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Abstract

Nonparametric star formation histories (SFHs) have long promised to be the “gold standard” for galaxy spectral
energy distribution (SED) modeling as they are flexible enough to describe the full diversity of SFH shapes,
whereas parametric models rule out a significant fraction of these shapes a priori. However, this flexibility is not
fully constrained even with high-quality observations, making it critical to choose a well-motivated prior. Here, we
use the SED-fitting code Prospector to explore the effect of different nonparametric priors by fitting SFHs to
mock UV–IR photometry generated from a diverse set of input SFHs. First, we confirm that nonparametric SFHs
recover input SFHs with less bias and return more accurate errors than do parametric SFHs. We further find that,
while nonparametric SFHs robustly recover the overall shape of the input SFH, the primary determinant of the size
and shape of the posterior star formation rate as a function of time (SFR(t)) is the choice of prior, rather than the
photometric noise. As a practical demonstration, we fit the UV–IR photometry of ∼6000 galaxies from the Galaxy
and Mass Assembly survey and measure scatters between priors to be 0.1 dex in mass, 0.8 dex in SFR100 Myr, and
0.2 dex in mass-weighted ages, with the bluest star-forming galaxies showing the most sensitivity. An important
distinguishing characteristic for nonparametric models is the characteristic timescale for changes in SFR(t). This
difference controls whether galaxies are assembled in bursts or in steady-state star formation, corresponding
respectively to (feedback-dominated/accretion-dominated) models of galaxy formation and to (larger/smaller)
confidence intervals derived from SED fitting. High-quality spectroscopy has the potential to further distinguish
between these proposed models of SFR(t).
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1. Introduction

Observational constraints on galaxy star formation histories
(SFHs) enable us to understand many aspects of galaxy
formation. The SFHs of quiescent galaxies provide insight into
their formation conditions in the early universe and also into
the mechanism by which star formation is quenched (Thomas
et al. 2005; Graves & Schiavon 2008; Choi et al. 2014;
Conroy et al. 2014; Pacifici et al. 2016; Carnall et al. 2018;
Schreiber et al. 2018). The SFHs of star-forming galaxies
inform us about the timescales on which star formation rates
(SFRs) change and the rate at which stellar mass is assembled
on the star-forming sequence (Gallazzi et al. 2005; Panter et al.
2007; Leitner 2012). Measuring the histories of low-mass
dwarf galaxies provides insights into physics and timing of
reionization (Tolstoy et al. 2009; Weisz et al. 2014a, 2014b).
Finally, modeling of galaxy SFHs is necessary to accurately
measure stellar masses, SFRs, metallicities, and dust contents
from their observed spectral energy distributions (SEDs) (Bell &
de Jong 2001; Wuyts et al. 2011; Conroy 2013; Leja et al. 2017).

Though SFHs in realistic galaxies can be arbitrarily complex,
they are often modeled with simple functional forms. These
forms are computationally fast and conceptually straightforward.
The most common is an exponential form with t eSFR tµ a t- ,
with α=0 known as an exponentially declining SFH and
α=1 known as a delayed-exponentially declining SFH. As our
picture of galaxy formation becomes more complex, additional
forms have been adopted to better describe the range of
behaviors for SFR(t). These forms include rising SFHs (Buat
et al. 2008; Maraston et al. 2010; Papovich et al. 2011),

lognormals (Gladders et al. 2013; Abramson et al. 2015; Diemer
et al. 2017), double power laws (Carnall et al. 2018), and
exponentially declining SFHs modified to decouple late-time and
early-time SFRs (Simha et al. 2014; Ciesla et al. 2016).
These complex new functional forms can describe the

majority of simulated galaxy SFHs quite well (Simha et al.
2014; Diemer et al. 2017), implying that simulated SFHs are,
on average, relatively smooth. However, even if a functional
form can provide an excellent description of the SFH when fit
directly to SFR(t), it can fail to recover the true SFH when fit to
galaxy observations. This happens because typical observations
will only weakly constrain the SFH; in this scenario, not only
must the functional form be able to describe the true SFH, it
must also downweight the large range of qualitatively different
SFHs, which can show similar levels of agreement with the
data. This is challenging for complex parametric models as
parametric formulas are often chosen to maximize the range of
SFHs that can be described rather than being chosen for having
well-behaved priors. Furthermore, comparisons to simulations
also show that a significant minority of simulated galaxy SFHs
have more complex behavior than can be described with
parametric models. This behavior includes bursts of star
formation, sudden quenching, and rejuvenation events. The
inability to model this behavior can lead to catastrophic failures
in recovered SFHs and result in biases in derived masses and
SFRs (Simha et al. 2014).
A well-known solution to these problems is so-called

“nonparametric” SFHs, defined as models that explicitly do
not assume a functional form for SFR(t).4 The simplest
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nonparametric models fit directly for the mass formed in a
series of piecewise constant functions (i.e., a step function) in
time (Cid Fernandes et al. 2005; Ocvirk et al. 2006; Kelson
et al. 2014; Leja et al. 2017; Chauke et al. 2018). Other
nonparametric models use adaptive time binning (e.g., Tojeiro
et al. 2007) or directly fit libraries of SFHs measured from
theoretical models of galaxy formation (Finlator et al. 2007;
Pacifici et al. 2012). Nonparametric models tend to be more
computationally expensive than parametric models as they
must generate more SEDs to constrain a wider range of
behavior in SFR(t); in return, nonparametric models promise
the capability to describe the full breadth of complexity in
galaxy SFHs.

These models have typically been reserved for very high-
quality data as galaxy observations are typically only weakly
informative about stellar age (e.g., Conroy 2013). The seminal
work of Ocvirk et al. (2006) demonstrates that the problem
of SFH recovery is ill-conditioned, i.e., a small error in the
observations typically results in much larger errors in the recovered
SFHs. They solve this problem by regularizing the inversion from
observations to SFHs, specifically by introducing an additional
assumption that the solution is a smooth function of time. Using
this formalism, Ocvirk et al. (2006) show that only about eight
characteristic episodes of SFH can be recovered with high-quality
optical spectra of resolution R=10,000, signal-to-noise ratio
(S/N)=100, and wavelength coverage 4000–6800 Å.

In this work, we further explore the ability of nonparametric
SFHs to extract information from observations, with a
companion work (Carnall et al. 2019) performing an analogous
exploration of parametric models. A key difference from
Ocvirk et al. (2006) is that this work is performed in a Bayesian
framework. The Bayesian prior probability distribution takes
the place of regularization in confining the model to a series of
predetermined “acceptable” solutions. Here we explore the
effect of the adopted prior on the posterior probability
distribution (hereafter “posterior”) that is being sampled. We
test a few different priors as there are many unique ways in
which a nonparametric model can be constructed. The tests
cover a range of possible priors, from a simple uniform prior
over log(mass) formed in each bin to a continuity prior
emphasizing smooth SFHs. Unlike parametric formulae, it is
easy to tune the prior for nonparametric SFHs to follow
expectations from theoretical models of galaxy formation. In
this way, nonparametric SFHs can be useful even with low-
quality data such as noisy photometry, as it is with poor data
that having a well-tuned prior is most important.

The paper is structured as follows. Section 2 contains an
introduction to the different nonparametric priors that are tested
in this work. Section 3 describes how the mock galaxies are
generated and fit. Section 4 presents results from fitting mock
galaxy data with different nonparametric priors. Section 5
describes the results of fitting UV–IR photometry from the
Galaxy and Mass Assembly (GAMA) survey with two different
nonparametric priors. Section 6 contrasts the performance of
parametric and nonparametric SFH fits, while Section 7
discusses the link between simulations of galaxy formation
and nonparametric SFH priors. Section 8 concludes the paper.

Where applicable, we use a WMAP9 cosmology (Hinshaw
et al. 2013) and a Chabrier initial mass function (Chabrier
2003). We always report the median of the posterior, and 1σ
error bars are the 16th and 84th percentiles.

2. Physical Model and Priors

Here we describe the different priors explored in this work.
As a brief introduction to Bayesian terminology, Bayes
theorem states:

P M D
P D M P M

P D
1=( ∣ ) ( ∣ ) ( )

( )
( )

where D is the data and M is the physical model. In the
Bayesian interpretation, P(M) (the prior) is the estimate of the
probability of the model before comparison with the data.
P M D( ∣ ) (the posterior) is the probability of the model after
comparison with the data. P D M( ∣ ) (the likelihood) is the
probability of the measuring data given the model. Finally,
P(D) (the model evidence) is a normalizing factor used for
comparison between different models.

