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Abstract

This paper investigates an approach to limit the fullness of ‘tuning’ provided by wave-by-wave

impedance matching control of wave energy devices in irregular waves. A single analytical for-

mulation based on the Lagrange multiplier approach of Evans (1981) [1] is used to limit the velocity

amplitude while also limiting the closeness of the phase match between velocity and exciting force.

The paper studies the effect of the present technique in concurrently limiting the device velocity

and the required control/actuation force. Time domain application requires wave-profile prediction,

which here is based on a deterministic propagation model. Also examined in the time domain is the

effect of possible violation of the displacement constraint, which for many designs implies impacts

at hard stops within the power take-off mechanism. Time domain simulations are carried out for

a 2-body axisymmetric converter (with physical end-stops) in sea states reported for a site off the

US east coast. It is found that the approach leads to effective power conversion in the less energetic

sea states, while as desired, considerable muting of the optimal response is found in the larger sea

states. Under the assumptions of this work, the end-stop collisions are found to have a minor effect

on the power conversion. The present approach could be used to guide the design of power take-off

systems so that their displacement stroke, maximum force, and resistive and reactive power limits

are well-matched to the achievable performance of a given controlled primary energy converter.
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Nomenclature

α Actuator stroke limit ≤ device excursion limit

αb Bottom taper angle describing the oceanographic-buoy profile

β(iω) Complex velocity constraint for frequency ω

λ Lagrange multiplier

λ1(ω), λ2(ω) Parameters associated with resistive and reactive loads, respectively, at frequency ω

θf Forced phase error in order to meet displacement/force constraints

a(ω) Fourier transformable part of the frequency-dependent added mass at ω; a(ω) = a(ω)−a(∞)

A(iω) Complex wave amplitude (i.e., includes amplitude and phase)

b(ω) Radiation damping due to device oscillations at frequency ω

C(ω) Reactive part of the device impedance at frequency ω

cd Linearized viscous friction damping

D Damping load applied by power take-off actuator with just adjustable resistive loading

d Distance between up-wave measurement point xA and device centroid location xB

Ff (iω) Diffraction force , i.e. ’exciting’ force in the presence of waves at frequency ω

FL(iω) Force to be applied by the actuator system at frequency ω

FL1(iω) Resistive part of the actuator force at frequency ω

FL2(iω) Reactive part of the actuator force at frequency ω

Hf Complex exciting force amplitude per unit amplitude frequency variation

hl(t) Impulse response function representing the wave propagation model

Ho Velocity frequency response under present optimal constrained control

ho(t) Impulse response function with constrained impedance matching control

hr(t) Radiation impulse response function

Hs Significant wave height

k Stiffness coefficient opposing oscillation (hydrostatic for heave, pitch, etc.

Lw Wave length in regular waves

m In-air mass of the device
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Pa(ω) Maximum reactive power exchanged with device at frequency ω

Pw(ω) Mean converted power at frequency ω

Poe Power converted with end-stop collisions occurring

Te Energy period

U(iω) Complex amplitude of oscillation velocity at frequency ω

ue(t) Cumulative impact-caused velocity, added to each time an end-stop collision occurs

uo(t) Velocity in the time domain under constrained impedance matching control

Uo, Ue, Ues Fourier transforms of velocities uo, ue, and ues respectively.

Ur, Ui Real and imaginary parts, respectively, of velocity U(iω)

uoe(t) Velocity with end-stop collisions occurring

xA Point of up-wave wave profile measurement

xB Device centroid location

FC Limiting reactive force practical with the actuator

FR Limiting resistive force practical with the actuator

Flm Total limiting force practical with the actuator

a(∞) Infinite-frequency added mass in the device oscillation mode

P c(ω) Wave power converted during a cycle at frequency ω

1. Introduction

While attempts to use wave energy have been reported since the late 18th century (e.g. [2]),

serious efforts to utilize ocean waves for large scale energy generation began with the work of Salter [3].

Optimum energy conversion required large devices, posing serious design challenges [4], [5]. However,

smaller devices such as heaving axisymmetric buoys that utilized favorable 3-dimensional interactions

with incoming waves also began to be developed in the 1970’s [6]. To reach the theoretically attractive

energy conversion levels [e.g. heaving axisymmetric buoys in regular waves enabling capture widths

reaching ∼ Lw/(2π) (Lw being the wave length)], small devices often required oscillation amplitudes

that could not be supported by the device components. Frequency domain solutions for optimum

velocities under displacement/velocity constraints were derived by Evans [1] for single and multiple

small devices in an array. To expand the bandwidths of efficient energy conversion, control techniques
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to force resonant oscillations with reactive loading (in addition to the power absorbing resistive loads)

were developed in the late 1970’s [6], [7]. For small axisymmetric heaving buoys, an alternative

switching/latching control was also developed [8]. Whereas latching type phase control approaches

required large braking forces, direct reactive control via spring and inertia loads required large forces

for small devices in long swells.

Control for optimum conversion under motion constraints was investigated for multi-element

arrays in [9], and for multi-mode devices (≥ 2) in [10] as well as [11]. It does not appear that

similar solutions were explored for the constraining actuation forces, arguably because latching con-

trol received more attention in the ensuing decades, and large braking forces were considered less

problematic than large continuously varying forces. Explicit application of force constraints in an a

posteriori manner (i.e. following constrained optimization with displacement limits) was considered

in [12], so that the model predictive control based solution satisfying motion constraints did not need

actuator forces exceeding the prescribed force limits. Other applications of model predictive control

to enforce displacement and force limits include [13], and more recently, the laboratory experiments

reported in [14]. Combined use of force and displacement inequality constraints within a single time-

domain formulation was reported in [15], [16], where the motion and force variables were discretized

via Fourier decomposition in terms of sine and cosine and functions, and constraint selection was

guided by a geometric interpretation of the actuator force, exciting force, and displacement.

The goal of this work is to investigate an approach for combining force and displacement limits

within a single analytical formulation, for use in wave-by-wave1 impedance matching control based on

a wave-elevation time-series predicted some seconds into the future. Under suitable approximations,

the predictions enable acausal impulse response functions to be used to determine actuator forces

that drive the device velocity to be approximately synchronous with the exciting force (in frequency-

domain, this would correspond to a phase-match between exciting force and device velocity over a

broad range of frequencies), while maintaining an energy absorption rate that approximately equals

the energy radiation rate. Recent work on such control included just displacement/velocity con-

straints designed using the frequency domain formulation of [1], as discussed in [17], [18], and [19].

