPs when encountering inorganic nanomaterials with the potential to control their 

behavior in vivo and in vitro. Depending on their amino-acid composition and chain length, 

binding properties can vary strongly between different IDPs. Moreover, due to differences in the 

physical chemical properties of clusters of amino-acid residues along the IDP primary sequence, 

individual residues can adopt a wide range of bound state populations. Quantitative experimental 

binding affinities with synthetic silica nanoparticles (SNPs) at residue-level resolution, which 

were obtained for a set of IDPs by solution NMR relaxation experiments, are explained here by a 

first-principle analytical statistical mechanical model termed SILC. SILC quantitatively predicts 

residue-specific binding affinities to nanoparticles and it expresses binding cooperativity as the 

cumulative result of pairwise residue effects. The model, which was parametrized for anionic 

SNPs and applied to experimental data of four IDP systems with distinctive binding behavior, 

successfully predicts differences in overall binding affinities, fine details of IDP-SNP affinity 

profiles, and site-directed mutagenesis effects with a spatial resolution at the individual residue 

level. The SILC model provides an analytical description of such types of fuzzy IDP-SNP 

complexes and may help advance understanding nanotoxicity and in-vivo targeting of IDPs by 

specifically designed nanomaterials.  

 

 

  



 
3 

INTRODUCTION  

Intrinsically disordered proteins (IDPs) and protein regions, which account for more than thirty 

percent of the eukaryotic proteome,1 are involved in a vast range of biologically important 

processes, such as regulation, catalysis, or biomineralization.2-4 Their high structural flexibility 

enables IDPs to interact in unique ways with other biomolecules or inorganic materials.5 

Examples include the interaction of the disordered transactivation domain of the human tumor 

suppressor p53 (p53TAD) with the globular domain of MDM2 protein,6 the interaction of the 

disordered prokaryotic ubiquitin-like protein (Pup) with mycobacterium proteasomal ATPase,7 

and the interaction of disordered silaffin peptides with inorganic silica surfaces.8 In some cases, 

these interactions are known to be highly cooperative,9-11 but the lack of quantitative information 

at atomic detail has prevented a deeper understanding of such interactions and the physical-

chemical basis for the emergence of cooperativity has remained unaddressed. The hallmark of 

cooperativity in these systems is that individual residues specifically affect the binding free 

energy of other residues of the same polypeptide, i.e. the net free energy of binding is generally 

larger than the sum of the free energy contributions of individual residues. Atomic-detail, 

physics-based models are needed to understand and predict IDP interactions with other 

biomolecules, nanomaterials, and their role in the formation of membraneless organelles.12-13 

 Elucidating the cooperative binding modes of IDPs to nanomaterial surfaces is relevant as 

it may provide the means to selectively control IDP behavior in living cells using functionalized 

nanoparticles with specifically engineered surface modifications. Such work is of potential 

pharmaceutical value as it may lead to ways to prevent or combat IDP-related diseases, including 

neurodegeneration.14-15 The accurate characterization of IDP-nanoparticle interactions can also 

help understand nanoparticle-induced toxicity and other health risks from exposure to 

nanomaterials.16 Moreover, such knowledge sheds light on how IDPs participate in 

biomineralization processes, which in turn enable bioinspired and green synthesis of functional 

nanomaterials.4, 17   

 We recently developed an experimental approach, based on high-resolution NMR in 

solution, to quantitatively study the interactions of IDPs with silica nanoparticles (SNPs).18-19 

SNPs are widely used as matrix materials in nanomedicine for enhanced biomolecular imaging 

and targeted drug delivery. In addition, the chemically heterogeneous SNP surface, containing 
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negatively charged deprotonated silanol groups (-Si-O–), hydrophilic protonated silanol groups (-

Si-OH), and hydrophobic siloxane (-Si-O-Si-) patches,20 permits the evaluation of both 

electrostatic and hydrophobic interactions that collectively contribute to IDP adsorption. In the 

current study, the SNPs have an average diameter of 20 nm and, hence, display much slower 

tumbling motion than free, i.e. unbound IDP residues. Upon interaction with SNPs, the tumbling 

motion of the interacting residues slows down considerably, which is manifested in an increase 

of transverse R2 spin relaxation of backbone 15N spins that can be accurately measured for each 

residue. The approach thereby provides quantitative residue-specific information about the 

propensity and population of an IDP when bound to the nanoparticle surface.  

