Graph Matching via the lens of Supermodularity

Aritra Konar, Member, IEEE, and Nicholas D. Sidiropoulos, Fellow, IEEE.

Abstract—Graph matching, the problem of aligning a pair of graphs so as to minimize their edge disagreements, has received
widespread attention owing to its broad spectrum of applications in data science. As the problem is NP-hard in the worst-case, a
variety of approximation algorithms have been proposed for obtaining high quality, suboptimal solutions. In this paper, we approach the
task of designing an efficient polynomial-time approximation algorithm for graph matching from a previously unconsidered perspective.
Our key result is that graph matching can be formulated as maximizing a monotone, supermodular set function subject to matroid
intersection constraints. We leverage this fact to apply a discrete optimization variant of the minorization-maximization algorithm which
exploits supermodularity of the objective function to iteratively construct and maximize a sequence of global lower bounds on the
objective. At each step, we solve a maximum weight matching problem in a bipartite graph. Differing from prior approaches, the
algorithm exploits the combinatorial structure inherent in the problem to generate a sequence of iterates featuring monotonically
non-decreasing objective value while always adhering to the combinatorial matching constraints. Experiments on real-world data
demonstrate the empirical effectiveness of the algorithm relative to the prevailing state-of-the-art.

Index Terms—Graph matching, discrete optimization, supermodularity, matroid intersection, minorization-maximization, weighted

bipartite matching

INTRODUCTION

Aligning a pair of graphs constitutes a fundamental
problem in combinatorial optimization where the goal is to
compute an injective mapping between the vertex sets of the
graphs that minimizes edge disagreements. Applications of
the problem abound - in computer vision, graph matching
has been applied for object matching [1], shape retrieval [2],
and action recognition [3]. In bioinformatics, graph match-
ing is used in studying protein-protein interactions across
different biological species for inferring protein functional-
ity [4]-[6]. Meanwhile, in data mining, graph matching has
been used in ontology alignment for determining the simi-
larities amongst different representations of a database [7],
and in network de-anonymization for identifying anony-
mous individuals by aligning the topology of different social
networks [8].

Despite its myriad applications, a longstanding chal-
lenge lies in the fact that the problem is notoriously difficult
to solve. The classical graph isomorphism problem, which
is a special case of graph matching, is presently known to
admit an exact solution in quasi-polynomial-time [9] (i.e., in
time 20(1087)%) where n is the number of vertices and ¢ > 0
is a constant). However, the approach is not computationally
attractive for even moderate problem instances. On the
other hand, the general case of graph matching is equivalent
to the NP-hard quadratic assignment problem (QAP) [10],
which is also NP-hard to approximate within a factor of
2108)™ of the optimal solution [11] (for some small € > 0).

Notwithstanding such pessimistic theoretical results,
owing to the practical importance of the problem, sev-
eral approximation methods have been devised for graph
matching with the goal of computing high-quality, albeit
suboptimal solutions. These include linearization methods

e A. Konar and N. D. Sidiropoulos are with the Department of Electrical
and Computer Engineering, University of Virginia, Charlottesville, VA,
22904. Partially supported by NSF 115-1908070.

E-mail: (aritra,nikos)@uirginia.edu

*

[12], which cast the QAP as a mixed integer linear program
(MILP). The downside of such a reformulation is that it
introduces a large number of new variables and linear con-
straints, which poses a practical challenge in solving the re-
sulting MILP efficiently. Another broad class of approxima-
tion methods apply various relaxations of the combinatorial
constraints of the QAP, resulting in convex and non-convex
quadratic programming relaxations [13], [14], Lagrangian-
based relaxation [15], and semidefinite relaxation [16]. In
general, these methods are computationally intensive and
the obtained solution is not guaranteed to be feasible for the
original QAP. Consequently, a post-processing discretization
step often has to be performed on the result in order to
obtain a feasible solution, which may incur additional com-
plexity. These considerations limit the application of such
methods to small problem instances.

More scalable approximation methods for graph match-
ing include message passing [17], and spectral methods [4]-
[6], [18]. While such methods are attractive for their low
complexity, this often comes that the expense of not being
theoretically well principled — message passing is prone to
suffer from oscillations, whereas several spectral methods
resort to dropping the combinatorial constraints of the QAP
entirely and compute a matching based on the spectral
content of the graph adjacency matrices. A notable exception
amongst such methods is the spectral alignment algorithm
of [18], which possesses certain optimality guarantees for
matching random Erdos-Renyi graphs. However, real world
graphs are not known to obey the Erdos-Renyi model, and
it is not clear whether these performance guarantees extend
beyond this synthetic graph model.

While the problem has been considered from various
aspects, very few of the aforementioned approaches aim
to directly tackle its combinatorial form. Indeed, a salient
feature of almost all methods is that they involve a form
of relaxation of the matching constraints; the prevailing
wisdom being that their combinatorial nature is the key

component which makes solving the QAP a difficult propo-
sition.

Is there an alternative approach that offers a principled
way of efficiently exploiting the combinatorial structure
inherent in the problem? In this paper, we provide an
affirmative answer to the above question. Our key result,
which we formally establish, is that graph matching can
be equivalently formulated as maximizing a supermodular
function subject to the intersection of a pair of matroids.
Supermodular functions constitute a special class of discrete
functions that are particularly notable for featuring an im-
proving returns property, while also exhibiting several other
interesting properties analogous to both convex and concave
functions [24]. While problems involving such functions are
known to arise in many areas of machine learning (see
[24] and references therein), to the best of our knowledge,
this marks the first time that such a property has been
established for graph matching.

It is worth noting that our result does not make the
problem any easier to solve, but it does lead to an alternative
approximation approach that iteratively approximates the
quadratic objective function in the combinatorial domain
while preserving the constraints. This is done by leveraging
the particular “convex” property that every supermodular
function possesses a (discrete) subgradient [20], which en-
ables us to obtain a global modular lower bound on the
objective function about any given correspondence map-
ping. The attribute is further exploited within a discrete op-
timization variant of the minorization-maximization (MM)
algorithm proposed in [20], which iteratively maximizes a
sequence of global modular lower bounds on the quadratic
objective function subject to the matroid intersection con-
straints. At every step of the algorithm, we are required
to solve a maximum-weight bipartite matching problem,
which can be optimally solved in polynomial-time.

To summarize, the algorithm exploits the supermodular
form of the objective function of the QAP to perform itera-
tive maximization by solving a series of weighted bipartite
matching subproblems. The sequence of iterates generated
exhibit monotonically non-decreasing objective while main-
taining feasibility. We also demonstrate ways of reducing
the computational footprint of the algorithm by obviating
the need to compute expensive Kronecker products of the
graph adjacency matrices and allowing the matching sub-
problems to be solved approximately. Experiments on real-
world graphs are provided to demonstrate the favorable
performance of the proposed approach relative to the pre-
vailing state-of-the-art.

The conference version of this work appeared at ICDM
2019 [21] as a short paper. Relative to [21], the present
journal version adds the proofs of all technical results, addi-
tional analytical and algorithmic details, and more detailed
experiments.

2 OVERVIEW OF SUPERMODULARITY AND MA-
TROIDS

Given a collection of n items labeled V = [n] := {1,--- ,n},
a set function f : 2¥ — R assigns a real value to any
subset S C V. Notable amongst set functions is the class
of supermodular functions [22]-[24], which are defined as

follows:

Definition 1. [Supermodularity] A set function f(.) is said
to be supermodular if and only if for all subsets A, B C V), it
holds that

f(A) + f(B) < f(AUB) + f(ANB) 1)

The above definition can be equivalently, and more conve-
niently, restated as:
Definition 2. For all A C B C V \ {v}, it holds that

fAU{w}) = f(A) < F(BU{v}) — f(B) @

That is, for such functions, given subsets A C B C V \ {v},
the marginal improvement obtained by adding an element v
to the smaller set A is never exceeds that obtained by adding
v to the superset B. Simply stated, (2) asserts that supermod-
ular functions, exhibit an improving returns property, i.e., it
always helps to “collect” more items.

