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Abstract— This work introduces a novel 12-motor paired-
cable actuation scheme to achieve rolling locomotion with
a spherical tensegrity structure. Using a new point mass
tensegrity dynamic formulation which we present, we utilize
Model Predictive Control to generate optimal state-action
trajectories for benchmark evaluation. In particular, locomotive
performance is assessed based on the practical criteria of rolling
speed, energy efficiency, and directional trajectory-tracking
accuracy. Through simulation of 6-motor, 12-motor paired-
cable, and 24-motor fully-actuated policies, we demonstrate that
the 12-motor schema is superior to the 6-motor policy in all
benchmark categories, comparable to the 24-motor policy in
rolling speed, and is over five times more energy efficient than
the fully-actuated 24-motor configuration.

I. INTRODUCTION

Spherical tensegrity robots (tensegrities) are lightweight
soft robots that are comprised of an elastic tension net-
work that suspends and connects isolated rigid rods. A six-
bar spherical tensegrity, shown in Figure [I] has six rigid
rods held together by 24 series-elastic cables. Notably, the
structural properties of compliant and low-weight tensegrities
have proven to be advantageous in applications that involve
high-impact loads and co-robotic cooperation with humans;
potential applications for these tensegrity robots include
space surface exploration rovers [1] and disaster response
robotics. However, the performance and energy efficiencies
of spherical tensegrity robots has yet to be evaluated for
practical use cases in realistic scenarios.

Motion planning and optimal control for rolling locomo-
tion has been a major driving force for tensegrity research
in recent years. As a result, innovative approaches utilizing
evolutionary algorithms, data-driven methods, and model-
based optimal control have all been developed to control
these novel complex robots. In particular, great emphasis has
been placed on optimal performance with respect to rolling
speed under non-ideal conditions and rough terrain, but less
consideration has been made for practical implementation
challenges such as energy efficiency, controllability, and
directional trajectory-tracking accuracy.

The goals of this paper are to introduce and evaluate a
novel 12-motor paired-cable actuation scheme for tensegrity
locomotion, presenting new tools and benchmarks to ade-
quately assess the performance of a tensegrity’s mobility
with respect to energy efficiency, rolling speed, and di-
rectional trajectory-tracking. Understandably, the values for
these benchmarks heavily depend on the hardware design —
the number of actuated cables, the actuators used, and which
specific cables are controlled. Nevertheless, we believe that
this preliminary exploration into these quantifiable metrics

Fig. 1: Example of a spherical tensegrity robot, which
locomotes through shape-shifting by controlling individual
cable tensions. Each rod is 60 cm in length. [Photo courtesy
of Squishy Robotics, Inc.]

elucidates a greater understanding of practical tensegrity
hardware and control policy design for future mobile tenseg-
rity robots.

In this paper, we first explore the new point mass tensegrity
dynamics in great detail to demonstrate how equations of
motion for the tensegrity dynamics can be easily constructed
in a rigorous and procedural manner. Next, we outline our
approach for motion planning through the use of Model
Predictive Control (MPC) in conjunction with the new point
mass formulation. Lastly, we demonstrate the approach’s
versatility by generating optimal state-action trajectories for
different tensegrity actuation configurations and evaluating
their locomotive performance using relevant benchmarks.

II. PRIOR RESEARCH

Various rolling locomotion control policies and actuation
configurations for spherical tensegrities have been explored.
Developments in single-cable actuation (i.e., where only one
cable is actuated at a time) have chiefly relied on the design
and analysis of hand-engineered control policies [2], [3]. In
contrast, due to the nonlinear coupled dynamics of spherical
tensegrity structures, multi-cable actuation (i.e., simultaneous
actuation of all 24 cables) has proven to be a significantly
more challenging task. Methods to explore multi-cable actu-
ation primarily consist of Monte Carlo simulations and data-
driven machine learning methods.

In recent years, research in multi-cable actuation for
tensegrities, [4], [5], has found that locomotion by rolling
can be achieved by shape-shifting to a desirable quasi-static



geometry that positions the center of mass outside of the
support polygon, and recent advancements in continuous
rolling locomotion for tensegrities have utilized deep rein-
forced learning [6], [7].

