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A spectral version of the Moore problem for
bipartite regular graphs

Sebastian M. Cioabă, Jack H. Koolen & Hiroshi Nozaki

Abstract Let b(k, θ) be the maximum order of a connected bipartite k-regular graph whose
second largest eigenvalue is at most θ. In this paper, we obtain a general upper bound for b(k, θ)
for any 0 6 θ < 2

√
k − 1. Our bound gives the exact value of b(k, θ) whenever there exists a

bipartite distance-regular graph of degree k, second largest eigenvalue θ, diameter d and girth
g such that g > 2d− 2. For certain values of d, there are infinitely many such graphs of various
valencies k. However, for d = 11 or d > 15, we prove that there are no bipartite distance-regular
graphs with g > 2d− 2.

1. Introduction
Let Γ = (V,E) be a connected k-regular simple graph with n vertices. For 1 6 i 6 n,
let λi(Γ) denote the i-th largest eigenvalue of the adjacency matrix of Γ. The eigen-
values have close relationships with other graph invariants. The smallest eigenvalue
λn(Γ) is related to the diameter, the chromatic number and the independence number
(see [8, Chapter 4] or [9] for example). The second eigenvalue λ2(Γ) plays a fundamen-
tal role in the study of expanders [2, 3, 8, 20]. Let v(k, θ) denote the maximum order
of a connected k-regular graph Γ with λ2(Γ) 6 θ. For θ < 2

√
k − 1, from work of Alon

and Boppana, and Serre, we know that the value v(k, θ) is finite (see [10, 25]). In [10],
we obtained the following upper bound for v(k, θ). Let T (k, t, c) be the t× t tridiag-
onal matrix with lower diagonal (1, 1, . . . , 1, c), upper diagonal (k, k − 1, . . . , k − 1),
and with constant row sum k. If θ is the second largest eigenvalue of T (k, t, c), then

(1) v(k, θ) 6 1 +
t−3∑
i=0

k(k − 1)i + k(k − 1)t−2

c
.

Equality holds in (1) if and only if there is a distance-regular graph of valency k with
second largest eigenvalue θ, girth g and diameter d satisfying g > 2d. For d > 6, there
are no such graphs [12]. However, for smaller values of d, there are infinitely many
values of k and θ where the above inequality gives the exact value of v(k, θ).
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In this paper, we improve the above results from [10] for bipartite regular graphs.
Let b(k, θ) denote the maximum order of a connected bipartite k-regular graph Γ
with λ2(Γ) 6 θ. Bipartite regular graphs Γ with λ2(Γ) 6 θ have been classified for
θ =
√

2 [29], θ =
√

3 [22], and θ = 2 [23]. We obtain a general upper bound for b(k, θ)
for any 0 6 θ < 2

√
k − 1. Our bound gives the exact value of b(k, θ) whenever there

exists a bipartite distance-regular graph of degree k with second largest eigenvalue
θ, diameter d and girth g such that g > 2d − 2. For certain values of d, there are
infinitely many such graphs of various valencies k. When d = 11 or d > 15, we
prove the non-existence of bipartite distance-regular graphs with g > 2d − 2. Our
results generalize previous work of Høholdt and Justesen [19] obtained in their study
of graph codes and imply some results of Li and Solé [24] relating the second largest
eigenvalue of a bipartite regular graph to its girth. The degree-diameter or Moore
problem for graphs [26] is about determining the largest graphs of given maximum
degree and diameter. Given the connections between the diameter and the second
largest eigenvalue of bipartite regular graphs (see [9] for example), our Theorem 4.1
can be interpreted as a spectral version of the Moore problem for bipartite regular
graphs.