2.1. A Piecewise Constant Model for SFR(t)

In this work, we explore the effect of different nonparametric
SFH priors P(M) on the resulting physical posteriors. In
practice, each nonparametric prior under investigation is
allotted N=7 parameters. These parameters simultaneously
specify seven distinct time-resolution elements and the overall
normalization of the SED. Most of the nonparametric priors in
this work additionally require specifying fixed time bins as
input. For consistency, we adopt the following time bins in all
such models:

t
t
t
t
t
t
t

0 30 Myr
30 100 Myr

100 330 Myr
330 Myr 1.1 Gyr

1.1 3.6 Gyr
3.6 11.7 Gyr

11.7 13.7 Gyr. 2

< <
< <
< <
< <
< <
< <
< < ( )

Aside from the first two bins and the last bin, these are
spaced equally in logarithmic time, following the finding of
Ocvirk et al. (2006) that the distinguishability of simple stellar
populations is roughly proportional to their separation in
logarithmic time. The last bin is deliberately much smaller to
permit a maximally old population in all models.
In Appendix A, we explore varying the number of time bins

between Nbins=4–14 and show that the results of the mock
analysis are largely insensitive to the number of bins as long as
Nbins4. This highlights the fact that the Bayesian framework
is robust to the classic dangers of fitting “overly complex”
models, defined loosely as models that allow too much
parameter space. In contrast to classical approaches where
overly complex models result in “overfitting,” i.e., overly tight
constraints on parameters of interest, the outcome of allowing
more parameter space than can be constrained by the data in a
Bayesian framework is a lack of useful constraints on
parameters of interest. Indeed this is often the desired outcome:
if the model is not constrainable by the data, then the posteriors
should return a null answer. Conversely, these tests also show
that using N4 time bins are typically insufficient to convey
all of the necessary information in the data.
We note that there do exist methods to determine the

appropriate number of bins on the fly, such as adaptively
binning in time (Tojeiro et al. 2007) or using evidence
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comparison to determine the optimal number of bins
(Dye 2008; Iyer et al. 2019). However, we argue that fitting
many piecewise constant functions is more scalable in a
sampling framework for two complementary reasons. First, it is
computationally much less expensive to run a fit with N>10
bins (Appendix A) than it is to run two fits with any number of
bins. Second, instead of using an always somewhat arbitrary
statistical penalization to adjusting the model on the fly to
match the data, it is more straightforward to include “more bins
than the data warrant” and let the sampler fully map the interbin
covariances allowed by the prior and the data. The potential
failure mode for this is underfitting, which is caused by an
excess of model flexibility and results in overestimated
uncertainties. This danger can be mitigated by choosing a
prior that weights for physically plausible forms of SFR(t) and
weights against implausible forms, a complex problem that we
spend the rest of the paper exploring.

2.2. Priors

The prior probability function for each nonparametric
prior is shown in Figure 1, and these priors projected into

mass-weighted age and specific SFR (sSFR) space are shown
in Figure 2.

2.2.1. LogM Prior

The most straightforward and popular nonparametric model
fits for the mass formed in N fixed time bins (Walcher et al.
2015; Belli et al. 2018; Morishita et al. 2018). A version of this
method has also been used in STARLIGHT (Cid Fernandes
et al. 2005) and in analysis of the CSI (Kelson et al. 2014) and
LEGA-C surveys (Chauke et al. 2018), though these works
report best-fit rather than marginalized SFHs and fit for linear
rather than logarithmic weights.
The prior on SFR(t) imposed by the logM prior is shown in

Figure 1. The spacing of the time bins in equal logarithmic bins
means the logM prior is not agnostic about the shape of SFR(t)
but instead prefers rising SFHs and high instantaneous sSFRs.
Furthermore, the logM prior tends to form the majority of the
mass in one or two time bins: this can be seen clearly in the top-
heavy conditional probability function for the SFR in any given
time bin. This manifests itself in the mass-weighted age prior
(Figure 2) as an overall preference for young ages and specific

Figure 1. Different choices for a nonparametric SFH prior produce different behavior in SFR(t). Each panel shows the prior probability distribution function (shaded
in blue) for a different nonparametric SFH prior. The black solid, dashed, and dotted lines mark the median, 1σ, and 2σ levels, respectively, of the distribution. Several
individual draws are shown in red to illustrate the behavior of different priors. While all of these nonparametric priors are flexible enough to describe an arbitrary shape
in SFR(t), they emphasize different behaviors. For example, the log(M) and Dirichlet α=0.2 priors are weighted so as to produce multiple sharp quenching and
rejuvenation events, while other priors select for SFHs that are smooth in time.

Figure 2. Choice of SFH prior determines the prior on stellar age and sSFR. The top row shows the prior on sSFR averaged over the most recent 100 Myr, while the
bottom row shows the mass-weighted age priors. The columns show different SFH priors. The red dashed line marks the median of the prior. These differences
demonstrate that the choice of prior affects the derived ages and sSFRs. For example, priors that favor “bursty” SFHs (log M, Dirichlet α = 0.2) show clear
discretization effects related to the choice of time bins. Furthermore, the log M prior strongly prefers rising SFHs. Averaging over the most recent 100 Myr causes the
truncation in the sSFR histogram at log(sSFR)=−8.

3

The Astrophysical Journal, 876:3 (24pp), 2019 May 1 Leja et al.



preference for ages corresponding to the center of the fixed
time bins.

This formalism explicitly couples the normalization of the
observed SED to the SFH parameterization. In practice, this
can introduce difficulties in choosing the prior range for the
mass formed in each time bin: using a constant lower limit for
the mass formed will effectively put different “floors” on SFR
(t) depending on the mass of the galaxy in question. For this
work, we allow each mass formed in each bin to vary between
3<log(M/Me)<12, which is comfortably outside of the
input mass of M Mlog 10=( ) used in the mock tests.

Overall, the physical parameters resulting from a logM prior
are sensitive to the choice of time bins and show clear
preferences for rising SFHs that are “bursty,” showing multiple
sharp quenching and rejuvenation events. This burstiness is a
natural consequence of the geometry of the logM prior. This
can be understood intuitively by imagining a series of random
draws from the logM prior that add up to a fixed total mass by
construction (in a typical fit, this total mass is loosely
constrained by the normalization of the SED). Most of the
SFHs thus constructed will have significant mass in only one or
two time bins; this naturally results in “bursty” SFHs. The
logM prior does have a clear advantage over the other models:
it has the widest probability distribution and thus tends to be
the most flexible. However, it is shown in Section 4 that this
flexibility is not well constrained by typical galaxy observa-
tions, even at very high S/N.

We have also explored several models closely related to the
logM prior that we describe briefly here with no further
analysis. Replacing the logM model with a logSFR model (i.e.,
fitting for the SFR instead of the mass) successfully removes
the bias toward rising SFHs while retaining the other
characteristics of the logM prior. Fitting instead for the linear
instead of logarithmic mass in fixed time bins exacerbates the
downsides of the logM prior—specifically, a strong preference
for young ages and forming the majority of the mass in one or
two bins—while showing no clear upside. This is consistent
with the argument in Simpson et al. (2017) that flat priors on a
parameter spanning several orders of magnitude are actually
strongly informative, and, in this case, the logarithmic prior is
the minimally informative choice. The linear prior further
introduces significant convergence issues for the sampler
(sampler described in Section 3) as there are very large regions
of parameter space that have essentially flat probability; for
example, for a 1011 Me galaxy, there is no practical difference
in the photometry between forming 105 and 109 solar masses in
the oldest time bin. For these reasons, the linear model is not
discussed further in this work.

2.2.2. Dirichlet Prior

The Dirichlet nonparametric prior specifies that the fractional
sSFR for each time bin follows a Dirichlet distribution (Leja
et al. 2017, 2018). A Dirichlet distribution describes N
parameters xn that are bounded between 0<xn<1 and obey
the constraint x 1N nå = . Because of the summation constraint,
only N 1- parameters are necessary to specify a Dirichlet
distribution with N bins. The Nth model parameter is the
logarithm of the total mass formed, which effectively controls
the normalization of the SED. This cleanly separates the
normalization and shape of the SFH.

The Dirichlet parameters xn are related to the fractional mass
formed in each bin via:

m
x t

x t
3n

n n

N n nå
= ( )

where tn is the width of each bin in time. The width of each
time bin is included to center the prior on a constant
SFR(t)=Mformed/tuniverse, in contrast to the logM prior, which
is centered on a constant amount of mass formed in each bin.
The method from Betancourt (2012) is used to sample
efficiently from a Dirichlet distribution.
The Dirichlet distribution additionally requires a concentra-

tion parameter, αD, which controls the preference to put all of
the weight in one bin (αD<1) versus distributing the weight
evenly between all bins (αD�1). For this work, a symmetric
Dirichlet distribution is assumed, i.e., the concentration
parameter has the same value for all bins. We test forms with
αD=[0.2, 1]. The practical effect of the concentration
parameter is clear in Figure 1: a low concentration weights
toward bursty SFHs, while a higher concentration weights
toward smooth SFHs.
The Dirichlet prior has several useful properties. Unlike the

logM prior, the expectation value for SFR(t) is constant instead
of rising. This results in a symmetric prior on stellar age and
sSFR. However, the Dirichlet prior does not enforce continuity
in adjacent bins and, thus, permits sharp quenching and
rejuvenation events, particularly at low concentrations. Addi-
tionally, it is not straightforward to add in additional physics as
the only flexibility in the standard Dirichlet distribution is in
tuning αD. Generalized Dirichlet functions exist such that SFR
continuity can be enforced within the Dirichlet model, but these
are mathematically challenging to work with and beyond the
scope of this paper.

