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ABSTRACT

Intrinsically disordered proteins (IDPs) can display a broad spectrum of binding modes and
highly variable binding affinities when interacting with both biological and non-biological
materials. A quantitative model of such behavior is important for the better understanding of the
function of IDPs when encountering inorganic nanomaterials with the potential to control their
behavior in vivo and in vitro. Depending on their amino-acid composition and chain length,
binding properties can vary strongly between different IDPs. Moreover, due to differences in the
physical chemical properties of clusters of amino-acid residues along the IDP primary sequence,
individual residues can adopt a wide range of bound state populations. Quantitative experimental
binding affinities with synthetic silica nanoparticles (SNPs) at residue-level resolution, which
were obtained for a set of IDPs by solution NMR relaxation experiments, are explained here by a
first-principle analytical statistical mechanical model termed SILC. SILC quantitatively predicts
residue-specific binding affinities to nanoparticles and it expresses binding cooperativity as the
cumulative result of pairwise residue effects. The model, which was parametrized for anionic
SNPs and applied to experimental data of four IDP systems with distinctive binding behavior,
successfully predicts differences in overall binding affinities, fine details of IDP-SNP affinity
profiles, and site-directed mutagenesis effects with a spatial resolution at the individual residue
level. The SILC model provides an analytical description of such types of fuzzy IDP-SNP
complexes and may help advance understanding nanotoxicity and in-vivo targeting of IDPs by

specifically designed nanomaterials.



INTRODUCTION

Intrinsically disordered proteins (IDPs) and protein regions, which account for more than thirty
percent of the eukaryotic proteome,' are involved in a vast range of biologically important
processes, such as regulation, catalysis, or biomineralization.* Their high structural flexibility
enables IDPs to interact in unique ways with other biomolecules or inorganic materials.’
Examples include the interaction of the disordered transactivation domain of the human tumor
suppressor p53 (p53TAD) with the globular domain of MDM2 protein,® the interaction of the
disordered prokaryotic ubiquitin-like protein (Pup) with mycobacterium proteasomal ATPase,’
and the interaction of disordered silaffin peptides with inorganic silica surfaces.® In some cases,
these interactions are known to be highly cooperative,”!! but the lack of quantitative information
at atomic detail has prevented a deeper understanding of such interactions and the physical-
chemical basis for the emergence of cooperativity has remained unaddressed. The hallmark of
cooperativity in these systems is that individual residues specifically affect the binding free
energy of other residues of the same polypeptide, i.e. the net free energy of binding is generally
larger than the sum of the free energy contributions of individual residues. Atomic-detail,
physics-based models are needed to understand and predict IDP interactions with other

biomolecules, nanomaterials, and their role in the formation of membraneless organelles.'*!3

Elucidating the cooperative binding modes of IDPs to nanomaterial surfaces is relevant as
it may provide the means to selectively control IDP behavior in living cells using functionalized
nanoparticles with specifically engineered surface modifications. Such work is of potential
pharmaceutical value as it may lead to ways to prevent or combat IDP-related diseases, including
neurodegeneration.'*!> The accurate characterization of IDP-nanoparticle interactions can also
help understand nanoparticle-induced toxicity and other health risks from exposure to
nanomaterials.'® Moreover, such knowledge sheds light on how IDPs participate in
biomineralization processes, which in turn enable bioinspired and green synthesis of functional

nanomaterials.* !

We recently developed an experimental approach, based on high-resolution NMR in
solution, to quantitatively study the interactions of IDPs with silica nanoparticles (SNPs).!81?
SNPs are widely used as matrix materials in nanomedicine for enhanced biomolecular imaging

and targeted drug delivery. In addition, the chemically heterogeneous SNP surface, containing



negatively charged deprotonated silanol groups (-Si-O"), hydrophilic protonated silanol groups (-
Si-OH), and hydrophobic siloxane (-Si-O-Si-) patches,?® permits the evaluation of both
electrostatic and hydrophobic interactions that collectively contribute to IDP adsorption. In the
current study, the SNPs have an average diameter of 20 nm and, hence, display much slower
tumbling motion than free, i.e. unbound IDP residues. Upon interaction with SNPs, the tumbling
motion of the interacting residues slows down considerably, which is manifested in an increase
of transverse R» spin relaxation of backbone '°N spins that can be accurately measured for each
residue. The approach thereby provides quantitative residue-specific information about the

propensity and population of an IDP when bound to the nanoparticle surface.

