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Abstract

There has been a long-standing factor-of-two tension between the observed star formation rate density and the
observed stellar mass buildup after z ~ 2. Recently, we have proposed that sophisticated panchromatic SED
models can resolve this tension, as these methods infer systematically higher masses and lower star formation rates
than standard approaches. In a series of papers, we now extend this analysis and present a complete, self-consistent
census of galaxy formation over 0.2 < z < 3 inferred with the Prospector galaxy SED-fitting code. In this
work, Paper I, we present the evolution of the galaxy stellar mass function using new mass measurements of ~10°
galaxies in the 3D-HST and COSMOS-2015 surveys. We employ a new methodology to infer the mass function
from the observed stellar masses: instead of fitting independent mass functions in a series of fixed redshift intervals,
we construct a continuity model that directly fits for the redshift evolution of the mass function. This approach
ensures a smooth picture of galaxy assembly and makes use of the full, non-Gaussian uncertainty contours in our
stellar mass inferences. The resulting mass function has higher number densities at a fixed stellar mass than almost
any other measurement in the literature, largely owing to the older stellar ages inferred by Prospector. The
stellar mass density is ~50% higher than previous measurements, with the offset peaking at z ~ 1. The next two
papers in this series will present the new measurements of the star-forming main sequence and the cosmic star
formation rate density, respectively.

Unified Astronomy Thesaurus concepts: Galaxy properties (615); Galaxy formation (595); Galaxy abundances
(574); High-redshift galaxies (734)

1. Introduction more model flexibility, allowing users to relax many of the
strong assumptions that typically go into these fits.

Using Prospector, Leja et al. (2019b) fit the rest-frame
UV-IR photometry of a large sample of galaxies at
0.5 < z < 2.5 from the 3D-HST photometric catalogs (Skelton

Galaxies acquire their stars through a combination of in situ
star formation and merging with other galaxies. This growth is
difficult to simulate from first principles as it requires modeling
a wide range of processes on physical scales from stellar to

cosmological (e.g., Somerville & Davé 2015). Observations of et al. 2014; Momcheva et al. 2016). Relative to previous
the stellar mass function are thus a critical constraint for methodologies, this study infers stellar masses that are
hydrodynamical, empirical, and analytical models of galaxy systematically larger by 0.1-0.3 dex and star formation rates
formation (e.g., Lilly et al. 2013; Genel et al. 2014; Furlong (SFRs) that are systematically lower by ~0.1-1 dex or more.
et al. 2015; Somerville & Davé 2015; Pillepich et al. 2018; These offsets are a result of the inclusion of a wider range of
Behroozi et al. 2019; Davé et al. 2019; Grylls et al. physics. The dominant causes of these offsets are the
2019, 2020). Accordingly, accurate measurements of the stellar substantially older stellar ages inferred with nonparametric star
mass function have been a subject of intense observational formation histories (Carnall et al. 2019; Leja et al. 2019a),
interest (Marchesini et al. 2009; Ilbert et al. 2013; Muzzin et al. and the fact that we self-consistently account for the light from

2013; Moustakas et al. 2013; Tomczak et al. 2014; Grazian old stars in the SFR inferences (see Leja et al. 2019b).
et al. 2015; Song et al. 2016; Davidzon et al. 2017; Wright Importantly, these offsets imply a ~0.2 dex decrease in the
et al. 2018). . . . cosmic star formation rate density and a ~0.2 dex increase in

Stellar masses are inferred from observations by constructing the derivative of the cosmic stellar mass density. If correct, this
models for the combined emission of the physical components finding removes a long-standing factor-of-two disagreement
of galaxies, including stars, gas, dust, and supermassive black between these quantities (Madau & Dickinson 2014; Leja et al.

holes, and ﬁtFing them fo the observed gal.axy photometry (see, 2015; Katsianis et al. 2016; Tomczak et al. 2016; Davidzon
e.g., the review by Conroy 2013). Typically, these spectral et al. 2018)

energy distribution (SED) models consist of a combination of However, Leja et al. (2019b) estimated the cosmic star

stellar templates, prescriptions for dust physics, and a f i te and stell densities b Ivi ffsets ©
minimization routine (e.g., FAST, Kriek et al. 2009, Le O@? ton rate and stellar mass densities by app y'mg ottsets o
existing measurements of the stellar mass function and star-

Phare, Arnouts et al. 1999; Ilbert et al. 2006, and MAGPHYS, . .
da Cunha et al. 2008). Recently, a new generation of these forming sequence. This approach neglects a number of second-

codes has emerged that allows for the creation of more complex order effects in the determination of these integrated quantities,
models generated on the fly, including BayeSED (Han & such altered shapes for these functions and object-by-object
Han 2014), BEAGLE (Chevallard & Charlot 2016), Pro- scatter. A full cosmic census coupled with the appropriate
spector (Johnson & Leja 2017; Leja et al. 2017), and volume and completeness corrections is necessary to complete
BAGPIPES (Carnall et al. 2019). These codes permit much the picture implied by Leja et al. (2019b).
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This paper is the first of a series of three papers that follow
up Leja et al. (2019b) by re-measuring the stellar mass
function, the star-forming sequence, and inferring the new star
formation rate density and rate of galaxy assembly implied by
the Prospector results. In this work, Paper I, we use stellar
masses inferred with Prospector to constrain the stellar
mass function between 0.2 < z < 3. The fits have been
performed to publicly available photometry and redshifts from
the 3D-HST (Skelton et al. 2014) and COSMOS-2015 (Laigle
et al. 2016) catalogs.

We introduce a new methodology for fitting the galaxy
stellar mass function. This new methodology is an extension of
the maximum likelihood method introduced by Sandage et al.
(1979). Previously, the standard approach fit separate stellar
mass functions to galaxies in discrete redshift bins. The growth
of the stellar mass function is then inferred by comparing the
mass functions inferred at different redshifts. The main
drawback to this approach is that the resulting mass functions
are not guaranteed to evolve smoothly or even monotonically
with redshift (e.g., Drory et al. 2009; Leja et al. 2015; Tomczak
et al. 2016). This uneven evolution can be caused by effects
such as fluctuations in the density field due to large-scale
cosmic structures or by the well-known degeneracies in the
fitting functions typically used for the stellar mass function.

Instead, our new methodology fits a smooth model to the
redshift evolution of the stellar mass function that is
constrained simultaneously by every galaxy in the survey.
The underlying assumption is that the mass functions in
adjacent volumes smoothly evolve into one another. This
assumption makes this approach more robust to both fluctua-
tions in the density field and degeneracies in the fitting
functions.

The photometric data and redshifts are described in
Section 2, and the SED modeling is described in Section 3.
The mass function model is described in Section 4. The results
are presented in Section 5. Section 6 discusses the broader
context of these results, and the conclusion is presented in
Section 7. We use a Chabrier (2003) initial mass function and
adopt a WMAP9 cosmology (Hinshaw et al. 2013) with
Hy = 69.7 kms 'Mpc™', Q,=0.0464, and Q.= 0.235.
Parameters are reported as the median of the posterior
probability distribution functions, and uncertainties are half
of the (84th—16th) percentile range, unless indicated otherwise.

2. Data

Here, we describe the photometry, redshifts, and areal
coverage from the surveys used in this work. These data are all
taken from publicly available catalogs.

2.1. 3D-HST

The 3D-HST photometric catalogs cover five well-studied
extragalactic fields with a total area of ~900 arcmin® (Skelton
et al. 2014). The provided photometry ranges from 17 to 44
bands and spans 0.3—8 um in the rest frame. It is supplemented
with Spitzer/MIPS photometry from Whitaker et al. (2014).
Crucially, the fields include deep HST imaging from the
CANDELS program (Grogin et al. 2011; Koekemoer et al.
2011). The survey also provides measured redshifts; for the
objects fit in this work, approximately 30% are measured
spectroscopic or grism redshifts (Momcheva et al. 2016) while
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the remaining ~70% are photometric redshifts from EAZY
(Brammer et al. 2008).