In Section 2, we describe some sequences of orthogonal polynomials and develop
the preliminary results and notation that will be used in the paper. In Section 3, we
improve the linear programming bound from [27] for the class of bipartite regular
graphs. In Section 4, we obtain the following upper bound for b(k, θ). Let B(k, t, c)
be the t × t tridiagonal matrix with lower diagonal (1, . . . , 1, c, k), upper diagonal
(k, k−1, . . . , k−1, k−c), and constant row sum k. If θ is the second largest eigenvalue
of B(k, t, c), then

(2) b(k, θ) 6 2
(
t−4∑
i=0

(k − 1)i + (k − 1)t−3

c
+ (k − 1)t−2

c

)
.

We show that equality happens in (2) when there is a bipartite distance-regular graph
of degree k, second largest eigenvalue θ having g > 2d− 2. Inequality (2) generalizes
some results of Høholdt and Justesen [19] (see Corollaries 4.8 and 4.9), and of Li and
Solé [24] (see Corollary 4.11). At the end of Section 4, we prove that the bound (2) is
better than (1) for any k and θ. In Section 5, we prove the non-existence of bipartite
distance-regular graphs with g > 2d−2 for d = 11 and d > 15. We conclude the paper
with some remarks in Section 6.

2. Preliminaries
In this section, we describe some useful polynomials that will be used to prove our
main result. For any integer k > 2, let (F (k)

i )i>0 be a sequence of orthogonal polyno-
mials defined by the three-term recurrence relation:

F
(k)
0 (x) = 1, F

(k)
1 (x) = x, F

(k)
2 (x) = x2 − k,

and

(3) F
(k)
i (x) = xF

(k)
i−1(x)− (k − 1)F (k)

i−2(x)

for i > 3. The notation F
(k)
i is abbreviated to Fi for the rest of the paper. Let

q =
√
k − 1. The polynomials (Fi)i>0 form a sequence of orthogonal polynomials

with respect to the positive weight

w(x) =
√

4q2 − x2

k2 − x2
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on the interval [−2q, 2q] (see [21, Section 4]). The polynomials Fi(qy)/qi in y are
called Geronimus polynomials [16, 17]. It follows from (3) that

(4) Fi(x) = (x2 − 2k + 2)Fi−2(x)− (k − 1)2Fi−4(x)

for i > 5. Note that for any i > 0, F2i(x) and F2i+1(x) are even and odd functions of
x, respectively.

For i > 0, let F0,i(x) = F2i(
√
x) and F1,i(x) = F2i+1(

√
x)/
√
x. It follows that

xεFε,i(x2) = F2i+ε(x) for ε ∈ {0, 1}. By (4), the polynomials F0,i(x) and F1,i(x)
satisfy the following properties:

F0,0(x) = 1, F0,1(x) = x− k, F0,2(x) = x2 − (3k − 2)x+ k(k − 1),
F1,0(x) = 1, F1,1(x) = x− (2k − 1),

and

(5) Fε,i(x) = (x− 2k + 2)Fε,i−1(x)− (k − 1)2Fε,i−2(x)

for any i > 3 if ε = 0, and i > 2 if ε = 1. Note that kεFε,i(k2) = F2i+ε(k) =
k(k − 1)2i−1+ε = (k − 1)2i−1+ε + (k − 1)2i+ε for 2i + ε 6= 0. For ε ∈ {0, 1}, the
polynomials (Fε,i)i>0 form a sequence of orthogonal polynomials with respect to the
positive weight

wε(x) = xε−1/2
√

4q2 − x
k2 − x

on the interval [0, 4q2].
For i > 0, let Gi(x) =

∑bi/2c
j=0 Fi−2j(x). A simple calculation implies that

(6) Gi(x) = Fi+2(x)− (k − 1)2Fi(x)
x2 − k2

for i > 1. From Lemmas 3.3 and 3.5 in [11], the polynomials (Gi)i>0 form a sequence of
orthogonal polynomials with respect to the positive weight (k2−x2)w(x) =

√
4q2 − x2

on the interval [−2q, 2q]. From (3), we deduce that

Gi(x) = xGi−1(x)− (k − 1)Gi−2(x)

for i > 2.
Let Gε,i(x) denote the polynomial

(7) Gε,i(x) =
i∑

j=0
Fε,j(x).