The residue-specific binding profiles of four IDPs to SNP surfaces, namely p53TAD,
Pup, human a-synuclein (aSyn), and cytosolic loop region 2 (Cyto2) of the canine sodium-
calcium exchanger NCX, have been experimentally determined providing direct evidence about
binding cooperativity.!” These data show that the average bound population of a polypeptide can
vary widely for different IDPs. In addition, cooperativity effects were also revealed when

comparing IDP binding profiles of wild-type vs. site-directed mutants. '

Since interaction properties of IDPs with SNP surfaces should only depend on their
primary sequences, the binding affinities of the 20 free amino acids to anionic SNP surfaces were
recently quantiﬁed.18 They indicate the strongest affinities for Arg, Pro, Lys, Ile, His, Leu, Phe,
and Val and minimal or negative affinities for Glu, Asp, Ser, Gly. Based on this information, the
analytical “free residue interaction model” (FRIM) was developed by combining individual
contributions from each with local neighboring effects in an additive manner.!® FRIM is able to
explain the segmental variations of the bound population for each protein, but does not
adequately describe observed cooperativity effects, including the large differences in overall
binding affinities between different IDPs. Specifically, FRIM requires an empirical global
scaling factor for the prediction of AR>, which can strongly vary from protein to protein and it
cannot adequately reproduce AAR> behavior for wild-type vs. mutant proteins. This suggests that
FRIM does not adequately account for the non-additive dependence of free energy contributions
to binding by individual residues. These shortcomings point to the need for a physically more

advanced binding model.



Besides FRIM, few mathematical binding models have been proposed that capture such
types of situations.?!">> The earliest model is the divalent binding model by Crothers and Metzer
originally developed for antigen-antibody interactions.”® It predicts the dependence of the
binding constant of a 2" binding event on the binding constant of an initial binding event. The
model expresses this dependence as a function of the spatial relationship between the two
binding sites and the acceptor concentration. Advanced versions of this model with more realistic
linker properties have subsequently been proposed.?*?> These models are, however, not directly
applicable to the situation examined in this work, which is the interaction between IDPs and
nanoparticles where each amino-acid residue acts as a ligand and simultaneously is also part of a

linker.

Here, we propose a new, statistical-mechanics based polyvalent binding model, termed
SILC for SImultaneous Linker-ligand Cooperative binding, to quantitatively explain cooperative
IDP-SNP binding with a resolution at the individual amino-acid residue level. The model is
shown to represent in good approximation the partition function of the protein of the bound state
by a product of pairwise residue contributions. Parametrization of the model using NMR-derived
residue-specific binding affinities of the four IDPs shows that the model has quantitative
predictive power being able to reproduce experimentally observed cooperative binding
properties. In the following sections, the new model is first formally described, then
parametrized using experimental data, and finally applied to explain cooperative binding

behavior manifested in several different IDP systems.

Theory

In the SILC binding model introduced here, each amino acid interacts with the SNP surface
through either hydrophobic or electrostatic interactions. The direct interaction between residues,
which is restricted to sequential residues due to chemical bonding, is modeled as a constraint
with energy R+ keeping the distance between sequential residues essentially fixed. We first
describe the model for a linear polypeptide chain that contains only 3 amino-acid residues before
it is generalized to a polypeptide chain of arbitrary length. The partition function Z of the 3-

residue system is



Z=[] [ drdr,drexp(-B(E, +E, +E;+ R, +R,,)) (1)

where E1, E», and E3 are interaction energies between residues 1, 2, and 3 with the SNP surface,
respectively, where E; only depends on the type of residue i and S = 1/(ksT). Because the
distances between neighboring residues 1, 2 and 2, 3 are essentially fixed, this is accounted for
by the pairwise distance-dependent energy terms Ri> and R»3, which can be enforced by a steep
harmonic inter-residue distance-dependent energy potential that is centered around the
equilibrium distance between neighboring residues. Eq. (1) can be rearranged with the goal to
approximate Z as a product of individual residue contributions. First, Eq. (1) can be expressed as

a nested integral
Z= [ dr{exp(=pE,) [ dr,[exp(-B(E,+R,,) [ dr,exp(—B(E,+R)))]} )

Residue 2 affects residue 1 directly via Ri2, whereas residue 3 affects residue 1 only indirectly
via the intermedidate residue 2. Next, the energy term R»3 is replaced by a new energy Ri3, which
is less restrictive than R»3 by allowing low energy arrangements over a larger distance range than

R»3 and at the same time eliminating the explicit dependence on residue 2:

Z = [ dr{exp(=BE,) [ dr,[exp(-B(E,+R,,) [ dr,exp(—B(E,+ R )]} 3)
The functional form of Ri3 will be empirically parametrized below. Eq. (3) can be rewritten as
Z = [ dr{exp(-pE)) [ dr,exp(-B(E,+R,)) [ dr,exp(—B(E;+R;))} 4

providing an expression for Z that only includes pairwise interactions with residue 1. It permits
direct computation of the population p; of conformers with residue 1 bound to the nanoparticle

surface (see below).