We adopt Prospector fits to this catalog from Leja et al.
(2019b), which include 58,461 galaxies selected above the
stellar mass-completeness limit between 0.5 < z < 2.5. This is
done in order to limit the computational demands of running
the Prospector model. This sample is supplemented with
4,966 objects fit with the same model between 2.5 < z < 3.0
to extend the analysis to higher redshifts, for a total of 63,427
objects. The photometric zero-points and uncertainties are
adjusted from the default 3D-HST catalog as described in Leja
et al. (2019b).

Accurate measurements of the mass function also require an
accurate estimate of the mass-completeness limit M.(z), defined
as the lowest stellar mass at which the galaxy sample is 100%
complete. In this work, M, is set by computational constraints
rather than magnitude limits, in the sense that there were only
computational resources to fit a fraction of the full photometric
catalogs with Prospector. Here, we choose to fit objects
down to the mass-complete limit of the 3D-HST survey as
determined by Tal et al. (2014). This selection is determined
using stellar masses from the FAST SED-fitting code (Kriek
et al. 2009).

This is not necessarily straightforward to interpret, as FAST
stellar masses have both substantial scatter with, and are
substantially offset from, the Prospector stellar masses
(Leja et al. 2019b). Accordingly, to determine a stellar mass-
completeness limit for the Prospector analysis, we first
correct the measured FAST mass-completeness limits for the
systematic offset between Prospector and FAST. We then
add twice the measured Gaussian scatter between the two mass
measurements. This calculation is performed iteratively, taking
care to ensure that stellar mass incompleteness affects neither
the bias nor the scatter measurements. The resulting galaxy
sample and stellar mass limits are shown in Figure 1, and the
stellar mass limits are tabulated in Table 1.

2.2. COSMOS-2015

We also fit objects in the COSMOS-2015 photometric
catalog (Laigle et al. 2016). This catalog contains roughly
500,000 objects from the 2 deg® COSMOS field (Laigle et al.
2016), with photometry covering the rest-frame UV to the mid-
infrared (including the far-infared for <1% of objects). The
survey also provides measured redshifts; these redshifts are
from a mixture of spectroscopic and photometric data.
Importantly, COSMOS-2015 provides the volume necessary
to measure the evolution of the mass function down to z = 0.2.
It also overlaps with the redshift range of the 3D-HST sample,
providing a useful consistency check between the two surveys.

We select objects from the COSMOS-2015 catalog in the
overlap between the COSMOS and UltraVISTA surveys
(McCracken et al. 2012), which have reliable optical photo-
metry (i.e., FLAG_PETER = 0 in the catalog notation). The
UltraVISTA survey provides the deep near-infrared photometry
crucial for accurate stellar mass measurements. This overlap
corresponds to a reduced area of 1.38 deg” (Laigle et al. 2016).
We further filter for objects with 0.2 <z < 0.8 and
My qigle > Mcompiee(2), for a total of 48,443 targets. The upper
redshift limit ensures overlap with the 3D-HST redshift, while
the lower limit avoids the saturation limit for bright, nearby
galaxies (Davidzon et al. 2017).
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Figure 1. The distribution in mass and redshift for objects from the 3D-HST and COSMOS-2015 surveys. The thick lines indicate mass-complete limits, largely set by
sub-sampling of the full catalog. Gray objects are below the mass-complete limit. The vertical striping comes from large-scale cosmic structure.

Table 1
Mass-completeness Limits for the Prospector Fits to the 3D-HST and
COSMOS-2015 Surveys

Redshift 10g10(M*, complele/MG)
3D-HST survey
0.65 8.72
1.0 9.07
1.5 9.63
2.1 9.79
3.0 10.15
COSMOS-2015 survey
0.175 8.58
0.5 9.13
0.8 9.55

The mass completeness is estimated with the same
methodology described in Section 2.1, with masses and
mass-completeness limits taken from the Laigle et al. (2016)
catalog. The galaxy sample and stellar mass completeness is
shown in Figure 1, and the mass completeness is tabulated in
Table 1.

3. SED Modeling

We use the galaxy SED-fitting code Prospector to fit the
photometry. Prospector infers galaxy properties using
stellar populations generated by the Flexible Stellar Population
Synthesis (FSPS) code (Conroy et al. 2009). The MIST stellar
evolutionary tracks and isochrones (Choi et al. 2016;

Dotter 2016) from the MESA open-source stellar evolution
package (Paxton et al. 2011, 2013, 2015, 2018) are taken as
stellar models.

We use the Prospector-a model Leja et al. (2019b), a
modified version of the model from Leja et al. (2017). The
model has 14 parameters, including a seven-component
nonparametric star formation history, a two-component dust
attenuation model with a flexible dust attenuation curve, free
gas-phase and stellar metallicity, and mid-infrared emission
from a dust-enshrouded AGN (Leja et al. 2018). It includes
dust heating from stellar sources via energy balance, emitted
into a dust SED of fixed shape (Draine & Li 2007).
Prospector includes a self-consistent nebular emission
model whereby the gas is ionized by the same stars synthesized
in the SED (Byler et al. 2017).

For consistency, the same model is used to fit both
COSMOS-2015 and 3D-HST. There are ~1100 galaxies that
overlap between the COSMOS-2015 and 3D-HST samples,
matching objects are identified with a 0”2 positional match and
6z < 0.01. This overlap is used to explore the robustness of the
SED-derived parameters to photometry measured by different
teams. Figure 2 compares the derived parameters for the same
objects. The offsets are <0.02 dex, suggesting that the
continuity model can be fit to both surveys without introducing
substantial systematic offsets.

4. A Continuity Model for the Stellar Mass Function

Here, we motivate and describe our continuity modeling
approach for measuring the stellar mass function.
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Figure 2. Comparing SED-derived quantities for overlapping objects between the COSMOS-2015 and 3D-HST samples. From left to right, the properties are stellar
mass, specific star formation rate, and mass-weighted age. This demonstrates that any existing photometric differences between the two catalogs do not strongly affect

the SED-derived parameters.

4.1. Overview

There are two standard approaches in the literature to fitting
the stellar mass function. The first is the 1/V,, method,
originally defined in Schmidt (1968) and later refined in Avni
& Bahcall (1980). This approach calculates the number density
of objects in bins of stellar mass with

n = N/Vmax (1)

where N is the observed number of objects, and V. is the
maximum volume out to which these objects could be detected.
This calculation makes no a priori assumptions about the shape
of the mass function. This approach has the advantage of
flexibility, at the cost of being more sensitive to density
fluctuations (Marchesini et al. 2007) and providing no
functional form for extrapolation.

The second approach is the maximum likelihood method
(Sandage et al. 1979). This is a parametric maximum likelihood
estimator that assumes some functional form for the stellar
mass function, typically a Schechter function (Schechter 1976).
Deep measurements of the mass function often find that using
two Schechter functions provides a better fit to the data,
particularly at z < 2 (e.g., Baldry et al. 2008; Ilbert et al. 2013;
Moustakas et al. 2013; Muzzin et al. 2013; Tomczak et al.
2014; Davidzon et al. 2017; Wright et al. 2018). Fundamen-
tally, this method assumes that the mass function (M) has a
universal form separable into a function of mass multiplied by
density, ie., N(M, x) = ®(M)p(x). This makes the fitting
results robust to density inhomogeneities (Efstathiou et al.
1988). Additionally, it requires no binning in stellar mass and
can easily be extrapolated beyond the observed limits. The
disadvantage relative to the 1/V,,, method is the assumption
of a parametric form, effectively imposing a shape prior that
can bias the resulting mass functions.

To infer the stellar mass function in a survey between some
redshifts zy;, t0 Zmax, the survey is typically split into multiple
discrete redshift bins, and independent mass functions are fit in
each redshift interval using one of the above techniques.
The evolution of the stellar mass function is then inferred by
calculating the change in the observed mass function between
redshifts. This approach is standard in the literature (Baldry
et al. 2008; Marchesini et al. 2009; Ilbert et al. 2013;

Moustakas et al. 2013; Muzzin et al. 2013; Tomczak et al.
2014; Davidzon et al. 2017).