 The residue-specific binding profiles of four IDPs to SNP surfaces, namely p53TAD, 

Pup, human -synuclein (aSyn), and cytosolic loop region 2 (Cyto2) of the canine sodium-

calcium exchanger NCX, have been experimentally determined providing direct evidence about 

binding cooperativity.19 These data show that the average bound population of a polypeptide can 

vary widely for different IDPs. In addition, cooperativity effects were also revealed when 

comparing IDP binding profiles of wild-type vs. site-directed mutants.19  

 Since interaction properties of IDPs with SNP surfaces should only depend on their 

primary sequences, the binding affinities of the 20 free amino acids to anionic SNP surfaces were 

recently quantified.18 They indicate the strongest affinities for Arg, Pro, Lys, Ile, His, Leu, Phe, 

and Val and minimal or negative affinities for Glu, Asp, Ser, Gly. Based on this information, the 

analytical “free residue interaction model” (FRIM) was developed by combining individual 

contributions from each with local neighboring effects in an additive manner.19 FRIM is able to 

explain the segmental variations of the bound population for each protein, but does not 

adequately describe observed cooperativity effects, including the large differences in overall 

binding affinities between different IDPs. Specifically, FRIM requires an empirical global 

scaling factor for the prediction of R2, which can strongly vary from protein to protein and it 

cannot adequately reproduce R2 behavior for wild-type vs. mutant proteins. This suggests that 

FRIM does not adequately account for the non-additive dependence of free energy contributions 

to binding by individual residues. These shortcomings point to the need for a physically more 

advanced binding model.    
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 Besides FRIM, few mathematical binding models have been proposed that capture such 

types of situations.21-25 The earliest model is the divalent binding model by Crothers and Metzer 

originally developed for antigen-antibody interactions.23 It predicts the dependence of the 

binding constant of a 2nd binding event on the binding constant of an initial binding event. The 

model expresses this dependence as a function of the spatial relationship between the two 

binding sites and the acceptor concentration. Advanced versions of this model with more realistic 

linker properties have subsequently been proposed.24-25 These models are, however, not directly 

applicable to the situation examined in this work, which is the interaction between IDPs and 

nanoparticles where each amino-acid residue acts as a ligand and simultaneously is also part of a 

linker.  

 Here, we propose a new, statistical-mechanics based polyvalent binding model, termed 

SILC for SImultaneous Linker-ligand Cooperative binding, to quantitatively explain cooperative 

IDP-SNP binding with a resolution at the individual amino-acid residue level. The model is 

shown to represent in good approximation the partition function of the protein of the bound state 

by a product of pairwise residue contributions. Parametrization of the model using NMR-derived 

residue-specific binding affinities of the four IDPs shows that the model has quantitative 

predictive power being able to reproduce experimentally observed cooperative binding 

properties. In the following sections, the new model is first formally described, then 

parametrized using experimental data, and finally applied to explain cooperative binding 

behavior manifested in several different IDP systems.  

  

Theory 

In the SILC binding model introduced here, each amino acid interacts with the SNP surface 

through either hydrophobic or electrostatic interactions. The direct interaction between residues, 

which is restricted to sequential residues due to chemical bonding, is modeled as a constraint 

with energy Ri,i+1 keeping the distance between sequential residues essentially fixed. We first 

describe the model for a linear polypeptide chain that contains only 3 amino-acid residues before 

it is generalized to a polypeptide chain of arbitrary length. The partition function Z of the 3-

residue system is  
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Z = dr1dr2 dr3òòò exp(-b(E1 +E2 +E3 +R12 +R23))      (1) 

where E1, E2, and E3 are interaction energies between residues 1, 2, and 3 with the SNP surface, 

respectively, where Ei only depends on the type of residue i and  = 1/(kBT). Because the 

distances between neighboring residues 1, 2 and 2, 3 are essentially fixed, this is accounted for 

by the pairwise distance-dependent energy terms R12 and R23, which can be enforced by a steep 

harmonic inter-residue distance-dependent energy potential that is centered around the 

equilibrium distance between neighboring residues. Eq. (1) can be rearranged with the goal to 

approximate Z as a product of individual residue contributions. First, Eq. (1) can be expressed as 

a nested integral  

Z = dr
1
{exp(-bE

1
) dr

2
[exp(-b(E

2
+R

12
) dr

3
exp(-b(E

3
+R

23
)))]}òòò    (2) 

Residue 2 affects residue 1 directly via R12, whereas residue 3 affects residue 1 only indirectly 

via the intermedidate residue 2. Next, the energy term R23 is replaced by a new energy R13, which 

is less restrictive than R23 by allowing low energy arrangements over a larger distance range than 

R23 and at the same time eliminating the explicit dependence on residue 2: 

Z = dr
1
{exp(-bE

1
) dr

2
[exp(-b(E

2
+R

12
) dr

3
exp(-b(E

3
+R

13
)))]}òòò    (3) 

The functional form of R13 will be empirically parametrized below. Eq. (3) can be rewritten as 

Z = dr
1
{exp(-bE

1
) dr

2
exp(-b(E

2
+R

12
))òò dr

3
exp(-b(E

3
+R

13
))ò }   (4) 

providing an expression for Z that only includes pairwise interactions with residue 1. It permits 

direct computation of the population p1 of conformers with residue 1 bound to the nanoparticle 

surface (see below).  