Eq. (4) can be generalized to any residue i in the polypeptide chain with N residues
Z= [ {exp(-BE)] [ Ur,exp(-B(E, +R,,)} 5)

where the energy terms R;, have the same general form as R13 of Eq. (4) independent of residue
type. The bound population p; of residue i can then be expressed as the fraction of the partition

function Z with residue i bound vs. the total partition function:



_ C] . dr{exp(-BE) | [dr,exp(-B(E,+R,))} (6)
[, driexppE)] [dr,exp(-B(E,+R )i+ [|  driexp(-fE)] [ dr exp(-p(E,+R )}

zzzzzzzzz

In the case that population p; is small, which applies for the experimental conditions used in this

work, the denominator of Eq. (6) can be simplified:

= s @ PCAE) U, expCAE, +R, ) -
C L) drAeXpBEY ] [dr, exp(-p(E,+R, )}

Eq. (7) can be further simplified by recognizing that the integrals over r, have a trivial
dependence on r; for most of the allowed range of r;. If residue i is bound to the surface, the
range of positions r; is fully restricted and if residue i is in an unbound state far away from the
nanoparticle surface, the precise location r; has little effect on the integrals over rn. Only in the
intermediate regime where residue 7 is located in the vicinity of the nanoparticle surface, the
effect on ry, becomes more complicated. It is then possible to factorize the integrals in Eq. (7) in

both the numerator and denominator by averaging out the ri-dependence of

[ dr, exp(-B(E, +R,,)):

L], drexp(-pE) L] dr,exp(-B(E,+R,))
pi — Ti[ | bound i bound > (8)
Driﬂ unbound drl eXp(_ﬂEi) " [fl’unbound drn eXp(_ﬂ(En + Ri,n ))

The ratio of the integrals over r; in Eq. (8) is the intrinsic bound population of free amino acid i

at the nanoparticle concentration [SNP]. Because [ {r, exp(—8(E, +R,,)) only depends on the

intrinsic binding property of amino acid » and distance restraint between residue i and n, the

bound population can be approximated as

[SNP ] intrinsic
0 el ] A 9
Pitswe, T ©)
where p"""* is the bound population of the free amino acid 7 to the SNPs. [SNP]o is a reference

nanoparticle concentration and

q = qhuund dr" exp(_ﬂ(En + Ri,n ))
n,‘n_l‘ Dt\unbound dr” exp(_ﬂ(En + Rz’,n ))

(10)



are termed “binding contribution factors” (BCF), which only depend on the amino-acid type of

residue n and the sequential distance between residues # and i.

The BCFs 4, must fulfill certain general properties: for small values |n—i|, the

restraining energy R;, requires that residue » must be close to (far away from) the binding
surface if residue 7 is in the bound (unbound) state. This implies that g, , oc [Lb dd r,exp(—pE,)

intrinsic
n

and, hence, 9,0 1s proportional to p , 1.e., the effect of a residue # on the binding of residue i

is directly proportional to the intrinsic binding affinity of the free amino acid form of residue .

On the other hand, if |n—i| becomes very large, qn,‘n_i‘will approach 1, since the conformational

space sampled by residue n does not depend on whether residue i is bound or unbound. These
conclusions are independent of the details of the functional form of E,, except that £, should be
more favorable (i.e. lower) near the surface of the nanoparticle for positively charged and
hydrophobic residues and less favorable (i.e. higher) for negatively charged residues. For

attractive interactions, g, i >1 and for repulsive interactions, ¢, <1 (approaching 1 for

=

|n—i|—)oo).

The explicit mathematical form of Qs CAD be specified based on an empirical

parametrization using high-quality experimental data. In the following we use the following

inverse quadratic functional form:

qn,O _l

qn,‘n—i‘ = 1+ ‘2 (1 1)

l+a ‘n—i‘+b ‘n—i
n n

where |n—i| is the sequential distance between the two residues »n and i and a,, b, are empirical
parameters that depend on the amino-acid type of residue n. The specific values of the model
parameters are determined by non-linear least squares fitting to our experimental NMR data (see

Table 1). We term this model SILC.



MATERIALS AND EXPERIMENTAL METHODS

Sample preparation. NMR samples of four intrinsically disordered proteins were prepared: the
transactivation domain of human tumor suppressor p53 (pS3TAD) and several of its mutants,
human a-synuclein (aSyn) and several of its mutants, prokaryotic ubiquitin-like protein (Pup),
and the cytoplasmic segment 2 at the C-terminus of the canine Na"/Ca?" exchanger (Cyto2) (all
protein sequences are listed in Table S1). Site-directed mutagenesis, expression and purification
of N or N,C isotopically-labeled samples followed identical procedures as described
previously and in the Supporting Information. All final NMR samples consisted of 170 uM IDPs
in 20 mM sodium phosphate buffer (pH 7.0) that also contained 100 mM NaCl and 10% DO.