2.2.3. Continuity

The continuity prior fits directly for Δlog(SFR) between
adjacent time bins. This prior explicitly weights against sharp
transitions in SFR(t) and is similar to the regularization
schemes used in STECMAP (Ocvirk et al. 2006) and VESPA
(Tojeiro et al. 2007).
Here the Student’s-t distribution is adopted for the prior on

x log SFR SFRn n 1= +( ):

x
x

PDF , 1 4

1

2

1

2

2
1

2

n
np n

s
n

=
G

G
+

n+ - n+⎛
⎝⎜

⎞
⎠⎟

( )
( )( ) ( ) ( )

where Γ is the Gamma function, σ is a scale factor controlling
the width of the distribution, and ν is the degrees of freedom
controlling the probability in the tails of the distribution. Here n
ranges from 1 to N 1- , and the Nth variable is the total mass
formed. The Student’s-t distribution is chosen because it has
heavier tails than the normal distribution, effectively allotting
more probability to sharp transitions in SFR(t) such as
quenching; note that as ν goes to infinity, the Student’s-t
distribution reverts to a normal distribution. We adopt ν=2
and σ=0.3. Appendix B compares the chosen prior for

t t tlog SFR SFR + D( ( ) ( )) against a distribution of this
quantity measured from realistic SFHs taken from the Illustris
hydrodynamical simulation (Torrey et al. 2014; Vogelsberger
et al. 2014a, 2014b). The choice of ν=2 is similar to, but
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slightly wider than, the simulated distribution across a variety
of redshifts and distributions of Δt, thus roughly matching the
Illustris simulations while also allowing a reasonable amount of
extra flexibility.

The continuity prior preserves many of the useful properties
of the Dirichlet prior, including a symmetric prior in age and
sSFR and an expectation value of constant SFR(t). The key
difference from the Dirichlet prior is that the continuity prior
explicitly weights against sharp changes in SFR(t). The choice
of a Student’s-t distribution ensures that the continuity prior
remains flexible enough to describe maximally old and highly
star-forming galaxies. Furthermore, the parameterization makes
it straightforward to specify additional physics in the prior; for
example, setting the mean of the distribution to mimic the
cosmic SFR density (CSFRD) as a function of time would
weight galaxy SFHs toward the cosmic mean (e.g., Gladders
et al. 2013).5

2.2.4. Flexible Time Bins

The priors described in the previous sections control how
mass is distributed in fixed time bins. Here, we explore a model
that instead distributes time for fixed mass fractions. This
approach is similar to one described in Iyer et al. (2019).

This model splits the total mass formed into N bins of equal
mass m. The variable parameters are the edges of the time bins.
As the first and last bins have two fixed edges (t= 0 and
t= tuniv), there are N 1- remaining edges with the Nth
parameter controlling the total mass formed. This method
approaches a “truly” nonparametric model in that the only user
inputs are N (the number of time-resolving elements) and
the prior, as opposed to the previous models that must also
specify fixed time bins. The same continuity prior on
log SFR SFRn n 1+( ) is used to specify the prior for the
distribution of time bin edges.

The primary downside of this method is that it enforces a
minimum z NtsSFRfloor univ

1= -( ) ( ) . This floor is approached in
the extreme where N 1- time elements have a infinitesimally
small width (typically describing either a maximally old or
maximally young population) and the final time bin spans the
age of the universe. At z=0 with N=7 time elements, this
corresponds to sSFRfloor≈10−11 yr−1. This floor is a practical
issue: sSFR=10−11 yr−1 is a full order of magnitude higher
than the sSFR of a typical quiescent galaxy at z∼0 (Fumagalli
et al. 2014).

Accordingly, for this work we instead adopt a hybrid
approach where there are two fixed time bins at
0<t<50Myr and 11.7<t<13.7 Gyr that form masses
m1 and m2, and the remaining mass M m m1 2- - is split
among five flexible time bins. This allows arbitrarily low
instantaneous sSFRs. The minimum allowed sSFR in the
remaining flexible time bins is still present but lowered by a
factor of (m m M1 2+ ).

Overall, this approach retains the advantages of the
continuity prior while also removing the discretization effects
related to the fixed time bins. The trade-off is the minimum
allowed sSFR in the flexible time bins. This hinders the ability
of the flexible time bins prior to accurately describe the recent

and intermediate SFH of quiescent galaxies, as shown in
Section 4.1.
It is likely that additional modifications to this model can

minimize, or at least shift around, the downsides. One potential
alteration is to fit fixed bolometric luminosity fractions rather
than fixed mass fractions. Because of the scaling of mass-to-
light ratio (M/L) with age, this alteration will remove the sSFR
floor in the youngest time bins at the likely cost of imposing a
new sSFR floor on the oldest time bins. Another possibility is
to use bins with fixed but uneven mass fractions that can switch
temporal ordering during the sampling phase. In principle, this
can solve the sSFR floor by shifting low-mass bins to the
youngest times when fitting the SEDs of quiescent galaxies.
However, we do not explore such alterations further in
this work.

3. Generating and Fitting Mock Galaxies

We generate and fit mock photometry with different
nonparametric priors in order to explore the effect of the prior.
To generate the mock photometry, we use the Flexible Stellar
Population Synthesis (FSPS) code (Conroy et al. 2009). The
mocks are generated with solar metallicity and a modest dust
attenuation of AV=0.3. The following five SFHs are used as
inputs for the mocks:

Constant: SFR(t)=Mformed/tuniv for all t.
Declining: SFR(t)=Ae− t/ τ, with τ=tuniv/10=1.4 Gyr.
Rising: SFR(t)=Ae t/ τ, with τ=tuniv/4=3.4 Gyr.
Burst: A constant SFR forming 80% of the total mass with a
burst at t=0.5 Gyr forming 20% of the total mass. The burst
is a Gaussian with σ=200Myr.
Sudden Quench: A constant SFR until 1 Gyr in the past,
where the SFR drops by a factor of 50.

These SFHs are chosen to represent the diversity of observed
galaxy SFHs. All of the SFHs start at t=0 and extend to
tuniv=13.75 Gyr. These SFHs are identical to the SFHs used
in a companion paper (Carnall et al. 2019).
The photometric bands cover far-UV (FUV) to mid-IR and

include GALEX FUV/NUV, SDSS ugriz, 2MASS JHKs, and
Spitzer/IRAC channels 1–4. The input SFHs and resulting
SEDs are shown in Figure 3. Energy balance is adopted such
that all energy attenuated by dust is re-emitted in the infrared.
The fluxes are not perturbed so as to avoid introducing random
error into the results. The flux uncertainty used in the likelihood
calculation corresponds to S/N values of 2, 5, 10, 25, and 100,
applied uniformly across all bands. This test assumes
homoscedastic noise and unperturbed fluxes, which simplify
the analysis without loss of generality (discussed further in
Section 4.2). The effect of the prior when fitting real data with
realistic noise properties such as heteroscedasticity and
perturbations from the true measurements are explored later in
Section 5.
Prospector (Johnson & Leja 2017; Leja et al. 2017) is

used to fit the mock photometry. For each prior, N=7
parameters are allotted to the SFHs described in Section 2. The
remaining free parameters are dust attenuation and stellar
metallicity, with flat priors over 0<τV<3 and −2<
log(Z/Ze)<0.19.
The sampling is performed with the nested sampler

dynesty6 (Speagle et al. 2019). The dynesty package is
5 Another practical upside to this model is that the run timescales well with N:
over a range of 4�N�13, the run time is essentially flat. This is likely due to
the ease with which a nested sampling routine can explore Gaussian-like priors. 6 https://github.com/joshspeagle/dynesty
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a nested sampler that allocates live points dynamically,
allowing the user to control the effective resolution as the fit
proceeds. This allows the user to sample preferentially near the
bulk of the posterior mass; for a fixed number of samples, this
improves the estimate of the posterior at the cost of a higher
relative error on the evidence. We take advantage of this by
tuning the settings to emphasize accurate measurements of the
posterior probability distribution; specifically, we require that
the Kullback–Leibler divergence (KLD) between different
realizations of the posteriors that include both statistical and
sampling uncertainties be less than 1.5%. More details can be
found in the dynesty documentation linked above.

4. Mock Results

Here we describe the effect of the SFH prior in fitting mock
photometry.

4.1. SFH Recovery

Figure 4 compares the SFH posteriors to the input SFHs for
all five nonparametric priors. This comparison is shown for
mocks with a photometric S/N=25.

The shapes of the input SFHs are fairly well-recovered for all
priors. There is clearly sufficient information in the photometry
to distinguish between rising, falling, and constant SFHs, and,
in addition, some of the fits are able to recover the sharp
quenching event and the recent burst of star formation. This
demonstrates that nonparametric SFHs can recover the zeroth-
order behavior (rising, falling, constant) of the input SFHs
regardless of the chosen SFR(t) prior.