Definition 4. [Modularity] A set function g(.) is said to be
modular if and only if there exists a vector g € R" for all
subsets S C V such that g(S) = g’'1ls = Y_..59(e). Note
that such a function is both submodular and supermodular.
Definition 5. [Monotonicity] A set function f(.) is said to
be monotone if f(A) < f(B) for all A C B C V. Moreover,
if f(.) is also supermodular then monotonicity is equivalent
to the condition f({v}) — f(0) >0,V v € V.

Definition 6. [Matroid] A matroid [25] is an ordered pair
(V,T) consisting of a finite collection of items V and a family
of subsets of V called independent sets 7, which satisfy the
following axioms

(A1) 0eZ
(A2) IfBeZand AC B, thenAcT
(A3) If A,B € Z and |A| < |B|, then there exists an

element v € B\ Asuch that AU {v} € T

Matroids can be viewed as an abstraction of the notion of
linear independence in linear algebra, and are useful for
modeling constraints in combinatorial optimization prob-
lems. A specific example of interest is a partition matroid,
where we are given a partition of V into m pair-wise
disjoint subsets {G;}7™; such that V = U, G; with
GinNng, =0,V i# jij € [m]. Then, the collection of
subsets Z = {A C V : |ANG;| < k;,V i € [m]} satisfies
axioms (A1)-(A3).

3 PROBLEM STATEMENT

Consider a simple, weighted, undirected graph G4 =
(Va,E4,w4) on ny vertices with vertex-set V4 = [na] =
{1,-+- ,na}, edge-set E4 C [n4] X [na] and a non-negative
weight function wy : £4 — Ry defined on the edges. Simi-
larly, we define Gg = (VB,Ep, wp) to be a weighted, undi-
rected graph on np vertices. Without loss of generality, we
assume that nq < ng. Let A € R"4%"4 and B € R"B*X"B
denote the (symmetric) weighted adjacency matrices of G4
and Gp respectively. The objective of the graph matching
problem is to compute an injective mapping from the vertex-
set V4 to Vp which minimizes the number of (weighted)
edge disagreements between graphs G4 and Gp. Formally,

the problem can be stated as follows: given A, B, we seek
to find an assignment matrix P € {0,1}"5*"4 with entries

. 1,if vertex ¢ € V4 is assigned to vertex j € Vp
P(j,i) = { i

0, otherwise

®)

that solves the optimization problem
in. |[B — PAP”||3 4
min. || I)

where the feasible set P of injective mappings is compactly
expressed as

P:={Pc{0,1}"z*"4 | PTP =T} (5)

for n4 < np. This corresponds to the subgraph matching
problem, where we seek to select a subgraph of Gg which
has minimal edge disagreements with G4. On the other
hand, when ny4 = np, the feasible set is described by the
set of all n4 X m4 permutation matrices

P:={Pc{0,1}"4*"4 | PT1=1,P1=1}. (6)

In this case, the vertex mapping induced by P is bijective,
and (4) corresponds to the classical graph matching prob-
lem. With some abuse of notation, we use P to denote the
feasible set for the general case of graph matching (with
ng < ng).

For our purposes, it will be convenient to reformulate
problem (4) in maximization form. Towards this end, note
that the cost function of (4) can be expressed as

|B — PAPT|% = |B|% + |PAPT|% — 2Trace(BPAP”)
= |B||% + ||A[|% — 2Trace(BPAP™) -
where the second equality follows from the fact that P is
always column-orthonormal. Hence, the first two terms in
the above summand can be dropped to yield the problem

max. Trace(BPAPT) 8)
PecP

Utilizing the cyclic property of the trace operator, the
linearization property vec(AXB) = (BT @ A)vec(X) of
the vec(.) operator, and the fact that A is symmetric, the
objective function of (8) can be further expressed as

Trace(BPAP”) = Trace(P"BPA)
= vec(P)Tvec(BPA))
= vec(P)” (A @ B)vec(P)

where the symbol & denotes the Kronecker product. Defin-
ing the n := nanp dimensional vector x = vec(P) and the
n x n matrix H = A ® B, we can equivalently express the
objective function of (8) as a quadratic function x” Hx.

In order to express the feasible set P in terms of the
vector x, we proceed as follows: first, we define a complete
bipartite graph Go = (Vc, Ec) between the vertices of G4
and Gp, with vertex-set Vo := V4 UVpg (on n 4 +np vertices)
and edge-set £¢ := [n4] X [ng]. Using this construction, any
injective mapping P € P from V4 to Vg can be equivalently
viewed as a subset of edges of £c which form a matching
of maximum cardinality in the complete bipartite graph Gc,
i.e., the vector x € {0,1}" corresponds to the index vector
of a maximum-cardinality matching in G¢. Note that when

3

na < npg, the matching is not perfect (it is not possible
to “cover” all vertices in Vp). Meanwhile, for ny = np,
we obtain a perfect matching, which also corresponds to
a permutation mapping (since G¢ is complete). Formally,
the set of all index vectors of matchings in Go can be
represented by the set

M= {XE Y <,
J:(i,5)€EC

Z $1J§17V(Z,j)€gc}

i:(i,5)€EEC

(10)

Hence, we can equivalently express problem (8) in vector
form as

max. x! Hx

xeM (11)

which corresponds to computing the maximum-cardinality
matching in G¢ that maximizes the number of weighted
edge overlaps between G4 and Gp.

In its general form, graph matching is equivalent to
the quadratic assignment problem, which is known to be
NP-hard in the worst-case. Roughly speaking, this im-
plies that there is no polynomial-time algorithm which
can optimally solve every problem instance, unless P=NP.
Consequently, a considerable amount of effort has been
invested in designing theoretically efficient and practically
effective polynomial-time approximation algorithms. In the
forthcoming sections, we outline our proposed approach.

4 A NEw PERSPECTIVE ON GRAPH MATCHING

We begin by equivalently reformulating the discrete opti-
mization problem (11) as a subset selection problem. Since
each vector x € M is the index vector of a matching set
in G, it can be equivalently expressed as x = 1g, ie., as
the indicator vector of a subset of edges S C £c which
corresponds to a matching in G¢. In order to describe the
matching set M in terms of set notation, we first define the
following families of subsets of the edges £¢

Iy={SC&c|SNIG)| <1,ViecVa}, (12a)
Ip={SCé&:|SNd({)| <LVjeVp} (12b)
where 0(7) := {i} x [ng] denotes the set of edges incident

to vertex j € V4, and §(j) := [na] x {j} denotes the set
of edges incident to vertex j € Vp. The set T4 enforces the
condition that each vertex i € V4 has at most one edge
incident to a vertex j € Vp, while Zp similarly ensures
that every vertex j € Vp has at most one edge incident to
a vertex 7 € V4. Note that any set S € M must satisfy
both (12a) and (12b) in order to be a valid matching in G¢.
Hence, we can express M as the intersection of the families
of subsets 74 and Zp, i.e., as M = Z4NZp. Furthermore, by
construction, the sets {4()};#, and {4(j)}7Z, in (12a) and
(12b) are pairwise disjoint and correspond to a partition of
Ec,ie., Ec = U4 0(i) = Uj2,0(j). From this description, it
is clear that both 74 and Zg can be viewed as the respective
independent sets of a pair of partition matroids (£¢,Z4)
and (¢, Zp) defined on the edges of G. We conclude that
M corresponds to the intersection of a pair of partition
matroids.