SNP preparation. Colloidal SNPs (AkzoNobel Bindzil 2040) were dialyzed in the same buffer
using 10 kDa molecular-weight-cut-off semi-membrane for at least 16 h before mixing with
IDPs. These near-spherical SNPs have a relatively narrow size distribution (19.5 £ 5.3 nm in
diameter by transmission electron microscopy and 25.3 £+ 8.9 nm by dynamic light scattering)
and are negatively charged at the surface ({-potential —23.0 = 7.4 mV) at neutral pH as
characterized previously.?® A range of different SNP concentrations was optimized for each IDP
so that the maximum effective R> rates measured by spin relaxation experiment (see below) fall
between 5 and 25 s~!. This range was found to be a viable compromise between a large dynamic
range for AR, and sufficient signal-to-noise, which together determine the measurement accuracy.

Table S2 summarizes the concentrations and conditions of all samples used.

NMR relaxation experiments. >’N-NMR spin relaxation parameters, Ri and R1p, of each protein
were measured in the presence and absence of SNPs. Pseudo-3D experiments based on 2D °N-
'"H HSQC experiments with residue-specific peak intensities were recorded at six different
relaxation delays. The residue-specific R1 and Rip rates were obtained by fitting the intensity vs.
delay curves by a single exponential, and the R> rates were subsequently extracted based on their
Ry and Ry rates using '°N spin-lock field strength and resonance offset parameters of each cross-
peak. All NMR experiments were conducted on a Bruker Avance III HD spectrometer operated

at 850 MHz 'H frequency equipped with a TCI cryogenic probe at 298 K.

Extraction of bound-state populations. Experimental transverse NMR relaxation data reflect

bound-state populations as follows. For a two-site exchange process in the fast exchange regime



where each amino-acid residue i exists either in a free or an SNP-bound state with populations

pf and pf’ , the bound populations can be directly determined from

pf’=AR

2, 12
I (12)

where AR, :R;?[P —R; . 1s the R, difference in the presence and absence of SNPs. R2b is the

(estimated) R> value for a residue that is bound to the SNP for 100% of the time (see Eq. (S4) of
Ref. '8). Eq. (12) is further supported by data shown in Figure S3.
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RESULTS

Evidence for global cooperative binding
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Figure 1. N-AR, values of IDPs as a function of amino-acid residue sequence and SNP
concentration. (A) Average AR, (of largest 20% residues) of aSyn and p53TAD display a linear
dependence on SNP concentration, although with significantly different slopes (gray lines).
Experimental interaction profiles of (B) aSyn and (C) p53TAD at different SNP concentrations
measured for individually prepared samples. (D,E) Experimental interaction profiles of mixture of
(D) 170 uM aSyn and (E) 170 uM p53TAD present in same NMR sample with 0.38 uM SNPs. The
expected binding strengths of the IDPs of (D,E) are indicated as an open black diamond for aSyn and

Experimental binding affinity profiles of the wild-type forms of the four IDPs, namely pS3TAD,
aSyn, Pup, and Cyto2, to silica nanoparticles were measured by determining the residue-specific
5N AR, values, which is the difference between N R: in the presence and absence of SNPs.

The binding affinities grow linearly with the SNP concentration as is demonstrated for aSyn and




pS3TAD in Figure 1A,B,C. Importantly, each IDP displays its individual slope of AR> vs. SNP-

concentration, which is defined by the average of the largest 20% AR> values of each protein

divided by the SNP concentration. The slope for aSyn is about 6.1 times larger than that for

pS3TAD, which shows that at identical protein and SNP concentration a-synuclein has a much

stronger binding affinity than pS3TAD. This finding is corroborated by a competitive binding

assay of the two proteins: when the two proteins at a concentration of 170 uM each are mixed

with 0.38 uM SNPs, aSyn-SNP binding completely dominates that of pS3TAD (Figure 1D,E).