Finally, many tensegrity topologies and actuation con-
figurations have been explored. Numerous designs of even
just spherical tensegrities have demonstrated variability in
the number of actuated cables, degrees of freedom, overall
compliance, weight distribution, etc. Continuing on the in-
novations of these explorative hardware designs, this paper
presents a novel 12-motor paired-cable actuation scheme and
compares its performance to other schemes using standard
benchmarks of energy efficiency, rolling speed, and direc-
tional trajectory-tracking.

III. THE SIX-BAR SPHERICAL TENSEGRITY ROBOT AND
POINT MASS DYNAMICS

In this paper, we focus on the Class-1 spherical tenseg-
rity topology. Specifically, Class-1 tensegrities are special
tensegrity structures constructed with compressive bodies
which bear no rigid joints and which are interconnected
solely through series-elastic tensile elements. For this reason,
Class-1 tensegrity dynamic equations of motion are well-
structured and can be procedurally obtained when given
a fixed set of parameters. In prior work [8], a minimal
representation of the 3D rigid body dynamics for tensegrity
systems is presented. While the reduced state-dimension of
this minimal representation is advantageous, this particular
formulation is susceptible to dynamic singularities, which
can make robust and reliable motion planning and optimal
control difficult. In this section, we present a new simplified
point mass tensegrity dynamics representation which can be
easily formulated for any Class-1 tensegrity structure.

For this point mass formulation, rather than representing
true rigid body dynamics, we assume that the entirety of
each rod’s mass can be distributed between two point masses
located at the ends of the rod, hereafter also refered to as
nodes. Notably, this assumption’s validity is largely depen-
dent on the actual hardware design of the tensegrity robot; as
an example, consider the tensegrity SUPERDball [1] designed
by the Intelligent Robotics Group at NASA Ames, which
carries most of its mass closer to the ends of the rod, where
heavier motor assemblies and electronics are housed. Thus,
this point mass assumption can often be relatively accurate
and greatly simplifies the formulation of tensegrity dynamic
equations of motion, enabling rapid design and prototyping
of new innovative topologies in simulation.

With these simplifying assumptions, we now consider only
the positions, velocities, and accelerations of each point
mass. We define vectors p and p € R3V containing the
individual xyz positions and velocities of the N nodes as:
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Next, we assume that forces are imparted on each node
purely through idealized two-force members (i.e., the rods
and cables in pure compression/tension) or from the external

environment (e.g., contact forces with the ground). For the re-
mainder of this section, we discuss the dynamic formulation
of the cable and rod forces intrinsic to tensegrity structures.

A. Series-Elastic Cable Forces

Forces which act on the nodes due to the spring-cables
are calculated simply using Hookean approximations, with
special consideration that no compressive forces can be
applied through the cables:

Fcables,j = max {Oa kj(‘sj - L?)} 3)

Here k; is the stiffness of the series-elastic cable j, S; is the
separation distance between the two end nodes attached to
cable j, and L; is the spring-cable assembly rest length (see
Fig. [2).

Given a cable connectivity matrix C € R (see [8] for
details), with rows C; that encode cable interconnections
between pairs of nodes, we represent elements in the vector
of cables forces, v € R7, as:

v = \/ﬁkj - softplus (ozj,ﬁ) A
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where variables z; and a; are defined as follows:
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z; € R is a sparse vector that contains the directional vector
lying along the direction of the cable j. The softplus function
above is a smooth approximation to the non-differentiable
rectifier function (used in Eq. [3), approximating max{0, ov; }
with tunable smoothness parameter [3:

softplus(ay, B) := (y/aF + B2 +a;)/2 > 0 (5)

In practice, this Lipschitz smooth approximation demon-
strates better numerical stability in simulation and its contin-
vously differentiable property is well-suited for calculating
the locally-linearized dynamic models used in the receding
horizon control methods discussed in later sections.