It was found that for small devices in swell-dominated seas, the maximum reactive forces and powers

1A wave in the phrase ‘wave-by-wave’ is here understood to be the free-surface motion from one zero up-crossing to
the next, in an irregular wave input approaching the device.
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became considerably larger than the maximum resistive forces and mean converted powers. The

present work examines an analytical approach to enforce force limits in a manner resembling the

way displacement constraints are applied, so that both constraints can be prescribed a priori at the

start, and solutions lying on their defining envelopes can be evaluated under real-time wave-by-wave

constrained impedance matching control. It should be pointed out that the approach of [1] ‘glob-

alizes’ the constraint for multiple-mode conversion. For this reason, the proposed extension in its

present form is limited to single-mode or single-mode reducible devices, such as the 2-body axisym-

metric system considered later. It is recognized that the frequency-domain constraint specification

does not guarantee constraint satisfaction in the time domain for arbitrary sea states, and hence the

time-domain solutions need to be reviewed in each case. Nonetheless, it appears that the present

approach could provide quick and useful information for power take-off design/selection early in the

device design process.

It should be noted that power conversion is large in sea states conducive to the device natural

response (i.e., dominant periods close to the device resonant period), and the actuator force is

dominated by the resistive part with the reactive force/powers being small. Away from resonance,

for small devices, the reactive forces can be the dominant force component (just to provide impedance

matching) with the resistive force still needing to be large for the purpose of displacement-constraint

satisfaction. In such cases, the reactive powers can be very large (i.e. large maxima, even though

the net reactive power absent power take-off dissipation is zero), and can challenge the limits of the

power take-off and available energy storage systems. The overall forces can also prove too large for

a single actuator. For these reasons, it seems reasonable to ask whether both reactive and resistive

forces could be reduced while still meeting displacement constraints and maintaining sufficiently

large power conversion, through a slight intentional detuning of the optimum control force. Note

that in an analytical frequency domain formulation for purely displacement/velocity constraints,

the Lagrange multiplier has the significance of an added constraint-enforcing damping. Here an

additional Lagrange multiplier is introduced, to serve as the reactive detuning load. It is argued

that the two Lagrange multipliers could help to restrict velocity/displacement amplitudes and limit

reactive loads, by constraining the extent of the exciting force-velocity phase match to a value θf > 0.

The automatic reduction in velocity caused by deliberate detuning would further mitigate the need

for large resistive loads. The effect of detuning here is to ‘flatten the peak’. The reduction in
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converted power is accompanied by a reduction in the control/actuation force magnitudes. Because

the detuning can be controlled, this approach would add a degree of convenience to the overall

operation of the device in changing wave conditions. It should be added that the term ‘detuning’

here is used somewhat differently than in [20], where the term is used to represent an increase in

bandwidth via reactive control.

The displacement limits in this work are thought to be governed by actuator stroke limits rather

than the maximum device excursion possible, as it is expected that actuator strokes would frequently

be smaller than the maximum excursion allowed by the device geometry. Since, for most actuators

the force and stroke limits are embedded in the actuator hardware design, known relations exist

between the maximum stroke and maximum force, and can be used in the present formulation to

evaluate a range of device and actuator sizes. Analytical formulations such as investigated in the

present work could be considered helpful in the early overall design and development stages for the

device. Alternatively, the force-displacement limits using this approach (in a range of expected sea

states) could be utilized to design a custom actuator system for practical application.

Because the constraints here are prescribed within a frequency domain formulation and then

transformed into a time-domain formulation leading to implementation, the constraints may be

exceeded in the time domain in response to some sea states. The effect of such constraint violations

is also investigated here, for a set of applications where actuator strokes are physically limited by

the hardware. Such limits are here referred to as ‘end stops’. The effect of collisions between the

moving elements and the reference occurring each time the constraint is violated is modeled here

in the time domain, and the changes in device velocity and converted power are also evaluated. It

should be mentioned that end stop avoidance has been a crucial design goal in wave energy for several

decades (e.g. see, [21], [22]), and it may be possible in practice to avoid physical impacts at actuator

limits through careful design. This work supposes that the actuators being used here are off-the-

shelf hydraulic cylinders or custom hydraulic cylinders with topologies resembling most off-the-shelf

cylinders. It is likely that the stroke limit problem may also exist in the case of electromechanical

actuators, as discovered in recent experimental work [23].

Finally, it is noted that the device employed in this work is intended to represent a class of

mid-size oceanographic buoys (hence the proposed size and geometry) supporting sensor packages

on board and on moorings (e.g. [24]. The goal, therefore, is to maximize power conversion with
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retrofitted realistic actuators in a range of wave conditions expected at proposed deployment sites

where ocean-variable measurements are desired. However, the cost/economic considerations for

such retro-fitted implementations are considerably different from those associated with dedicated

wave energy converters. Device dimensions here are constrained to allow wave-power integration

into existing oceanographic buoys. Section 2 following this introduction describes the constraint

formulation in the frequency domain, as well as its resulting time-domain counterpart. Section 3

outlines the time domain procedure used here to quantify the effect of end-stop collisions at the

actuator between the oscillating elements of the device. Section 4 summarizes the calculations and

time-domain simulations carried out here and the results sought. Section 5 discusses the results and

points out some of the major findings, while Section 6 outlines the principal outcomes of this work

that could be of potential use in applications. Appendix 1 briefly outlines the frequency and time-

domain models for the device geometry considered in this work, while, for completeness, Appendix

2 outlines the wave prediction approach. The material in both Appendix sections has appeared

elsewhere, and is referenced where relevant.

2. Formulation

Two-body axisymmetric concentric heaving bodies have been of interest since the work of Bu-

dal and Falnes [25]. Such devices are of relevance to this work given its possible application in

oceanographic measurements, as indicated in Section 1. The particular manifestation chosen for

the application example and calculations included in this paper is shown in Figure 1, wherein the

surface-floating body is a mid-size oceanographic buoy and the the space between the two concentric

submerged discs is used to support instrumentation. Considered below is a single mode device or

systems such as two axisymmetric concentric bodies in heave that can be reduced to an equivalent

single-mode device. The quantities below are related to their counterparts in an equivalent single-

mode model for a two-body axisymmetric system. These relations are summarized in Appendix 1.

Small amplitude waves and small-amplitude oscillations are assumed in the treatment below. For

frequency-domain quantities such as velocity U(iω) below, the argument iω is preserved through the

steps to indicate that the quantity represented is complex, with an amplitude and a phase. Small

amplitude waves and small-amplitude oscillations are assumed in the treatment below. In terms of

the mechanical actuation system, it is supposed that the actuator is chosen or designed such that its

stroke α is less than the maximum displacement of the floating body without fully emerging above
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or submerging below the free surface [8]. The actuator stroke limit therefore constrains the device

velocity according to,

|U(iω)| ≤ |β(iω)| = iωα. (1)

Figure 1: The 2-body axisymmetric converter studied in this work. Relative heave oscillation is used in energy
conversion, and the equations of motion can rearranged in terms of the relative oscillation so that the relative heave
dynamics can be understood using a single-mode framework. The buoy radius matches that of a mid-size oceanographic
buoy. The space between the two submerged concentric discs may be used to support oceanographic sensors.