In detail, however, there is significant variation in the
location and size of the posteriors when different priors are
applied. Indeed, Figure 4 clearly illustrates one of the main
points of this study: even with high S/N photometry covering
the FUV–IR and no systematic errors, the posteriors are
strongly dependent on the prior. It is not uncommon for the
SFR in fixed time bins to differ by ?1σ between priors, and
the size of the 1σ range between priors is also quite different.
For example, after fitting the constant input SFH with different
priors, the 1σ range for the posterior SFR in the 30<t<100 Myr
bin ranges from a factor of ∼100 for the logM prior to a factor of
∼2 for the continuity prior. This systematic difference in the width
of the posteriors is consistent across a variety of input SFHs.
These differences exist even though every nonparametric prior is
flexible enough to accurately describe every input SFH.7 This
emphasizes the necessity of choosing a reasonable prior when

fitting nonparametric SFHs and also the importance of
understanding the influence of the chosen prior on the
recovered parameters.
The priors can broadly be divided into two categories: priors

that concentrate the majority of the mass in one or two bins
(logM and Dirichlet α= 0.2) and priors that disperse the mass
more evenly across all bins (continuity and Dirichlet α= 1).
This division arises naturally because of the strong covariance
between the SFR in nearby time bins; the data are often equally
well reproduced by, for example, a fixed fraction of mass in old
stars, regardless of whether these old stars formed steadily or in
a single burst. The “concentrated” priors are more successful at
modeling input SFHs with sharp transitions such as steeply
declining SFRs or sudden quenching events, whereas the
“dispersed” priors tend to focus the posterior mass on solutions
with smooth SFR(t).
The differences in posterior SFHs propagate directly into

differences in derived physical parameters. Figure 5 shows the
recovery of mass, SFR, and mass-weighted age for each mock
and prior combination at S/N=25. Each of these parameters
shows a different sensitivity to the prior. Mass is the most robust
parameter, varying by ∼0.1 dex across each prior. Age and SFR
are less robust, with the median of the posterior varying by up to
0.3–0.5 dex between priors. The prior also determines the size of
the error bars. This is most dramatic for the age determination of
the rising SFR, where the 1σ posterior for the logM prior spans
8 Gyr, while the other 1σ posteriors range from 1 to 3 Gyr.

4.2. Trends with S/N

Here we explore how the effect of the prior scales with the
S/N of the mock photometry. Figure 6 shows the SFH posteriors
for the rising SFH mock as a function of S/N, while Figure 7
shows the same for the mock parameter recovery. Appendix C
shows the same results for the other four input SFHs.
These figures make it clear that the choice of prior is at least

as important as the S/N in determining the posterior. We run a
series of tests to quantify this comparison. We adopt the KLD
as a distance metric; roughly, this describes how far one
probability distribution function (PDF) is away from another.
For each combination of (S/N, SFH prior, input SFH), we
measure the KLD between the posterior SFH and the posterior
SFH of the fits with identical (SFH prior, input SFH)
combinations but different values of S/N. We repeat the
process while instead varying the SFH prior. The KLD between
posterior SFHs is taken as the sum of the KLDs of the
marginalized PDFs in each SFH time bin. For the flexible time
bin prior, we project the SFH posterior into the fixed time bins
of the other SFH priors for this calculation.

Figure 3. Input SFHs and resulting photometry for the mock tests. From blue to red wavelengths, the photometric bands are GALEX FUV/NUV, SDSS ugriz, 2MASS
JHKs, and Spitzer/IRAC channels 1–4.

7 Excluding the combination of fitting the flexible time bins model to model
SFHs with very low sSFRs; see discussion of these limitations in Section 2.2.4.
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This exercise confirms that choosing a different prior most
often has a larger effect on the posterior than altering the input
S/N. This is a remarkable finding; given that S/N scales with
exposure time as S/N tµ , the range of S/Ns in this
comparison corresponds to a 2500-fold difference in exposure
time. This highlights the critical importance of choosing a
prior. The falling SFH is the exception, where the information
gain when going from S/N�5 to S/N=100 is roughly equal
to the effect of changing priors.

We note that adding perturbations to the fluxes and
reperforming the fits would change the median of the derived
posteriors in an unpredictable way. However, in general, it will
neither increase or decrease the overall size of the posteriors.
Intuitively, the S/N of the data can be thought of as “the
distance that the model is allowed to stray from the best-fit
solution,” which is, barring the case of extremely noisy
likelihood surface, a weak function of the location of the best-
fit solution. In this way, the posterior shape is fairly robust to

Figure 4. Posterior SFHs from fitting mock photometry for different input SFHs and priors. Each row shows a different input SFH, while each column shows a
different prior. The input SFH is shown as a solid black line. The dashed black line is the input SFH rebinned to match the fixed time bins of the nonparametric
models. The colored lines show the median of the posterior, while the shaded regions show the 16th–84th percentiles of the posterior. The mock photometry has
S/N=25.
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the choice of adding perturbative noise. We note that we have
verified this intuitive argument by comparing mock fits with
and without perturbed noise.

These figures also demonstrate that the posteriors do not
converge even at S/N=100. For example, the exact
contribution of old stars in the 3.6<t<11.7 Gyr time bin
remains uncertain for all priors, resulting in a factor of 2 range
in the posterior mass-weighted ages.

4.3. Comparing Residuals between Priors

The preceding analysis has demonstrated that different priors
produce significantly different posteriors when fit to identical
data. The last piece of the puzzle is to show that the photometry
is equally well reproduced by any of the adopted priors.

Figure 8 shows the results of fitting S/N=100 photometry
from the input SFH with a sharp quenching event. The
posterior SFH and photometric residuals are shown for each
prior. While each of these posteriors shows a distinct pattern of
behavior in SFR(t), the photometric residuals are largely within
the 1σ error range. Given that each model has the same number
of parameters, the fact that each prior reproduces the data to a
similar level of accuracy means that none of these priors is
distinguishable with photometry alone.8 The exception is the
flexible time bins model, which is unable to accurately describe
the input SFH because of the limitations described in
Section 2.2.4. This is the only such catastrophic failure among
combinations of prior and input SFH.

The final panel of Figure 8 demonstrates that, even after
exhausting the information in the S/N=100 photometry,
there is further constraining information available in high S/N
spectroscopy. The predictions for the spectra after fitting the
photometry are compared between different priors. Both the
input spectrum and the posterior spectra are smoothed to a
velocity resolution of σ=250 km s−1. This suggests that high
S/N spectra can be fit simultaneously with photometry to
further distinguish between nonparametric models. While
calibration uncertainties make 2%–3% differences in the
continuum very difficult to distinguish, even a simple
constraint on the luminosity of strong nebular emission lines
such as Hα and Hβ or break strengths such as the 4000Å break
can be helpful in ruling out some models.

5. Application to the GAMA Survey

Here we fit broadband photometry from the GAMA survey
with a lightly modified version of the Prospector-α model
from Leja et al. (2017), substituting in two different nonparametric
SFH priors. The goal is to provide a practical demonstration of the
effect of the prior on the output stellar populations parameters.
The fit is performed with both the logM and the continuity priors
described in Section 2. The same data are fit with parametric
models in a companion paper (Carnall et al. 2019).

5.1. Fitting UV–IR Galaxy Photometry from GAMA

The photometry is taken from DR3 of the GAMA survey
(Driver et al. 2011; Baldry et al. 2018). The photometry is
generated with the LAMBDAR code (Wright et al. 2016) in three
fields covering 180° on the sky and includes 21 bands spanning

Figure 5. Posterior masses, SFRs, and mass-weighted ages from fitting the mock photometry for a variety of input SFHs and adopted SFH priors. Each column shows
the results from a different SFH prior, while each row shows a different parameter. The input values are shown with a dashed line. The SFR is calculated by averaging
over the most recent 100 Myr.

8 This has been confirmed directly by calculating the Bayesian model
evidence, which suggests only a moderate preference at best for most
combinations of prior and input SFH.
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the FUV to the far-IR from GALEX, the SDSS, VISTA, WISE,
and Herschel (Driver et al. 2016). The GAMA spectroscopic
redshifts are adopted as cosmological distance measurements.
All galaxies in the redshift range 0.05<z<0.08 with
M*>109 Me are fit, for a total of 6134 galaxies. The stellar
masses used for the selection are from Taylor et al. (2011) and
the GAMA survey is mass-complete in this mass and redshift
range.