Eq. (4) can be generalized to any residue i in the polypeptide chain with N residues 

Z = dri{exp(-bEi )ò drn exp(-b(En +Ri,n ))ò
n¹i

Õ }      (5) 

where the energy terms Ri,n have the same general form as R13 of Eq. (4) independent of residue 

type. The bound population pi of residue i can then be expressed as the fraction of the partition 

function Z with residue i bound vs. the total partition function: 
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p
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    (6) 

In the case that population pi is small, which applies for the experimental conditions used in this 

work, the denominator of Eq. (6) can be simplified: 

p
i
=

dr
i
{exp(-bE

i
) dr

n
exp(-b(E

n
+R

i ,n
))}ò

n¹i
Õ

riÎbound
ò

dr
i
{exp(-bE

i
) dr

n
exp(-b(E

n
+ R

i ,n
))}ò

n¹i
Õ

riÎunbound
ò

      (7) 

Eq. (7) can be further simplified by recognizing that the integrals over rn have a trivial 

dependence on ri for most of the allowed range of ri.  If residue i is bound to the surface, the 

range of positions ri is fully restricted and if residue i is in an unbound state far away from the 

nanoparticle surface, the precise location ri has little effect on the integrals over rn. Only in the 

intermediate regime where residue i is located in the vicinity of the nanoparticle surface, the 

effect on rn becomes more complicated. It is then possible to factorize the integrals in Eq. (7) in 

both the numerator and denominator by averaging out the ri-dependence of 

drn exp(-b(En +Ri,n ))ò : 

pi =
dri exp(-bEi )riÎbound

ò
dri exp(-bEi )riÎunbound

ò
×

drn exp(-b(En +Ri,n ))iÎbound
ò

drn exp(-b(En +Ri,n ))iÎunbound
òn¹i

Õ     (8) 

The ratio of the integrals over ri in Eq. (8) is the intrinsic bound population of free amino acid i 

at the nanoparticle concentration [SNP]. Because drn exp(-b(En +Ri,n ))ò  only depends on the 

intrinsic binding property of amino acid n and distance restraint between residue i and n, the 

bound population can be approximated as 

   p
i
»
[SNP]

[SNP]
0

× p
i

intrinsic q
n,n-in¹i

Õ         (9) 

where p
i

intrinsic  is the bound population of the free amino acid i to the SNPs. [SNP]0 is a reference 

nanoparticle concentration and  

q
n, n-i

=
drn exp(-b(En +Ri,n ))iÎbound

ò
drn exp(-b(En +Ri,n ))iÎunbound

ò
       (10) 
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are termed “binding contribution factors” (BCF), which only depend on the amino-acid type of 

residue n and the sequential distance between residues n and i.  

The BCFs q
n, n-i

 must fulfill certain general properties: for small values |n–i|, the 

restraining energy Ri,n requires that residue n must be close to (far away from) the binding 

surface if residue i is in the bound (unbound) state. This implies that qn,0 µ drn exp(-bEn )nÎbound
ò  

and, hence, qn,0
 
is proportional to pn

intrinsic , i.e., the effect of a residue n on the binding of residue i 

is directly proportional to the intrinsic binding affinity of the free amino acid form of residue n. 

On the other hand, if |n–i| becomes very large, q
n, n-i

will approach 1, since the conformational 

space sampled by residue n does not depend on whether residue i is bound or unbound. These 

conclusions are independent of the details of the functional form of En, except that En should be 

more favorable (i.e. lower) near the surface of the nanoparticle for positively charged and 

hydrophobic residues and less favorable (i.e. higher) for negatively charged residues. For 

attractive interactions, q
n, n-i

>1  and for repulsive interactions, q
n, n-i

<1  (approaching 1 for 

n- i ®¥).  

The explicit mathematical form of q
n, n-i

 can be specified based on an empirical 

parametrization using high-quality experimental data. In the following we use the following 

inverse quadratic functional form: 

q
n,n-i

=1+
q
n,0
-1

1+a
n
n- i +b

n
n- i

2
        (11) 

where |n–i| is the sequential distance between the two residues n and i and an, bn are empirical 

parameters that depend on the amino-acid type of residue n. The specific values of the model 

parameters are determined by non-linear least squares fitting to our experimental NMR data (see 

Table 1). We term this model SILC.  
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MATERIALS AND EXPERIMENTAL METHODS 

Sample preparation. NMR samples of four intrinsically disordered proteins were prepared: the 

transactivation domain of human tumor suppressor p53 (p53TAD) and several of its mutants, 

human -synuclein (aSyn) and several of its mutants, prokaryotic ubiquitin-like protein (Pup), 

and the cytoplasmic segment 2 at the C-terminus of the canine Na+/Ca2+ exchanger (Cyto2) (all 

protein sequences are listed in Table S1). Site-directed mutagenesis, expression and purification 

of 15N or 15N,13C isotopically-labeled samples followed identical procedures as described 

previously and in the Supporting Information. All final NMR samples consisted of 170 M IDPs 

in 20 mM sodium phosphate buffer (pH 7.0) that also contained 100 mM NaCl and 10% D2O.  