The primary drawback to this methodology is the assumed
independence of the mass functions in different redshift
intervals. Because they are assumed to have no relation to
one another, the independently measured mass functions are
not guaranteed to evolve smoothly or even monotonically with
redshift. One cause of this non-monotonic evolution is density
inhomogeneities: a positive fluctuation followed by a negative
fluctuation can result in negative evolution with cosmic time.
Other causes are the significant degeneracies in the double
Schechter function between M, and the low-mass slopes a.
This can produce significant inconsistencies between even mild
extrapolations of the stellar mass function below the mass-
completeness limit (Drory et al. 2009; Leja et al. 2015). This
lack of consistency can cause challenges when comparing
models. Another drawback is that this approach neglects
redshift evolution of the mass function within a bin: this can be
especially important when computing second-order statistics
such as scatter or when using relatively wide redshift bins (e.g.,
Speagle et al. 2014).

Here, we take a different approach, constructing a continuity
model for the redshift evolution of the stellar mass function.
This model overcomes the described limitations by fitting all
objects at once, using no binning in either redshift or mass.
This design assumes that the mass functions at two redshifts z;
and z, are linked, insofar as one smoothly evolves into the
other. This is similar to earlier works that assume some
evolution in the galaxy luminosity function (Lin et al. 1999;
Blanton et al. 2003; Andreon 2004, 2006). This smoothness
assumption also occurs in previous works that fit smooth
functions to the evolution of the mass function parameters after
they have been independently derived (e.g., Drory et al. 2009;
Leja et al. 2015; Williams et al. 2018; Wright et al. 2018), but
here we incorporate this assumption explicitly into the fit.

Furthermore, this continuity model properly accounts for
uncertainties in the derived stellar masses of individual
galaxies, using the full stellar mass posteriors from the SED-
fitting routine. This does not require assuming Gaussian
uncertainties. Forward-modeling the mass function using the
full mass uncertainty budget also naturally avoids the
Eddington bias (Eddington 1913), assuming that the derived
mass uncertainties are reliable.
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4.2. Deriving the Continuity Model

Below, we construct the continuity model with parameters p
conditioned on our data D. This approach is very similar to a
Bayesian hierarchical model; the primary piece missing is that
the mass posteriors of individual galaxies are not modified
using the derived mass function.

In brief, the input to the modeling is the set of all galaxies
above the mass-complete limit. Each galaxy has a mass and a
redshift: the uncertainty in the mass is given by the full
probability distribution function, while the uncertainty in the
redshift is ignored* (the effect of the redshift uncertainties on
the stellar mass uncertainties is discussed in Section 5.3). All
galaxies are fit at the same time. The model has 11 parameters,
which, in combination, completely describe the redshift
evolution of the stellar mass function. It includes one additional
parameter to describe the sampling variance induced by large-
scale cosmic structure. The redshift evolution is parameterized
such that the evolution is smooth—though not necessarily
monotonic—at all masses.

The formalism follows below. A test of the formalism using
mock data is shown in Appendix A.l. Readers primarily
interested in the modeling choices may skip the equations in
both Sections 4.2 and 4.4 without loss of clarity.

By Bayes’ Theorem:

P(Dlp)P(p).

P(p|D) = PD)

@)

The boldfaced variables denotes vector quantities. P(D) is a
normalizing constant that we ignore here, and P(p) are the
priors.

The most important term is the likelihood, P (D|p). Here, we
model the redshift evolution of the galaxy stellar mass function
as a Poisson point process with some occurrence rate \. While
typically X is taken to be fixed, here, the Poisson process
operates over a redshift range in which the number density of
galaxies undergoes significant evolution. We therefore consider
an inhomogeneous Poisson process where the rate \ is a
function of both the logarithmic mass M = log, (M) and
redshift z.

Ignoring constants, the probability density function for an
inhomogeneous Poisson point process in M and z with N
observations {(M;, z1),...,(My, zn)} is

N
P{(Mi, 200 My, zn)}) = €™ [ XM, ) 3)

i=1

where N, is defined as
Zp M/l
Ny = f f AM, 2)d M. @
21 M.

While M), must technically be finite to ensure that the Poisson
process is properly defined, we can replace M) = oo in the
upper limit of Equation (4) without loss of precision. Replacing
(M;, z;) with 6;, and expressing this in terms of the observed
data D:

P(Dlp)=de9 PDI{6,.....0n}) P({61 ...} p).  (5)

4 We note that it is straightforward to generalize this methodology to include

redshift uncertainties.
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We note that because the fits were performed independently to
each object, the first term within the integral is

PDI{0,,....0n}) = H P(D;|6)). (6)

Replacing the second term with the expression for the
inhomogeneous Poisson process from Equation (3), we obtain

PDIp) = 2, [a*0 [ PDIGIAGIR). (]

which can be simplified—again exploiting the independence of
the fits to each object—to

P0Ip) = 2, [] [ a6, PD10) A Oip). ®)

To incorporate uncertainties from the posterior P (6;|D;) for
the inferred parameters 6; for each galaxy, we need to
marginalize over the unknown parameters:

PWilp) = [POIM;, 2)AM;, 2)d0, ©)

This represents the likelihood-weighted average of the prob-
ability of our continuity model over all possible values of ;.

We approximate this integral using a set of m samples
{6;1,...,0;,,} drawn from the posterior P (6,|D;) of each object.
Assigning each sample an importance weight

Wi,j = ; (10)
P(6;))
then allows us to approximate this integral as
X wiiP(041p)
[Pwierp@ipas ~ =E—"— ()

20 Wi

P(6;;) are the chosen priors on mass and redshift during the
SED fits performed by Prospector. The adopted redshift
prior is a delta function, while the stellar mass prior is uniform
in logarithmic space. Given that this analysis also operates on
M = log(M) rather than M, it follows that all w; ; are constant.
In practice, we find that the results converge for m 2 10
posterior samples, and we take m = 50.

Substituting our approximations and definitions into
Equation (8), our log-likelihood becomes

N m
InP(D|p) ~ ZIH(Z)\(M,;_;, Zi,j|P] - NAlp).  (12)

i=1  \j=I

The subsequent section addresses the definition of the rate
term .

4.3. The Schechter Function

For our continuity model, the rate function can be evaluated
as
_ 0’NWM, 2)
070 M
where V. (z) is the differential co-moving volume element, and

(M, z) is the (un-normalized) stellar mass function evaluated
at redshift z. This is an intuitive result: the occurrence rate of

AWM, 2) =PM, ) Vo (2) 13)
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Table 2
Free Parameters and Priors of the Continuity Model

Parameter Prior Range
log(¢;/Mpc® /dex) -6, —2
log(¢,/Mpc’ /dex) -6, -2
log(My./M..) 10, 12
a; —-0.5,1
% -2, -0.5
log(oer/dex) -2, -05

galaxies is proportional to their space density multiplied by the
differential co-moving volume element, V.

We adopt the sum of two Schechter functions to describe the
evolution of the mass function ®(M, z). The logarithmic form
of a single Schechter function is written as

B(M) = In(10) g, 10M - M@+ Dexp(—10M M) (14)

for a given ¢, My = log,;(Mx), and a. The integral of this
function over mass from some lower limit M. to infinity gives
the expected total number density of galaxies Ng:

Np = f A:C PM)AM = ¢, T(a + 1, 10M Mo (15)

with I' representing the upper incomplete gamma function.
When necessary, this can be used to normalize the Schechter
function such that it integrates to unity:

@(MIQS*, M*’ Oé)
M > M,
P(M|¢>}<7 M*’ «, M() = Nq;
0 M < M..
(16)

We take My to be the same for both Schechter functions, as is
standard for fitting double Schechter functions (e.g., Baldry
et al. 2012; Muzzin et al. 2013; Tomczak et al. 2014).

Altogether, we have five parameters to describe the mass
function at a fixed redshift: ¢, ¢, My, oy, and a,. We model
the evolution of ¢;, ¢,, and My with a quadratic equation in
redshift, such that

p;(2) = ao; + az + asiz? 17)

where a;; are the continuity model parameters (Drory et al.
2009; Leja et al. 2015; Wright et al. 2018). We fit redshift-
independent values for «; and o, in order to limit degenerate
solutions. This results in an Ny, = 11 model.