The GAMA catalog uses the “forced photometry” technique
where positional priors from high-resolution photometry are
used to perform photometry on lower-resolution images. At the
time of this writing, objects with negative flux values in a given
passband are reported as zero in the catalog. In order to

preserve the noise properties, we manually replace these zeros
with the last value measured in the iterative forced photometry
algorithm from the GAMA catalogs. This last value in the
iteration is the correct negative flux value. We also enforce a
minimum error of 5% in the photometry to reflect both
underlying systematic errors in the models for stellar and dust
emission and systematic effects in the measurement of the
photometry.
In brief, Prospector-α is a 15-parameter model. The

main differences between this model and the model used in the
mock tests are (a) more complex dust attenuation, (b) more
flexible dust emission, and (c) a free gas-phase metallicity
parameter. In more detail, Prospector-α has seven

Figure 6. Change in SFH posteriors caused by varying the input S/N for an exponentially rising input SFH. The input S/N varies across the columns, while the priors
vary down the rows. The input is a solid black line, and the dashed black line is rebinned to match the nonparametric time bins. The median of the posterior is a thick
colored line, while the 16th–84th percentiles are shown as shaded regions. While the SFH posteriors do shrink as the input S/N is increased, their shape and 1σ ranges
are primarily determined by the chosen prior rather than photometric S/N.
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parameters for the stellar mass and nonparametric SFH, two
parameters separately controlling the gas- and stellar-phase
metallicity, three parameters to describe the shape of the IR
SED, and three parameters to describe the dust attenuation as a
function of wavelength and stellar age. This model self-
consistently uses the stellar ionizing continuum to power
nebular line and continuum emission (Byler et al. 2017) and

applies energy balance to generate the IR emission. The stellar
mass–stellar metallicity relationship measured from the SDSS
is adopted as a prior (Gallazzi et al. 2005). We take the
conservative approach of widening the confidence intervals
from this relationship by a factor of 2 to account for potential
unknown systematics or redshift evolution. As before, we use
dynesty to sample the model posteriors.

Figure 7. Change in derived galaxy parameters while varying the S/N for an exponentially rising input SFH. The three panels show the derived mass, age, and SFR as
a function of prior and S/N. The derived parameters and their associated error bars tend to be dominated by the chosen prior rather than photometric S/N.

Figure 8. Different priors can reproduce the S/N=100 photometry to a similar level of accuracy while producing distinct posteriors. High-resolution spectra will be
able to distinguish among these priors. The top row shows the ratio between the model posterior photometry and the true photometry. The 1σ noise used in the
likelihood calculation is shown with a dashed line. The middle row shows the input SFH in black compared to the posterior median (line) and 16th and 84th
percentiles from fitting the photometry. While the model photometry is indistinguishable within the noise for most priors (excluding the flexible time bins prior), the
SFH posteriors remain distinct. The bottom row shows the same ratio, but for posterior model spectra. Absorption lines near the 4000 Å break and strong emission
lines, such as Hα and Hβ, can be used to further constrain the SFH posteriors after information in the photometry has been exhausted.
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The photometry is fit with the full Prospector-α model,
once with the logM prior and once with the continuity prior.
Both priors reproduce the photometry to the same level of
accuracy: the median χ2/Nphot values are 1.73 and 1.69 (mean:
2.42 and 2.36) for the continuity and logM priors, respectively.
The slight improvement in χ2 for the logM prior is expected, as
it is overall a more permissive prior for SFR(t). However, there
are significant differences in the derived parameters between
the two priors, and it is shown below that the logM prior is
most likely producing considerably less reliable outputs.

5.2. Derived Physical Parameters

The SFH prior can affect the resulting galaxy physical
parameters in highly nontrivial ways.

Figure 9 shows the difference between the two priors for the
derived stellar masses, mass-weighted ages, and SFRs averaged
over two different timescales, 100 Myr and 300 Myr. The
scatter in this comparison can be thought of as the sensitivity of
the derived parameter to the SFH prior, which sets the
covariance between SFH time bins. The SFR averaged over
100 Myr is the most sensitive to the prior, while stellar mass is
the least sensitive. We have verified separately that the
parameters from the continuity prior show less scatter when
compared to parametric fits (though with nonnegligible offset);
the continuity prior can thus be thought of as the “fiducial”
model in this comparison, in the sense that behaves most like
the standard parametric methods used in SED fitting.

In general, the prior plays a strong role in determining a
parameter when the parameter either has a relatively small
effect on the observable data or has a strong degeneracy with
other parameters. For all of the quantities in Figure 9, the effect

of the prior is maximized specifically for blue star-forming
galaxies. This is caused by two distinct effects.
The first is “outshining” (Papovich et al. 2001; Maraston

et al. 2010; Pforr et al. 2012; Conroy 2013), whereby it is
difficult to distinguish the presence of old, dim stars behind
luminous young blue stars. In this regime, the prior outweighs
the minimal information available in the photometry about the
older stars. Outshining is responsible for much of the difference
in derived ages: the logM prior prefers relatively young ages
for blue star-forming galaxies, while the continuity prior
assumes a much more extended history of star formation. This
bifurcation in ages changes the M/L, causing a secondary
sequence below the 1:1 line in the stellar mass comparison
where the continuity prior assigns relatively larger masses to
these blue star-forming galaxies.
The second effect is a degeneracy between young- and

intermediate-age stars. This is typically the cause of discre-
pancies for galaxies that show a 0.5 dex difference in SFR
(100 Myr) in Figure 9. Star formation in the younger time bins
can instead be mimicked by star formation in the 100–300 Myr
time bin followed by sharp cessation of star formation between
0 and 100 Myr. SFRs averaged over a 100 Myr timescale are,
thus, more sensitive to the adopted SFH prior than SFRs
averaged over a 300 Myr timescale. This effect also explains
the bias between different priors in SFR(100 Myr) that
disappears in SFR(300 Myr). While it is possible to reproduce
the colors of blue star-forming galaxies by invoking a peculiar
SFH with an excess of stars aged 100–300 Myr and no star
formation between 0 and 100 Myr, stars older than ∼300 Myr
are too red to perform the same trick.
Stellar ages show relatively lower scatter (0.25 dex) than do

SFRs but are similar in that they can change significantly when

Figure 9. Difference in derived parameters from SED fits with different SFH
priors. The results from fitting the GAMA survey with both the log M and
continuity priors are shown. The scatter between different priors can be thought
of as the sensitivity to the permitted covariances in time between SFH bins. The
SFR is the most sensitive to this effect (particularly when averaged over shorter
timescales), whereas the stellar mass is the least sensitive. The SFR on shorter
timescales also has a bias in the log of the average depending on whether
“bursty” SFHs (log M prior) or “smooth” SFHs (continuity prior) are preferred.
The clustering of ages for the log M prior represents the center of the time
bins. The SFRs are in units of Me yr−1. The error bars in the lower right
represent the median 1σ error for each quantity.

Figure 10. Stacked SFHs across the star-forming sequence taken from fits to
the GAMA photometry using two different SFH priors. The upper panels show
the GAMA galaxies on the star-forming sequence with the locus of the star-
forming sequence is taken from Salim et al. (2007). The SFH posteriors for
each “slice” of the star-forming sequence (on, above, below, and quiescent) are
summed and shown in the bottom panels. The median SFH is a solid line, and
the 16th–84th percentiles are shaded regions. The two priors imply strikingly
different galaxy assembly histories; for example, galaxies above the star-
forming sequence have been above the star-forming sequence for ∼1 Gyr with
the continuity prior or ∼30 Myr (a lower limit imposed by the size of the
youngest time bin) with the logM prior.
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very bursty SFHs are allowed. There is also clear artificial
structure in the age scatter. This clustering is caused by the
logM prior’s preference to stack the majority of the mass in
one or two bins (Section 2.2.1), which naturally results in
strong quantization of ages.

5.3. Derived SFHs

It is further instructive to directly examine the difference in
SFR(t) posteriors between the two priors.

In Figure 10 the posterior SFHs are stacked as a function of
position on the star-forming sequence. The upper panels show
the SFR measured in the most recent 100 Myr as a function of
stellar mass for both priors. Colored lines divide the sample
into four categories according to the location of the star-
forming sequence. The locus of the star-forming sequence is
taken from Salim et al. (2007), and the width is taken to be
±0.3 dex (Speagle et al. 2014). This 0.3 dex width is used to
distinguish between galaxies in four categories: quiescent,
below the star-forming sequence, on the star-forming sequence,
and above the star-forming sequence. The SFH posteriors of all
galaxies in each category are stacked. The lower panels show
the median SFR(t) and the ±1σ posterior ranges for each stack.
This can essentially be thought of as the range of SFHs
displayed by galaxies inside of the specified mass and SFR
selection. The posterior ranges include both measurement
uncertainty and intrinsic scatter in galaxy SFHs. The two
youngest SFH time bins (0–30Myr, 30–100 Myr) have been
combined in this plot as SFR(100 Myr) is used to select
galaxies relative to the star-forming sequence.

The first result to note in Figure 10 is that there appears to be
no star-forming sequence at all when fitting the data with the
logM prior. This is quite striking as the star-forming sequence
is found in many studies that fit broadband SEDs (Speagle et al.
2014). Here not only does assuming a logM prior fail to
reproduce the star-forming sequence, but indeed it does so
while providing a better fit to the photometry than the model
that does reproduce the star-forming sequence. This means that
the star-forming sequence is not a model-independent result
when fitting photometry. Instead, it is contingent on assump-
tion of smooth SFHs, which are typically built into SFH
models.