As a background to the following discussion, the original velocity constraint treatment of Evans

[1] is summarized below. Ff (iω) below represents the exciting force per unit wave amplitude.

P c(ω) =
1

4

[︁
Ff (iω)U

∗
i (iω) + U(iω)F ∗

f (iω)
]︁
− 1

2
U(iω)b(ω)U∗(iω)− 1

2
λ
[︁
U(iω)U∗(iω)− β2

]︁
, (2)

where λ is a Lagrange multiplier to be determined along with the constrained optimum velocity

Uc(iω). Realizing that absorbed power under velocity constraint in equation (2) for a chosen fre-

quency ω has an explicit dependence on U , U∗, and λ, a small variation δP c can be expressed

as,

δP c =
∂P c

∂U
δU +

∂P c

∂U∗ δU
∗ +

∂P c

∂λ
δλ, (3)

where the arguments ω or iω have temporarily been dropped to keep the notation from getting

cumbersome. When P c is maximum, i.e. at a ‘peak’, an infinitesimal move in any ‘direction’ about
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the peak causes no change in P c, or δP c = 0. For this to be true for any direction,

∂P c

∂U
=

∂P c

∂U∗ =
∂P c

∂λ
= 0. (4)

The first two relations lead to the conditions,

1

2
F ∗
f (iω)− b(ω)U∗(iω)− λU∗(iω) = 0,

1

2
Ff (iω)− U(iω)b(ω)− U(iω)λ = 0. (5)

The second of the two equations in (5) provides an expression for the optimum velocity Uc(iω)

under the given constraint,

Uc(iω) =
Ff (iω)

2[b(ω) + λ]
. (6)

The Lagrange multiplier λ(ω) is thus found to have the significance of additional damping λ that

the power take-off can apply to push the load over optimum damping, so that now D = b(ω) + λ.

The additional damping λ can also be applied by a method exterior to the power take-off, but it

is assumed here to be provided by the power take-off. To find the correct value of λ, it is argued

that since at the ‘constrained optimum’, Uc(iω) = β(ω) (both β and so λ may be given a frequency

dependence), using equation (6) and some algebra it is found that

λ(ω) =
|Ff (iω)|
2β(ω)

− b(ω). (7)

It is possible that close to resonance, the λ required to restrict oscillations to within the oscillation

constraint is so large that the force required of the power take-off force exceeds the mechanical force

limits. Further, when active impedance matching is sought via reactive loading, for small devices the

reactive force requirement may also be so large as to exceed the power take-off force limits, either

by itself or in combination with the required resistive force due to λ. In the treatment below, two

quantities, λ1 and λ2 are defined, where λ1 has the significance of a resistive load, and λ2 has the

significance of a reactive load. In some cases, the resistive and reactive components may be applied

by different actuators; however, this is by no means a necessary condition for the following analysis.

The total actuator force may be expressed as,

FL(iω) = FL1(iω) + FL2(iω), (8)
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where,

FL1(iω) = [b(ω) + λ1(ω)]U(iω), and,

FL2(iω) = i [λ2(ω)− C(ω)]U(iω). (9)

Here, b(ω) is the radiation damping, C(ω) the reactive impedance, and λ1(ω) and λ2(ω) are

parameters to be determined. The linearized viscous damping cd is ignored here. The reactive

impedance can be seen to be,

C(ω) = ω [m+ a(∞) + a(ω)]− k/ω. (10)

Here m is the in-air mass of the device, a(∞) is the infinite-frequency added mass, and a(ω) is

just the frequency-variable added mass. k is the stiffness providing the restoring force for oscillation.

a(∞) and a(ω) are defined for the particular translational oscillation mode being considered. k

represents the hydrostatic stiffness in the case of heave, but may be provided by mooring cables or

by the actuator system itself in the case of surge and sway oscillation modes. The magnitude limits

on the two force components in equation (9) may be constrained as follows. First,

|[b(ω) + λ1(ω)]U(iω)| ≤ |FR| , (11)

where FR denotes the limiting resistive force practical with the actuator(s). For the reactive force,

|[λ2(ω)− C(ω)]| |U(iω)| ≤ |FC)| , (12)

where C(ω) is prescribed by the device dynamics, as indicated below equation (10), and FC is the

reactive part of the actuator force limit. The total force limit Flm for the actuator system can be

expressed as,

Flm =
√︂
F2
R + F2

C . (13)

Because this is a frequency-domain limit based on frequency-domain amplitudes, satisfaction of this

constraint in the time-domain is not guaranteed. In the time domain, for irregular waves, it would

be necessary to ensure that the sum of the two components, resistive and reactive, as evaluated in

real time, is smaller than the force limit Flm. Actuator safety may require that such a check be

performed at each instant.
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The frequency-domain velocity constraint can be expressed as,

U2
r ≤ β2

r , U2
i ≤ β2

i

⇒
(︁
U2
r + U2

i

)︁
≤

(︁
β2
r + β2

i

)︁
,

⇒ UU∗ ≤ ββ∗ (14)

where ∗ denotes complex conjugate, and the parentheses showing frequency dependence have tem-

porarily been dropped for compactness. In terms of the actuator force components, the mean con-

verted power and maximum reactive power can be expressed as,

Pw(ω) =
1

2
|FL1(iω)| |U(iω)| ,

Pa(ω) = |FL2(iω)| |U(iω)| . (15)

Limiting of the force and velocity thus also allows the converted power and reactive power to be

constrained.