SNP preparation. Colloidal SNPs (AkzoNobel Bindzil 2040) were dialyzed in the same buffer 

using 10 kDa molecular-weight-cut-off semi-membrane for at least 16 h before mixing with 

IDPs. These near-spherical SNPs have a relatively narrow size distribution (19.5 ± 5.3 nm in 

diameter by transmission electron microscopy and 25.3 ± 8.9 nm by dynamic light scattering) 

and are negatively charged at the surface (-potential –23.0 ± 7.4 mV) at neutral pH as 

characterized previously.26 A range of different SNP concentrations was optimized for each IDP 

so that the maximum effective R2 rates measured by spin relaxation experiment (see below) fall 

between 5 and 25 s–1. This range was found to be a viable compromise between a large dynamic 

range for R2 and sufficient signal-to-noise, which together determine the measurement accuracy. 

Table S2 summarizes the concentrations and conditions of all samples used.  

NMR relaxation experiments. 15N-NMR spin relaxation parameters, R1 and R1, of each protein 

were measured in the presence and absence of SNPs. Pseudo-3D experiments based on 2D 15N-

1H HSQC experiments with residue-specific peak intensities were recorded at six different 

relaxation delays. The residue-specific R1 and R1 rates were obtained by fitting the intensity vs. 

delay curves by a single exponential, and the R2 rates were subsequently extracted based on their 

R1 and R1 rates using 15N spin-lock field strength and resonance offset parameters of each cross-

peak. All NMR experiments were conducted on a Bruker Avance III HD spectrometer operated 

at 850 MHz 1H frequency equipped with a TCI cryogenic probe at 298 K.   

Extraction of bound-state populations. Experimental transverse NMR relaxation data reflect 

bound-state populations as follows. For a two-site exchange process in the fast exchange regime 
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where each amino-acid residue i exists either in a free or an SNP-bound state with populations 

 and ,  the bound populations can be directly determined from  

     pi
b =

DR2,i

R2
b

 (12) 

where DR2,i = R2,i
SNP -R2,i

f  is the R2 difference in the presence and absence of SNPs.  is the 

(estimated) R2 value for a residue that is bound to the SNP for 100% of the time (see Eq. (S4) of 

Ref. 18). Eq. (12) is further supported by data shown in Figure S3. 

 

pi
f pi

b

R2
b
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RESULTS  

Evidence for global cooperative binding  

 

Experimental binding affinity profiles of the wild-type forms of the four IDPs, namely p53TAD, 

aSyn, Pup, and Cyto2, to silica nanoparticles were measured by determining the residue-specific 

15N R2 values, which is the difference between 15N R2 in the presence and absence of SNPs. 

The binding affinities grow linearly with the SNP concentration as is demonstrated for aSyn and 

 

Figure 1. 15N-R2 values of IDPs as a function of amino-acid residue sequence and SNP 

concentration. (A) Average R2 (of largest 20% residues) of aSyn and p53TAD display a linear 

dependence on SNP concentration, although with significantly different slopes (gray lines). 

Experimental interaction profiles of (B) aSyn and (C) p53TAD at different SNP concentrations 

measured for individually prepared samples. (D,E) Experimental interaction profiles of mixture of 

(D) 170 M aSyn and (E) 170 M p53TAD present in same NMR sample with 0.38 M SNPs. The 

expected binding strengths of the IDPs of (D,E) are indicated as an open black diamond for aSyn and 

an open red diamond for p53TAD in Panel (A). 
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p53TAD in Figure 1A,B,C. Importantly, each IDP displays its individual slope of R2 vs. SNP-

concentration, which is defined by the average of the largest 20% R2 values of each protein 

divided by the SNP concentration. The slope for aSyn is about 6.1 times larger than that for 

p53TAD, which shows that at identical protein and SNP concentration -synuclein has a much 

stronger binding affinity than p53TAD. This finding is corroborated by a competitive binding 

assay of the two proteins: when the two proteins at a concentration of 170 M each are mixed 

with 0.38 M SNPs, aSyn-SNP binding completely dominates that of p53TAD (Figure 1D,E). 

This behavior cannot be explained by the FRIM model, which was developed previously for the 

characterization of IDP-SNP interactions. Since the FRIM model only applies in a regime of 

weak cooperativity, Figure 1 suggests that a new model is needed that can accommodate stronger 

cooperativity effects. The experimental data of Figure 1 therefore represent an important 

benchmark to test the new binding model. 