In practice, we do not fit directly for the quadratic
coefficients but instead for the anchor points p(z), p(z2), and
p(z3) from which the coefficients can then be derived. This is
done because it is more straightforward to express physically
meaningful priors on the anchor points. The redshifts for the
anchor points are taken to be z; = 0.2, z; = 1.6, and z3 = 3;
these are chosen to bracket the redshift range of the surveys,
and the results do not depend on this choice. The adopted priors
are uniform for each parameter and the ranges are shown in
Table 2. The different priors for the two low-mass slopes are
chosen in order to keep the two Schechter functions distinct.

We note that, by definition, P (M|¢p,, My, o, M,) returns
a probability of zero for any mass sample below the lower limit
M... This is only relevant for objects whose posterior median
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masses are above the mass limit such that they enter the sample
selection, but whose mass posteriors extend below the mass
limit. We find that using more complex forms of the selection
function has a negligible impact on our results.

4.4. Sample Variance

In practice, the physics of structure formation causes
galaxies to be distributed in clumps and voids. This means
that a survey over a discrete volume can be subject to
significant sample variance, sometimes referred to as cosmic
variance. Accordingly, the mean density field A'(M, z) within
any observed volume is likely to differ from the true mean
density field A(M, z).

Since we are interested in inferring A(M, z) rather than
N(M, z), we wish to marginalize over this sampling variance:

N
POV o< (€% [T X)POIN)N (18)
i=1

where A\ = X(M;, z;). Performing this integral is computa-
tionally challenging because we have to marginalize over N
objects for all possible values of X' (M, z), which, in theory,
should be correlated in M and z.

We make two significant approximations in order to evaluate
this integral. The first approximation is that the expected
number of counts Ny is roughly independent of any particular
realization of the density field ). In other words, there are a
sufficiently large number of objects such that the correlation
between Ny and realizations of the density field \! is small, and
therefore, the integral can be separated into two components:

N
PO ~ e x [f(]‘[ A{)P(Aw)dx] (19)
i=1
where
M, = —In f PON) e M) (20)

can be interpreted as the expected number of galaxies
marginalizing over the unknown realizations of the density
field \'(M, z) in the survey.

The second approximation we make is that the fluctuations
in M(M, z) constitute pure white noise such that errors in M
and z are independent of one another. In other words, the
covariance between any two points M, z and M’, 7/ is zero,
except in the case where the two points are exactly identical.
While not strictly true, this approximation is needed to make
the problem computationally feasible, as including spatial
correlations would necessitate inverting very large
(~10° x 10°) matrices. We take this white noise to be
distributed as a Gaussian in logarithmic space with some
amplitude og,mp:

10g(>\/) ~ G(IOg()\), Usamp)- 2D

This allows us to factor the integral over objects into N
individual components, all of which can be evaluated
independently:

N N
JAIxpoxay =TT [xPanax. @2
i=1 i=1
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Figure 3. Joint constraints for the continuity model fit. The diagonal panels show the 1D posterior for each model parameter. The off-diagonal panels show the 2D
posterior for each pair of parameters. The 1D posterior median and 16th/84th percentiles are indicated above the diagonal elements. The many parameter degeneracies
highlight the utility of linking parameters between redshift bins. Appendix B provides a guide to convert the continuity model parameters into the mass function at an

arbitrary redshift z.

Each term in this integral is simply the expectation value of
P (A|A). Since the noisy rate \’ is assumed to be log-Gaussian,
this simply evaluates to:

A= [N POIN)AX, = expllog) + ohmp/2). (23)

For the noiseless case where ogmp =0, this reduces to
A; = )\, as expected.

Altogether, this modifies the likelihood equation to be

N m
InPDlp) = Y In| Y AMij, zijlp| — M\(Alp). (24

i=1 \j=1

The sampling variance term has the net effect of slightly
increasing the model number density, implying that the
observed mass function is slightly offset to higher number
densities than the intrinsic mass function. This is a natural
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Figure 4. The left panels show the redshift evolution of the double Schechter parameters, while the right panel shows the redshift evolution of the stellar mass
function. The lines in the left panels show the medians of the posteriors, while the shaded regions indicate the 1o ranges. The color shading in the right panel indicates

the posterior median.

consequence of assuming log-normal density fluctuations: a
small window into the density field is likely to be biased high.
In the limit of a wide survey that includes both positive and
negative fluctuations—the sum of which will more accurately
encompass the average density field—the approximation is less
appropriate. As will be seen later, this term does not introduce
any significant bias in the derived mass function in this work.

The next step is writing down a functional form for ogmp.
Typically, the uncertainty due to sampling variance is based on
the geometry of the volume in which the mass function is
inferred (e.g., Driver et al. 2011). This is because sampling
uncertainty is inherently a counting statistic: it encapsulates the
distribution of possible differences between the mass function
inferred in some volume and the “true” mass function. Here,
rather than counting galaxies in a discrete volume, the
continuity model infers a smooth evolution of a distribution
function over a large volume. Accordingly, the sampling
uncertainty ogmp is instead modeled as an increase in the
uncertainty of the number density for a single object.

Importantly, galaxy clustering and bias are functions of both
stellar mass and redshift (Moster et al. 2011), suggesting that
the sampling variance term should have a stellar mass
dependence. Moster et al. (2011) calculates the expected size
of sampling variance effects from models of dark-matter
evolution. They translate this to galaxies using a halo
occupation distribution model (Moster et al. 2010). We adopt
the stellar mass dependence 3 from Equation (13) of that study,
normalized such that an object with a stellar mass of 10'° M, at
the redshift midpoint of our sample, z = 1.6, has § = 1. The
resulting expression for sampling variance is

e%ef — ]
Osamp = In| ———— 4+ 1 (25)
o (/B(Mitellar, Z) ]

where o is the sampling uncertainty for a galaxy with a stellar
mass of 10'° M., at z = 1.6. The prior for o is uniform in
logarithmic space (i.e., the Jeffreys prior) between 0.01 and 0.3
(implying that log oys goes from —2 to —0.5; see Table 2). We
show the results of fitting the continuity model to mock
galaxies from a cosmological simulation in Appendix A.2,
demonstrating that the true value of o should fall in the
region defined by the priors.

5. Results

The continuity model with the sample variance term
included has 12 parameters, including 11 for the evolution of
the mass function and 1 for the sample variance. The nested
sampling code dynesty (Speagle 2020) is used to sample the
model posteriors. Figure 3 shows the model posteriors and
covariances. There are multiple parameter degeneracies in this
model, identifiable via diagonal shapes in the joint posterior
panels. This underscores the utility of assuming continuity
between redshift bins.

5.1. The Growth of the Stellar Mass Function

The continuity model parameters and their associated
uncertainties are accessible in Figure 3. The redshift evolution
of the Schechter parameters and the derived stellar mass
functions are shown in Figure 4. Appendix B provides a guide
to convert the continuity model parameters into the mass
function at an arbitrary redshift z;, along with python code to
perform this task.

Broadly speaking, the mass function grows as a function of
cosmic time, consistent with many previous analyses in the
literature. At high redshifts, the Schechter function with the
steeper slope (¢,) dominates. As the massive end builds up
with time, the shallower component (¢,) begins to dominate.
The exponential cutoff parameter, M,, shows relatively little
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Figure 5. Comparison of the continuity model posteriors to the galaxy counts from the 1/V,x method. This demonstrates that the continuity model accurately
reproduces the binned mass functions (though it was not fit to them). The dotted lines indicate the mass-completeness limit calculated at the upper limit of the redshift
bin. Galaxies from COSMOS-2015 and 3D-HST are plotted separately as red and blue symbols; notably, there is consistency in the region where these surveys
overlap. The light gray shading indicates the 1o uncertainty in the mass function posterior—this is thinner than the width of the line in most cases.

evolution with time, consistent with other analyses of the mass
function (e.g., Marchesini et al. 2009; Muzzin et al. 2013). The
massive end of the mass function is relatively stable after
z ~ 0.8. This is discussed further in Section 6.2.