B. Rigid Body Constraint Forces

The other set of essential forces in tensegrity structures
are the rigid body constraints, which constrain the nodal
positions relative to each other and the environment.

Rather than model the rods using a linear-elastic model
as with cable forces in the prior section, we instead adopt
a constrained dynamics approach. The motivation behind
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Fig. 2: Hookean linear-elastic model between two point
masses.




this is that penalty or energy barrier methods, which rely
on restorative forces to maintain rigid connections, necessi-
tate large stiffness parameters and lead to stiff differential
equations. Instead, the constraint forces we describe here
neatly cancel out the components of the applied forces that
violate rigid constraints at each timestep, creating accurate
and numerically tractable dynamic simulations.

In our work, we adopt a similar approach to [9] and define
constraint vectors, G(p) and G(p) € RM, to represent
the implicit constraint functions and their time derivatives,
where M is the number of active dynamic constraints. Each
scalar element G;(p) is a single implicit constraint function
that is satisfied when equal to zero. If we assume that
initial positions and velocities of the system satisfy dynamic
constraints (i.e., G(p) = 0 and G(p) = 0), then any forces
which maintain legal accelerations (i.e., G(p) = 0) will be
valid forces which satisfy all dynamic constraints.

We decompose the vector of legal forces F’ which are
ultimately applied to the particle masses into two compo-
nents: F, the total forces originally applied to the particle,
and F' which are resultant constraint forces that cancel out
any illegal accelerations. We also introduce the inverse-
mass matrix W, which contains the reciprocal of each
particle’s mass as elements along the diagonal. Thus, the
legal acceleration condition can be written as:
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Simplifying notation of G as matrices J(p)

and J (p), respectively, and dropplng the matrices’ explicit
dependencies on p, we rewrite:

JWFE = —Jp - JWF (8)
JWITA) = —Jp—IWF )

where (Eq. [0) is a result of (Eq.[7) in combination with the
principle of virtual work, which restricts constraint forces
F to lie in the subspace spanned by the constraint gradient
vectors (i.e., the rows of 3(;7(1:)))- The vector A of Lagrange
multipliers determines how much of each constraint gradient
is applied, providing a measure proportional to the reaction
force applied due to the corresponding constraint. To prevent
the accumulation of numerical drift, corrective stiffness and
damping terms are appended to (Eq. [9):

WITN) = —Jp — IWF — kG — kqG (10)

As a concrete example, consider the constraint forces
imposed by the rigid body connection between two endpoint
nodes of a rod. Given nodal positions and velocities, rod
length L,,q,4, and a rod connectivity matrix R € R@N
with rows R, that encode rod interconnections, we write an
implicit rod constraint function constraining relative distance
between nodal positions p 4 and p g, the constraint function’s

respective time derivative, and their associated Jacobian
matrices as:

Gl(p) = ||pB_pA||2 rod,q (11)
1
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Given these implicit constraint functions which are obtained
for each rod, we combine these results with the formulas in
Section to guarantee that nodal accelerations are realis-
tically and stably simulated, with no pair-relative acceleration
components lying along the axis of the rigid rods.

IV. MOTION PLANNING USING MODEL PREDICTIVE
CONTROL

Tensegrity motion planning and control can be overwhelm-
ingly complex due to the high-dimensional, highly-coupled,
nonlinear dynamics inherent to tensegrity robots. Generating
optimal state-action trajectories (i.e., the control and time
evolution of actuated cable rest lengths and the resulting
dynamic states) can be a difficult task when considering
the entirety of the 72-dimensional state-space and up to
24-dimensional action-space. Fortunately, we are able to
leverage the well-structured dynamics of Class-1 tensegrities
by importing the dynamic equations of motion derived in
the Section as optimization constraints for model-based
receding horizon control such as Model Predictive Control
(MPC).

In short, MPC is a control schema which iteratively
solves a constrained optimization problem and implements
only the first control input at the each timestep [10], [11].
The primary benefit of this control scheme is the ability
to leverage dynamic models to optimize future behavior
over finite time-horizons while also complying with state
and input constraints, such as those defined by realistic
safety and actuator limitations. Additionally, because MPC
is an iterative algorithm, the approach is inherently robust to
unforeseen disturbances.