It follows that xεGε,j(x2) = G2j+ε(x). Using (6), the polynomial Gε,i(x) can be ex-
pressed as

(8) Gε,i(x) = Fε,i+1(x)− (k − 1)2Fε,i(x)
x− k2

for any i > 2 if ε = 0, and i > 1 if ε = 1. From Lemmas 3.3 and 3.5 in [11], for
ε ∈ {0, 1}, the polynomials (Gε,i)i>0 form a sequence of orthogonal polynomials with
respect to the positive weight (k2−x)wε(x) = xε−1/2

√
4q2 − x on the interval [0, 4q2].

Lemma 2.1. Let pl(i, j) be the coefficients in xεFε,i(x)Fε,j(x) =
∑i+j+ε
l=0 pl(i, j)F0,l(x).

Then we have p0(i, j) = kεFε,i(k2)δi,j, and pl(i, j) > 0 for any l, i, j. Moreover
pl(i, j) > 0 if and only if |i− j| 6 l 6 i+ j + ε.
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Proof. We have that

F2i+ε(x)F2j+ε(x) =x2εFε,i(x2)Fε,j(x2) =
i+j+ε∑
l=0

pl(i, j)F0,l(x2) =
i+j+ε∑
l=0

pl(i, j)F2l(x).

By Theorem 3 in [27], we obtain that p0(i, j) = F2i+ε(k)δi,j = kεFε,i(k2)δi,j , and
pl(i, j) > 0 for any l, i, j. Moreover pl(i, j) > 0 if and only if |i− j| 6 l 6 i+ j+ ε. �

Let Γ be a connected regular bipartite graph. The adjacency matrix A of Γ can be
expressed by

A =
(

O N

N> O

)
,

where N> is the transpose matrix of N . The matrix N is called the biadjacency
matrix of Γ. It is not hard to see that

(9) F2i(A) =
(

F0,i(NN>) O

O F0,i(N>N)

)
.

Since each entry of F2i(A) is non-negative [28], each entry of F0,i(NN>) is also
non-negative.

3. Linear programming bound for bipartite regular graphs
In this section, we give a linear programming bound for bipartite regular graphs. For
general regular graphs, a linear programming bound was obtained by Nozaki [27].

Theorem 3.1. Let Γ be a connected bipartite k-regular graph with v vertices. Let
{±τ0, . . . ,±τd} be the set of distinct eigenvalues of Γ, where τ0 = k. If there exists
a polynomial f(x) =

∑t
i=0 fiF0,i(x) such that f(k2) > 0, f(τ2

i ) 6 0 for each i ∈
{1, . . . , d}, f0 > 0, and fj > 0 for each j ∈ {1, . . . , t}, then

(10) v 6
2f(k2)
f0

.

Equality holds if and only if for each i ∈ {1, . . . , d}, f(τ2
i ) = 0 and for each j ∈

{1, . . . , t}, tr(fjF0,j(NN>)) = 0, and tr(fjF0,j(N>N)) = 0, where N is the bi-
adjacency matrix of Γ. If equality holds and fj > 0 for each j ∈ {1, . . . , t}, then the
girth of Γ is at least 2t+ 2.

Proof. From the spectral decomposition NN> =
∑d
i=0 τ

2
i Ei, we deduce that

(11)

f(k2)E0 +
d∑
i=1

f(τ2
i )Ei = f(NN>) =

t∑
i=0

fiF0,i(NN>) = f0I +
t∑
i=1

fiF0,i(NN>),

where I is the identity matrix, E0 = (2/v)J , and J is the all-ones matrix. Taking
traces in both sides of (11), we get that

f(k2) = tr(f(k2)E0) > tr
(
f(k2)E0 +

d∑
i=1

f(τ2
i )Ei

)

= tr

f0I +
t∑

j=1
fjF0,j(NN>)

 > tr(f0I) = vf0

2 .