By construction, the low-mass slopes have no redshift
dependence. This is done to limit the degeneracies between the
low-mass slope and other Schechter parameters. Above
z 2 1.5, the 3D-HST survey is not sufficiently deep to
constrain all five Schechter parameters, and the polynomial
prior typically induces significant time evolution once a
degeneracy is encountered. The 11 parameters of the current
mass function parameterization are sufficient to describe the
observed number densities to the mass-complete limit of the
surveys considered here. We emphasize that this modeling
choice is unrelated to whether the low-mass slope should
evolve with time. There do exist theoretical predictions that the
low-mass slope should remain constant with time (e.g., Kelson
et al. 2016), though generally in cosmological hydrodynamical
simulations, the low-mass slope becomes shallower with time
(e.g., Ma et al. 2018; Pillepich et al. 2018). This number
density evolution will still be accurately reflected in the model
posteriors, as presented here, assuming it is above the mass-
complete limit of the survey.

Figure 5 compares the mass function inferred with the
continuity model to the number density estimates from the
1/Viax method. There is good agreement, demonstrating that
the continuity model (Section 4) is sufficiently flexible to
describe the growth of the mass function over the 10 Gyr
covered in this redshift range. The slight offset of the continuity
model to lower number densities at high masses and redshifts is

Table 3
Redshift Bins Adopted for the Schechter Fits to the 1/V,,,, Estimates

Adopted Redshift Bins

0.2, 0.5)
(0.5, 0.8)
0.8, 1.1)
(1.1, 1.4)
(1.4, 1.8)
(1.8,2.2)
(22, 2.6)
(2.6, 3.0)

caused by both the larger stellar mass uncertainties and by the
increased sampling uncertainty in this regime. There is no hint
of a decrease in number counts near the adopted stellar mass
limit, implying that the derived mass-complete limits are an
acceptable description. In fact, they seem to be a conservative
choice, as the model continues to accurately describe the
binned galaxy counts ~0.2-0.3 dex below the adopted mass-
completeness limits.

5.2. Comparison to the Standard Technique

We contrast the results of our continuity model with a
Schechter function fit to the 1/V,.x points in fixed redshift
bins. The mass function is divided into eight redshift bins,
detailed in Table 3.

The uncertainties are taken as the quadratic sum of Poisson
uncertainties and sampling variance uncertainties. The
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Figure 6. Comparing the continuity model posteriors to a standard Schechter fit to the 1/V .« estimates. The top panels show the redshift evolution of the Schechter
parameters while the bottom panels show the redshift evolution of the mass function. The lines indicate the posterior median values; the shaded regions indicate 1o
uncertainties. For clarity, no uncertainties are shown for the mass functions. The dotted lines indicate an extrapolation below the mass-incomplete limit. The posterior
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sampling variance uncertainties are generated with the Driver
et al. (2011) cosmic variance calculator. The fit is performed
with emcee (Foreman-Mackey et al. 2013), with walker
convergence assessed by eye after two burn-in phases and
10,000 iterations. The parameter priors are set to match the
associated anchor point priors from the continuity model
(Table 2). During the fit, the intrinsic mass function is
convolved with a Gaussian of width o = 0.05 dex to simulate
the net effect of stellar mass uncertainties.

Figure 6 contrasts the redshift evolution of the stellar mass
functions derived from fitting the 1/V,,. points and from the
continuity model. Figure 7 compares the mass functions
directly and highlights the residuals. Broadly, the two
approaches produce similar mass functions, but there are
differences in detail. First, the uncertainty contours for the
continuity model are much smaller. This occurs because the
continuity model is more constrained than the standard
approach. This is expected: the standard technique aims to
describe the mass function in a specific volume, whereas the
continuity model is additionally constrained by the mass
functions in the entire survey volume. The continuity model
effectively requires that the underlying galaxy populations are
continuous in time.

Second, while there is generally good agreement between the
two approaches above the stellar mass limit, there are
differences in the extrapolation of the mass functions down to
log(M/M.) = 8. By fixing the faint-end slopes, the continuity

10

model ensures that the extrapolation to lower masses is stable
with redshift. In the standard approach, this extrapolation is
more sensitive to variations in galaxy counts within the fixed
volume. The continuity of the extrapolated fits is helpful in
ensuring consistent results when using mass functions as inputs
to models (e.g., Drory et al. 2009; Weinmann et al. 2012; Leja
et al. 2015; Tomczak et al. 2016; Behroozi et al. 2019).
Finally, the implied evolution of the massive end of the
stellar mass function is different between the two techniques.
The 1/Viax fits suggest non-monotonic evolution, including
negative evolution from z = 2 to z = 1, which reverses to
growth from z = 1 to z = 0.2. In contrast, the continuity model
infers a smooth buildup of stellar mass at higher redshifts and
very little evolution below z ~ 1. The immediate cause of this
difference is the fact that the continuity model is constrained by
the entire redshift evolution of the massive end rather than the
counts in any specific volume. The ultimate cause of this
difference is the different sensitivities to sampling variance
between the two techniques. Massive galaxies are more
strongly affected by sampling variance due to both their low
intrinsic numbers and their high bias relative to the underlying
density field (Section 4.4). This results in large number density
uncertainties on the massive end in the 1/V,,,, fit: taken at face
value, this suggests that massive galaxies grow in a mixture of
rapid bursts and mass-loss events. In addition to this, the
continuity model directly adjusts for the large bias of massive
galaxies at high redshifts, slightly decreasing their inferred
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number densities. The evolution of the massive end (or lack
thereof) is discussed further in Section 6.2.

5.3. Stellar Mass Uncertainties

Stellar mass uncertainties are interesting to examine in detail,
as they are a key ingredient in forward-modeling the stellar
mass function—Appendix A.l illustrates how the continuity
model adjusts for the effect of stellar mass uncertainty.
Specifically, accurate uncertainty estimates produce accurate
corrections for the Eddington bias (discussed in Section 4.1)
Figure 8 shows the centered, summed stellar mass posteriors as
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likelihood function for the local mass function of each galaxy.

12

a function of stellar mass and redshift, calculated in bins of
6z = 0.15 and §logM = 0.15. The stellar mass uncertainty
ranges between ojogy = 0.06-0.17 dex. It increases at lower
masses and at higher redshifts, consistent with the uncertainties
on the observed fluxes.

We also include the uncertainties from the most recent
COSMOS stellar mass function (Davidzon et al. 2017) in
Figure 8 for reference. These uncertainties include the effect of
redshift uncertainty, whereas the Prospector uncertainties
are calculated at a fixed redshift. Despite this, the Prospec-
tor mass uncertainties are comparable in size to Davidzon
et al. (2017). This suggests thst Prospector infers larger
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uncertainties on the stellar mass at fixed redshift, consistent
with the greater flexibility of the Prospector model. The
comparison also shows relatively lower Prospector uncer-
tainties for massive objects, suggesting that photometric
redshift uncertainties may contribute relatively more to the
total uncertainty in massive objects.

Previous work has found that redshift uncertainty can be a
significant component of the total stellar mass uncertainty,
particularly at z > 2 (e.g., Caputi et al. 2011; Grazian et al.
2015). Grazian et al. (2015) compares photometric redshifts
estimated with different codes, showing that the resulting
dispersion in the inferred stellar mass functions is roughly the
size of the Poisson error bars. However, these works focus on
the high-redshift universe where photometric redshifts are the
most uncertain, o, ~ 0.05 (1 + z). For z > 0.8, the redshifts in
this work are entirely from the 3D-HST survey, which utilizes
space-based grism spectroscopy to infer more accurate redshifts
with a measured accuracy of o, = 0.02 (1 + z) (Bezanson
et al. 2016). The scatter between spectroscopic redshifts and
photometric/grism redshifts is minimized for brighter objects
and for more massive objects (Bezanson et al. 2016),
suggesting that the redshifts of massive objects are relatively
more well-determined, though the fraction of catastrophic
outliers increases slightly to ~5%. The COSMOS redshifts
have an even higher accuracy of o, ~ 0.007 (1 + z) (Laigle
et al. 2016).