This behavior cannot be explained by the FRIM model, which was developed previously for the

characterization of IDP-SNP interactions. Since the FRIM model only applies in a regime of

weak cooperativity, Figure 1 suggests that a new model is needed that can accommodate stronger

Table 1. Fitted model parameters that enter Eq. (11)? of the SILC model

Residue | ¢,, an bn Residue | ¢, an bn
type® type®

N-term | 1.96 0.0982 | 0.00305 | His (H) | 1.130 0.521 0
Lys (K) [1.96 0.0982 | 0.00305 | lle (1) 1.132 0.521 0
Arg (R) 244 0.0982 | 0.00305 | Leu (L) |1.126 0.521 0
Asp (D) |0.668 |0.0982 | 0.00305 | Met (M) | 1.086 0.521 0
Glu(E) |0.668 |0.0982 |0.00305 | Asn(N) | 1.052 0.521 0
C-term |0.668 |0.0982 |0.00305 |GIn(Q) | 1.053 0.521 0
Pro(P) |1.167 |0.521 0 Thr(T) |1.051 0.521 0
Ser(S) [1.050 |0.521 0 Val (V) [1.095 0.521 0
Ala (A) |1.054 |0.521 0 Trp (W) | 1.078 0.521 0
Cys(C) |1.058 |0.521 0 Tyr (Y) |1.058 0.521 0
Phe (F) |1.114 |0.521 0 Gly (G) |1.051 0.521 0

aFor standard SNP concentration

® Amino acids together with one-letter amino-acid abbreviations

cooperativity effects. The experimental data of Figure 1 therefore represent an important

benchmark to test the new binding model.

Fitting of model parameters

12



The parameters of the SILC binding model were determined based on Eq. (9) using a nonlinear
least-squares fit to the bound populations of the wild-type forms of all four IDPs. Experimental

binding population data of IDP mutants were subsequently used for validation. Optimal results

were obtained with 9 fitting parameters. Five of these parameters are the g  values of (i)

positively charged lysine and the N-terminus, (ii) positively charged arginine, (iii) negatively
charged glutamate, aspartate and the C-terminus, (iv) proline, which is the strongest interacting
non-charged residue, and (v) serine, which is the weakest interacting neutral residue. The

remaining fitting parameters were a,, b, for all charged residues, and a, (with b, = 0) for all other

residues, and the global scaling factor c=p. / q,, for all residue types. The g  of all other
non-charged residues were linearly interpolated between g  of serine and proline according to

the experimental binding strengths of the free amino acids. Experimental profiles were all
linearly scaled to a standard SNP concentration of 0.17 pM. The model parameters were
determined by a non-linear least squares fit that minimizes deviation between experimental and
predicted binding populations using a trusted region reflective algorithm as implemented in the
software package Ceres-Solver was employed.?’” The minimization was run 5000 times using
randomly selected initial parameters and the best fitted set is reported as final result (Table 1). At
our standard SNP concentration of 0.17 uM, the fitted global scaling factor ¢ is 0.702. Although
identification of the global minimum in a high-dimensional space is not always guaranteed,
identical best solutions were obtained over 100 times providing confidence that the optimal

solution indeed corresponds to the global optimum.

The optimized binding contribution factors (BCF) ¢, . (Eq. (11)) of a residue n to

=i
another residue i are depicted in Figure 2. These factors depend on the type of residue n as well
as the separation |n—i| along the primary sequence. The positively charged Arg and Lys residues
have the strongest effect on their neighboring residues due their attractive interactions with the
negatively charged SNP surface consisting of negatively charged (deprotonated) silanol groups -
Si-O". The effect decreases with increasing residue separation (i.e. BCFs approach 1) but it
remains noticeable even >25 residues away. The negatively charged Asp and Glu residue show
the opposite effect by diminishing the interactions of neighboring residues with the SNP surface.

Neutral residues promote attraction, although on a significantly smaller scale than Arg and Lys.

13



These attractive interactions are likely to be of a hydrophobic nature, similar to those observed in
molecular dynamics (MD) simulations of biomolecule-SNP interactions, caused by the

hydrophobic nature of surface siloxane groups -Si-O-Si-.?®

1.4

Binding contribution factor, g
[s2]

1.24 - Proline

| . Other neutral residues
1.0 _QT“_- *************************
Serine
0.8 /(-”, —— Positive
=1 . . . —— Negative
Aspartic / glutamic acid Neutral
06 T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
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Figure 2. Optimized parameters of SILC model. The contribution of each residue to nanoparticle
binding of a residue of interest is modeled by a residue-specific hyperbolic multiplicative binding
contribution factor ¢, which depends on the inter-residue distance. Positive (negative) ¢ values have a
longer range and indicate attractive (repulsive) electrostatic interactions, which dominate g values
belonging to neutral residues (hydrophobic interactions).