Proving or disproving this assumption of smoothness in SFR(t)
in the real universe is beyond the scope of this paper, though the
preponderance of independent evidence does suggest smoother
SFR(t) solutions than preferred by the logM prior. The current
smoothness of SFR(t) implied by simulations and future
prospects for testing this with observations are discussed in
Section 7.

Fits that assume a logM prior also infer a considerably more
chaotic process of galaxy formation than the continuity prior.
For example, from Figure 10, the characteristic time a galaxy
spends above or below the star-forming sequence is much
shorter for the logM prior (∼100 Myr) than the continuity prior
(∼500 Myr). Fits using the logM prior imply that the
typical galaxy above the star-forming sequence had an sSFR
∼10−12 yr−1 approximately 200Myr in the past. This suggests
a rapid rejuvenation-quenching cycle for star-forming galaxies
that is inconsistent with most numerical models of galaxy
formation. The quenching timescales for quiescent galaxies are
also sensitive to the prior; the logM prior quenches most
galaxies much earlier than the continuity prior, but then also
implies that ∼20% of the quenched population was above the

star-forming sequence just 200Myr earlier. To be clear, this
behavior is caused by the choice of prior; whether or not this
behavior actually occurs in these galaxies is contingent on the
accuracy of the prior.
Another dimension of this systematic prior difference is

shown in Figure 11. This shows the median of the stacked PDF
for mass-weighted age for individual galaxies across the SFR-
mass plane. The fits with the logM prior showing a range of
ages between 1 and 12 Gyr with a strong correlation with mass
and moderate correlation with SFR. The fits with the continuity
prior showing a range of ages from 3 to 12 Gyr with weaker but
smoother correlations with mass and SFR. The logM results
suggest that galaxy evolution proceeds in leaps and bounds,
with some galaxies of 1010 solar masses assembling half of
their mass over as short as ∼1 Gyr, whereas the continuity prior
suggests a more steady and gradual process of mass assembly
and longer minimum half-mass assembly times of ∼3–4 Gyr.
In summary, the sensitivity of the SFR(t) posterior to the

adopted prior means that the GAMA photometry is consistent
with strikingly different assembly histories for both star-
forming and quiescent galaxies. While it is not clear from these
results alone which prior (if either) is “correct,” it is clear that
the prior is a key determinant of the result.

6. Comparing Parametric to Nonparametric SFHs

The results of this work suggest that in many cases,
nonparametric SFHs cannot be fully constrained by typical
galaxy observations. In spite of this—indeed, in part because of
this—they offer several critical advantages over parametric
models.

6.1. Nonparametric SFHs Are More Flexible

Nonparametric SFHs are flexible enough to describe the
diversity of SFH shapes seen in galaxy formation simulations
(Simha et al. 2014; Diemer et al. 2017), though the accuracy is
limited by the resolution of the adopted time bins. This is in
contrast to simple parametric models. For example, exponen-
tially declining τ-models are unable to produce the rising SFHs
seen in high-redshift galaxies (Maraston et al. 2010; Papovich
et al. 2011). A delayed-exponentially declining model avoids
this complication but still directly couples the shape of the
short- and long-term SFH (Simha et al. 2014). More flexible

Figure 11. Median of the stacked PDF over individual galaxies for mass-
weighted age across the sSFR-mass plane. The left panel shows the results
from the continuity prior, while the right panel shows the results from the
logM prior. The star-forming sequence from Salim et al. (2007) is marked in
black. Uncolored cubes indicate that no galaxies fall into this region. The log M
prior results in a larger range of ages and a more extreme trend between both
age–mass and age–SFR. The log M prior also shows more scatter in these
trends.
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parametric models, such as double power law or lognormal
SFHs, allow both rising and falling components but remain
unable to model bursts and other sharp transitions in SFR(t).
More generally, as the number of parameters in parametric fit
becomes large, the lines between parametric9 and so-called
“nonparametric” fits will blur. In this scenario, it remains true
that nonparametric approaches are superior because, for such
an approach, the prior can be specified to arbitrary precision, as
opposed to using a functional form in which the exact nature of
the equation will influence the prior at some level. In this way,
nonparametric models are the best family of solutions in which
to fit arbitrarily complex behavior with time.

This effect is illustrated in Figure 12, which contrasts
parametric and nonparametric fits to the mock galaxies from
Section 3 with S/N=25. The parametric SFH is a delayed-tau
model,

t AteSFR t= t-( )

an SFH parameterization commonly used in the literature. The
nonparametric model uses the continuity prior described in
previous sections.

The ratio of the Bayesian evidence in Figure 12 measures the
relative evidence between two models. The evidence is
conceptually similar to reduced χ2 in frequentist statistics;
the evidence increases when the model can accurately
reproduce the photometry, but is penalized for model complex-
ity. Here, the Bayesian evidence does not strongly or
consistently favor parametric or nonparametric fits to the input
SFHs. The largest difference in evidence occurs for the falling
input SFH, with ∼97% odds (slightly more than 2σ) that the
parametric fit is a better model—not surprising, as the delayed
τ-model used to fit is very similar to the input τ-model. Overall,
if the goal is to simply reproduce the photometry from a diverse

range of SFHs with a minimalist model, there is no clear
preference between parametric and nonparametric models.
However, while the quality of fit to the photometry is largely

similar, the accuracy of the recovered SFHs differs substan-
tially. This is largely due to the relative rigidity of the
parametric model. For example, while the parametric fit to the
sudden burst mock galaxy does include a recent burst of star
formation, the burst is older than expected by a factor of ∼3,
and there are no stars older than ∼1.5 Gyr in the posterior. This
happens because the structure of parametric SFH constrains it
to either have a recent burst of star formation or have old stars.
The compromise solution is to include a burst but one that is
considerably older than the input. In contrast, the nonpara-
metric model accurately describes the age of the burst and also
predicts the correct mass in old stars. The fits to the other mock
SFHs tell a similar story: the nonparametric model is flexible
and can reasonably emulate any input shape, whereas the
parametric model must often be twisted or distorted to describe
the input SFHs, which necessarily inserts bias in the resulting
SFH posterior.
In summary, the flexibility of nonparametric SFHs allows

them to more accurately describe an arbitrary input SFH. This
is important because any bias in the posterior SFH will be
propagated into biases in derived galaxy parameters (see
Figure 5). This means that nonparametric SFH fits should
recover galaxy parameters such as mass, age, and sSFR with
less bias than parametric fits.

6.2. Nonparametric SFHs Allow Explicit Control Over the
Prior Density

In addition to flexibility, nonparametric fits offer explicit
control over the allowed density of SFR(t) models, i.e., the
prior. Parametric fits typically impose highly informative priors
on the shape of the galaxy SFH. Such informative priors are not
always intended but are necessary consequences of the chosen
parametric form. These translate directly into informative priors
on stellar age, stellar M/L, and sSFR. The priors imposed by

Figure 12. Comparing photometric residuals and derived SFHs from parametric and nonparametric fits to mock photometry. The parametric fit uses a delayed-tau
model, while the nonparametric fit uses the continuity prior. The upper row of panels shows the posterior photometric residuals as a function of wavelength for each
mock galaxy; the colored lines are the median while the shaded region is the 16th–84th percentile. The dashed lines indicate the 1σ photometric noise. The lower row
of panels shows the posterior SFHs for each mock galaxy with the same color coding. The nonparametric fit both shows less bias and also returns more accurate error
estimates than the parametric fit even though the Bayesian evidence does not consistently prefer either model.

9 Parametric being defined here as belonging to a particular parametric family
of probability distributions. For example, under this definition, a spline would
be nonparametric.
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parametric models are shown directly in Carnall et al. (2019).
These informative priors rule out entire classes of SFR(t)
solutions before the data are fit and can result in unrealistically
tight posteriors.

Conversely, in nonparametric models, the priors can be
directly tuned in order to capture the distribution of galaxy
behaviors (see Figures 1 and 2). This tuning is especially
important when an SFH model is not well constrained by the
available data. This is a strong argument for the use of
nonparametric models even when fitting data with little
constraining power. In such cases, it is important to marginalize
over a full range of realistic SFR(t) behaviors in order to get
realistic answers, rather than marginalizing over the (typically
much smaller) SFR(t) solutions allowed by parametric models.

This contrasting behavior can be seen in Figure 12 where the
parametric fits have much tighter posteriors than the nonpara-
metric fits for all input SFHs. This is due to the (often
unintentional) informative priors imposed by parametric
models. These priors result in overly tight posteriors even
when the input SFH is a good match to the parametric form, as
is the case for the fit to the exponentially declining input SFH.
This effect is explored in more detail in the companion paper
by Carnall et al. (2019).