 

Fitting of model parameters 

Table 1. Fitted model parameters that enter Eq. (11)a of the SILC model 

Residue 
typeb 

qn,0  an bn Residue 
typeb 

qn,0  an bn 

N-term 1.96 0.0982 0.00305 His (H) 1.130 0.521 0 

Lys (K) 1.96 0.0982 0.00305 Ile (I) 1.132 0.521 0 

Arg (R) 2.44 0.0982 0.00305 Leu (L) 1.126 0.521 0 

Asp (D) 0.668 0.0982 0.00305 Met (M) 1.086 0.521 0 

Glu (E) 0.668 0.0982 0.00305 Asn (N) 1.052 0.521 0 

C-term 0.668 0.0982 0.00305 Gln (Q) 1.053 0.521 0 

Pro (P) 1.167 0.521 0 Thr (T) 1.051 0.521 0 

Ser (S) 1.050 0.521 0 Val (V) 1.095 0.521 0 

Ala (A) 1.054 0.521 0 Trp (W) 1.078 0.521 0 

Cys (C) 1.058 0.521 0 Tyr (Y) 1.058 0.521 0 

Phe (F) 1.114 0.521 0 Gly (G) 1.051 0.521 0 
 

a For standard SNP concentration  

b Amino acids together with one-letter amino-acid abbreviations 
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The parameters of the SILC binding model were determined based on Eq. (9) using a nonlinear 

least-squares fit to the bound populations of the wild-type forms of all four IDPs. Experimental 

binding population data of IDP mutants were subsequently used for validation. Optimal results 

were obtained with 9 fitting parameters. Five of these parameters are the q
n,0

 values of (i) 

positively charged lysine and the N-terminus, (ii) positively charged arginine, (iii) negatively 

charged glutamate, aspartate and the C-terminus, (iv) proline, which is the strongest interacting 

non-charged residue, and (v) serine, which is the weakest interacting neutral residue. The 

remaining fitting parameters were an, bn for all charged residues, and an (with bn = 0) for all other 

residues, and the global scaling factor c = p
intrinsic

q
n,0

 for all residue types. The q
n,0

of all other 

non-charged residues were linearly interpolated between q
n,0

of serine and proline according to 

the experimental binding strengths of the free amino acids. Experimental profiles were all 

linearly scaled to a standard SNP concentration of 0.17 M. The model parameters were 

determined by a non-linear least squares fit that minimizes deviation between experimental and 

predicted binding populations using a trusted region reflective algorithm as implemented in the 

software package Ceres-Solver was employed.27 The minimization was run 5000 times using 

randomly selected initial parameters and the best fitted set is reported as final result (Table 1). At 

our standard SNP concentration of 0.17 M, the fitted global scaling factor c is 0.702. Although 

identification of the global minimum in a high-dimensional space is not always guaranteed, 

identical best solutions were obtained over 100 times providing confidence that the optimal 

solution indeed corresponds to the global optimum.  

 The optimized binding contribution factors (BCF) q
n, n-i  

(Eq. (11)) of a residue n to 

another residue i are depicted in Figure 2. These factors depend on the type of residue n as well 

as the separation |n–i| along the primary sequence. The positively charged Arg and Lys residues 

have the strongest effect on their neighboring residues due their attractive interactions with the 

negatively charged SNP surface consisting of negatively charged (deprotonated) silanol groups -

Si-O–.  The effect decreases with increasing residue separation (i.e. BCFs approach 1) but it 

remains noticeable even >25 residues away. The negatively charged Asp and Glu residue show 

the opposite effect by diminishing the interactions of neighboring residues with the SNP surface. 

Neutral residues promote attraction, although on a significantly smaller scale than Arg and Lys. 
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These attractive interactions are likely to be of a hydrophobic nature, similar to those observed in 

molecular dynamics (MD) simulations of biomolecule-SNP interactions, caused by the 

hydrophobic nature of surface siloxane groups -Si-O-Si-.28 

The bound population of Eq. (8) corresponds to conditions where the protein 

concentration is highly diluted and the bound population is then independent of the precise 

protein concentration. When the protein concentration is increased and becomes comparable to 

the effective concentration of protein binding sites on the surfaces of the nanoparticles, as is the 

case in our experiments, the bound population will decrease with increasing protein 

concentration due to saturation. For example, under standard SNP concentration, the 

experimental binding population of aSyn is 6 times larger than p53TAD (using the mean of the 

strongest 20% residues of each protein to assess binding). However, when aSyn and p53TAD are 

simultaneously present, their binding ratio is not necessarily 6-fold as a result of the possible 

existence of multiple layers of bound protein or SNP aggregation. Relative binding strengths of 

 

Figure 2. Optimized parameters of SILC model. The contribution of each residue to nanoparticle 

binding of a residue of interest is modeled by a residue-specific hyperbolic multiplicative binding 

contribution factor q, which depends on the inter-residue distance. Positive (negative) q values have a 

longer range and indicate attractive (repulsive) electrostatic interactions, which dominate q values 

belonging to neutral residues (hydrophobic interactions).  
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any two proteins can be experimentally determined using direct competitive binding experiments 

as a function of SNP and protein concentrations. Because SILC is relatively insensitive to the 

binding strength ratio, we assume here that the binding strength of each protein is proportional to 

its bound population under standard SNP concentration. For example, our model (Eqs. (9), (11)) 

can be fitted almost equally well when the binding strength ratio of aSyn to p53TAD is changed 

from 6 to 20.  