A frequency-domain performance index may now be expressed as,

Pw =
1

4

[︁
F ∗
f (iω)U(iω) + Ff (iω)U

∗(iω)
]︁
− 1

2
U∗(iω)b(ω)U(iω)

− 1

2
λ1

(︁
U2
r − β2

r

)︁
− i

2
λ2

(︁
U2
i − β2

i

)︁
, (16)

where λ1 and λ2 form the two Lagrange multipliers referred to earlier. The necessary condition

for a stationary value of Pw can be expressed as, δPw = 0, which leads to the conditions,

∂Pw

∂U
= 0;

∂Pw

∂U∗ = 0;

∂Pw

∂λ1
= 0;

∂Pw

∂λ2
= 0. (17)

The third and fourth conditions in equation (17) simply lead to the envelope,

U2
r = β2

r , U2
i = β2

i ⇒ UU∗ = ββ∗ (18)

The first equation in (17) results in a condition to be satisfied by the complex conjugates of the

quantities related together by the second equation in (17),

∂Pw

∂U∗ =
1

4
[Ff (iω)]−

1

2
[b(ω) + λ1(ω) + iλ2(ω)]U(iω) = 0. (19)

11



Equation (19) thus provides,

U(iω) ≡ Uo(iω) =
Ff (iω)

2 [b(ω) + λ1(ω) + iλ2(ω)]
. (20)

Here Uo(iω) denotes the constrained optimum velocity. It should be noted that, the optimum U(iω)

according to equation (20) is not purely in phase with the exciting force Ff (iω). The approach

followed above thus enables both an amplitude and a phase constraint on the device velocity. Effec-

tively, the introduction of a phase constraint enables the device to be ‘detuned’ off the optimum, so

that the oscillation amplitude, actuator forces, and the resistive and reactive powers can be within

prescribed limits.

On the velocity envelope,

λ1 + iλ2 =
Ff (iω)

2β(iω)
− b(ω). (21)

Thus,

λ1(ω) = ℜ
(︃
Ff (Iω)

2β(iω)

)︃
− b(ω),

λ2(ω) = ℑ
(︃
Ff (iω)

2β(iω)

)︃
. (22)

If, θf is used to define the prescribed phase difference limit between Ff (iω) and β(iω),

λ1(ω, θf ) =

⃓⃓⃓⃓
Ff (iω)

2β(iω)

⃓⃓⃓⃓
cos θf − b(ω),

λ2(ω, θf ) =

⃓⃓⃓⃓
Ff (iω)

2β(ω)

⃓⃓⃓⃓
sin θf . (23)

The phase angle θf may be chosen to be small, and prescribed such that λ2 has a net subtractive

effect on the reactive load −C. It may be convenient to use a small constant value for θf for a small

device with a resonant period smaller than most energy periods expected. It can be seen that when

θf = 0, the constraint velocity is fully in phase with the exciting force, and λ2 = 0. It can be seen

further that, when θf ̸= 0 (since | cos θf | < 1, sin θf ̸= 0, for 0 < θf < π),

λ1(ω, θf ) < λ1(ω, 0), |λ2(ω, θf )| > |λ2(ω, 0)| = 0. (24)

The two force components then satisfy,

[b(ω) + λ1(ω, θf )] |β(iω)| < [b(ω) + λ1(ω, 0)] |β(iω)|,

|[C(ω)− λ2(ω)]| |β(iω)| < |C(ω)| |β(iω)|. (25)
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The right sides of the two equations (25) are the resistive and reactive force magnitudes without

the phase-match constraint θf . Equations (25) therefore indicate that the present detuning approach

would reduce the resistive and reactive forces required over the situation with no phase-match con-

straint. It can be noted that the four conditions expressed in equations (11), (12), (23) constrain

the power take-off/device velocity and power take-off force components. These four conditions can

be used to provide explicit values on the velocity and force envelopes (for a chosen θf ). It is likely

however that FR and FC will be constant magnitudes in practice, just as the displacement stroke α

would be |iωα| = |β(iω)|. Therefore, a semi-iterative approach may be preferred in practice, where

the actuator system provides the best match with the force and displacement (velocity) constraints

over most of the expected frequency range for the device.

In equations (20)–(23), introducing a frequency-response function Hf (iω) such that

Ff (iω) = Hf (iω)A(iω), (26)

a constrained optimum velocity response function can be defined as,

Ho(iω) =
Hf (iω)

2 (b(ω) + λ1(ω) + iλ2(ω))
. (27)

If a linearized viscous friction damping term cd were to be added, Ho(iω) could be redefined as,

Ho(iω) =
Hf (iω)

2 (b(ω) + cd + λ1(ω) + iλ2(ω))
. (28)

In contrast, the frequency response function with the actuators applying a purely resistive load

D would be (with λ1 = 0, λ2 = 0),

Hr(iω) =
Hf (iω)

b(ω) + cd +D + iC(ω)
, (29)

where C(ω) is the device reactance as defined in equation (10). The response in equation (29) occurs

when only D can be adjusted over longer time scales by the power take-off, while the response in

equation (28) is produced when the power take-off applies a damping load λ1 in addition to b(ω),

and subtracts λ2 from the reactive load it applies. An impulse response function for constrained

optimum response can now be expressed as,

ho(t) =
1

2π

∫︂ ∞

−∞
Ho(iω)e

iωtdω. (30)
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The constrained optimum velocity uo(t) in the time domain can now be found using,

uo(t) =

∫︂ ∞

−∞
ho(τ)η(xB, t− τ)dτ, (31)

where η(xB, t) denotes the incident wave surface elevation at the device centroid xB. ho(t) is non-

causal, i.e., ho(t) ̸= 0, t < 0. Hence η(xB, t) needs to be predicted as far into the future as ho has

memory into the past (see, for instance, [26]).

It should be noted that Ff (iω) in equations (2) and (16) is exciting force per unit wave amplitude.

The velocity (displacement) should therefore be constrained to be ≤ iωα/A (≤ α/A). In an irregular

spectrum A varies with frequency ω, and it may be convenient, though by no means sufficient, for

instance, to use an amplitude such as H1/10/2, where H1/10 is the average of 1/10 th highest waves

in the spectrum.

It should be noted further that satisfaction of the constraints on a frequency-by-frequency ba-

sis (i.e. in the frequency domain) does not automatically imply constraint satisfaction in the time

domain. In practice, hard end stops may be provided to limit device excursion and actuation dis-

placement. The following section addresses the effect of end-stop impacts resulting from the present

approach.