Therefore, v 6 2f(k2)/f0. By using F0,j(N>N), we can obtain the same bound
as (10).

Algebraic Combinatorics, Vol. 2 #6 (2019) 1222



A spectral version of the Moore problem for bipartite regular graphs

If equality holds in (10), then for each i ∈ {1, . . . , d}, f(τ2
i ) = 0 and for each

j ∈ {1, . . . , t}, tr(fjF0,j(NN>)) = 0 and tr(fjF0,j(N>N)) = 0. For the adjacency
matrix A, the (u, v)-entry of Fj(A) is the number of non-backtracking walks of length
j from u to v [28]. Since (9) and fj > 0 for each j ∈ {1, . . . , t}, there is no non-
backtracking walk of length 2j from u to v for each j ∈ {1, . . . , t}. Since Γ is bipartite,
the girth of Γ is at least 2t+ 2. �

4. Upper bound for bipartite graphs with given second
eigenvalue

In this section, we obtain an upper bound on b(k, θ) using the bipartite linear pro-
gramming bound given by Theorem 3.1. Let c > 0 be a real number and t > 4 be an
integer. Let B(k, t, c) be the t×t tridiagonal matrix with lower diagonal (1, . . . , 1, c, k),
upper diagonal (k, k − 1, . . . , k − 1, k − c), and constant row sum k. Let

B(k, 3, 1) =

0 k 0
1 0 k − 1
0 k 0

 .

Theorem 4.1. If θ is the second largest eigenvalue of B(k, t, c), then

b(k, θ) 6M(k, t, c) = 2
(
t−4∑
i=0

(k − 1)i + (k − 1)t−3

c
+ (k − 1)t−2

c

)
.

Equality holds if and only if there exists a bipartite distance-regular graph whose
quotient matrix with respect to the distance-partition from a vertex is B(k, t, c) for
1 6 c < k or B(k, t− 1, 1) for c = k.

Proof. We first calculate the characteristic polynomial of B(k, t, c). The polynomials
Fi, Gi, Fi, and Gi are defined in Section 2. Note that Fi(x) is the characteristic
polynomial of the principal i × i matrix formed by the first i rows and i columns of
B(k, t, 1) for t > i+ 1. By this fact and equations (4) and (6), we can compute

|xI −B(k, t, c)|

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

x −k
−1 x −(k − 1)

. . . . . . . . .
−1 x −(k − 1)

−c x −(k − c)
−k x

∣∣∣∣∣∣∣∣∣∣∣∣∣
= k

∣∣∣∣∣∣∣∣∣∣∣

x −k
−1 x −(k − 1)

. . . . . . . . .
−1 x 0

−c −(k − c)

∣∣∣∣∣∣∣∣∣∣∣
+ x

∣∣∣∣∣∣∣∣∣∣∣

x −k
−1 x −(k − 1)

. . . . . . . . .
−1 x −(k − 1)

−c x

∣∣∣∣∣∣∣∣∣∣∣
= −k(k − c)Ft−2(x) + x(xFt−2(x)− c(k − 1)Ft−3(x))
= c
(
Ft−2(x)− (k − 1)2Ft−4(x)

)
+ (x2 − k2)Ft−2(x)

= c
(
(x2 − k2)Ft−4(x) + Ft−4(x)− (k − 1)2Ft−6(x)

)
+ (x2 − k2)Ft−2(x)

= (x2 − k2)

c b(t−4)/2c∑
i=0

Ft−4−2i(x) + Ft−2(x)

 .

Algebraic Combinatorics, Vol. 2 #6 (2019) 1223



Sebastian M. Cioabă, Jack H. Koolen & H. Nozaki

Note that

c

b(t−4)/2c∑
i=0

Ft−4−2i(x) + Ft−2(x) = (c− 1)Gt−4(x) +Gt−2(x).