In set notation, problem (11) can then be equivalently ex-
pressed as maximizing a quadratic function of the indicator
vector of a set subject to matroid intersection constraints:

{f(S) = lgH]ls}

We now make the following crucial observation regarding
the objective function f(S).

max.

13
SeZaNIp ()

Proposition 1. f(S) is a non-negative, monotone, supermodular
function.

Proof. In order to show that f(S) is supermodular, note
that the matrix H has non-negative off-diagonal entries
by construction, which is both a necessary and sufficient
condition for a quadratic function to be supermodular [24,
Proposition 6.3]. Furthermore, by choice of S = {J, we have
(@) = 0. The non-negativity of f(S) then follows from the
fact that the matrix H has non-negative entries, and f(S) for
S # 0 corresponds to summing up the entries of the sub-
matrix H[S,S] € RISI*ISI with rows and columns indexed
by S. Finally, since f(S) is supermodular, monotonicity is
equivalent to the condition f({e}) — f(#) > 0,V e € &c.
In this case, we have f({e}) — f(0) = hee = 0, since the
diagonal entries of H are zero, from which the result readily
follows. O

The implication of the above result is that graph match-
ing corresponds to maximizing a non-negative, monotone
supermodular function subject to matroid intersection con-
straints. To the best of our knowledge, this marks the first
time that the problem has been viewed through the lens
of supermodular optimization. While this observation does
not change the fact that the problem is NP-hard in its
general form, it does offer a way to design a polynomial-
time approximation algorithm which naturally respects the
combinatorial nature of the problem, as we explain in the
next section.

5 A SUCCESSIVE APPROXIMATION ALGORITHM
FOR GRAPH MATCHING

Our approximation approach is centered around exploiting
the specific combinatorial structure of (13), i.e., the fact that
the objective function is non-negative, monotone, super-
modular and that the constraints correspond to the intersec-
tion of a pair of matroids. For the purpose of doing so, we
utilize a discrete optimization analogue of the minorization-
maximization (MM) algorithm proposed in [20], which we
now describe.

5.1 Overview:

The algorithm starts from an initial matching set Sy € M
and then proceeds in the following iterative fashion:

(1) Minorization: At each step & € N, a modular func-
tion m(*)(S) is constructed by approximating the
objective function f(S) about the current solution
set S in a manner such that the following twin
properties are satisfied

£(S) > m*(8),VS C &, and f(Sk) = m*)(Sy).
(14)

4

Hence, the function m(*)(S) constitutes a global
modular lower bound of f(S) which is tight about
the current solution set S = S;..

(2) Maximization: Next, the obtained modular lower
bound is maximized subject to the matching
constraints M. This corresponds to solving a
maximum-weight matching problem in a complete
bipartite graph, and hence, can be solved optimally
in polynomial-time. The solution obtained from this
subproblem is then set to be the solution set S in
the next iteration.

Overall, the algorithm successively maximizes a sequence
of global lower bounds on the objective function, while
preserving the feasibility of the generated iterates {Sy }x>0,
i.e., we always have Sy € M,V k € N. This is an important
distinction between our approach and prevailing approx-
imation methods for graph matching, which often resort
to relaxing the matching constraint set. Furthermore, steps
(1) and (2) also ensure that the iterate sequence {Sy }x>0
features monotonically non-decreasing objective value.

5.2 Formal Description:

The key ingredient required to carry out each step of the
algorithm is the construction of the global modular lower
bound. Towards this end, we make use of the following
powerful fact [20]: since f(.) is supermodular, for every set
X C &c, it possesses a non-empty subdifferential set 9 f(X)
(similar to convex functions), which can be formally defined
as

Of(X) ={g e R" [f(I) = f(X)+9(V)—g(X),VY C ((9%};
where g(.) = g”1) denotes a modular function. The set
Of(X) is described by the intersection of at most 2" non-
redundant linear inequalities in g, and is thus a polyhedron.
A subgradient g € 0f(X) can be used to define a modular
function of the form

mx(Y) = f(X) +9(¥) - 9(X), (16)
which, by construction, satisfies the properties
mx(Y) < f(Y),VY C & (17b)

Thus, each subgradient g € 0f(X) defines a tight modular
global lower bound of the objective function f(.), which is
required for use at each step of the MM algorithm. As shown
in [20], the following specific choices of vectors define valid
subgradients of df(X)

[fEe) — fEe\ L)), Viex
50) = {f(X U{}) - f(X), Vi¢x (182)
R = e\, Viex
g(]){f({j})f(w), Vi (18b)

Since f(.) is monotone, it follows that the subgradients
defined above have non-negative entries.

Having formally defined how to construct a global mod-
ular lower bound of the objective function f(S) about any
set S C £, we are ready to complete our description of the

MM algorithm. After initialization from an arbitrary match-
ing set Sp € M, at every subsequent iteration k£ € N, the
objective function f(S) is replaced by its modular approxi-
mation about the current iterate S, € M constructed using
a subgradient g € 90f(Sk). This results in the following
optimization subproblem

max.
SeZaNIp

{m““)(S) = 1(S0) + 9(8) - g(sk)} (19)

which is equivalent to maximizing a global lower bound on
f(S). Upon dropping constants, the above problem becomes

{g<s> = gT]ls}

which corresponds to solving a maximum-weight matching
problem in the complete bipartite graph G, and can be
solved optimally in polynomial-time. For example, in the
case ng = np, (20) reduces to a linear assignment problem
which can be solved via augmenting-path based methods,
e.g., the Hungarian algorithm [26] or the empirically su-
perior Jonker-Volgenant algorithm [27]. Meanwhile, for the
subgraph matching case with n4 < np, recognizing that
(20) is a linear programming problem with a particular
combinatorial structure, the Network Simplex algorithm
[28] can be employed for solving it. The solution of (20)
is then set to be the subsequent iterate Sy 1.

Overall, the MM algorithm exploits the supermodularity
of the objective function of the graph matching problem to
perform approximate maximization by iteratively solving a
sequence of maximum-weight bipartite matching problems.
The iterates {Sk}r>0 generated by the algorithm always
satisfy the matching constraints M, while the sequence
exhibits monotonically non-decreasing objective value. The
latter property can be established via the following chain of
inequalities

max.

20
S€EZANIB ()

F(Sir1) = mP(Sppr) > mP(Sp) = f(Sk) (1)

where the first inequality is due to the lower bound property
of m*)(Sy1), the second inequality stems from the opti-
mality of Sk 1, while the last equality is due to the tightness
of approximation at § = S. As the matching set M is finite,
it follows that the algorithm attains convergence in terms
of the objective function. Pseudo-code for the algorithm is
provided below.

Algorithm 1: Minorization Maximization

Input: f(.) and an initial matching set Sy € M
Output: An approximate solution S
Initialize: k£ < 0
repeat
Construct subgradient g € 9f(Sk)

Perform update Si4+1 € argmax ¢(S)
SETANIp

A Ul B W N =

E<—k+1
until objective function has converged
Return: S + S

o g

By design, the algorithm is parameter-tuning free, requiring
only the specification of the initial matching set Sy € M.

5

This could be the output of another algorithm, whose so-
lution we wish to refine further, or a carefully designed
initialization for the given problem instance.