The parametrized form of the SILC model has been implemented as a webserver, which 

accepts the IDP amino-acid sequence as input and returns the residue-specific bound population 

profile for anionic silica nanoparticles at http://spin.ccic.osu.edu/index.php/frimsi/. 

 

Application of SILC model to 4 IDPs 

Application of the SILC model to the wild-type forms of the 4 IDPs is shown in Figure 3. The 

four IDPs display distinctly different affinity profiles reflecting their different amino-acid 

compositions and lengths. aSyn and Cyto2 display a similar negative gradient of their affinities 

from the N- to the C-terminus. However, in terms of absolute affinities, aSyn interacts with SNPs 

 

Figure 3. Experimental interaction profiles with SNPs (solid circles) of four representative IDPs (170 

M) normalized to a standard SNP concentration (0.17 M) in comparison with SILC model 

prediction (thick red lines): (A) aSyn, (B) p53TAD, (C) Pup, (D) Cyto2. In Panel (A), the p53TAD 

profile is to scale plotted as aSyn, which shows an approximately 6-fold difference in the absolute 

binding strength between aSyn and p53TAD at same SNP concentration. 
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about twice as strongly as Cyto2. By contrast, p53TAD and Pup have a markedly more varied 

profile with regions with elevated affinity followed by regions with lower affinity and vice versa. 

The absolute binding affinities of these two proteins are substantially lower than those of aSyn 

and Cyto2. The prediction by the SILC model (red line) reproduces the experimental profiles 

remarkably well both in terms of the local variations and the absolute magnitude of binding. This 

demonstrates that the SILC model is capable to realistically reproduce the global binding 

properties of this diverse set of IDPs.  

 Cooperativity effects are not only expected to affect the global binding properties, but 

also impact local behavior. For this purpose, we compared the behavior of mutants of aSyn and 

p53TAD with their wild-type forms. Specifically, for p53TAD the single-site mutants K24N and 

P27N and the double mutant D48N/D49N were produced and subjected to residue-specific 15N 

R2 analysis with the results shown in Figure 4A,B,C. The depicted R2 profiles correspond to 

the R2 difference profiles p53TAD[WT – K24N], p53TAD[WT – P27N],  and p53TAD[WT – 

 

Figure 4. Experimental R2 values (solid circles) vs. SILC model predictions (thick lines) for (A) 

p53TAD[WT – K24N], (B) p53TAD[WT – P27N], (C) p53TAD[WT – D48N/D49N], (D) aSyn[WT – 

K21N] and aSyn[K45N – K21N/K45N], highlighting the effects of mutations. The slightly, yet 

systematically elevated R2 values of aSyn[WT – K21N] over aSyn[K45N – K21N/K45N] provide 

direct experimental evidence of the positive cooperativity of K21 and K45 residues, since the absence 

of K45 allosterically reduces the overall contribution of K21 to the binding of other residues (see 

Supporting Information). The mutation sites are indicated by vertical green lines. 
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D48N/D49N]. As expected, all three profiles show the strongest R2 effect at the position of 

the mutations with large effects also visible for neighboring residues, which gradually diminish 

for larger separation along the amino-acid sequence. The p53TAD[WT – D48N/D49N] has a 

dominantly negative profile reflecting that the binding affinity is increased when the negatively 

charged aspartate residues D48 and D49 are replaced by neutral asparagine. The effects of K24N 

and D48N/D49N have a significantly longer range than the effect of P27N, which is accurately 

captured by the model of Eq. (10) where charged and neutral residues have different an, bn 

parameters (Table 1). The same characteristic long-range effect exerted by charged residues on 

neighboring residues is observed for aSyn for the single mutant aSyn[WT – K21N] and the 

double mutant aSyn[K45N – K21N/K45N] (Figure 4D).     