Since the zeros of Gε,s−1 and Gε,s interlace on (0, 4(k−1)), each zero of (c−1)Gε,s−1 +
Gε,s is simple and belongs to (0, 4(k − 1)) except for the smallest zero. For c = k the
smallest zero is equal to 0 because (k − 1)Gε,s−1(0) + Gε,s(0) = 0 by (5) and (7). For
c > k, the smallest zero is negative. From xε(x2 − k2)((c− 1)Gε,s−1(x2) + Gε,s(x2)) =
(x2 − k2)((c − 1)G2s−2+ε(x) + G2s+ε(x)), each non-zero real eigenvalue of B(k, t, c)
has multiplicity 1, and if c > k, then B(k, t, c) has imaginary eigenvalues.

Let f1(x) be the polynomial

f1(x) = ((c− 1)Gt−4(x) +Gt−2(x))2

x2 − θ2 =
t−3∑
i=0

fiF0,i(x2).

We show that f2(x) =
∑t−3
i=0 fiF0,i(x) satisfies the condition of the linear programming

bound from Theorem 3.1 for bipartite graphs. Note that f2(k2) = f1(k) > 0, and
f2(λ2) = f1(λ) 6 0 for each λ ∈ [−θ, θ]. It suffices to show that fi > 0 for each
i ∈ {0, 1, . . . , t− 3}.

The polynomial f1(x) can be expressed by

f1(x) = (c− 1)Gt−4(x) +Gt−2(x)
x2 − θ2

c bt/2c−2∑
i=0

Ft−4−2i(x) + Ft−2(x)


=x2ε (c−1)Gε,bt/2c−2(x2)+Gε,bt/2c−1(x2)

x2 − θ2

c bt/2c−2∑
i=0

Fε,i(x2)+Fε,bt/2c−1(x2)

,
where ε = 0 if t is even, and ε = 1 if t is odd. Thus,

f2(x) = xε
(c− 1)Gε,bt/2c−2(x) + Gε,bt/2c−1(x)

x− θ2

c bt/2c−2∑
i=0

Fε,i(x) + Fε,bt/2c−1(x)

 .

By Proposition 3.2 in [11], g(x) = ((c − 1)Gε,bt/2c−2 + Gε,bt/2c−1)/(x − θ2) has
positive coefficients in terms of Gε,0,Gε,1, . . . ,Gε,bt/2c−2. This implies that g(x) has
positive coefficients in terms of Fε,0,Fε,1, . . . ,Fε,bt/2c−2. Therefore fi > 0 for each
i = {0, 1, . . . , t− 3} by Lemma 2.1.

The polynomial g(x) can be expressed by g(x) =
∑bt/2c−2
i=0 giFε,i(x). By Lemma 2.1,

we have

f0 =
bt/2c−2∑
i=0

ckεgiFε,i(k2) = ckεg(k2).

By applying Theorem 3.1 to the polynomial f2(x), we have

b(k, θ) 6 2f2(k2)
f0

= 2kε
bt/2c−2∑

i=0
Fε,i(k2) + Fε,bt/2c−1(k2)/c


= 2

(
t−4∑
i=0

(k − 1)i + (k − 1)t−3

c
+ (k − 1)t−2

c

)
.

By Theorem 3.1, the bipartite graph attaining the bound M(k, t, c) has girth at
least 2t−4, and at most t distinct eigenvalues. Since the diameter is at most t−1, the
graph satisfies g > 2d−2, where g is the girth and d is the diameter. By g > 2d−2, the
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graph becomes a distance-regular graph [1, Theorem 4.4], [29], and it must have the
quotient matrix B(k, t, c) for 1 6 c < k, or B(k, t−1, 1) for c = k (see Proposition 4.6
below). Conversely the distance-regular graph with the quotient matrix B(k, t, c)
clearly attains the bound M(k, t, c). �

Note that Γ is a distance-regular graph with the quotient matrix B(k, d + 1, c) if
and only if Γ is a connected bipartite k-regular graph that has only d + 1 distinct
eigenvalues, and whose girth is at least 2d − 2. Table 1 shows the known examples
attaining the bound M(k, d+ 1, c) [7, Section 6.11].