5.3 Computational Aspects and Interpretation:

The complexity of the MM algorithm is determined by
the per-iteration cost of computing a subgradient and then
solving a maximum weight bipartite matching problem.
Regarding construction of the subgradients, on first glance
at (18), it appears that we have to instantiate and store the
Kronecker product matrix H = A ® B, which can prove
to be expensive both in terms of computational effort and
storage space. Fortunately, this is not the case for both choice
of subgradients. Indeed, it can be shown (see Appendix A
for the complete derivation) that for a given matching set
S € M, the subgradient expressions reduce to

. {2degy(n(i)deg (i), VjeS
= 22
909) {2b£(i)Pai, vigs P
2b? Pa;, VjeS
g(j) = @ 22b
9(7) {07 vigs (22b)
where P = unvec(ls) denotes the matricized matching

index vector (i.e., the correspondence matrix), with non-
zero entries P(w(i),4) = 1 if and only if vertex i € [n4]
is assigned to vertex w(i) € [ng], or equivalently, edge
j = (i—1)na+n(i) connecting the vertex-pair (7, 7(¢)) in Go
is included in the matching set S. Meanwhile, P(7(i),7) = 0
signifies that vertex ¢ € [n4] does not correspond to
(i) € [np], or that the edge j = (i — 1)na + 7(4)
connecting the vertex-pair (i,7 (7)) in G¢ is not included
in S. Finally, deg ,(i) and deg (7 (i)) denote the degrees
of vertices i € [n4] and 7(i) € [np] respectively!, while
a; € R" and b, (;) € R"? represent the respective columns
of the adjacency matrices A and B.

The expressions (22) reveal that the subgradients can
be computed with only modest effort. For example, g is a
sparse vector with at most n4 non-zero elements, each of
which can be evaluated via an inner product. While g is not
guaranteed to be sparse in general, note that forming the
entries {§(j)}jes entails trivial computation, whereas each
of the remaining entries j ¢ S can be formed by simply
evaluating an inner-product.

More importantly, the expressions (22) also provide in-
sight regarding the nature of our successive approximation
algorithm. Let us first consider the case where the subgra-
dient type g is used at each step. We seek an interpretation
of the entries {§(j)} es,, as the remaining entries are zeros.
Notice that for a given assignment matrix P € P, each of
the terms bf(i)Pai7 Vi € [na] is a measure of similarity or
overlap between the one-hop neighborhoods of the aligned
vertex pair (¢,7(7)) € [na] x [ng]. Hence, given the cur-
rent solution S at iteration £ € N, the non-zero entries
{9())}jes, of g reflect the degree of neighborhood overlap
induced by P = unvec(ls,). This is intuitively pleasing,
as it indicates that aligned vertex pairs with similar neigh-
borhoods are assigned the largest weights in the maximum-

1. For a weighted graph, the degree of a vertex is taken to be the sum
of weighted edges incident on that vertex

weight bipartite matching problem, and thus, are likely to
be picked in the matching set Sy as well.

We now consider the case where the subgradient type
g is used at each step. It is evident that the entries of
{§(J) }jes, which are assigned large weights correspond to
those pairs of aligned vertices (i, 7(i)) € [na] x [np] which
have similar degrees, with the largest values assigned for
those aligned vertex-pairs which have high degree. This
is again intuitively pleasing, since a pair of vertices with
similar degrees are more likely to share a correspondence
compared to a pair with dissimilar degrees. Meanwhile,
regarding the entries {j(j)};¢s,, we can provide the fol-
lowing interpretation: for a pair of non-aligned vertices
(1,7(i)), note that bg(»Pra; measures the similarity or
overlap between the neighborhoods a; and bz ;). It stands
to reason that for a high quality solution Sk, the neighbor-
hood overlap for any pair of non-aligned vertices should
be small 2. However, if the opposite is true for any vertex
pair (7,7(7)) (i-e., the entry §(j) is assigned a large weight),
then it indicates that (i, 7(7)) are likely to be a good match,
and suggests that the edge j = (i — 1)n4 + 7(¢) should be
selected in the matching set in the subsequent step.

We now focus on the computational complexity of the
maximum-weight bipartite matching problem. For the case
of n4 = np, the worst-case complexity incurred in solving
a linear assignment problem is O(n?3) [26], [27], whereas for
n4 < np, the Network-Simplex algorithm incurs worst-case
complexity of O(nanp(na + np)log(na + np)) in solving
the matching problem [28]. While these are polynomial-
time results, the super-cubic run-time of these algorithms (in
terms of the problem dimension) has unfavorable implica-
tions in terms of their scalability to large problem instances.

To facilitate the scalability of the MM algorithm, instead
of exactly solving each bipartite matching problem (20),
we can opt for approximate maximization. One option is to
use a simple greedy algorithm, which has a substantially
improved run-time complexity of O(nanplog(nang)), and
is guaranteed to output a solution which is no worse than
50% of the optimal objective value of (20). For the case of
na = mp, we advocate using a more sophisticated alter-
native: Sinkhorn’s matrix balancing algorithm [29], which
features computationally lightweight updates and can com-
pute a high-quality approximate solution of (20) at low
complexity. The details of this technique are relegated to
Appendix B.

While resorting to approximate maximization of the
bipartite matching subproblems within the MM framework
reduces the per-iteration complexity, we point out that the
iterates generated in this case are not guaranteed to exhibit
monotonically non-decreasing objective value as the second
inequality in (21) is not guaranteed to hold here.

5.4

In certain cases, additional side information may be avail-
able in the form of a non-negative prior alignment matrix
W € R}Z*"™ whose (j,i)—th entry denotes the degree
of similarity between vertices j € Vp and ¢ € V4. This

Incorporating Prior Information

2. The working hypothesis here is that there is some measure of
dissimilarity in the neighborhood vectors, i.e., the graphs G4 and Gp
are not regular.

6

information can be incorporated into the problem setup
for improving the quality of the matching by adopting the
following formulation

min, [B - PAP" |7+ (\/2)[P - W% (29)
where A > 0 is a regularization parameter that effects a
trade-off between adhering to the prior information and
minimizing the edge disagreements. In terms of the vector
x = vec(P), problem (23) can be equivalently reformulated
as

max.
SeZaNIp

{h(S) = 1TH1s + Aans} (24)
where w := vec(W). In this case, the objective function
h(S) is also monotone, supermodular, being the sum of a
supermodular function and a modular function. Hence, the
MM framework can also be applied here for approximate
maximization of (24). At each step of the algorithm, it
suffices to only compute a modular approximation of the
quadratic term 15H1s at the current solution set Sy, via
a subgradient g € 0f(Sy) while leaving the modular term
w7115 unchanged. This results in the following optimization
subproblem

(k) — _ T
s, {m(S) = 1(5) +9(5) — 9(80) + W L
(25)
which is again equivalent to maximizing a global lower
bound on the objective function h(S) at each step. The above

problem can be simplified to the following form

{us) = @+ w15}

which again corresponds to a maximum-weight bipartite
matching problem. Depending on the scale of the problem,
we can either choose to solve each subproblem (26) exactly
or inexactly via the methods discussed previously.

max.

26
SETANIE ()

6 EXPERIMENTAL EVALUATION

In this section, we compare the performance of our pro-
posed approximation algorithms against the prevailing
start-of-the-art on real world graphs.