While the grism-based redshifts are highly accurate and, as
judged from the comparison to Davidzon et al. (2017), likely
do not dominate the stellar mass error budget, it is straightfor-
ward to generalize the methodology presented here to include
redshift uncertainties. This will include the covariance between
mass and redshift as well, rather than simply inflating the mass
uncertainties at a fixed redshift by marginalizing over the
redshift uncertainty. The limiting factor for including redshift
uncertainties here is computational resources, but this will
likely be alleviated in future work with the use of techniques
such as neural net emulation (Alsing et al. 2019).
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5.4. Inferred Sampling Variance

Figure 9 shows the model posteriors for the sampling
variance term og,mp from Equation (25). The uncertainties are
higher at higher redshifts and masses; this is driven by the bias
of the underlying matter density field taken from Moster et al.
(2011). The posterior for the sampling uncertainty term is
largely set by the chosen logarithmic prior (Figure 3). The
stellar mass function uncertainty stemming from sampling
variance is similar in magnitude to the sampling deviations in
typical galaxy survey volumes (e.g., Driver et al. 2011). The
value derived observationally is also similar to the value
derived by fitting the same model to galaxies in a cosmological
simulation (Appendix A.2).

The exact value of the added sampling variance term has
little impact on the results presented in this work. This can be
seen directly in the relatively small covariance between
Osampling and the mass function parameters in Figure 3. The
term with the greatest covariance is My at high redshift. This is
unsurprising, as the sampling uncertainty term is maximized for
high-redshift massive galaxies.

Even though the sampling uncertainties on the mass function
for any specific object can be substantial (up to a factor of two),
the continuity model infers the mean redshift evolution of the
galaxy population. The constraints on the global mass function
are thus expected to be stronger than the injected uncertainty
due to sampling variance.

5.5. The Evolution of the Total Stellar Mass Density

The total stellar mass density can be derived by integrating

the Schechter functions down to some lower limit
M, = log(M,). This produces
PM,) = qb*lOM* T(a + 2, 10Me=My) (26)

where I is the upper incomplete gamma function, and «, ¢,
and My = log(Myx) are the corresponding Schechter
parameters.
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The redshift evolution of the total stellar mass density is
shown in Figure 10. The buildup of the integrated stellar mass
from z = 3 to z = 0.2 is relatively steady, with the derivative
peaking around z ~ 1.5. Notably, the location of this peak is
lower than the peak of z ~ 1.9 found in the consensus model of
Madau & Dickinson (2014).

Other measurements from the literature are included after
converting their results to Chabrier (2003) initial mass
functions (Li & White 2009; Baldry et al. 2012; Santini et al.
2012; Bernardi et al. 2013; Moustakas et al. 2013; Muzzin et al.
2013; Tomczak et al. 2014; Mortlock et al. 2015; Davidzon
et al. 2017; Wright et al. 2018). For Bernardi et al. (2013), we
adopt the fits to the Sérsic light profile rather than the aperture
photometry. For Santini et al. (2012), we take the results of
the Bruzual & Charlot (2003) stellar populations fits (their
Table 1). We also include the predictions from the integral of
the Madau & Dickinson (2014) star formation history, using
the z = O stellar mass density from Gallazzi et al. (2008) and a
canonical return Salpeter (1955) return fraction of R = 0.27.
We caution that this calculation is highly sensitive to the z = 0
stellar mass density, such that a change of 0.02 dex in either
direction produces dramatically different results. The stellar
mass densities are integrated down to either 10 or 10°° M.,
depending on the survey depths and data available in the
literature.

The analysis presented here finds a systematically higher
total stellar mass density at almost all redshifts than previous
studies. This difference is largely due to differences in SED
modeling, discussed further in Section 6.1. One exception is
Santini et al. (2012), who find a very high stellar mass density
at z ~ 2. This study uses data from early HST imaging of
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GOODS-S, and the high stellar mass density is driven by an
unusually steep faint-end slope. We confirm through direct re-
analysis that GOODS-S shows a steep faint-end slope
compared to the other extragalactic fields. This faint-end slope
is in contrast with subsequent deeper (Tomczak et al. 2014) and
wider (Muzzin et al. 2013; Mortlock et al. 2015) studies of
extragalactic fields and is also found in other studies of the
GOODS-S field (Mortlock et al. 2011). We conclude that the
high stellar mass density in Santini et al. (2012) may be driven
by an overdensity of low-mass galaxies in the GOODS-S field.

6. Discussion

In this section, we briefly compare the results of this study
with other similar studies in the literature and discuss the
evolution (or lack thereof) in the massive end of the mass
function.

6.1. Comparison to Previous Mass Functions in the Literature

Figure 11 compares the mass function from this work to
comparable mass functions from the literature (Pozzetti et al.
2010; Moustakas et al. 2013; Muzzin et al. 2013; Tomczak
et al. 2014; Davidzon et al. 2017; Wright et al. 2018). When
needed, we interpolate the published mass function parameters
between redshift bins. In a few cases, the fitting technique is
changed between redshift bins; in these cases, the interpolations
fail and are not used. We take the double Schechter fits from
Muzzin et al. (2013) where available; otherwise, the single
Schechter fits with the free faint-end slope are used. The
smooth parameterization of the Tomczak et al. (2014) mass
functions from Leja et al. (2015) are used. We note that while
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Wright et al. (2018) base their analysis on the same surveys
analyzed in this work, they use a photometric reduction
pipeline that introduces systematic, wavelength-dependent
offsets in the photometry of up to 0.15 mag (Andrews et al.
2017). The literature mass functions are truncated at their mass-
complete limits, while the mass function from this work is
extrapolated for comparison.

At almost all redshifts and masses, the continuity model in
this work infers a higher number density at a fixed stellar mass
than those of other studies. This directly leads to the 30%-—
100% higher integrated stellar mass densities in Figure 10.
Many of these mass functions were derived using either the
same surveys analyzed in this work, or subsets of the same
surveys. This overlap makes this comparison particularly
interesting: these works are subject to the same redshift
uncertainties, photometric uncertainties, and sampling uncer-
tainties due to cosmic variance. Pozzetti et al. (2010) is notable
for using spectroscopic redshifts; the agreement between the
Pozzetti et al. (2010) mass function and the other mass
functions, which primarily rely on photometric redshifts,” is
encouraging. This suggests that redshift uncertainties do not
strongly affect the shape or normalization of the mass function,
at least for z < 1.

The new fitting methodology is not responsible for this
difference; while the fitting methodology affects the extrapola-
tion to lower masses, the size of the uncertainties, and the
evolution of the massive end (see Section 5.2), it does not cause
the systematically higher stellar masses.

These higher masses originate from differences in the SED-
fitting routines: Prospector infers systematically more
massive galaxies than do standard SED-fitting approaches,
with the difference maximized at low masses. The causes of
these differences are discussed in detail in Leja et al. (2019b).
The primary cause is the nonparametric SFHs used in
Prospector. This approach produces mass-weighted ages
that are ~3-5 times older than standard parametric models
(Carnall et al. 2019; Leja et al. 2019a), which in turn result in
larger mass-to-light ratios and larger stellar masses. A second
factor is that Prospector uses the FSPS stellar populations
synthesis code, which infers ~0.05 dex systematically larger
masses than codes such as those in Bruzual & Charlot (2003).

There are several pieces of independent evidence that
support these elevated stellar masses. Leja et al. (2019b) show
that star formation histories inferred with standard SED-fitting
approaches are far too short to be consistent with the buildup of
the observed mass function, especially at low masses (see also
Wuyts et al. 2011). In contrast, the more extended star
formation histories inferred with Prospector are in
relatively good agreement with the observed evolution of the
stellar mass function. Leja et al. (2019b) further verifies that the
higher stellar masses remain below the measured dynamical
masses (Bezanson et al. 2015). Importantly, these larger stellar
masses increase the derivative of the stellar mass density by
~0.2 dex, bringing it into agreement with the observed star
formation rate density. However, while the systematically
higher stellar masses from Prospector appear to resolve
several issues with the standard approach, the overall
consistency of this new picture of galaxy evolution must still
be thoroughly tested. Key future tests include a more detailed
comparison to dynamical masses (e.g., Price et al. 2019),

5 Aside from Moustakas et al. (2013), which uses prism redshifts.
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spectroscopic ages (e.g., Belli et al. 2019), comparison to
spatially resolved SED fits (e.g., Sorba & Sawicki 2018), and
verification of the SED-fitting methodology using realistic
simulated SFHs (e.g., Simha et al. 2014).