Another example is in Figure 13, which shows CSFRD
measured directly from the SFHs fit to the GAMA photometry
(Section 5). In principle, the CSFRD observed at higher
redshifts should be reproducible by the SFHs of a low-redshift
galaxy sample (e.g., Heavens et al. 2004). Here we show the
CSFRD for both parametric and nonparametric models, with
the parametric fits taken from the companion paper by Carnall
et al. (2019). We compare to the CSFRD from the Universe
Machine (Behroozi et al. 2018). The empirical measurements
from the Universe Machine include only galaxies with
M*(z= 0)109 Me in order to match the selection function
used in Section 5. Measurement error from the observed SFHs
is very low except for large lookback times in the parametric
models. The Universe Machine error contours are from the

systematic offset between observed and true stellar mass within
the Universe Machine model.
Here it can be seen that parametric models systematically

underestimate galaxy ages; indeed, parametric models under-
estimate thalf, the time at which half of the cosmic mass budget
had assembled, by ∼50%, while nonparametric models over-
estimate thalf by a more modest ∼25%. Because the oldest stars
have the most subtle observational signature, the SFH at the
oldest lookback times is the most prior dominated. The
simplest explanation for this difference is that the time at
which star formation begins is typically a free parameter in
parametric models, while in these nonparametric models, star
formation always begins at t=0. This causes galaxy ages from
parametric models to be systematically lower than those of
nonparametric models, consistent with findings in the literature
that parametric models significantly underestimate galaxy ages
(Wuyts et al. 2011). Accurate galaxy ages are important as the
optical M/L varies as M/L∝(age)0.6–0.7 (e.g., Elmegreen et al.
2012), implying that parametric models underestimate galaxy
masses by ∼40%, while nonparametric models overestimate it
by a smaller ∼15%. It is simple to adjust this in nonparametric
models by tuning the mean SFR(t) directly, but the prior for
SFR(t) in parametric models is difficult to tune as it is coupled
to the assumed parametric form.
Ultimately, the SFH prior will be important in almost all

applications of SED modeling to galaxy photometry, as even at
S/N=100 the mock tests in this work show that nonpara-
metric models produce distinct posteriors in derived parameters
and in SFR(t) (Figures 7, 6, and Appendix C). In practice, 1%
accuracy is very difficult to achieve because of systematic
effects in measuring galaxy photometry, such as background
subtraction, light profile modeling, and contamination from
nearby objects (e.g., Bernardi et al. 2013; Skelton et al. 2014).
This suggests that studies that attempt to recover galaxy SFHs
from photometry will almost never be tightly constrained by
the available data, re-emphasizing the importance of having
SFH models with easily customizable priors.

7. Choosing the Right Prior: Comparison to Simulations

The previous sections have made the case that nonparametric
models will never be fully constrained by typical galaxy
photometry. Therefore, the prior will always have at least a
moderate role in determining the answer. In light of this fact, it
is critical to choose a well-motivated prior.
A well-motivated prior will be one that best mimics the breadth

and relative distribution of SFR(t) in galaxies. One key question
is, therefore, on what timescales SFR(t) changes in real galaxies.
Theoretical models of galaxy formation suggest two potential
answers: either this timescale is primarily set by processes related
to the halo dynamical time (e.g., the gas accretion rate), as in the
equilibrium bathtub model (e.g., Davé et al. 2011; Forbes et al.
2014) and cosmological hydrodynamical simulations (Crain et al.
2015; Schaye et al. 2015; Pillepich et al. 2018), or it is set by the
timescales of star formation feedback as in the high-resolution
Feedback In Realistic Environments (FIRE) simulations (Hopkins
et al. 2014).
Torrey et al. (2018) explore star formation timescales in the

IllustrisTNG simulation. They find that these timescales scale
with the halo dynamical time. They fit exponential decay
curves of the form exp(−δt/τ), effectively identifying the
shortest timescales on which there is significant variation in
SFR. Over a range of 0<z<4 and M M9 log 11< <( ) ,

Figure 13. CSFRD measured by fitting the GAMA sample with different SFH
models. The left panel shows the nonparametric SFH models described in
Section 5 while the right panel shows parametric SFH models fit to the same
data in a companion paper (Carnall et al. 2019). Empirical predictions from the
Universe Machine are shown as a black line (Behroozi et al. 2018). Both the
empirical predictions and the SFHs from GAMA include only galaxies with
measured stellar mass >109 Me. The SFHs from GAMA are normalized such
that they have the same average value over the most recent 100 Myr as the
Universe Machine; this is done to highlight differences in the shape of the
derived CSFRD. Overall, parametric models underestimate thalf, the time at
which half of the cosmic mass budget had assembled, by ∼50%, while
nonparametric models overestimate thalf by a more modest ∼25%.
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they find values ranging from 0.2τ3 Gyr. Averaged over
the galaxy population, this timescale changes from 0.25 Gyr at
z=4 to 1.5 Gyr at z=0 and also decreases with decreasing
stellar mass.

In contrast, strong stellar feedback in the FIRE simulations
produces globally bursty SFHs. In FIRE, the shortest bursts
occur on timescales of 5–50Myr, a factor of ∼5–10 shorter
than the Illustris simulations (see Figure9 in Sparre et al.
2017). This is a strong function of mass: at 0<z<0.4,
galaxies with M*<1010 Me change their SFR by orders of
magnitude over 200Myr, while galaxies with M*>1010 Me
change their SFR by a factor of 2 or less. At z=2, even
massive galaxies have short bursts in which their SFR changes
by an order of magnitude in a 200Myr timespan.

The dichotomy between timescale regulation by evolution of
the halo (Torrey et al. 2018) versus timescale regulation by
feedback maps roughly onto the behavior of “concentrated”
priors (logM, Dirichlet αD=0.2) and “dispersive” priors
(Dirichlet αD=1, continuity), respectively. This comparison
is important for nonparametric time bins that are smaller than
a few characteristic timescales (∼1 Gyr for Illustris and
∼50–100 Myr for FIRE) so as to not average over short-term
fluctuations. It is well-established that in both models the
timescales scale strongly with galaxy mass and with redshift.
Thus, a more concentrated prior is more appropriate for high-
redshift and/or low-mass (M*1010Me) galaxies, while a
more dispersive prior is more suitable for low-redshift and/or
high-mass galaxies. This is interesting in light of the fact that
concentrated priors return much larger errors on ages, masses,
and SFRs. This suggests that given a low- and high-mass
galaxy with identical colors, the ideal SED fit should return
substantially larger error bars for the low-mass galaxy.

In principle, these timescales can be discriminated via
observational signatures that trace SFR over different time-
scales, such as the Hα/UV ratio (Weisz et al. 2012;
Kauffmann 2014; Shivaei et al. 2015; Smit et al. 2016).
However, this comparison is complicated by natural galactic
variation in dust geometry and composition, initial mass
function, and the uncertainty in ionizing photon production
efficiency, all of which affect the Hα/UV ratio (Shivaei et al.
2015; Sparre et al. 2017). Another possible discriminator is the
existence of the much-debated fundamental mass–metallicity–
SFR relationship, which can form only if SFRs are regulated
over longer timescales (Torrey et al. 2018). Finally, Figure 8
suggests that combined modeling of high S/N photometry and
high S/N, high-resolution spectroscopy can be used to
constrain the typical timescale over which galaxy SFRs change.

Ultimately, the ideal SFH prior would likely be a function of
galaxy stellar mass and the age of the universe and, for models
with fixed time bins, the widths of the time bins. To keep the
results general, we deliberately do not adopt such scaling in this
work. On a practical note, using time bins that change
according to the age of the universe does create an implicit
dependence of the prior on cosmological time.

Regardless of the prior used, it is advised that this prior is
clearly stated when describing galaxy SFHs recovered from
data. Comparisons of recovered SFHs between studies need to
take into account different assumed priors. Comparisons
between observations and simulations should be aware of the
priors adopted in the observational analysis, as this will
strongly affect this comparison when the data are good and will
dominate the comparison when the data are poor.

8. Conclusion

In this work, we explore the effect of adopting different
Bayesian priors when fitting nonparametric SFHs to photo-
metry. A variety of nonparametric priors are tested, ranging
from the most straightforward logM prior that fits for the mass
formed in fixed time bins to a continuity prior that emphasizes
smooth behavior in SFR(t).
To test the different influences of these priors, we generate

mock UV–IR photometry with simple input SFHs and attempt
to recover them with the SED-fitting code Prospector. The
key results of the mock tests are as follows:

1. All of the priors recover the shape of the input SFHs with
reasonable accuracy.

2. However, priors impose different shapes on the poster-
iors. The priors can roughly be divided into “dispersive”
priors, which prefer to spread the mass evenly across time
bins, and “concentrated” priors, which prefer to concen-
trate mass in one or two time bins.

3. The primary determinant of the size of the posteriors—
and therefore the size of the error bars—is not the
photometric noise, but instead the chosen prior. This is
true for a range of S/N from 2 to 100, roughly equivalent
to 2500-fold difference in exposure time.

4. Aside from a few combinations of prior and input SFHs,
the photometry is equally well reproduced by any of the
adopted priors.