 The experimental R2 profile of p53TAD[WT – K24N] has in addition to the main 

maximum at residue 24 clearly visible additional maxima on either side, namely around residues 

E11, L14 and S33, L35, which could not be explained by FRIM. By contrast, the SILC binding 

model is capable of reproducing such finer features of the affinity profile (Figure 4A). They are a 

direct reflection of local cooperativity between K24 and the neighboring residue clusters. Since 

both neighboring clusters have an elevated binding propensity on their own (Figure 3B), the 

enthalpic binding forces are able to more successfully counteract the conformational entropy 

effects for these clusters as compared to other parts of the polypeptide chain. A further increase 

in the bound population of the central cluster by substituting the neutral N24 by the more 

favorably interacting K24 will then translate into an increase of the bound state of all 

neighboring residues. Due to the product nature of SILC, it disproportionately affects 

neighboring residue clusters with an intrinsically higher bound population resulting in the 

appearance of these additional maxima in the R2 profile observed both in the experiment and 

reproduced by SILC. 

 For aSyn, the experimental R2 profile of aSyn[WT – K21N] has a clear tendency to 

exceed the one of aSyn[K45N – K21N/K45N] (red vs. blue circles in Figure 4D). Again, this is a 

reflection of entropic binding cooperativity akin to the one of p53TAD[WT – K24N]. 

Nanoparticle binding of aSyn K21N benefits from the presence of K45, which binds strongly to 

the SNP surface and, through reduction of the conformational entropy of neighboring residues, 

facilitates N21 binding, resulting in a relatively large R2 effect. By contrast, aSyn 
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K21N/K45N benefits to a lesser extent from an entropy reduction, since N45 has a substantially 

weaker binding affinity to SNPs than K45. As a consequence, in aSyn K21N/K45N, SNP 

binding of N21 has to overcome the larger entropy cost, which results in a weaker R2 effect. 

The observed trend is clearly observable, although relatively noisy, because each R2 profile 

requires the collection of 4 15N-1H HSQC-based R2 experiments, each based on a R1 and R1 

experiment, applied to WT or mutant 1 vs. mutant 2 in the presence and absence of SNPs. Hence, 

the observed trend between aSyn[WT – K21N] and aSyn[K45N – K21N/K45N] is based on the 

cumulative differential effects of no fewer than 16 R1 or R1 relaxation experiments, each with a 

finite signal-to-noise ratio.   

 

DISCUSSION 

The interaction of an IDP with a nanoparticle is conceptually related to the binding of multiple 

ligands to a receptor where the ligands are sequentially connected to each other by flexible 

linkers. Such systems can achieve distinct binding behavior through cooperativity. Previously, 

analytical mathematical models for divalent and multivalent binding have been proposed where 

each fragment can only adopt either a bound or an unbound state. In this case, the total apparent 

association constant can be expressed as product of the individual association constants and 

effective protein concentration, which depend on the linker properties, such as their lengths and 

internal flexibilities.23 Subsequent work used more realistic linker models to improve agreement 

with experiment.24-25 These divalent/multivalent binding models work best in the case of strong 

positive cooperativity, where only free states (i.e. none of the fragments is bound) and fully 

bound states have significant populations thereby greatly reducing the complexity of the model.  

The divalent/multivalent binding model is inadequate for the treatment of IDP-SNP 

interactions, because the IDP residues simultaneously serve as ligands and linkers. This requires 

the inclusion of partially bound states, which are absent in divalent/multivalent binding models 

where a ligand can only be either bound or unbound. By contrast, our model incorporates a 

continuous spatial distribution of each IDP residue instead of just two discrete states “bound” 

and “unbound”. Positively charged residues tend to have a higher population near the SNP 

surface, even when they are still in an unbound state, i.e., while retaining their translational and 
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rotational motional degrees of freedom. As a consequence, positively charged residues in a near-

bound state reduce the entropic cost of binding of neighboring residues and thereby facilitate 

their binding to the SNP surface in a cooperative manner. The “continuum” representation of the 

unbound and bound states in our model enables the realistic representation of the difference 

between charged and hydrophobic residues, where charged residues have a significantly longer 

range effect on other residues along the primary sequence than neutral and hydrophobic residues. 

Such behavior cannot be captured by the above-mentioned two-state models. The cooperativity 

or anti-cooperativity effect of each residue for each other residue is determined by the binding 

contribution factor q, which has a smooth dependence on residue separation for all residues 

independent of their charge. The model includes the cumulative effect of such two-body 

interactions and shows accurate performance for the IDPs studied here with their different 

interaction propensities. The model could be accurately validated based on high-resolution 

solution NMR data. This requires that the bound IDP populations are relatively small; otherwise 

strong line broadening could cause the disappearance of signals. For IDPs with binding affinities 

that are similar to the four proteins studied, our model is expected to predict accurate affinity 

profiles. For systems with significantly stronger IDP-nanoparticle interactions even relatively 

small inaccuracies in model parameters can have a sizeable effect on affinity predictions as a 

direct consequence of binding cooperativity, which exponentiates the effect of variations in 

model parameters. However, there are currently no experimental methods available to 

quantitatively probe strong IDP-nanoparticle interactions at residue-level resolution. Our model 

can be adopted to describe IDP binding with nanoparticles and nanomaterials other than anionic 

SNPs.  