In this work, we utilize MPC to automatically design
and evaluate tensegrity locomotion actuation policies (i.e.,
how to optimally actuate cable rest lengths). The continuous
dynamics of the robot are linearized about the robot’s current
state and discretized using a trapezoidal approximation:

[pk+1} _ [pk] L ar dT { )8 +f)k+81
Pk+1 Pk 2 (20 + P + By

where dT is the simulation timestep, x € R% is a con-
catenated vector of cable lengths and nodal position/velocity
states, Xy is the deviation about the linearization point xg,
and Ppo € R3Y is the current state acceleration at x = Xgq,

(16)



where P is calculated as follows:

p= W( —JTAWIT)1(Jp - k.G — kaG) +
J (17)
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(Eq. is obtained by combining the results of Sections
and Note, Fext are the total forces applied
to the tensegrity robot which are external to the system
(e.g., ground contact reaction forces) and are calculated
using damped linear-elastic collisions. These formulas are
similar to those discussed in Section and thus a formal
discussion of these external force calculations is excluded for
the sake of brevity.

Using the derived linearized and discretized dynamics as
optimization constraints, we minimize the following cost
function:

T N
> gt {—91 > pID + by Lucy + 93||Lk||1} (18)
k=1 i=1
Here D € R3 is the desired direction of travel, T is the
MPC finite-time horizon, and 7 < 1 is a discount factor
placing less weight on later states to account for linearization
errors. Finally, 61,605,605 are weighting parameters, and Ek
and L, € R’ contain deviations of the kth-step cable rest
lengths about the neutral pretensioned lengths and initial
lengths used for linearization, respectively. Combined, these
cost terms reward rolling velocity in a desired direction while
simultaneously penalizing cable rest length deviations from
both initial pretensioned lengths and current rest lengths (i.e.,
k = 1), respectively, preventing the robot from excessive
deformations and generating sparse motor actuation.

The convex cost function above and linear equality and
inequality constraints from the dynamics, state/actuator lim-
its, and initial conditions thus form a linear program which
is easily minimized using any convex optimization solver.
For this work, Gurobi Optimizer and YALMIP [12] were
used in MATLAB to solve the optimization problem at each
timestep iteration. Combined, these tools enable us to rapidly
evaluate the novel 12-motor tensegrity actuation policy and
its relative performance.

V. 12-MOTOR PAIRED-CABLE ACTUATION

Similar to the 24-motor actuation scheme, the 12-motor
paired-cable actuation scheme controls all 24 cables in a
spherical tensegrity; however, for the 12-motor scheme, two
cables are coupled by a single motor. For this actuation
scheme, a pair of cables meet at a single node — the retraction
of one cable means the extension of the other cable in that
pair. Thus, while all 24 cables are actuated, only 12 degrees
of freedom exist in the system.

Interestingly, this new paired-cable schema has some
practical advantages over its 24-motor schema counterpart.
The most immediate advantages are that fewer parts are
necessary, so the robot is less prone to mechanical failure,
and that the tensegrity robot will weigh significantly less.

VI. COMPARISONS OF ROLLING LOCOMOTION
STRATEGIES

In this final section, we discuss tensegrity rolling locomo-
tion in detail and compare three cable-actuation schemes,
each with varying degrees of control authority: 6-motor
(underactuated), 12-motor (paired-actuation), and 24-motor
(full-actuation) schema. In particular, these actuation schema
vary the number of cables that are driven by motor actuators
and consequently which cables remain as passive tensile
elements. As a result, we demonstrate that greater control
authority can provide improved performance at the cost of
additional hardware and controller complexity.