3. Effect of End-Stop Impacts

Although hard end-stops serve to limit oscillation strokes, each hard-stop impact potentially can

excite an array of structural vibration modes as well as repeated damped oscillations of the device

at its natural frequencies. End stops can thus have a deleterious effect on the device structure

(e.g. by shortening its fatigue life) and a potential effect on the device conversion efficiency under

a chosen control approach. For these reasons, considerable design effort was dedicated during the

nineties to approaches to avoid them or to implement them ‘softly’ [22]. The goal here is just to

understand the effect of hard stop impacts on energy conversion by the single-mode device above

under constrained wave-by-wave impedance matching control. For simplification, it is helpful to

distinguish between ‘primary impacts’ caused by large displacements due to wave-device dynamics,

and ‘secondary impacts’ caused by large rebounds following an initial primary impact. Just the

primary impacts are considered below, assuming that sufficient passive damping is provided at the

end stops. It is also helpful to begin with the equation of motion in the time domain for a single-mode
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device [27],

[m+ a(∞)] u̇+

∫︂ ∞

0
hr(τ)u(t− τ)dτ + cdu+

∫︂ t

−∞
ku(τ)dτ = Ff (t)− FL(t). (32)

where, as described in Section 2, Ff is the exciting force and FL is the force applied by the actuator

system. It is assumed that the actuator electronics enable it to ‘zero’ the force FL just before the full

impact (this could be enabled, for instance, by a contact switch or a laser interrupt.). Introducing a

force term F (t) defined as,

F (t)
.
= Ff (t)− FL(t

−)−
∫︂ ∞

0
hr(τ)u(t− τ)dτ − cdu−

∫︂ t

−∞
ku(τ)dτ, (33)

[m+ a(∞)] u̇ = F (t). (34)

It should be noted that for the 2-body axisymmetric system studied in this work, the inertia term

m + a(∞) is replaced by an equivalent mass, as summarized in Appendix 1. F (t) is thus the total

external force acting on the moving body that is balanced by the inertial force term on the left side

of equation (34). At an end-stop impact, an equal and opposite force is generated at the end-stop,

lasting only through the duration of the impact. Therefore, the motion of the body following the

impact can be described by,

[m+ a(∞)] u̇ = F (t)− F (t)δ(t− tn), (35)

where t = tn denotes the time instant of impact, and δ(t) is the Dirac delta function modeling

an instantaneous action. The viscous friction damping term cd is assumed to be small. The con-

trol/actuator force FL(t
+) ̸= 0 just after the body begins its recoil from impact (FL(t) = 0 only

from t−n to t+n ). Under wave-by-wave impedance matching control (see, for instance, [17]), with the

force/velocity constraints applied as discussed in Section 2, normally,

uo(t) =

∫︂ ∞

−∞
hof (τ)Ff (t− τ)dτ, (36)

in the absence of end-stop collisions. Here, hof is defined such that,

hof (t) =
1

2π

∫︂ ∞

−∞

1

2 (b(ω)λ1 + iλ2)
eiωtdω (37)

After a single end-stop impact,

uon(t) = uo(t) + ues(t), (38)
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where ues(t) can be written as,

ues(t) =

∫︂ ∞

−∞
hof (τ)F (t− τ)δ(t− tn − τ)dτ. (39)

With the Dirac-delta function is centered on τ = t− tn,

ues(t) = hof (t− tn)F (tn). (40)

so that,

uon(t) =

∫︂ ∞

−∞
hof (τ)Ff (t− τ)dτ + hof (t− tn)F (tn). (41)

When multiple impacts occur, the overall velocity can be estimated using,

uoe(t) =

∫︂ ∞

−∞
hof (τ)Ff (t− τ)dτ +

N∑︂
n=1

hof (t− tn)F (tn). (42)

As seen from equation (42), hof operates on the exciting force Ff (t) in the first term and on the

force F (t) (with cd = 0) as expressed in equation (33). The converted time-averaged power with N

end-stop impacts can be computed using the full velocity uoe as,

Poe =
1

T

∫︂ T

0
FL(t)uoe(t)dt. (43)

The converted power can be expressed as,

Poe = Po + Pe, (44)

where,

Po =
1

T

∫︂ T

0
FL(t)uo(t)dt, Pe =

1

T

∫︂ T

0
FL(t)ue(t), (45)

where,

ue(t) =
N∑︂

n=1

hof (t− tn)F (tn). (46)

It is straightforward in the frequency domain to draw broad inferences about the effect of end-stop

impacts on the amount of power converted. Noting that,

Uo(iω) =
Ff (iω)

2 [b(ω) + λ1(ω) + iλ2(ω)]
, (47)

the Fourier transform of ue(t) as expressed in equation (46) is,

Ue(iω) =
N∑︂

n=1

F (tn)e
−iωtn

2 [b(ω) + λ1(ω) + iλ2(ω)]
. (48)
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The exponential e−iωtn represents the memory effect of the nth collision. The converted power due

to velocity Uo(iω) and actuation force FL(iω) can be expressed as,

Po(ω) =
1

2
ℜ [F ∗

L(iω)Uo(iω)] =
1

2
[b(ω) + λ1(ω)]Uo(iω)U

∗
o (iω), (49)

with just the resistive part of the force FL(iω) contributing to power conversion. In the presence of

end-stop impacts,

Poe(ω) =
1

2
[b(ω) + λ1(ω)]Uoe(iω)U

∗
oe(iω), (50)

where,

Uoe(iω) = Uo(iω) + Ue(iω). (51)

With some algebra, it can be seen that,

Poe(ω) = Po(ω) + Pe(ω) + Peo(ω), (52)

where Po(ω) is as given by equation (49). Pe(ω) and Peo(ω) are,

Pe(ω) =
1

2
[b(ω) + λ1(ω)]Ue(iω)U

∗
e (iω); and Peo(ω) = [b(ω) + λ1(ω)]ℜ [Uo(iω)U

∗
e (iω)] . (53)

The term on the left in equation (53) is always greater than zero when Ue(iω) ̸= 0, and adds to the

converted power. The term on the right can be negative and can quantify loss of power conversion.

Therefore, it can be inferred that Pe is negative and reflects loss of power when,

ℜ [Uo(iω)U
∗
e (iω)] < −

1

2
Ue(iω)U

∗
e (iω). (54)

It is important to note that the time-domain calculations based on equations (44) and (45) are direct,

and do not need these arguments (which, though helpful in providing insight, may or may not hold

at each time instant).

4. Calculations and Results

The formulation above is applied to an example situation here. Calculations are carried out for

the device geometry shown in Figure 1. The buoy dimensions are modeled after a mid-size oceano-

graphic buoy, with radius R = 1.2m, and the converted power is utilized to support oceanographic

instrumentation. For this work, the draft is taken to be Dr = 1.0m. The two discs under the buoy

are solidly connected and power conversion is through the relative heave oscillation between the buoy
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and the reaction discs. Mass of any instrumentation supported between the two discs is not included

in these calculations.

Simulations were carried out for wave conditions at a point in the Nantucket Shoals, off the U.S.

East Coast (40.5N, 69.24W, water depth 74m) as recorded by the NDBC 44008 data buoy, which is

close to the site of the Pioneer array Ocean Observatories Initiative deployment site [24]. The period

June 18 to June 23, 2018 was selected as representative of average summer-time wave conditions at

the site. The Hs (significant wave height) and Te (energy period) combinations are shown in Figure

2. In the data used, the energy periods Te range from 3s to 15s, and the significant wave heights Hs

range from 0.7m to 2.1m. The maximum and minimum wave heights targeted for conversion would

in general require closer coordination with designers of the overall system. The wave elevations for

these sea states are synthesized by fitting a Pierson-Moskowitz spectrum to each Hs-Te combination.