The bound population of Eq. (8) corresponds to conditions where the protein
concentration is highly diluted and the bound population is then independent of the precise
protein concentration. When the protein concentration is increased and becomes comparable to
the effective concentration of protein binding sites on the surfaces of the nanoparticles, as is the
case in our experiments, the bound population will decrease with increasing protein
concentration due to saturation. For example, under standard SNP concentration, the
experimental binding population of aSyn is 6 times larger than pS3TAD (using the mean of the
strongest 20% residues of each protein to assess binding). However, when aSyn and pS3TAD are
simultaneously present, their binding ratio is not necessarily 6-fold as a result of the possible

existence of multiple layers of bound protein or SNP aggregation. Relative binding strengths of

14



any two proteins can be experimentally determined using direct competitive binding experiments
as a function of SNP and protein concentrations. Because SILC is relatively insensitive to the
binding strength ratio, we assume here that the binding strength of each protein is proportional to
its bound population under standard SNP concentration. For example, our model (Egs. (9), (11))

can be fitted almost equally well when the binding strength ratio of aSyn to p5S3TAD is changed
from 6 to 20.

The parametrized form of the SILC model has been implemented as a webserver, which
accepts the IDP amino-acid sequence as input and returns the residue-specific bound population

profile for anionic silica nanoparticles at http://spin.ccic.osu.edu/index.php/frimsi/.

Application of SILC model to 4 IDPs
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Figure 3. Experimental interaction profiles with SNPs (solid circles) of four representative IDPs (170
pM) normalized to a standard SNP concentration (0.17 uM) in comparison with SILC model
prediction (thick red lines): (A) aSyn, (B) p5S3TAD, (C) Pup, (D) Cyto2. In Panel (A), the pS3TAD
profile is to scale plotted as aSyn, which shows an approximately 6-fold difference in the absolute
binding strength between aSyn and pS3TAD at same SNP concentration.

Application of the SILC model to the wild-type forms of the 4 IDPs is shown in Figure 3. The
four IDPs display distinctly different affinity profiles reflecting their different amino-acid
compositions and lengths. aSyn and Cyto2 display a similar negative gradient of their affinities

from the N- to the C-terminus. However, in terms of absolute affinities, aSyn interacts with SNPs

15



about twice as strongly as Cyto2. By contrast, pS3TAD and Pup have a markedly more varied
profile with regions with elevated affinity followed by regions with lower affinity and vice versa.
The absolute binding affinities of these two proteins are substantially lower than those of aSyn

and Cyto2. The prediction by the SILC model (red line) reproduces the experimental profiles
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Figure 4. Experimental AAR, values (solid circles) vs. SILC model predictions (thick lines) for (A)
pS3TAD[WT — K24N], (B) pS3TAD[WT — P27N], (C) pS3TAD[WT — D48N/D49N], (D) aSyn[WT —
K21N] and aSyn[K45N — K21N/K45N], highlighting the effects of mutations. The slightly, yet
systematically elevated AAR, values of aSyn[WT — K21N] over aSyn[K45N — K21N/K45N] provide
direct experimental evidence of the positive cooperativity of K21 and K45 residues, since the absence
of K45 allosterically reduces the overall contribution of K21 to the binding of other residues (see
Supporting Information). The mutation sites are indicated by vertical green lines.

remarkably well both in terms of the local variations and the absolute magnitude of binding. This
demonstrates that the SILC model is capable to realistically reproduce the global binding
properties of this diverse set of IDPs.

Cooperativity effects are not only expected to affect the global binding properties, but
also impact local behavior. For this purpose, we compared the behavior of mutants of aSyn and
pS3TAD with their wild-type forms. Specifically, for pS3TAD the single-site mutants K24N and
P27N and the double mutant D48N/D49N were produced and subjected to residue-specific '°N
AR analysis with the results shown in Figure 4A,B,C. The depicted AAR> profiles correspond to
the AR; difference profiles pS3TAD[WT — K24N], pS3TAD[WT — P27N], and p53TAD[WT —
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D48N/D49N]. As expected, all three profiles show the strongest AAR> effect at the position of
the mutations with large effects also visible for neighboring residues, which gradually diminish
for larger separation along the amino-acid sequence. The pS3TAD[WT — D48N/D49N] has a
dominantly negative profile reflecting that the binding affinity is increased when the negatively
charged aspartate residues D48 and D49 are replaced by neutral asparagine. The effects of K24N
and D48N/D49N have a significantly longer range than the effect of P27N, which is accurately
captured by the model of Eq. (10) where charged and neutral residues have different a,, b,
parameters (Table 1). The same characteristic long-range effect exerted by charged residues on
neighboring residues is observed for aSyn for the single mutant aSyn[WT — K21N] and the
double mutant aSyn[K45N — K21N/K45N] (Figure 4D).