6.1 Baselines

We employed the following algorithms as performance
benchmarks:

e Umeyama’s Method [30]: A classical spectral method
which uses the eigenvectors of both adjacency matri-
ces A and B to construct a similarity matrix that is
then used to perform max-weight bipartite matching
to obtain the final alignment. Owing to the require-
ment of computing two full eigen-decompositions,
for large graphs, the method is prone to suffering
from high computational complexity.

e IsoRank [4]: A spectral method which considers
the regularized formulation (24) and applies random
walks with restarts to compute the PageRank eigen-
vector of the normalized Kronecker product graph
A ® B (with the prior alignment vector w serving

as the “teleportation” vector), followed by bipartite
matching to obtain the final alignment.

o Eigen-Align (EA) [18]: A recent spectral method
that uses the principal eigen-vectors of A and B
to construct a rank-1 similarity matrix that is then
used to perform bipartite matching to obtain the
final alignment. As pointed out in [31], the matching
problem admits a closed form solution in this case.
The method is known to work well for aligning
random Erdos-Renyi graphs [18], and enjoys low
computational complexity.

o Feature Engineering (FE) [32]: An adaptation of the
NetSimile method proposed in [32] for constructing
graph embeddings. Every vertex of G4 and Gp is
described by a feature vector with six attributes:
its degree, average degree of its one-hop neighbors,
clustering coefficient [33], average clustering coeffi-
cient of its one-hop neighbors, number of edges in
its egonet’, and number of outgoing edges from its
egonet. Thereafter, a similarity matrix S € R"8*"4
is created using Euclidean distances, i.e., the matrix
has entries S(j,i) = |ly; — x;||3, where x; € RS
(resp.y; € RY) is defined as the feature vector corre-
sponding to vertex i € V4 (resp. j € Vp). A bipartite
matching step is used to extract the final alignment
from the similarity matrix. We point out that while
the embeddings learned via NetSimile have found
prior use in tasks like clustering, anomaly detection
and visualization [32], to the best of our knowledge,
they have not been used for graph matching before
our present work.

6.2 Implementation

All algorithms were implemented in Matlab in a manner
that does not require explicit computation of the Kronecker
product matrix A ® B and our experiments were carried
out on a Windows computer outfitted with a Intel(R) i7 CPU
with 16 GB RAM memory. For the baselines, instead of solv-
ing the final bipartite matching problem exactly, which can
be time consuming, we used the greedy matching algorithm
to obtain an approximate alignment at low complexity. Re-
garding the implementation of our MM-based algorithms,
we used the following settings.

o Choice of initialization: A key factor that influences
the performance of our algorithm is the choice of the
initial matching set S(¥) € M. As it is a non-trivial
task to construct a good initialization for general
instances, in our experiments, we use our algorithm
to refine the output of the baselines. More specif-
ically, we use the alignment computed by feature
engineering to initialize our algorithm. This choice
is determined by the fact that FE performs well (em-
pirically) on many real world graphs at reasonable
complexity, whereas the alignments determined by
the other baselines (IsoRank, Eigen-Align) are either
of poor quality, or do not offer substantial improve-
ment (Umeyama) when used as initialization for our
method.

3. The egonet of a vertex is defined as the subgraph induced by the
vertex and its single-hop neighbors.

7

TABLE 1: Summary of network statistics: the number of
vertices (n), the number of edges (m), the largest degree
(dmax), and network type.

Network n m dmax Type
C.ELEGANS 453 2,053 237 interactome
A.THALIANA 2,082 4,145 124 interactome
STANFORD-CS 2,759 10,270 303 Web graph
JAPANESE 3,177 7,998 725 Word adjacency
CcA-GRQC 5,242 14,490 81 co-authorship
PGP 10,680 24,316 205 social
AS-OREGON 11,174 23,409 2,389 router
AS-CAIDA 26,475 53,381 2,628 router

¢ Choice of subgradient: We opted to use the subgra-
dient g (with entries defined in (22b)) in our MM
algorithms. This choice was based on the facts that
it can be computed in O(n4) time and can be stored
using at most O(n 4) non-zero entries, which is linear
in the size of the input graph G 4. Additionally, it also
delivered superior empirical performance compared
to using &.

e Choice of formulation: In our experiments, we con-
sider the regularized version (23) of the graph match-
ing problem, where the prior node-alignment matrix
W is set to be the similarity matrix obtained via
feature engineering. We set the parameter A = le — 4
in our experiments.

e Choice of inner solver: Note that our algorithm is
required to solve a max-weight bipartite matching
problem at each step, which constitutes the main
computational bottleneck. For exact inner approxi-
mation, we use the algorithm of [27], whereas for in-
exact approximation, we resort to using the Sinkhorn
matrix balancing algorithm. The regularization pa-
rameter ¢ was chosen via trial and error, and the
number of matrix balancing steps was limited to 5.
In this case, we perform a greedy matching step on
the output of the Sinkhorn algorithm to obtain the
final alignment at each iteration.

6.3 Datasets

We used real-world datasets drawn from different appli-
cation domains (see Table 1) to test and compare the per-
formance of the methods. These include (i) protein-protein
interaction networks (C.ELEGANS [36] and A.THALIANA
[6]), where the vertices are proteins and the edges corre-
spond to their interactions, (ii) a web graph of the domain
cs.stanford.edu [37], where the vertices are web pages, and
the edges are symmetrized hyperlinks, (iii) a word adja-
cency network constructed from a Japanese text (JAPANESE)
[38], (iv) a co-authorship network constructed from arXiv
submissions in a scientific discipline (CA-GRQC [39]), where
the vertices denote scientists, and the edges represent col-
laborations between co-authors of a publication, (v) a social
network depicting the user interactions of the Pretty Good
Privacy (PGP) algorithm [40], and (vi) a pair of internet
router graphs (AS-OREGON [41] and AS-CAIDA [39]), where
vertices are routers, and the edges represent the topology of
the router network.

6.4 Experimental Setup

We design our experiments following common practices
in the literature on graph matching [18]. Given a dataset,
we first perform a pre-processing step to select the largest
(strongly) connected component and eliminate all weights
and self-loops. If the original graph is directed, a subsequent
symmetrization step is additionally performed. In other
words, we obtain a simple, undirected, unweighted graph
Ga.

Next, we create a “noisy” graph G 7 by randomly adding
new edges with probability p, i.e., we generate a random
Erdos-Renyi graph with edge-density p. and adjacency ma-
trix Q and then create G 5 with adjacency matrix

A=A+(1-A)xQ.

Here, the operator “x” denotes the Hadamard (element-
wise) product. Finally, we generate the graph Gp as a noisy,
permuted version of G4 with adjacency matrix

B =P,APT,

where P, is a randomly generated permutation matrix
whose non-zero entries represent ground-truth alignments.
Note that while Gg has the same number of vertices as G4,
its edge-set £p is a superset of £4. Hence, our goal here
is to correctly align £4 with its counterpart present in £p.
While our problem setup guarantees that there exists such a
alignment (i.e., we have P, € arg glelgHB — PAPT|2), the

solution is not guaranteed to be unique in general owing
to the presence of topologically-invariant subgraphs such as
cliques and star graphs in real world graphs [34]. We varied
the noise level p. such that the percentage of extra edges
in Gp ranged from 1 — 10% of the edges in G4. For each
noise-level, we averaged our results over 30 Monte-Carlo
trials.

As an illustrative example of our setup, we display the
degree distributions of the graphs corresponding to the
dataset A.THALIANA (G4) and a noisy, permuted counter-
part Gp generated by randomly adding 10% extra edges on
a log-log plot in Figure 1. It can be noted that the degree
distributions of both graphs (approximately) obey a power-
law, with few vertices of high degree (i.e., the hubs), while
the majority of vertices have small degree. The distribution
of Gp is slightly shifted to the right relative to G4 owing to
the extra edges. Furthermore, it is also evident that perturb-
ing G4 does not change the identities of the hubs, which
lie above the noise-level due to their high degree. Hence,
one expects that a high-quality algorithm should at least
be capable of aligning the hubs in both graphs. The main
difficulty then lies in producing high-quality alignments for
the lower degree nodes, which are at the noise-level. Since
real-world graphs are known to exhibit such skewed degree
distributions [35], the aforementioned observation applies
broadly in general.

6.5 Evaluation Metrics
In order to evaluate the performance of the methods, we
used the following metrics.

1) Edge correctness: the ratio of the number of edge
overlaps induced by the algorithm and the number

10° ‘
= -0 Graph A
— Graph B
2
=10 1
>
8 g
[0}
o
(2]
[
[SIN
10
10°
10° 10°

Degree

Fig. 1: The typical setup — degree distributions of A.THALANIA
(Graph A) and a noisy, permuted counterpart (Graph B) with
10% randomly added edges displayed as a log-log plot. Ob-
serve that the hubs in Graph A are largely unaffected by the
perturbation, as opposed to the low-degree nodes.

of edges in G 4. Perfectly aligning the edge-set of G4
with its counterpart in Gp results in a correctness
score of 1.