6.2. The Growth of Massive Galaxies Since z ~ 1

There is an open question in the literature as to what extent
the massive end of the stellar mass function (M, > 10" M..)
grows between 0 < z < 1. While the most massive galaxies
have little ongoing star formation, there are theoretical
expectations for significant growth in the massive galaxies at
late times due to galaxy—galaxy mergers (De Lucia et al. 2006;
De Lucia & Blaizot 2007; Naab et al. 2009; Behroozi et al.
2013; Tacchella et al. 2019). There is also observational
evidence that the massive galaxies experience substantial
growth through mergers, including the observed size evolution
of massive galaxies since z ~ 2 (van Dokkum 2008; Bezanson
et al. 2009; van Dokkum et al. 2010; Belli et al. 2014; Mowla
et al. 2019) and the lower metallicities and younger ages
observed on the outskirts of nearby massive galaxies (Rowlands
et al. 2018; Oyarziin et al. 2019).

Despite these expectations, Moustakas et al. (2013) con-
strained the evolution of the mass function over a wide area of
~5.5 degrees> and found zero net evolution in the massive end
of the mass function since z = 1. Similarly, Bundy et al. (2017)
studied 139 deg? in the Stripe 82 Massive Galaxy Project and
found no evolution in the massive end of the mass function
over 0.3 < z < 0.65. These results are consistent with the
continuity model presented here, which also finds very little
observed growth of the massive end of the mass function since
z ~ 0.8 (e.g, Figure 4). Number density arguments suggest that
a stellar mass function that is constant in time also implies
negligible mass evolution in individual objects (van Dokkum
et al. 2010; Leja et al. 2013). Taken at face value, this is a
paradoxical result: where is all of the merging mass going?

One potential solution lies in the extended light profiles of
massive galaxies. Massive galaxies have large, low surface
brightness components, which, in dense environments, will
blend naturally into the inter-cluster light (ICL); indeed, the
most extended objects have luminosities and radii that are
comparable to entire galaxy clusters (Kluge et al. 2020). As a
consequence, standard photometric techniques substantially
underestimate both the luminosity and size of massive galaxies,
typically by over-estimating the sky subtraction (Bernardi et al.
2010). After accounting for these faint, extended components,
Bernardi et al. (2013) show that the z =~ 0 integrated stellar
mass density increases by 20%, and the number density of
galaxies with log(M/M) = 11.7 increases by a factor of five.

It is unclear whether the extended low surface brightness
features around massive galaxies are well-measured in standard
photometric catalogs such as those fit here. Specifically,
standard photometric apertures are likely too small to
encompass all of the light from massive galaxies. For example,
Mowla et al. (2019) find that galaxies with log(M/M) > 11.3
have a median effective radius of ~9.3 kpc at z ~ 0.2. The
Laigle et al. (2016) catalog uses 3” photometric apertures,
corresponding to ~10 kpc at z = 0.2. This suggests that the
standard technique does not directly measure almost half of the
light in massive galaxies at low redshifts; indeed, Mowla et al.
(2019) show in their Appendix that aperture fluxes system-
atically underestimate fluxes from profile fitting by up to a
magnitude for the largest objects. This remains true even when
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using larger apertures in ground-based photometry; van
Dokkum et al. (2010) finds that Sérsic fits to the light profiles
of massive galaxies suggest that standard apertures miss 5% of
the flux at z = 2, increasing to 15% at z = 0.6. Unfortunately,
this offset is also likely to have a redshift dependence, as a
fixed angular aperture will capture a smaller fraction of the total
galaxy as the redshift decreases.

Thus, we caution that the lack of evolution in the massive
end observed in this work should not be over-interpreted, until
a more complete accounting of the extended light of massive
galaxies is performed, especially at z < 0.5 where the angular
size of massive galaxies is comparable to or larger than
standard photometric apertures.

7. Conclusion

In this paper, we present new stellar mass functions over the
redshift interval 0.2 < z < 3. We use the Prospector SED-
fitting code to infer stellar masses. The inputs are rest-frame
UV-IR photometry and measured redshifts from the publicly
available COSMOS-2015 and 3D-HST galaxy catalogs. As
shown in Leja et al. (2019b), Prospector infers 0.1-0.3 dex
larger stellar masses than standard approaches, largely due to
the use of nonparametric star formation histories.

We couple these mass measurements with a new methodol-
ogy for measuring the evolution of the stellar mass function.
The standard maximum likelihood approach slices a survey
into multiple distinct volumes and fits independent mass
functions in each volume. Our new continuity modeling
approach constrains the redshift evolution of the mass function
using all of the observed masses and redshifts at once,
assuming that the mass function evolves smoothly with
redshift. It is conditioned on the full stellar mass posteriors
(requiring no assumption about the shape of the uncertainties),
and includes the effects of sampling variance. We demonstrate
that the redshift evolution inferred with this method is more
consistent than standard methodology, particularly below the
mass-complete limit and at the massive end of the mass
function.

The stellar mass function in this work shows higher number
densities at a fixed stellar mass than almost any other
measurement in the literature, with integrated stellar mass
densities ~50% higher than other studies. This is largely due to
differences in SED-fitting methodology: the flexible nonpara-
metric star formation histories used in Prospector produce
older ages and, therefore, more massive galaxies than standard
approaches. The rate of change of the integrated stellar mass
density peaks at z = 1.5, lower than the consensus model of
z ~ 1.9 (Madau & Dickinson 2014). Key areas for future work
on the galaxy stellar mass function include folding redshift
uncertainties into the model constraints, performing fits to
fainter objects in order to constrain the evolution of the low-
mass slope, and explaining the apparent lack of evolution in the
number density of massive galaxies between 0 < z < 1.

This paper is the first in a series of three papers that aim to
present a unified picture of galaxy assembly between
0.2 < z < 3 as inferred by Prospector. Subsequent papers
in this series will address the redshift evolution of the galaxy
star-forming main sequence and the overall star formation rate
density.

J.L. is supported by an NSF Astronomy and Astrophysics
Postdoctoral Fellowship under award AST-1701487. J.S.S. is
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partially supported through funding from the Harvard Data
Science Initiative. The computations in this paper were run on
the Odyssey cluster supported by the FAS Division of Science,
Research Computing Group at Harvard University. This
research made use of astropy,’ a community-developed
core Python package for Astronomy (Astropy Collaboration
et al. 2013, 2018). This work is based on data products from
observations made with ESO Telescopes at the La Silla Paranal
Observatory under ESO program ID 179.A-2005 and on data
products produced by TERAPIX and the Cambridge Astron-
omy Survey Unit on behalf of the UltraVISTA consortium.

Software:  Prospector (Johnson & Leja 2017),
python-fsps (Foreman-Mackey et al. 2014), Astropy
(Astropy Collaboration et al. 2013, 2018), FSPS (Conroy et al.
2009), matplotlib (Caswell et al. 2018), scipy (Jones
et al. 2001), ipython (Pérez & Granger 2007), numpy (van
der Walt et al. 2011), dynesty (Speagle 2020), emcee
(Foreman-Mackey et al. 2013).

Appendix A
Fitting Mock Data with the Continuity Model

A.l. Accurate Treatment of Mass Uncertainty

Here, we test our methodology by generating mock galaxies
with noisy stellar masses and fitting them with the continuity
model.

The galaxies are generated by first assuming an underlying
stellar mass function near the recovered posterior values. A
mock survey is performed over the angular size of the 3D-HST
survey over 0.5 < z < 3, using the measured 3D-HST mass-
completeness limits. The combination of the stellar mass
function and the areal coverage is used to determine the number
of objects, and the (noiseless) redshifts are drawn randomly
proportional to the derivative of the total galaxy number
density. No additional sampling variance is included in either
the mock generation or in the fitting process.

Next, stellar masses are assigned by drawing from the stellar
mass function. The observed stellar masses are perturbed from
the true mass by drawing from a Student’s-¢ distribution with
v = 6 degrees of freedom and a standard deviation of 0.3 dex
centered on the true mass. The Student’s-f distribution is
qualitatively similar to a normal distribution but with wider
tails and is chosen to demonstrate the robustness to non-
Gaussian uncertainties. Posterior samples are generated around
the perturbed mass using the same Student’s-t distribution.
These uncertainties are intentionally chosen to be larger than
the observed stellar mass uncertainties as a test of the
methodology.