Uni-directional, long-crested waves were assumed, so that,

S(ω) =
131.5H2

s

T 4
e ω

5
exp

[︃
− 1054

(Teω)4

]︃
. (55)
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Figure 2: Plot showing the energy period and significant wave height combinations observed at the site off the U.S.
east coast.
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The wave elevation at a point xA up-wave of the device was expressed as,

η(xA; t) =
N∑︂

n=1

ℜ{A(ωn)exp [−i (k(ωn)xA − ωnt+ θn)]} , (56)

where,

A(ωn) =
√︁

2S(ωn)∆ω, (57)

and θn is a random number ∈ [0, 2π], with S(ωn) representing the spectral density value at ωn. The

wave elevation at the model location xB was predicted at a time tp = 30s into the future, using the

expression,

η(xB; t) =

∫︂ ∞

−∞
hl(τ)η(xA; t− τ)dτ, (58)

where hl is found as summarized in Appendix 2, and discussed in [26], [28], and [17], [29], [30], etc.

While the formulation in Sections (2) and (3) is described in terms of a single-mode device, the

device used in the present work is a 2-body device, for which the equations of motion for heave

oscillation of the two bodies can be reduced to a single equation for the relative heave oscillation, as

discussed in [31] and used the work of [17] (and as summarized in Appendix 1). The hydrodynamic

coefficients used for the two bodies were derived from [19]. As in [23] actuation was chosen here

to be via hydraulic cylinders. The effect of mooring cables on the device stiffness was ignored. For

the present simulations, hard end-stops on relative heave oscillation were set at ±2.0m, while the

phase-match limit was set at ±0.43 rad. Calculations here were carried out for the set of sea states

shown in Figure 2. As in [17], the average converted power [see also equation (45)] and the maximum

reactive power in the time domain were found using,

Pw =
1

T

∫︂ T

0
FL1(t)uo(t)dt,

Pa = max
0<t≤T

[FL2(t)uo(t)] , (59)

where T ≥ 600s, and Pw may be Po or Poe from equation (45).

Figures 3–7 plot the time-domain results for a chosen sea-state, Hs = 1.0m, Te = 6.0s. Shown

in these plots are the predicted wave profiles used in this work, the converted power, relative heave

displacement between buoy and discs, the resistive and reactive forces required of the actuators,

relative heave velocity of the device following end-stop impacts, and converted power time series

with end stop impacts occurring.
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Figures 10–13 summarize the results over the sea-states considered here, with and without end-

stop impacts. These results plot converted power means (over 30 min), and the 30-min maximum

relative displacement, force, and reactive power.
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Figure 3: The predicted wave elevation time series for the test conditions (Hs = 1.0m, Te = 6.0s) at prediction time
tp = 30s, obtained as summarized in Appendix 2.
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Figure 4: The converted power time series for the test conditions (Hs = 1.0m, Te = 6.0s) with the amplitude and
phase-limit conditions as applied here.

Results are discussed more fully in section 5.

5. Discussion of Results

The wave elevation record of Figure 3 is the predicted wave profile with a prediction time of

30s as desired for the coupled heave dynamics of the device. It should be pointed out that a

reasonable agreement was found between predicted and actual wave elevation time histories (with

root-mean-square errors ∼ 7%) for computer-generated waves [17], and the technique is currently

being evaluated in wave tank and at-sea testing. The converted power time series for the wave record

in Figure 3 is shown in Figure 4. As expected, large amounts of power are converted in response to

the larger elevations. Also of interest to note are the short intervals of negative powers, which are a

consequence of the intentional detuning caused by the phase constraint, as applied via λ2 in equation

(20) of Section 2 (since λ2 keeps the relative heave velocity from directly being synchronous with the

equivalent exciting force on the relative heave oscillation).
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Figure 5: The relative heave displacement time series for the test conditions (Hs = 1.0m, Te = 6.0s) with the amplitude
and phase-limit conditions as applied here.

Figure 5 plots the relative heave displacement between the buoy and the discs. The increase and

decrease in amplitude is seen to be consistent with the amplitude variations in the approaching wave

groups. While the time series of this figure shows relative oscillations unobstructed by end stops, it

should be pointed out that the relative heave amplitude here exceeds ±2m at a few points, at which

impacts would occur, were end-stops present. Because the displacement and force constraints are

based on frequency domain arguments, constraint satisfaction in the time domain is not guaranteed.

With the end-top impacts occurring at each instant the displacement limit is reached, the relative

heave velocity in the time domain takes a form such as shown in Figure 6. As expected, following

each impact are large rebound velocities and oscillations that get damped out over a length of time

(∼ 60s). The present calculations do not account for secondary self-sustaining repeated impacts

due to rebound velocities alone, though this effect could be worth evaluating further, given its

possible consequences for system stability in certain sea states. The present simplification was largely

motivated by recent experimental studies on a 1/10 th scale model, where self-sustaining repeated

rebounds were not observed [23]. The effect of end-stop impacts on converted power, as quantified

under the present formulation is shown in Figure 7. The instantaneous power values shown here are

power converted from the combined relative velocity (i.e. the original unobstructed velocity + the
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velocity due to end-stop impacts). The plot shows the net effect of the combined velocity as given

by equations (44), and (45), which can be additive or subtractive.
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Figure 6: The relative heave velocity time series, as resulting from end-stop impacts for the test conditions (Hs = 1.0m,
Te = 6.0s) with the amplitude and phase-limit conditions as applied here. This is the time series without superimposing
the wave-induced velocity time series.
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Figure 7: The converted power time series with end-stop impacts occurring, for the test conditions (Hs = 1.0m,
Te = 6.0s) with the amplitude and phase-limit conditions as applied here.

Figures 8 and 9 plot the resistive and reactive forces needed to provide the detuned impedance

match sought in this paper. With the force limit set at ±100kN for the hydraulic actuators considered

here, the force constraint is seen to be satisfied easily under the present amplitude and phase-match

constraint approach.
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Figure 8: The resistive force time series required for the test conditions (Hs = 1.0m, Te = 6.0s) with the amplitude
and phase-limit conditions as applied here.
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Figure 9: The reactive force time series required for the test conditions (Hs = 1.0m, Te = 6.0s) with the amplitude
and phase-limit conditions as applied here.