2) Relative Degree Difference: Given a pair of aligned
vertices (i, 7(7)) € [na] X [np], we measure their
(degree-based) similarity according to the relative
degree difference (RDD) metric, which is formally
defined as

rdd(i, n(i)) = (1 . _|deg(i) — deg(()|

(deg(i) + deg(ﬂ(i)))ﬂ) ’

where deg(.) returns the degree of the correspond-
ing vertex. The RDD metric assigns higher value to
aligned pairs of vertices with similar (relative) de-
grees, and thus provides another measure of assess-
ing the quality of a given correspondence mapping.
Here, we use the metric to assess how effective a
method is in aligning different categories of vertices,
ranging from hubs to low-degree nodes.
3) Runtime

6.6 Results and Discussion

We first study the number of iterations required by our algo-
rithms to attain convergence in terms of the objective func-
tion when initialized using Feature Engineering (FE). As
an illustrative example, we chose the dataset A. THALIANA,
created a noisy permuted graph with approximately 10%
more edges, and ran both the exact and inexact versions of
our methods. Figure 2 displays the evolution of the objective
function (i.e., the number of edge overlaps) with iterations.
As expected, solving each subproblem exactly results in
larger relative improvement in objective value (approx. 5%)
compared to inexact-MM. However, in terms of run-time,
the inexact algorithm is around an order of magnitude faster
on average (2.5s vs 24s). Most importantly, the algorithms
converge in approximately 1 iteration, which means we can
do away with additional expensive iterations. We made
a similar observation across all datasets, and henceforth,
we use only a single iteration to refine the output of FE.

‘ ‘ N N
2000 f .
1950 F .

(%2}

Q

B 1900 F b

=

)

>

)

o 1850 F]

o)

kel

L

34 1800 .
1750 1 —a— Exact

—e—Inexact

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Iteration index

Fig. 2: Evolution of objective function with iterations on the
A.THALANIA dataset, averaged over 30 trials. Observe that the
knee in the curves occurs in the first iteration.

. C.elegans Athaliana
[—©—Feat Engg | —©—Feat. Engg
09 —O— SA-Exact 0.8 —— SA-Exact
— B~ SA-InExact — B>~ SA-InExact
—A— Umeyama 0.7 —£—Umeyama
»0® IsoRank IsoRank
8 [—<—Eig-Align 206 —<—Eig-Align
£ H
8 305
8 804 A\&,
S g A
S —
3 So3 H———a
il

02 [
2 4 6 8 10 12 14 16 02 04 06 08 1 12 14 16 18
Noise level x10 Noise level %104
Stanford-CS Japanese
—o—Feat Engg !
08 —O— SA-Exact 0o O Feal Engg
. — B - SA-nExact
07 08
” A
206 8o
2 3
Bos ¢ 8o
804 —A © 8o
3 —a °
-3
Fos go
02 03
< < < <t <+
01 02
0 o1
0 05 1 15 2 25 05 1 15 2 25 3 35
Noise level x10% Noise level <0t
ca-GrQc PGP
09 09
—6—Feat. Engg —6— Feal Engg
08 —o—SAExact 08~ - o
— B>~ SA-InExact =
07 —£—Umeyama o
IsoRank
06 —<—Eig-Align o

Edge correctness
o
&

Edge correctness

0 0.2 04 0.6 0.8 1

12 14 16 18 2 22 24
Noise level x10% Noise level «10°
f as-Oregon as-Caida
—6—Feat. Engg 08 =< _
0.9 — B>~ SA-InExact o S=<._
—A—Umeyama ==
0.8 —<—Eig-Align 08 ==
0 2
8 8
g 07 Los
§ g
Eo6 £
g
s 8 04
o
20 =
u s
03 —o— Feat Enag
— b ~MnExact
—<—EigAlgn
05 1 15 2 25 3 35 4 3 4 5 & 7 8 9 10 11 12
Noise level x10°° Noise level «10°

Fig. 3: Edge correctness vs. noise level across datasets. For
each noise level, 30 different graphs Ggp with a certain
percentage of additional edges were generated. The range
is varied to generate 1 — 10% additional edges of the given
graph G 4. The higher the curve, the better.

As we will see, this single iteration can yield substantial
improvement in performance with respect to the previously

; C.elegans Athaliana
10 ——Feat Engg T
—$—sAExact
— B~ SAdnExact
z z
2 20
= =
3 3
g = bommbm—m—b————po———b-———4
—6—Feal Engg
—o— MExact
— B~ MinEsact
—A— Umeyema
IsoRank
| —<— Eig-Align
2 4 6 8 10 12 14 16 02 04 06 08 1 12 14 16 18
Noise level x10% Noise level 104
Stanford-CS Japanese
1
10 10!
_ _ —o—rent £
=z 0 —o—saba
e — B —SA-InExact
2] b e
E 400 £ IsoRank
E E o —o— e i
S R S e R S b
= H
107 101
0 05 1 15 2 25 05 1 15 2 25 3 35
Noise level x10* Noise level 104
ca-GrQc PGP
2 (—©— Feat Engg i
& snua
10 — B — sadnExact 10? - o ot
—E— umeyama —5— Umeyama
IsoRank | —<— Eig-Align
—<— o aign
- A A A A P
@ — @
: 2
E 10’ =
= =
]
= G G S
10"
L et i it
100F 4 < < < <
0 0.2 04 06 08 1 04 06 08 1 12 14 16 18 2 22 24
Noise level x10* Noise level «10%
as-Oregon as-Caida
— . S S — 200
- 180 | —©—Feat. Engg
102 160 e
140
120
5 ¢—o—e6—6— 96— B
o ORY
o @
E E 5
[y = 4
3 ~~ = b= R St St g
o P N i i g g 3
2 > B> + > g 5
10! [—e—Feat. Engg
— B — SA-InExact|
—A— Umeyama W
|—<— Eig-Align
05 1 15 2 25 3 35 4 2 4 6 8 10 12 14 16
Noise level x10° Noise level «10®

Fig. 4: Wall time (in seconds) vs. noise level across datasets.
The lower the curve, the better.

defined metrics.

The performance of the algorithms on the different
datasets in terms of edge correctness and runtime are
depicted in figures 3 and 4 respectively. With regard to
edge correctness, IsoRank and Eigen-Align (EA) perform
the worst in general. While Umeyama'’s spectral method ex-
hibits better performance, it is outperformed by FE in almost
all cases. On the first five datasets, a single iteration of both
exact and inexact MM algorithms performed on the solution
of FE can bring about substantial improvement in edge cor-
rectness, especially in the higher noise regime (ranging from
10% on cA-GRQC to 18% on A.THALIANA). However, with
regard to scalability, exact-MM exhibits the worst perfor-
mance, which is why it is omitted from the 3 largest datasets.
A similar observation can be made regarding IsoRank as
well. The increasing complexity of performing full EVDs in
Umeyama’s spectral method is also evident in the timing
results across the datasets, with it being omitted from the
largest dataset. On the other hand, EA is consistently the
fastest, while inexact-MM comes in second, being 3—5 times
faster than FE on average. This showcases the benefit of
using the combined Sinkhorn matrix balancing and greedy
matching strategy, as it brings about significant reduction
in complexity compared to exact-MM, while preserving

performance in terms of edge correctness. Finally, it can be
observed that on the last two datasets AS-OREGON and AS-
CAIDA, inexact-MM does not significantly improve the edge
correctness compared to FE.