In order to demonstrate these effects in practice, we fit UV–
IR photometry for ∼6000 massive galaxies at 0.05<z<0.08
from the GAMA survey using a lightly modified version of the
Prospector-α model from Leja et al. (2017). This is done
for both the logM and the continuity priors. We find the
following:

1. Stellar masses are relatively stable between priors, while
ages and SFRs show more significant dependence on the
prior.

2. This dependence is maximized for blue star-forming
galaxies because of outshining effects and a degeneracy
between young (0–100 Myr) and intermediate-age
(100–300 Myr) stars.

3. The two priors result in significantly different SFH
posteriors. The logM prior suggests that galaxy formation
proceeds in a chaotic fashion and over short timescales,
whereas the continuity prior suggests smoother evolution
over longer periods of time.

It is tempting to conclude that the dependence of nonpara-
metric SFHs on the prior is a weakness of the approach. This is
misleading, however; because of their lack of flexibility,
parametric models impose stronger priors on SFR(t) than do
nonparametric models. Parametric models achieve tight poster-
iors by a priori ruling out many different forms of solutions,
resulting in unrealistically precise answers even when fitting
low S/N data. Perhaps surprisingly, this means it is better to
use a well-tuned nonparametric model—even when it cannot
be constrained by the data—as it will produce more mean-
ingful error bars.
The quality of the error bars from a nonparametric analysis is

dependent on choosing a reasonable prior. Here, we have
contrasted the performance of several different priors in
accurately recovering mock input SFHs. Ultimately, the ideal
prior is one that best mirrors the distribution of galaxy SFHs in
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the real universe. This distribution has yet to be definitively
measured in observations and or converged upon in galaxy
formation simulations.

Hα luminosities, UV and far-IV photometry, and high-
resolution, high S/N spectroscopy covering a statistical sample
of galaxies across cosmic time can help to constrain the
timescales on which galaxies change their SFRs. These data
can then be used to construct a more ideal prior for SFHs. We
leave a detailed exploration of these issues to future work.
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Appendix A
Testing the Sensitivity to Number and Location of

Time Bins

Here we examine the sensitivity of the results to the number
of time bins and their relative spacing. We show the results
from the continuity prior for these tests, though the results are
independent of the adopted prior. We fit the same mock data
described in the main text, varying the number of bins between
four and 14. The data are assigned a S/N of 25, and the fluxes
are not perturbed as per the fits in the main text.
The new bin spacing in time must be specified when

changing the number of bins. In these tests, the two youngest
bins remain fixed at 0–30 and 30–100 Myr to minimize the
allowed SFH variability on short timescales, which, in turn,
avoids the instabilities in SFR estimates described in
Sections 5.2 and 5.3. Similarly, the oldest bin remains fixed
at 11.7<t<13.7 Gyr for the purpose of modeling a
maximally old population. The remaining time between 0.1
and 11.7 Gyr is split into equal logarithmic chunks and divided
among the remaining bins.
Figure 14 shows the recovered SFHs as a function of Nbins,

while Figure 15 shows the change in derived stellar mass, SFR,
and mass-weighted age as a function of Nbins. For Nbins5,
there are no clear trends with Nbins in the SFH posteriors or
parameter posteriors, and the posteriors are largely consistent
within their 1σ error bars. This generally holds true across all of
the input SFHs, with the exception of a few measurements for
the SFR and age in the falling SFH. This is not systematic with
Nbins and likely is caused by inefficiencies in the sampler when
sampling near the edge of the priors.
This confirms that the results presented here are not strongly

affected by bin edge effects or by overfitting. It also shows that
using too few bins (Nbins4) fails to recover vital information
in the SED. Notably, the effective prior on SFR(t) does depend
on Nbins: allowing more bins with a fixed prior on
log SFR SFRt t t0 0-D( ) for each bin means a more flexible prior
on SFR(t). However, this variation is too small to drive strong
trends in the posteriors.

10 http://www.astropy.org
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Figure 14. Variation in posterior SFHs with Nbins derived by fitting mock photometry with different input SFHs. The posterior SFHs are largely independent of the
number of SFH bins. Each row shows a different input SFH, while each column shows a different number of SFH time bins. The input SFH is shown as a solid black
line. The dashed black line is the input SFH rebinned to match the fixed time bins of the nonparametric models. The colored lines show the median of the posterior,
while the shaded regions show the 16th–84th percentiles of the posterior. The mock photometry has S/N=25.
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Figure 15. Posterior masses, SFRs, and mass-weighted ages from fitting the mock photometry for a variety of input SFHs and number of SFH time bins. Each column
shows the results from a different SFH prior, while each row shows a different parameter. The input values are shown with a dashed line. The SFR is calculated by
averaging over the most recent 100 Myr.
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Appendix B
Tuning the Continuity Prior to SFHs from Illustris

Here we use the ensemble of SFHs from the Illustris
hydrodynamical simulation to tune the prior on log
SFR SFRt t t0 0-D( ) for the continuity model presented in
Section 2.2.3. These SFHs have been adopted from the data
presented in Diemer et al. (2017) and include N=29203
galaxies in the stellar mass range M M9 log 12.5< <( ) . The
SFHs have 100 time steps spaced evenly in linear space and are
based on the star formation model described in Springel &
Hernquist (2003).

The SFHs cover all stars formed in a galaxy at z=0,
including all progenitors. For low-mass galaxies, the vast
majority of stars is formed in situ. For high-mass galaxies,
however, a large fraction of their stars have formed in other
halos/galaxies and merged with a more massive galaxies
(Rodriguez-Gomez et al. 2016). This means that the SFHs of
high-mass galaxies at z>0 are actually reported as the sum of
the SFHs of all of the galaxies that will eventually combine to

form a single massive z=0 galaxy. This will bias the reported
distribution to be somewhat narrower than the true distribution.
Figure 16 compares the adopted Student’s-t prior to the

distribution of ratios of SFR SFRt t t0 0-D from the Illustris
simulation for several values of Δt and t0. The adopted prior is
a reasonable representation of the Illustris SFHs at a variety of
redshifts and differences in size for the fixed time bins. One of
the striking differences between the prior and the simulation
results is that the center of the distribution changes with δt,
which reflects the simple finding that SFRs were higher at
earlier times. We avoid including this effect in the prior so as to
keep the findings general. However, in principle, the cosmic
rise and fall of galaxy SFRs could be hard-coded into the prior
to increase the accuracy of recovered galaxy SFHs.

Appendix C
SFH Recovery as a Function of S/N

In Figures 17–20, we show the SFH recovery as a function
of S/N for every mock input SFH. These figures are analogous
to Figures 7 and 6.

Figure 16. Prior adopted for the continuity model (dashed black line) compared to log SFR SFRt t t0 0-D( ) measured from Illustris galaxies (colored lines). The left
panel shows this distribution for several values of t0 at fixed Δt, while the right panel has a variable Δt and a fixed t0. The adopted continuity prior is a reasonable
replication of, though slightly broader than, the distribution of Illustris SFHs for a variety of choices for Δt and t0.
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Figure 17. Effect of S/N on the posteriors for different assumed priors for a constant input SFH. The top panels show the derived mass and age as a function of prior
and S/N. The lower grid of panels shows the posterior SFHs. The input is a solid black line, and the dashed black line is rebinned to match the nonparametric time
bins. The median of the posterior is a thick colored line, while the 16th–84th percentiles are shown as shaded regions. Even with very precise S/N = 100 photometry,
the derived parameters and their associated error bars are sensitive to the chosen prior.
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Figure 18. Effect of S/N on the posteriors for different assumed priors for a falling input SFH. The top panels show the derived mass and age as a function of prior
and S/N. The lower grid of panels shows the posterior SFHs. The input is a solid black line, and the dashed black line is rebinned to match the nonparametric time
bins. The median of the posterior is a thick colored line, while the 16th–84th percentiles are shown as shaded regions. Even with very precise S/N=100 photometry,
the derived parameters and their associated error bars are sensitive to the chosen prior.
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Figure 19. Effect of S/N on the posteriors for different assumed priors for a constant+burst input SFH. The top panels show the derived mass and age as a function of
prior and S/N. The lower grid of panels shows the posterior SFHs. The input is a solid black line, and the dashed black line is rebinned to match the nonparametric
time bins. The median of the posterior is a thick colored line, while the 16th–84th percentiles are shown as shaded regions. Even with very precise S/N=100
photometry, the derived parameters and their associated error bars are sensitive to the chosen prior.
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Figure 20. Effect of S/N on the posteriors for different assumed priors for a constant input SFH with a sudden quenching event. The top panels show the derived mass
and age as a function of prior and S/N. The lower grid of panels shows the posterior SFHs. The input is a solid black line, and the dashed black line is rebinned to
match the nonparametric time bins. The median of the posterior is a thick colored line, while the 16th–84th percentiles are shown as shaded regions. Even with very
precise S/N=100 photometry, the derived parameters and their associated error bars are sensitive to the chosen prior.
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