Example 4.2. Recall that v(k, θ) denotes the maximum order of a connected (not
necessarily bipartite) k-regular graph whose second largest eigenvalue is at most θ.
We have v(3, 1) = 10, which is attained by the Petersen graph [10] and b(3, 1) = 8
from Table 1, which is attained by the bipartite incidence graph of the symmetric
(4, 3, 2)-design.

The following is the bipartite version of Theorem 5 in [27].

Corollary 4.3. Let Γ be a bipartite distance-regular graph of order n with quotient
matrix B(k, t, c) with respect to the distance-partition from a vertex. Then λ2(Γ) 6
λ2(Γ′) for any bipartite k-regular graph Γ′ of order n.

Proof. Assume that there exists a graph Γ′ of order n such that λ2(Γ′) < λ2(Γ).
Then Γ′ also attains the bound from Theorem 4.1. This implies that Γ′ must have
the eigenvalue λ2(Γ), which is a contradiction. �

Let µ(j) (resp. λ(j)) denote the largest zero of Fj(x) (resp. Gj(x)).

Proposition 4.4. For each θ ∈ [0, 2
√
k − 1), there exist t, c such that θ is the second

largest eigenvalue of B(k, t, c).

Proof. Note that λ(j) < µ(j) for j > 1 because Gj(x) =
∑bj/2c
i=0 Fj−2i(x) > 0 for

x > µ(j). The second eigenvalue λ2(t, c) of B(k, t, c) is equal to the largest zero of
(c−1)Gt−4(x)+Gt−2(x). Since the zeros of Gε,bt/2c−2 and Gε,bt/2c−1 interlace, λ2(t, c)
is a monotonically decreasing function in c. In particular, limc→∞ λ2(t, c) = λ(t−4)

with t > 5, λ2(t, 1) = λ(t−2), and limc→0 λ2(t, c) = µ(t−2). The largest zero r(j) of
Gj(x) + Gj−1(x) can be expressed by r(j) = 2

√
k − 1 cosα, where π/(j + 1) < α <

π/j [6, Section III.3]. For λ(j) = 2
√
k − 1 cosβ, it follows from r(j) < λ(j) that β <

α < π/j. This implies that the possible value λ2(t, c) is between limc→k λ2(4, c) = 0
and limt→∞ λ2(t, 1) = 2

√
k − 1. Therefore for each θ ∈ [0, 2

√
k − 1), there exist t, c

such that λ is the second eigenvalue of B(k, t, c). �

Note that for θ ∈ (λ(t−2), µ(t−2)], θ is the second eigenvalue of both B(k, t, c1) and
B(k, t + 2, c2) for some c1, c2 with 0 6 c1 < 1, c2 > 0. By the following proposition,
we may assume c > 1 in Theorem 4.1 to obtain better bounds.

Proposition 4.5. Let θ ∈ (λ(t−2), µ(t−2)]. Suppose c1 and c2 satisfy that 0 6 c1 < 1,
c2 > 0 and the second largest eigenvalues of B(k, t, c1) and B(k, t+2, c2) are θ. Then
we have M(k, t, c1) > M(k, t+ 2, c2).

Proof. Since (c1 − 1)Gt−4(θ) +Gt−2(θ) = 0 holds, we have

c1 = −Gt−2(θ)−Gt−4(θ)
Gt−4(θ) = −Ft−2(θ)

Gt−4(θ) .
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Table 1. Known bipartite graphs meeting the bound M(k, d+ 1, c)

k θ b(k, θ) d c Name
2 2 cos(2π/n) n (even) n/2 1 n-cycle Cn
k 0 2k 2 1 Complete bipartite graph Kk,k

k
√
k − τ 2(1 + k(k − 1)/τ) 3 τ Symmetric (v, k, τ)-design

r2 − r + 1 r 2(r2 + 1)× (r2 − r + 1) 4 (r − 1)2 pg(r2 − r + 1, r2 − r + 1, (r − 1)2)
q