In order to obtain a better understanding of the per-
formance of our MM-based algorithms with respect to FE,
we perform the following experiment. Recall our working
hypothesis that under the aforementioned experimental
setup, a good algorithm should be capable of aligning the
hubs (which are few) in real graphs with power-law degree
distributions, but aligning the low degree vertices (which
are many) is a more difficult proposition. From Figure 5,
since FE performs the best overall amongst the baselines,
we tested its efficacy in aligning different “categories” of
vertices (according to their degrees) on each dataset. More
specifically, given a dataset, we assigned each vertex to
one of 4 — 5 categories, depending on how large its de-
gree is relative to the largest degree dmax. These degree
categories are represented in the form of a pie chart in
the left column of Figure 3. As expected, the majority of
the vertices in our datasets lie in the “bottom” category.
For each such category, we computed the average RDD
score of all vertices across all Monte-Carlo trials in G4 and
their matched counterparts in Gg via the correspondence
mapping determined by FE. We also repeated this procedure
to compute average RDD scores of both MM algorithms
of all vertices in each category. Finally, we display the
improvement obtained by our methods relative to FE in
terms of the average RDD scores over each category in the
right hand column of Figure 3 for the largest noise level
(which adds approximately 10% additional edges), with the
leftmost category (labeled as (A)) representing the hubs and
the rightmost category denoting the low-degree vertices.
What we observe is that for the hubs, our algorithms in
general do not improve the alignment significantly over FE,
which indicates that FE does indeed succeed in finding high
quality alignments for the high degree vertices. Note that
our methods do not bring about a degradation in the quality
of these alignments. Instead, using the alignments for the
hubs as “anchors”, it can be seen that the MM methods focus
on improving the alignment quality of the lower degree
vertices, as evidenced by the relative improvement in RDD
scores. This suggests that the improvement in edge correct-
ness brought about by our methods stems from providing
better quality alignments for the smaller vertices, which is
the more difficult task compared to aligning hubs — and in
certain cases, also the more interesting, e.g., when trying
to match small footprint groups, or rare drug interactions.
We point out that improving the alignments for the small
vertices is not guaranteed to substantially improve the edge
correctness. For example, the AS-OREGON and AS-CAIDA
graphs possesses a very skewed degree distribution, with
92% of the vertices having degrees smaller than 5. In these
cases, beyond aligning the hubs, it is difficult to improve
the edge correctness on the basis of topology alone. On
a final note, a small drawback of using the inexact-MM
algorithm is that in certain cases, it can slightly degrade the
average quality of alignment for vertices of certain degrees.
This motivates exploring additional ways of improving the
quality-complexity trade-off in approximately solving each
matching subproblem in our MM framework, which we

10

leave for future work.

7 CONCLUSION

In this paper, we presented a new result on graph matching
regarding its formulation as maximizing a monotone, super-
modular function subject to matroid intersection constraints.
Adopting this view led to employing a successive approxi-
mation algorithm which utilizes the discrete subgradients of
the objective function to perform iterative maximization by
solving a sequence of maximum-weight bipartite matching
problems. The algorithm naturally respects the combinato-
rial constraints of the problem, does not require computing
expensive Kronecker products, and can retain its perfor-
mance at reduced complexity even when the subproblems
are solved approximately. The effectiveness of the approach
was validated on real networks, which demonstrated its su-
perior performance relative to the prevailing state-of-the-art.
As an unanticipated but welcome bonus, we discovered that
an adaptation of the NetSimile “handcrafted” features orig-
inally proposed in [32] for constructing graph embeddings
can be effectively used for graph matching. This serves as a
good initialization for our approach, and also outperforms
many of the established graph matching baselines in our
experiments with real graphs. The combination of this FE
method with our discrete optimization approach gives the
best results in all cases we tried.

REFERENCES

[1] A.C. Berg, T. L. Berg, and]J. Malik, “Shape matching and object
recognition using low distortion correspondences,” Proc. Intl. Conf.
Comp. Vision , pp. 26-33, June 2005.

[2] A.Egozi, Y. Keller, and H. Guterman, “Improving shape retrieval
by spectral matching and meta similarity,” IEEE Trans. Image
Process., vol. 19, no. 5, pp. 1319-1327, May 2010.

[3] W.Brendel and S. Todorovic, “Learning spatio-temporal graphs of
human activities”, Proc. Proc. Intl. Conf. Comp. Vision, pp. 778-785,
Nowv. 2011.

[4] R. Singh, J. Xu, and B. Berger, “Global alignment of multiple pro-
tein interaction networks with application to functional orthology
detection,” in Proc. Nation. Academ. of Scien., vol. 105, no. 35, pp.
763—768, 2008.

[5] M. Zaslavskiy, E Bach, and J.-P. Vert, “Global alignment of pro-
tein—protein interaction networks by graph matching methods,”
Bioinformatics, vol. 25, no. 12, pp. 1259-1267, 2009.

[6] R. Patro and C. Kingsford, “Global network alignment using
multiscale spectral signatures,” Bioinformatics, vol. 28, no. 23, pp.
3105-3114, 2012.

[7]1 S. Lacoste-Julien, B. Taskar, D. Klein, and M. I. Jordan, “Word
alignment via quadratic assignment,” in Proc. NAACL, pp.
112-119, 2006.

[8] A. Narayanan and V. Shmatikov, “De-anonymizing social net-
works,” in Proc. IEEE Symp. Secur. and Privacy, pp. 173—187, 2009.

[9] L. Babai, “Graph isomorphism in quasi-polynomial time”, Proc.
ACM Symp. Theory of Comput., pp. 684—697, June 2016.

[10] T. C. Koopmans, and M. Beckmann, “Assignment problems and
the location of economic activities”, Econometrica, pp. 53-76, 1957.

[11] S. Sahni, and T. Gonzalez, “P-complete approximation problems”,
J. of ACM, vol. 23, no. 3, pp.555-565, July 1976.

[12] H. D. Sherali, and W. P. Adams, “A reformulation-linearization
technique for solving discrete and continuous nonconvex problems”, Vol.
31. Springer Science & Business Media, 2013.

[13] K. M. Anstreicher, and N. W. Brixius, “Solving quadratic as-
signment problems using convex quadratic programming relax-
ations,” Optimiz. Meth. and Soft., vol. 16, no. 1-4, pp. 49—68, 2001.

[14]]J. T. Vogelstein, J. M. Conroy, V. Lyzinski, L. J. Podrazik, S. G.
Kratzer, E. T. Harley, D. E. Fishkind, R. J. Vogelstein, and C.
E. Priebe, “Fast approximate quadratic programming for graph
matching,” PLOS one, vol. 10, no. 4, 2015.

C.elegans

C.elegans
5%

~ © N @

Avg. improvement in RDD scores (%)

A thaliana

Athaliana
a% 2%

[- xcact
| - InE xact

S

Avg. improvement in RDD scores (%)
~

o

ca-GrQc

=

VM Exact
B MM-nExact

S

3

Avg. improvement in RDD scores (%)

N o N & o ®

as-Oregon
3% 1% 7

~

-
Avg. improvement in RDD scores (%
© & o o
H
Th
£

o
10.25%

[
1) Botiom-

o

11

Stanford-CS

Stanford-CS
50 3%

Avg. improvement in RDD scores (%)
P R I I

(A) (8) (©) ©)

Jepanese Japanese

I V-Exact
B MM-InExact|

)

©

Avg. improvement in RDD scores (%)
~

o =

A (8) ©) ()
Pas PGP
6% " 12
| (W M-Exact
24 | MM-InExact
15% 2
8
]
88
[=}
g
X 6
<
E 4
6% §
3
8 2
E
90
<
-2
(A (8) ©) ()
as-Caida _Cai
ot s as-Caida
=
% g
74
8
5
a
a3
4]
o
<2
£
§
£
™ g
2
5
E
50
g
z
A
(A) ®) (©) (D)

Fig. 5: Left column: Distribution of vertices according to their size with respect to the largest degree vertex in each dataset.
Right column: Relative improvement in average RDD scores over FE for each category of vertices - category (A) represents the
top vertices by degree, while the rightmost category represents the smallest vertices by degree.