Figure Al shows that the continuity model accurately
recovers both the input Schechter parameters and the under-
lying mass function. Notably, it recovers the shape of the
massive end even in the face of significant and non-Gaussian
stellar mass uncertainties. The 1/V;,.x estimates do not adjust
for the effect of stellar mass uncertainties, and as a result, they
overestimate the density of massive galaxies via Eddington
bias. The ~1o overestimate of a, and ¢, is because these
parameters are strongly covariant (see Figure 3). Even though
the Schechter parameters do not exactly match the inputs, the
posterior predictive number densities agree well with the
inputs, which is the primary goal of the fit. Exploring physical

6 http:/ /www.astropy.org
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Figure Al. Demonstrating the recovery of mock input parameters using the continuity model. The top panels show the redshift evolution of both the input and
recovered Schechter parameters, while the bottom panels show the redshift evolution of the mass function in redshift bins. The lines indicate the posterior median
values, while the shaded regions indicate the 20 model uncertainties. The model mass function uncertainties are typically smaller than the line width. The dotted lines

indicates the mass-incomplete limit.

models that have fewer degeneracies than a double Schechter is
suggested for future work to avoid these issues.

Finally, we caution that this test represents an ideal scenario,
where the input mass function evolves smoothly according to
the model assumptions, and the noise properties are known
perfectly. Practical applications of this method are subject to
additional unknown systematic effects stemming from differ-
ences between the model assumptions and the real universe.

A.2. Constraining Sampling Variance

Here, we explore the ability to constrain the additional
sampling variance term in the continuity model. To test this, we
fit the continuity model to galaxies from the Horizon-AGN
simulation (Dubois et al. 2014). As this is a cosmological
hydrodynamical simulation, it contains the large-scale structure
that the sampling variance term is intended to marginalize over.

Laigle et al. (2019) has extracted stellar masses and redshifts
from the Horizons-AGN simulation in a light-cone designed to
emulate the COSMOS survey. We pass these parameters to the
continuity model, assuming no redshift uncertainty and using
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the same Student’s-t distribution of mass uncertainties
described in Appendix A.1 but with a much smaller standard
deviation of 0.02 dex. This smaller standard deviation is
adopted in order to better isolate the effect of cosmic structure
on the posteriors. Galaxies in the range 0.2 < z < 0.8 are
included to emulate the cuts used in the main analysis. The
galaxy catalog is complete down to 10° M. in total mass
formed; accordingly, we adopt a completeness limit of 10° M,
in stellar mass.

The resulting fit is shown in Figure A2. The posterior for o .¢
retains a clear signature of the adopted logarithmic prior, but
with a large bump around o, = 0.08, similar to the value
inferred from the observations. While there is not enough
information to uniquely identify the magnitude of the
additional sampling variance, both the observational and
the simulated data prefer a similar value. This suggests that
the model is marginalizing over the correct magnitude of the
sampling variance term. A stronger, more informative prior on
the distribution of large-scale structure in the universe would
have very little effect on the results of this study, as can be seen
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Figure A2. Exploring the recovery of the sampling variance term when fitting a cosmological simulation with the continuity model. The top panel shows the
marginalized posterior for o, the median and 1o contours are marked in red, while the value inferred from the observations is marked in blue. While the posterior
from fitting the simulations is largely prior-dominated, it contains a peak near o, = 0.08, similar to the observational result. This suggests the sampling variance term
is properly recovering the variance from large-scale structure. The bottom panels show the redshift evolution of the mass function in redshift bins. The lines indicate
the posterior median values, while the shaded regions indicate 20 model uncertainties. The dotted lines indicates the mass-completeness limit.

by the lack of significant covariance between o, and the mass
function parameters in Figure 3.

The simulated mass function has an excess over a typical
Schechter mass function at very high masses, visible in
Figure A2; the upper limit for «; was increased to 6 in order to
accurately describe the mean evolution of the massive end of
the simulated mass function.

Appendix B
Guide to Generating a Mass Function Using the Continuity
Model Parameters

Here, we demonstrate how to generate a mass function and
associated uncertainties at some redshift z, using the
parameters of the continuity model. This code can also be
adapted to sample the posterior for other purposes; for
example, calculating the integrated stellar mass density using
Equation (26). The fit parameters and their 1o marginalized
uncertainties are available in Figure 3.

The first step is to convert the redshift-dependent parameters
into quadratic coefficients. The model parameters are three
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points on a quadratic line, corresponding to z; = 3.0, z, = 1.6,
and zz = 0.2. Using the associated y;, y,, and y; values, one
can convert to quadratic coefficients via

3 =y) + O — yl)ﬁ Bl
a= 2+ ) B1)
22—
po Y2y —aG - ) ®2)
(z2 — 21)
c=y —az — bz (B3)
for a quadratic defined as
y(z) = az® + bz + c. (B4)

Using this, the redshift-dependent parameters ¢, ¢,, and My
can be calculated at an arbitrary redshift z,, where zy is
bounded such that 0.2 < zy < 3. These parameters can then be
inserted into Equation (14) to construct the stellar mass
function.



THE ASTROPHYSICAL JOURNAL, 893:111 (19pp), 2020 April 20

Precisely generating the uncertainties in the mass function
requires access to the posterior samples. In practice, these can
be simulated without much loss of precision by assuming
uncorrelated Gaussian uncertainties. Below is a section of
python code that generates a posterior median mass function
from the continuity model parameters and their associated 1o
uncertainties.

import numpy as np

def schechter (logm, logphi, logmstar, alpha,
m_lower=None) :

wun

Generate a Schechter function (in dlogm) .

LIRIR1]

phi=((10xxlogphi) * np.log(10) *
10#* ( (logm—logmstar) * (alpha + 1)) *
np.exp (-10%x*x (Logm—logmstar)))
return phi

def parameter_at_z0(y,z0,2z1=0.2,2z2=1.6,23=3.0) :
Compute parameter at redshift *z0" as a function
of the polynomial parameters ‘y‘ and the
redshift anchor points ‘z1?%, ‘z2', and ‘z3".

vl, y2,y3 =y

a= (((y3—yl) + (y2—yl) / (z2—zl) * (z1—z3)) /
(z3%%2—z1*x2 + (z2%%2—z1%x%x2) / (z2—z1) % (z1—z3)))
b= ((y2—yl) - a x (z2%x2—z1%%2)) / (z2—z1)
c=yl—ax* zIlxx2—P x z1

return a x z0*x2 + b % z0 + ¢

# Continuity model median parameters + 1-sigma
uncertainties.

pars = "logphil’: [-2.44,-3.08, -4.14],
"logphil_err’: [0.02,0.03,0.17,
"logphi2’: [-2.89,-3.29, -3.51],
"logphi2_err’: [0.04,0.03,0.031,
"logmstar’: [10.79,10.88,10.84],
"logmstar_err’: [0.02,0.02,0.047,

"alphal’: [-0.28],
"alphal_err’: [0.07],
"alpha2’: [-1.48],

"alpha2_err’: [0.1]
# Draw samples from posterior assuming independent
Gaussian uncertainties.
# Then convert to mass function at ‘z = z0".
draws =
ndraw = 1000
z0=1.0
for par in [’ logphil’, "logphi2’, ' logmstar’, "alphal’,
"alpha2’]:
samp = np.array ([np.random.normal (median, sca-
le = err,size = ndraw)
formedian,err in zip(pars[par],pars([par+’ _err’])1])
if par in [’ logphil’, "logphi2’, ' logmstar’]:
draws [par] = parameter_at_z0 (samp, z0)
else:
draws [par] = samp.squeeze ()

# Generate Schechter functions.

logm = np.linspace (8, 12, 100) [:, None]# log (M) grid

phil = schechter (logm, draws [’ logphil’], # primary
component
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(Continued)

draws [’ logmstar’], draws[’alphal’])
phi2 = schechter (logm, draws [’ logphi2’ ], # secondary
component
draws [’ logmstar’], draws[’alpha2’])
phi = phil + phi2 # combined mass function

# Compute median and 1-sigma uncertainties as a function
of mass.

phi_50, phi_84, phi_16 = np.percentile (phi, [50, 84, 16],
axis=1)
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