In the results that follow, we utilize MPC with the dynamic
constraints introduced earlier to generate optimal state-action
trajectories for evaluation. Notably, the simulation model
parameters used in these experiments are based on actual
hardware parameters of the tensegrity robot shown in Fig. [T}

Physical Parameters Value
Rod Length 60 cm
Rod Mass 500 g

Cable Stiffness 400 N/m
Pretension 50 N

Max. Cable Linear Velocity | 20 cm/s

For the remainder of this section, we discuss various char-
acteristic properties of tensegrity locomotion. First, we use
the 24-motor fully-actuated scheme to illustrate hardware and
controller design considerations that are unique to compliant
tensegrity rolling locomotion; namely, we assert that tenseg-
rity stiffness and initial pretension are important hardware
and controller design hyperparameters. We conclude this
section by evaluating the nominal performance of the three
common actuation schema introduced above with respect
to relevant performance metrics such as speed, directional
trajectory-tracking, and energy efficiency.

A. Effective Tensegrity Stiffness and Pretension

The inherent compliance of tensegrity structures serves as
a benefit with regards to mechanical robustness, particularly
in the structure’s impact-resilience, natural force distribution,
and lack of mechanical stress concentrators. On the other
hand, the resulting oscillatory dynamic behavior complicates
optimal control policy design. In this section, we present
results obtained when adjusting overall tensegrity stiffness
and pretension (i.e., the stiffness and initial pretension of
all individual series-elastic tension elements) and assess its
broader effects on rolling locomotion. For this evaluation,
we examine the relative dynamic behavior of the robot as
we adjust the overall stiffness and pretension of the fully-
actuated robot between 50% and 200% of the nominal values
of 400 N/m and 50 N. The simulation parameters we use for
MPC are as follows:

Timesteps | dT T () 01 | 65 | O3
500 001|101 095| 10|30 3.0

As we can see from the results in Fig. [3] greater overall
stiffness in the robot leads to better rolling performance
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Fig. 3: A comparison of average rolling speeds vs. overall
stiffness and initial cable pretension, with 24-motor scheme.
Near-linear fitting curves highlight the overall trends.

with the receding horizon controller. Similarly, performance
improves as initial pretension of the robot increases, before
dropping off. Intuitively, these results match expectations,
as greater stiffness creates less oscillatory dynamics which
the controller is unable to account for, due to the low
controller timestep of 0.01 seconds. Greater stiffness and
pretension ensures that the robot is less likely to drastically
deform in a detrimental manner by giving immediate and
precise control over the state of the robot with less actuation
input. That said, the results illustrate that excessively large
pretensions can also negatively affect tensegrity locomotion.
One possible explanation for this observed behavior is that
excessively large pretensions during the initial state require
more actuation before the robot can sufficiently change its
shape and enter a stable dynamic rolling gait.

Effectively, these results support that tensegrity
robots become easier to control using inexpensive and
computationally-limited microcontrollers as the tensegrity
dynamics approach rigid-like behavior; lower update
frequencies are less of an issue as state uncertainty due to
compliance in the robot decreases. Unfortunately, greater
stiffness in the overall robot also leads to prohibitively high
torque and power requirements on the motor actuators, an
issue we discuss in greater detail later in Section [VI-C}

B. Speed and Directional Control

Next, we compare the performance of the three actua-
tion schema presented earlier (i.e., 6-motor, 24-motor fully-
actuated, and 12-motor paired-actuated) with respect to av-
erage rolling speed and directional trajectory control. In this
section, we discuss the advantages that are provided through
the use of additional cable actuators.

As an illustrative example, we examine the average rolling
speed of the robot under each of the three actuation policies,
maximizing rolling velocity in a specified direction. To get
a more representative average speed, the total number of
timesteps we simulate is doubled from the previous section.

From the trials shown in Fig. ] it is clear that the greater
control authority, afforded by more actuated cables for 24-
cable policies, enables the robot to accomplish locomotion

X [m]
Fig. 4: Footprint trails of the robot starting at the origin
and rolling in the +X-direction for 10 seconds using 24-
motor fully-actuated (red), 12-motor paired-actuated (green),
and 6-motor actuation policies (blue). Solid lines indicate the
robot’s center of mass and dotted lines indicate supporting
polygons in contact with the ground.
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Fig. 5: Plot showing normalized average speeds in various
directions, starting from an identical initial state (base poly-
gon outlined in dashed black lines). Red represents results
for fully-actuated 24-motor scheme, and blue represents 12-
motor paired-cable actuation scheme.