The experimental AR; profile of pS3TAD[WT — K24N] has in addition to the main
maximum at residue 24 clearly visible additional maxima on either side, namely around residues
El1, L14 and S33, L35, which could not be explained by FRIM. By contrast, the SILC binding
model is capable of reproducing such finer features of the affinity profile (Figure 4A). They are a
direct reflection of local cooperativity between K24 and the neighboring residue clusters. Since
both neighboring clusters have an elevated binding propensity on their own (Figure 3B), the
enthalpic binding forces are able to more successfully counteract the conformational entropy
effects for these clusters as compared to other parts of the polypeptide chain. A further increase
in the bound population of the central cluster by substituting the neutral N24 by the more
favorably interacting K24 will then translate into an increase of the bound state of all
neighboring residues. Due to the product nature of SILC, it disproportionately affects
neighboring residue clusters with an intrinsically higher bound population resulting in the
appearance of these additional maxima in the AAR; profile observed both in the experiment and

reproduced by SILC.

For aSyn, the experimental AAR; profile of aSyn[WT — K21IN] has a clear tendency to
exceed the one of aSyn[K45N — K21N/K45N] (red vs. blue circles in Figure 4D). Again, this is a
reflection of entropic binding cooperativity akin to the one of p5S3TAD[WT — K24N].
Nanoparticle binding of aSyn K21N benefits from the presence of K45, which binds strongly to
the SNP surface and, through reduction of the conformational entropy of neighboring residues,

facilitates N21 binding, resulting in a relatively large AAR» effect. By contrast, aSyn
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K21N/K45N benefits to a lesser extent from an entropy reduction, since N45 has a substantially
weaker binding affinity to SNPs than K45. As a consequence, in aSyn K2I1N/K45N, SNP
binding of N21 has to overcome the larger entropy cost, which results in a weaker AAR; effect.
The observed trend is clearly observable, although relatively noisy, because each AAR; profile
requires the collection of 4 'N-'H HSQC-based R» experiments, each based on a R; and Rip
experiment, applied to WT or mutant 1 vs. mutant 2 in the presence and absence of SNPs. Hence,
the observed trend between aSyn[WT — K21N] and aSyn[K45N — K21N/K45N] is based on the
cumulative differential effects of no fewer than 16 R; or Rip relaxation experiments, each with a

finite signal-to-noise ratio.

DISCUSSION

The interaction of an IDP with a nanoparticle is conceptually related to the binding of multiple
ligands to a receptor where the ligands are sequentially connected to each other by flexible
linkers. Such systems can achieve distinct binding behavior through cooperativity. Previously,
analytical mathematical models for divalent and multivalent binding have been proposed where
each fragment can only adopt either a bound or an unbound state. In this case, the total apparent
association constant can be expressed as product of the individual association constants and
effective protein concentration, which depend on the linker properties, such as their lengths and
internal flexibilities.”* Subsequent work used more realistic linker models to improve agreement
with experiment.>*?*> These divalent/multivalent binding models work best in the case of strong
positive cooperativity, where only free states (i.e. none of the fragments is bound) and fully

bound states have significant populations thereby greatly reducing the complexity of the model.

The divalent/multivalent binding model is inadequate for the treatment of IDP-SNP
interactions, because the IDP residues simultaneously serve as ligands and linkers. This requires
the inclusion of partially bound states, which are absent in divalent/multivalent binding models
where a ligand can only be either bound or unbound. By contrast, our model incorporates a
continuous spatial distribution of each IDP residue instead of just two discrete states “bound”
and “unbound”. Positively charged residues tend to have a higher population near the SNP

surface, even when they are still in an unbound state, i.e., while retaining their translational and
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rotational motional degrees of freedom. As a consequence, positively charged residues in a near-
bound state reduce the entropic cost of binding of neighboring residues and thereby facilitate
their binding to the SNP surface in a cooperative manner. The “continuum” representation of the
unbound and bound states in our model enables the realistic representation of the difference
between charged and hydrophobic residues, where charged residues have a significantly longer
range effect on other residues along the primary sequence than neutral and hydrophobic residues.
Such behavior cannot be captured by the above-mentioned two-state models. The cooperativity
or anti-cooperativity effect of each residue for each other residue is determined by the binding
contribution factor g, which has a smooth dependence on residue separation for all residues
independent of their charge. The model includes the cumulative effect of such two-body
interactions and shows accurate performance for the IDPs studied here with their different
interaction propensities. The model could be accurately validated based on high-resolution
solution NMR data. This requires that the bound IDP populations are relatively small; otherwise
strong line broadening could cause the disappearance of signals. For IDPs with binding affinities
that are similar to the four proteins studied, our model is expected to predict accurate affinity
profiles. For systems with significantly stronger IDP-nanoparticle interactions even relatively
small inaccuracies in model parameters can have a sizeable effect on affinity predictions as a
direct consequence of binding cooperativity, which exponentiates the effect of variations in
model parameters. However, there are currently no experimental methods available to
quantitatively probe strong IDP-nanoparticle interactions at residue-level resolution. Our model
can be adopted to describe IDP binding with nanoparticles and nanomaterials other than anionic

SNPs.