√
q 2q2 4 q − 1 AG(2, q) minus a parallel class

q + 1
√

2q 2
∑3
i=0 q

i 4 1 GQ(q, q)
q + 1

√
3q 2

∑5
i=0 q

i 6 1 GH(q, q)
6 2 162 4 2 pg(6, 6, 2)

AG(2, q): affine plane, GQ(q, q): generalized quadrangle, GH(q, q): generalized hexagon,
pg: partial geometry, q: prime power, r: power of 2,

We use the bipartite incidence graph of an incidence structure.
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Similarly c2 =−Ft(θ)/Gt−2(θ) holds. By θ >λ(t−2), we have Ft−2(θ) =−c1Gt−4(θ) <
0 and Ft(θ) = −c2Gt−2(θ) < 0. It therefore follows that

M(k, t, c1)−M(k, t+ 2, c2) = 2k(k − 1)t−2
(

1
c1
− 1− 1

c2
(k − 1)2

)
= 2k(k − 1)t−2

(
−Gt−4(θ)
Ft−2(θ) − 1 + (k − 1)2Gt−2(θ)

Ft(θ)

)
= 2k(k − 1)t−2

(
−Gt−2(θ)
Ft−2(θ) + (k − 1)2Gt−2(θ)

Ft(θ)

)
= 2k(k − 1)t−2Gt−2(θ)

Ft−2(θ)Ft(θ)
(
− Ft(θ) + (k − 1)2Ft−2(θ)

)
= 2k(k − 1)t−2(k2 − θ2)Gt−2(θ)2

Ft−2(θ)Ft(θ)
> 0. �

For θ ∈ (λ(t−4), λ(t−3)], θ is the second eigenvalue of both B(k, t, c1) and B(k, t−
1, c2) for some c1, c2 with c1 > 1, c2 > 1. It follows that

1
c1

= −Gt−4(θ)
Ft−2(θ) = −Gt−2(θ)

Ft−2(θ) + 1 = −λGt−3(θ)− (k − 1)Gt−4(θ)
Ft−2(θ) + 1

= −λGt−3(θ)
Ft−2(θ) −

k − 1
c1

+ 1,

and hence

(12) k

c1
= −λGt−3(θ)

Ft−2(θ) + 1

for t > 4. Thus, if θ = λ(t−3), then c1 = k. This implies that k 6 c1. By the following
proposition, we may assume 1 6 c < k in Theorem 4.1 to obtain better bounds.

Proposition 4.6. Let θ ∈ (λ(t−4), λ(t−3)]. Suppose c1 and c2 satisfy that k 6 c1,
c2 > 1 and the second largest eigenvalues of B(k, t, c1) and B(k, t−1, c2) are θ. Then
we have M(k, t, c1) > M(k, t − 1, c2). Moreover, equality holds if and only if c1 = k
and c2 = 1.

Proof. From c2 = −Ft−3(θ)/Gt−5(θ) and (12), we have

M(k, t, c1)−M(k, t− 1, c2)
2(k − 1)t−4 = 1 + k − 1

c1
+ (k − 1)2

c1
− 1
c2
− k − 1

c2

= 1− 1
c2

+ (k − 1)
(
k

c1
− 1
c2

)
= 1 + Gt−5(θ)

Ft−3(θ) + (k − 1)
(
−xGt−3(θ)
Ft−2(θ) + 1 + Gt−5(θ)

Ft−3(θ)

)
= Gt−3(θ)
Ft−3(θ) − (k − 1)2Ft−4(θ)Gt−3(θ)

Ft−2(θ)Ft−3(θ)

= Gt−3(θ)
Ft−3(θ)Ft−2(θ) (Ft−2(θ)− (k − 1)2Ft−4(θ))

= (x2 − k2)Gt−3(θ)Gt−4(θ)
Ft−3(θ)Ft−2(θ) > 0.