tasks that the 6-motor variant simply cannot complete. In this
simple illustrative example, we see that, given the limited
degrees of freedom, the 6-motor actuation scheme is simply
unable to roll in the desired direction and becomes stuck as
it attempts to do so. That said, both the fully-actuated and
paired-actuated 24-cable policies were able to perform rea-
sonably well. Naturally, however, the greater controllability
of the fully-actuated system allows for greater directional
trajectory-tracking accuracy along the +X-axis. In Fig. [
this improved directional controllability is highlighted as we
evaluate the robot’s performance in any-direction rolling. In
this figure, average rolling speeds are normalized by the
fastest experimental trial, so that all arrows lie within the unit
circle. In particular, it is shown that while both the 24-motor
and 12-motor schemes can achieve reasonable top speeds,
the lesser degree of freedom provided by the paired-cable
schema (i.e., 12 motor actuators rather than 24), precludes
good performance in all directions.

To conclude, we summarize the relative performance of
each actuation policy, stating the average speeds of each
scheme followed by a normalized value — average speed
divided by the product of the rod length of the spherical
tensegrity design and the maximum linear velocity of the
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Fig. 6: Cable tensions for 6 of 24 cables (left) and total
tension (right) for 24-motor rolling locomotion. Note, in
attaining maximum rolling speed, total tension in the robot
remains below the initial pretensioned state after some time
(2 seconds).

motors. Importantly, we believe that this normalization will
simplify comparisons of performance across different hard-
ware configurations and tensegrity topologies.

Schema 6-motor 12-motor | 24-motor
Avg. Speed 18.1 cm/s | 37.9 cm/s | 38.2 cm/s
Norm. Speed | 1.51e-02 3.16e-02 3.18e-02

C. Energy Efficiency

In this final section, we briefly discuss the energy effi-
ciency of both the 12-motor paired-cable and 24-motor actu-
ation schema. As shown in the previous section, comparable
performance for maximum rolling speeds is achieved for
both 12-motor and 24-motor actuation schemes. However,
as demonstrated, 12-motor actuation does sacrifice some
degree of maneuverability due to the lesser control authority
granted. Nevertheless, in this section, we provide a com-
pelling motivator for the 12-motor variant on the basis of
energy efficiency.

We consider a simplified model of energy-costs which
relates tension in the robot to power consumed by the motors.
Specifically, cable tensions (see Fig. [6) are directly related
to load torques on the motor and correlates to current draw
and power consumption. If we assume 65% efficient motors,
the average Cost of Transport (i.e., energy divided by mass
times distance traveled) over 100 trials are 159.9 and 30.7
for 24-motor and 12-motor actuation schema, respectively.
Notably, the exceptional Cost of Transport is on par with
the locomotive efficiency of many animals found in nature
[13]. Specifically, the unique paired-cable mechanism is able
to leverage complementary tensions of each cable-pair such
that the motor does minimal work under normal operating
conditions. Thus, while some degree of maneuverability is
lost, the energy efficiency gains makes a 12-motor paired-
cable actuation schema an enticing candidate tensegrity robot
design.

VII. CONCLUSION

In conclusion, we have introduced a novel 12-motor
paired-cable actuation policy and the practical benefits it
holds over the more complex, fully-actuated 24-motor con-
figuration. In formulating the point mass dynamics and
simulating the optimal MPC state-action trajectories for
the 6-motor, 12-motor, and 24-motor actuation policies, we
were able to evaluate the relative performances of each

scheme. As an insightful result, we demonstrated that the
new 12-motor paired-cable scheme is capable of competitive
rolling speeds and is over five times more energy efficient
than the other two configurations; however, since the 24-
motor scheme has greater control authority, it has better
directional trajectory-tracking than both the 6-motor and 12-
motor variants. Finally, we look forward to using these tools
to investigate even more novel tensegrity topologies and to
applying the new paired-cable actuation policy on new robot
hardware for empirical results.
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