The next set of figures presents overview results for the chosen site in the Nantucket Shoals
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area, off the U.S. East Coast (40.5N, 69.24W, water depth 74m). The 30-min mean power plot of

Figure 10 shows the effect of the amplitude-phase constraints, in that the mean converted power

under detuned impedance matching is considerably smaller than the incident wave power per unit

crest length, for the more energetic sea states. However, the constrained capture width nearly

approaches unity for some of the less energetic sea-states. This type of behavior represents the

desired effect of the present constrained control on a small heaving device (∼ 1.2m radius). Note

that the theoretically maximum capture width here is Lw/(2π), which of course would for this device

would require unattainable actuator strokes and forces for impedance matching. Another notable

aspect of Figure 10 is that the converted power with end stop collisions is only negligibly smaller than

what it would be without the end-stop imposed hard limits. This is likely a result of the actuator

converting a large portion of the oscillations following end-stop collisions into useful power. It is

recalled that, in the frequency domain, the power converted from end-stop impacts is expected to

be net negative when the inequality condition in equation (54) is met. It should be pointed out that

secondary end-stop impacts are ignored, assuming that the coefficient of restitution at the end stops

is sufficiently small.
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Figure 10: Overview of power conversion for the various sea-states tested in this work under amplitude and phase-limit
conditions. Note that conversion is close to maximum in the less energetic spectra, as desired, while the constraints
lead to a significantly smaller converted power relative to the average incident power.

26



0 5 10 15 20 25

5-hour increments

0

1

2

3

4

5

6

M
a
x
. 
a
b
s
o
lu

te
 d

is
p
la

c
e
m

e
n
t 
(m

)

0

50

100

150

#
 o

f 
e
n
d
-s

to
p
 i
m

p
a
c
ts

21 sea-states, Nantucket Shoals Location; June 6-18, 2018

30-min records

Without end stops
End stop at ± 2m
# of impacts

Figure 11: Overview of the 30-min maximum displacement in the various sea-states tested in this work under amplitude
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Figure 11 plots the 30-min maxima for relative heave displacement amplitude. It is seen that the

stroke limit is exceeded in several sea states. To clarify how frequently the chosen stroke limit was

exceeded, also shown in the figure is the number of end-stop collisions during each 30-min simulation.

For the present design/constraint choices, note that the end-stop collisions are only avoided in only

some of the less energetic sea states. Given the potential risks associated with repeated secondary

end-stop impacts (instability, free-vibration excitation at structural natural frequencies, fatigue, etc.),

however, it would seem appropriate to revise actuator design choices suitably. It is recalled that

the displacement constraints are determined by the maximum actuator stroke available, as many

commonly used linear actuators would likely not allow peak-to-peak oscillations exceeding about 4m

[32]. It is interesting to consider that larger device dimensions would alter the overall dynamics of the

device, and would reduce the maximum relative displacements under equivalent levels of impedance-

matching control. The required actuation/control force magnitudes (and overall device costs), on

the other hand, may be greater. The effect of dimension changes would be of interest to investigate

further in the wider context of wave energy devices, and for oceanographic measurement applications

in which some dimensional flexibility is permissible.

Figure 12 plots the 30-min force maxima along with the force constraint of 100kN. It is observed
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that the force constraint has been met in all cases. Overall, however, one could reduce the detuning

phase offset at the expense of increased resistive force to meet the displacement constraint, so that

greater power may be absorbed while possibly reducing the number of end-stop collisions. Alternative

actuator designs providing greater strokes without loss of maximum force could also be evaluated for

cost-effectiveness.
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Figure 12: Overview of the 30-min maximum force in the various sea-states tested in this work under amplitude and
phase-limit conditions. The forces are seen to be within the imposed constraints.
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Figure 13: Overview of the 30-min maximum reactive power in the various sea-states tested in this work under amplitude
and phase-limit conditions.

The maximum reactive power requirement is shown in Figure 13. It is encouraging that the

maximum reactive power is less than 100 kW, perhaps thanks to the detuning effect of the phase-

match limit. There thus appears to be scope for broader optimization of the power take-off design,

over the range of force, displacement, resistive, and reactive power limits, where the best conversion

efficiency and mechanical/structural design effectiveness can be approached closely. Note that the

latter criterion plays a major role in determining the overall reliability of the device.

6. Conclusion

The goal of this paper was to investigate a technique for concurrent use of amplitude and phase-

match constraints under constrained wave-by-wave impedance matching control based on predicted

and past wave elevations at the body (see Appendix 2 for more details). The intentional detuning

effect of this approach was designed to limit both oscillation stroke and actuation force required for

control. The displacement limits were assumed to be defined by actuator stroke, which by design was

chosen to be smaller than the body-motion limits (for instance, the smaller of draft and freeboard

for heave oscillations). The constraining parameters were set within an analytical frequency domain

formulation for operation over the allowed displacement/force envelopes. This technique does not
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guarantee satisfaction in the time domain, however, so that collisions with hard end stops (provided

to protect the actuator hardware) may occur. The effect of end-stop impacts on device velocity and

converted power was considered. Self-sustaining repeated secondary rebounds between end stops

were ignored, assuming that the end stop hardware is designed to provide a coefficient of restitution

that is sufficiently smaller than unity.

Time domain simulation results were discussed for a range of wave conditions spanning 5 summer

days off the U.S. East Coast at a site in the Nantucket Shoals area (40.5N, 69.24W, water depth

74m). This site is close to the deployment location of the Pioneer array system of moorings that form

part of the Ocean Observatories Initiative deployments [24]. Under the conditions studied, the force

constraint was met easily, while the displacement constraint was exceeded in several sea states, so

that further optimization of the present device seems warranted. With the oscillations from end-stop

impacts decaying stably, end-stop collisions were found to have little effect on the 30-min average

converted power.