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

[23]

[24]

G. W. Klau, “A new graph-based method for pairwise global
network alignment,” BMC Bioinformat., vol. 10, no. Suppl 1, p. S59,
2009.

J. Peng, H. Mittelmann, and X. Li, “A new relaxation framework
for quadratic assignment problems based on matrix splitting,”
Mathem. Program. Computat., vol. 2, no. 1, pp. 59—77, 2010.

M. Bayati, D. F. Gleich, A. Saberi, and Y. Wang, “Message-passing
algorithms for sparse network alignment,” ACM Trans. Knowl.
Discov. Data, vol. 7, no. 1, p. 3, 2013.

S. Feizi, G. Quon, M. Recamonde-Mendoza, M. Medard, M. Kellis,
and A. Jadbabaie, “Spectral alignment of graphs,” IEEE Trans.
Netw. Science, April 2019.

F. Bach, “Learning with submodular functions: A convex opti-
mization perspective,” Found. Trends in Mach. Learn., vol. 6, no.
2-3, pp. 145-373, Dec. 2013.

W. Bai, and J. Bilmes, “Greed is still good: Maximizing monotone
submodular + supermodular functions”, Proc. Intl. Conf. Mach.
Learn., pp. 314-323, Jul. 2018.

A. Konar, and N. D. Sidiropoulos, “Iterative graph alignment
via supermodular approximation”, Proc. of IEEE Intl. Conf. Data
Mining, Beijing, China, Nov. 2019.

L. Lovasz, “Submodular functions and convexity”, in Mathematical
Programming — The State of the Art, pp. 235-257, Springer Berlin
Heidelberg, 1983.

S. Fujishige, “Submodular functions and optimization”, 2nd edition,
Annals of Disc. Math., vol. 58, 2005.

F. Bach, “Learning with submodular functions: A convex opti-
mization perspective,” Found. Trends in Mach. Learn., vol. 6, no.
2-3, pp. 145-373, Dec. 2013.

[25]

[26]

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

J. Oxley, “Matroid Theory,” Oxford University Press, 2011.

H. W. Kuhn, “The Hungarian method for the assignment prob-
lem”, Nav. Res. Logist. Quart., no. 1-2, pp. 83-97, 1955.

R. Jonker and A. Volgenant, “A shortest augmenting path algo-
rithm for dense and sparse linear assignment problems”, Comput-
ing, vol. 38, no. 4, pp. 325-340, Dec. 1987.

J. B. Orlin, “A polynomial time primal network simplex algorithm
for minimum cost flows”, Mathem. Progamm. vol. 78, no. 2, pp.
109-129, Aug. 1997.

R. Sinkhorn, “Diagonal equivalence to matrices with prescribed
row and column sums”, The Amer. Math. Monthly, vol. 74, no. 2,
pp. 402402, 1967.

S. Umeyama, “An eigen-decomposition approach to weighted
graph matching problems”, IEEE Trans. Pattern Analys. and Mach.
Intell., vol. 10, no. 5, pp. 695703, Sept. 1988.

X. Liu, and S.-H. Teng, “Maximum bipartite matchings with low
rank data,” Theor. Comput. Sci., vol. 621, pp. 82-91, Mar. 2016.

M. Berlingerio, D. Koutra, T. E.-Rad, and C. Faloutsos, “Netsimile:
A scalable approach to size-independent network similarity”, in
Proc. IEEE/ACM Intl. Conf. Adv. Social Netw. Analys. and Mining,
pp. 1439-1440, Aug. 2013.

D. J. Watts, and S. H. Strogatz, “Collective dynamics of 'small-
world” networks,” Nature, vol. 393, no. 6684, pp. 440442, 1998.

Y. Lim, U. Kang, and C. Faloutsos, “Slashburn: Graph compression
and mining beyond caveman communities,” IEEE Trans. on Knowl.
and Data Eng.”, vol. 26, no. 12, pp. 3077-3089, Apr. 2014.

M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law
relationships of the internet topology”, ACM SIGCOMM Comput.
Commun. Rev., vol. 29, no. 4, pp. 251-262, Aug. 1999.

[36]

[37]

[38]

[39]

[40]

[41]

J. Kunegis, “/KONECT - The Koblenz Network Collection”, in Proc.
ACM Int. Conf. on World Wide Web, pp. 1343-1350, May 2013.

F. Bonchi, P. Esfandiar, D. F. Gleich, C. Greif, and L. V. Laksh-
manan, “Fast matrix computations for pairwise and columnwise
commute times and Katz scores,” Intern. Mathem., vol. 8, no. 1, pp.
73-112, Mar. 2012.

R. Milo, S. Itzkovitz, N. Kashtan, R. Levitt , S. Shen-Orr, 1.
Ayzenshtat, M. Sheffer, and U. Alon, “Superfamilies of evolved
and designed networks”, Science, vol. 303, no. 5663, pp. 153842,
Mar. 2004.

J. Leskovec, J. Kleinberg, and C. Faloutsos, “Graph evolution:
Densification and shrinking diameters”, ACM Trans. Knowl. Discov.
Data, vol. 1, no. 1, pp. 2, Mar. 2007.

M. Boguna, R. Pastor-Satorras, A. Diaz-Guilera, and A. Arenas,
“Models of social networks based on social distance attachment,”
Phys. Rev. E, vol. 70, no. 5, pp. 056122, Nov. 2004.

J. Leskovec, and A. Krevl, SNAP Datasets: Stanford Large Net-
work Dataset Collection, 2015. Available at http:/ /snap.stanford.
edu/data.

Aritra Konar (M'17) received the B.Tech. de-
gree in Electronics and Communications Engi-
neering from West Bengal University of Tech-
nology, West Bengal, India, and the M.S. and
Ph.D. degrees in Electrical Engineering from the
University of Minnesota, Minneapolis, USA, in
2011, 2014, and 2017 respectively. He is cur-
rently a Postdoctoral Associate in the Depart-
ment of ECE, University of Virginia, VA, USA. His
research interests include graph mining, nonlin-
ear optimization and data analytics.

Nicholas D. Sidiropoulos (F'09) earned the
Diploma in Electrical Engineering from Aristotle
University of Thessaloniki, Greece, and M.S. and
Ph.D. degrees in Electrical Engineering from the
University of Maryland at College Park, in 1988,
1990 and 1992, respectively. He has served on
the faculty of the University of Virginia, University
of Minnesota, and the Technical University of
Crete, Greece, prior to his current appointment
as Louis T. Rader Professor and Chair of ECE at
UVA. From 2015 to 2017 he was an ADC Chair

Professor at the University of Minnesota. His research interests are in
signal processing, communications, optimization, tensor decomposition,
and factor analysis, with applications in machine learning and communi-
cations. He received the NSF/CAREER award in 1998, the IEEE Signal
Processing Society (SPS) Best Paper Award in 2001, 2007, and 2011,
served as |IEEE SPS Distinguished Lecturer (2008-2009), and as Vice
President - Membership of IEEE SPS (2017-2019). He received the
2010 IEEE Signal Processing Society Meritorious Service Award, and
the 2013 Distinguished Alumni Award from the University of Maryland,
Dept. of ECE. He is a Fellow of IEEE (2009) and a Fellow of EURASIP
(2014).

12