Our previously developed FRIM for IDP-SNP binding focused on weak cooperativity by 

including the effects of neighboring residues as additive contributions.18 Although FRIM 

successfully reproduces the experimentally observed binding affinity trends along the 

polypeptide chain, it does not accurately predict the absolute binding affinities of the different 

IDPs. FRIM also does not reproduce some of the finer details of the affinity profiles, which are 

revealed by site-directed mutagenesis derived R2 profiles (Figure 4). SILC, by contrast, 

produces accurate absolute affinity profiles and at the same time explains unique features found 

in R2 profiles. At the level of binding free energies, the SILC model represents cooperativity 

among all residues by a sum of all pairwise cooperativities, thereby rendering the problem 
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mathematically tractable in analytical form. The good agreement with experiment provides 

strong evidence that the model is valid for moderately strong binding proteins, including aSyn. 

However, for systems that display very strong positive cooperativity, such as IDPs with many 

more positively charged residues, SILC is not valid any longer and the divalent/multivalent 

binding models21-25 may be better suited.  

Both the SILC model and the NMR spin relaxation data primarily reflect the binding 

properties of individual residues. Sometimes, however, it can be informative to view binding 

from a “protein-centric” perspective, where a protein molecule is defined to be in the bound state 

if at least one residue is bound to the SNP. The bound protein population Pprotein can then be 

empirically expressed as 

P
protein

=1- (1- p
i
)l

i=1

N

Õ
    

(13) 

where pi is the bound population of residue i (i = 1,…,N) predicted by the SILC model (Eq. (9)), 

0 < λ ≤ 1 is an empirical scaling factor to account for the cooperative binding properties of amino 

acid residues that are close in sequence, and λ = 1 for independent binding. A higher degree of 

cooperativity corresponds to generally larger pi and smaller λ values. The p53TAD binding 

experiment at 170 M protein and 2.52 M SNP concentration, the protein centric binding 

population Pprotein ≅ 0.14 for λ = 1 and Pprotein ≅ 0.08  for λ = 0.5. 

One of the hallmarks of IDPs in biological systems is their ability to form fuzzy 

complexes with receptors.29-30 The IDP-SNP systems should serve as paradigms to study such 

effects with residue-level resolution by solution NMR spectroscopy. Our model incorporates the 

heterogeneous nature of IDP conformers interacting with the nanoparticle surface. For each IDP, 

it is a large number of different IDP binding modes that cumulatively produce the binding profile. 

This is analogous to the co-existence of multiple binding modes between an IDP that interacts 

with the surface of a folded protein receptor.31 The bound conformers that are dominantly 

populated will sensitively depend on the number and strengths of specific and non-specific 

interactions between the IDP and the folded protein, which can encompass broad distributions of 

the kind observed here or, alternatively, much narrower distributions in cases where a unique 

network of complementary interactions between the IDP and the receptor is preferentially 

formed.  
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CONCLUSION 

We have introduced SILC as a statistical mechanical model to quantitatively explain cooperative 

binding between four different IDPs and anionic silica nanoparticles at the level of individual 

residues. SILC represents the partition function of the bound state with contributions from all 

residue pairs. Most numerical values for the model parameters directly stem from R2-relaxation 

experiments of free amino acids interacting with nanoparticles and R2 differences of IDP-

binding profiles due to site-specific mutations. It is found that cooperativity plays a critical role 

for the understanding of the IDP-SNP interaction data both in terms of the fine structure of the 

binding profiles and prediction of the differences between the absolute binding affinities of the 

different IDPs, which includes the correct prediction of competitive binding between aSyn and 

p53TAD.  

Certain nanoparticles are known to transfect cells and may cause toxicity. The detailed 

and quantitative understanding of nanoparticle interactions with an array of intracellular 

components, including IDPs, is likely to advance our understanding of nanotoxicity. Conversely, 

it may be possible to utilize existing and engineer new nanoparticles with specific surface 

modifications that embody optimized physical-chemical properties to target certain IDPs in vitro 

or in vivo.32 Such targeting may help prevent or mitigate certain types of IDP-related diseases.14, 

16, 33 Such efforts will benefit from the SILC model to make accurate and rapid predictions of 

quantitative binding properties to identify specific IDP regions or entire IDPs. 

 

SUPPORTING INFORMATION 

The Supporting Information is available free of charge at … 

• Additional information about sample preparation, NMR experiments, and data analysis 

• Tables with amino-acid sequences of IDPs and SNP concentrations  

• Figures of 15N-1H HSQC spectra of all 4 proteins, experimental reproducibility of R2 

profiles, comparison between R2 and ηxy.   
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• Plots of BCFs as cooperativity free energy contributions.  
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