Our previously developed FRIM for IDP-SNP binding focused on weak cooperativity by
including the effects of neighboring residues as additive contributions.!® Although FRIM
successfully reproduces the experimentally observed binding affinity trends along the
polypeptide chain, it does not accurately predict the absolute binding affinities of the different
IDPs. FRIM also does not reproduce some of the finer details of the affinity profiles, which are
revealed by site-directed mutagenesis derived AAR» profiles (Figure 4). SILC, by contrast,
produces accurate absolute affinity profiles and at the same time explains unique features found
in AAR: profiles. At the level of binding free energies, the SILC model represents cooperativity

among all residues by a sum of all pairwise cooperativities, thereby rendering the problem
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mathematically tractable in analytical form. The good agreement with experiment provides
strong evidence that the model is valid for moderately strong binding proteins, including aSyn.
However, for systems that display very strong positive cooperativity, such as IDPs with many
more positively charged residues, SILC is not valid any longer and the divalent/multivalent

binding models*2* may be better suited.

Both the SILC model and the NMR spin relaxation data primarily reflect the binding
properties of individual residues. Sometimes, however, it can be informative to view binding
from a “protein-centric” perspective, where a protein molecule is defined to be in the bound state
if at least one residue is bound to the SNP. The bound protein population Pprotein can then be

empirically expressed as
N y;
Pprotein :l_D l-:l(l_pi) (13)

where p; is the bound population of residue i (i = 1,...,N) predicted by the SILC model (Eq. (9)),
0 <4 <1 is an empirical scaling factor to account for the cooperative binding properties of amino
acid residues that are close in sequence, and 4 = 1 for independent binding. A higher degree of
cooperativity corresponds to generally larger p; and smaller 1 values. The pS3TAD binding
experiment at 170 uM protein and 2.52 uM SNP concentration, the protein centric binding
population Pprotein = 0.14 for A = 1 and Pprotein = 0.08 for 1 =0.5.

One of the hallmarks of IDPs in biological systems is their ability to form fuzzy
complexes with receptors.?’® The IDP-SNP systems should serve as paradigms to study such
effects with residue-level resolution by solution NMR spectroscopy. Our model incorporates the
heterogeneous nature of IDP conformers interacting with the nanoparticle surface. For each IDP,
it is a large number of different IDP binding modes that cumulatively produce the binding profile.
This is analogous to the co-existence of multiple binding modes between an IDP that interacts
with the surface of a folded protein receptor.’! The bound conformers that are dominantly
populated will sensitively depend on the number and strengths of specific and non-specific
interactions between the IDP and the folded protein, which can encompass broad distributions of
the kind observed here or, alternatively, much narrower distributions in cases where a unique
network of complementary interactions between the IDP and the receptor is preferentially

formed.
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CONCLUSION

We have introduced SILC as a statistical mechanical model to quantitatively explain cooperative
binding between four different IDPs and anionic silica nanoparticles at the level of individual
residues. SILC represents the partition function of the bound state with contributions from all
residue pairs. Most numerical values for the model parameters directly stem from AR»-relaxation
experiments of free amino acids interacting with nanoparticles and AAR» differences of IDP-
binding profiles due to site-specific mutations. It is found that cooperativity plays a critical role
for the understanding of the IDP-SNP interaction data both in terms of the fine structure of the
binding profiles and prediction of the differences between the absolute binding affinities of the
different IDPs, which includes the correct prediction of competitive binding between aSyn and

p53TAD.

Certain nanoparticles are known to transfect cells and may cause toxicity. The detailed
and quantitative understanding of nanoparticle interactions with an array of intracellular
components, including IDPs, is likely to advance our understanding of nanotoxicity. Conversely,
it may be possible to utilize existing and engineer new nanoparticles with specific surface
modifications that embody optimized physical-chemical properties to target certain IDPs in vitro
or in vivo.** Such targeting may help prevent or mitigate certain types of IDP-related diseases.'*
16.33 Quch efforts will benefit from the SILC model to make accurate and rapid predictions of

quantitative binding properties to identify specific IDP regions or entire IDPs.

SUPPORTING INFORMATION

The Supporting Information is available free of charge at ...
e Additional information about sample preparation, NMR experiments, and data analysis
e Tables with amino-acid sequences of IDPs and SNP concentrations
e Figures of ’N-"H HSQC spectra of all 4 proteins, experimental reproducibility of R>

profiles, comparison between R and #xy.
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e Plots of BCFs as cooperativity free energy contributions.

We have introduced SILC as a statistical mechanical model to quantitatively explain cooperative
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