Further work should include optimization of the detuning parameter λ2, force and displacement

limits, and if permitted by the application, also the overall geometry design. As part of this study,

a sensitivity analysis for the device dimensions such as buoy diameter, draft, and submergence of

the reaction discs relative to dominant wave lengths may prove valuable. The present work could

be of use in ensuring that the primary converter and power take-off systems are well matched for

wave-by-wave impedance matching control, so that the device provides a large annual energy output

at reasonable cost.
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Appendix 1: 2-Body Axisymmetric Device with Concentric Buoy and Submerged Discs

As described in [17] and [19], the frequency domain model for the present 2-body device can be

written as

[Zt(iω) + ZL(iω)] vt(iω) + iω [Zc(iω)− ZL(iω)] vb(iω) = Fft(iω)

[Zc(iω)− ZL(iω)] vt(iω) + [Zb(iω) + ZL(iω)] vb(iω) = Ffb(iω) (60)

where the matrix elements are defined as,

Zt(iω) = iω [mt + at(∞) + at(ω)] +
kt
iω

+ (cdt + bdt(ω))

Zb(iω) = iω [mb + ab(∞) + ab(ω)] +
kb
iω

+ (cdb + bdb(ω))

Zc(iω) = iωac(ω) + bc(ω)

ZL(iω) = L(ω) +
N(ω)

iω
(61)

Where the letter m is used to denote in-air mass with the subscripts t and b respectively denoting the

top and bottom bodies. bdt and bdb denote the frequency-dependent radiation damping for the two

bodies, while at(∞) and ab(∞) denote the infinite-frequency added masses for the two bodies and

at(ω) and ab(ω) represent just the frequency-dependent parts of the respective added masses. The

letter k denotes stiffness (hydrostatic for the floating buoy and mooring-related for the submerged

disc), while cdt and cdb represent the linearized viscous damping coefficients. ac and bc denote the

frequency-variable added mass and radiation damping due to coupling between the two bodies. ZL

represents the load impedance applied by the power take-off on the relative oscillation. Following

the approach of Falnes [31], it is possible to express equation (60) as a scalar equation in terms of

the relative velocity vr(iω),

vr(iω) = vt(iω)− vb(iω), (62)

by defining,

Z(iω) = Zt(iω) + Zb(iω) + 2Zc(iω), (63)

and

Ff (iω) =
Fft(iω) (Zb(iω) + Zc(iω))

Z(iω)
−

Ffb(iω) (Zt(iω) + Zc(iω))

Z(iω)
. (64)

it is seen that

vr(iω) =
Ff (iω)

Zi(iω) + ZL(iω)
, (65)
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where

Zi(iω) =
Z(iω)Zs(iω)− Z2

c (iω)

Z(iω)
. (66)

Figure 14 illustrates the equivalent radiation impedance of the coupled 2-body system. The

reactance terms due to in-air mass and infinite-frequency added mass and the hydrostatic stiffness

are not included in this plot because of their relatively large magnitudes. The equivalent-body

radiation damping is found to decrease to zero with increasing frequency as expected. Similarly,

the reactive term is seen to peak and then fall toward zero beyond ω → 4.0. There is an irregular

frequency close to ω → 4.5 in the numerical results used for this work [19], however, and only results

up to ω = 4.0 are used in the calculations in this work.
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Figure 14: Intrinsic impedance real and imaginary components for the equivalent single-body representing the 2-
body coupled axi-symmetric system. Contributions of the in-air mass, infinite-frequency added mass, and hydrostatic
stiffness are not included. The rapid undulations are likely due to interpolation errors introduced because the frequency-
increment in the original data from the software calculations [19] was greater than that used in the present work.

In the analysis of Section 2,

U(iω)← vr(iω),

b(ω)← ℜ (Zi(iω)) ,

C(ω)← ℑ (Zi(iω)) . (67)
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It should be noted that linearized viscous damping has been ignored in most of the present analysis.

For the analysis in Section 3, the inertia term m+ a(∞) is replaced by,

m+ a(∞)← (mt + at(∞)) (mb + ab(∞))

(mt + at(∞) +mb + ab(∞))
. (68)

Appendix 2

The control technique used in this work requires wave profile prediction as far ahead as the ra-

diation impulse response function has memory in the past (about 30 s in this work). The overall

technique as described in [28], [26], and developed further in [17] is summarized below for complete-

ness. The prediction model is kinematic, assumes long-crested waves in deep water. Prediction of

multi-directional waves is discussed in [29]. It should be noted reliable prediction in multi-directional

waves may require an approach that recognizes the finite time between successive spatial samples,

as obtained, for instance, by a rotating radar. In such a case, a mixed space-time approach based

on spectral coefficients may be needed [30].

It is assumed that there are periods of calm before and after the time period of interest, so that at

any point x, η(x, t)→ 0 as t→ ±∞ [33], which enables Fourier transformability. In [17] the distance

separating the point of measurement xA and the point of prediction xB was on the order of 1000m,

and an advancing time series of surface elevation spanning about 260s was used to predict the wave

elevation at the device centroid about 30s into the future. The prediction time was based on the

heave radiation impulse response function for the device (particularly the time at which it could be

truncated without serious loss of accuracy). In deep water, for uni-directional wave propagation, a

kinematic model relating the wave elevation at point xA to that at point xB in the frequency domain

can be expressed (with d = xB − xA) as

η(xB; iω) = e−ik(ω)dη(xA; iω), (69)

where k(ω) using the deep-water dispersion relation is

k(ω) =
|ω|ω
g

. (70)

k(ω) has the same sign as ω (which in the inverse Fourier transformation of equation (72) below

ranges from −∞ to ∞ for a full description of the time-domain function hl(t, d) below) . The wave

elevation time history for predominantly uni-directional waves may be obtained by a non-directional
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wave rider buoy. For most realistic surface wave spectra over which a wave energy device operates,

ω may be expected to be within finite approximate limits ωl and ωh. Because surface waves are

dispersive, an impulsive excitation of the wave surface propagates over a range of group velocities

[vgmn, vgmx], where, for deep water,

vgmn =
1

2

(︃
g

ωmx

)︃
vgmx =

1

2

(︃
g

ωmn

)︃
. (71)

The prediction at xB using a measurement at xA can be obtained using an impulse response function

hl(t; d) where

hl(t; d) =
1

2π

∫︂ ∞

−∞
e−ik(ω)deiωtdω (72)

hl(t; d) can be evaluated analytically as [26], [28], and [17] as

hl(t; d) =
1

4

√︃
2g

πd

[︃
cos

(︃
gt2

4d

)︃
+ sin

(︃
gt2

4d

)︃]︃
+

1

2

√︃
2g

πd

[︃
cos

(︃
gt2

4d

)︃
C

(︃
t

√︃
g

2πd

)︃]︃
+

1

2

√︃
2g

πd

[︃
sin

(︃
gt2

4d

)︃
S

(︃
t

√︃
g

2πd

)︃]︃
, (73)

where C and S denote the two Fresnel integrals. Using a wave surface-elevation time-series

measurement at xA over [t−T, t] seconds, the surface elevation at xB = xA+ d at time t+ tp can be

obtained using

η(xB; t+ tp) =

∫︂ T

0
hl(τ)η(xA; t− τ)dτ ; t > T

xB − xA = d = tP vgmx

T =
d

vgmn
− d

vgmx
.

(74)

Further details and results are discussed in [17]. The technique is currently being tested using wave

tank and at-sea wave profile measurements (but see in particular, [29]).
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