This implies the proposition. �

The above results imply the following theorem.
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Theorem 4.7. Let λ(j) be the largest zero of Gj(x) for j> 1. Then
∞⋃
j=1

(λ(j), λ(j+1)] = (0, 2
√
k − 1).

If t > 4 satisfies λ(t−3) < θ 6 λ(t−2), then

b(k, θ) 6M(k, t, c) = 2
(
t−4∑
i=0

(k − 1)i + (k − 1)t−3

c
+ (k − 1)t−2

c

)
,

where c = −Ft−2(θ)/Gt−4(θ).

The following results in [18, 19] are obtained as corollaries of Theorem 4.7.

Corollary 4.8 ([18]). Let Γ be a bipartite n-regular graph with 2m nodes. If λ2(Γ) 6√
n− 1, then

m 6 1 + n(n− 1)
n− λ2

2(Γ)
or, equivalently,

λ2
2(Γ) >

√
mn− n2

m− 1 .

Proof. This is immediate by Theorem 4.7 for t = 4. Indeed, since λ(1) is the largest
zero of G1(x) = x, we have λ(1) = 0. Since λ(2) is the largest zero of G2(x) =
x2 − (n − 1), we have λ(2) =

√
n− 1. Since c = −F2(θ)/G0(θ) = n − θ2, we have

M(n, 4, c)/2 = 1 + n(n− 1)/(n− θ2). �

Corollary 4.9 ([19, Theorem 4]). Let Γ be a bipartite n-regular graph with 2m nodes.
If
√
n− 1 6 λ2(Γ) 6

√
2(n− 1), then

m 6 n+ n(n− 1)
2n− λ2

2(Γ)− 1 .

Proof. This is immediate by Theorem 4.7 for t = 5. Indeed, since λ(2) is the largest
zero of G2(x) = x2 − (n − 1), we have λ(2) =

√
n− 1. Since λ(3) is the largest zero

of G3(x) = x(x2 − 2(n − 1)), we have λ(3) =
√

2(n− 1). Since c = −F3(θ)/G1(θ) =
2n− θ2 − 1, we have

M(n, 5, c)/2 = n+ n(n− 1)/(2n− θ2 − 1).

�

For 0 < θ 6
√
k − 1, the inequality b(k, θ) 6 2(θ4 + θ2 + 1) was obtained by

Teranishi and Yasuno [29, Proposition 7.1]. This bound is improved as follows.

Corollary 4.10. If k1/4 < θ 6
√
k − 1, then

b(k, θ) 6 2
(

1 + k − 1
k − θ2 + (k − 1)2

k − θ2

)
< 2(θ4 + θ2 + 1).

Proof. Note that we have λ(1) = 0, λ(2) =
√
k − 1, and c = −F2(θ)/G0(θ) = k − θ2.

By Theorem 4.7, for 0 < θ 6
√
k − 1, we have

b(k, θ) 6 2(1 + (k − 1)/(k − θ2) + (k − 1)2/(k − θ2)).

The inequality 1 + k−1
k−θ2 + (k−1)2

k−θ2 < θ4 + θ2 + 1 holds if and only if k1/4 < θ 6
√
k − 1.

The assertion therefore follows. �

By Theorem 4.1, the following is immediate.
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Corollary 4.11. Let Γ be a connected bipartite k-regular graph of order v. If θ is the
second largest eigenvalue of B(k, t, c) and v >M(k, t, c), then λ2(Γ) > θ holds.

Li and Solé [24, Theorems 3 and 5] showed that if Γ is of girth g = 2l, then λ2(Γ) >
2 cos(π/l). Corollary 4.11 improves this result because we have v >M(k, l+1, 1) when
g = 2l and θ = 2 cos(π/l) for B(k, l + 1, 1).

We prove that the bound (2) is better than the bound (1) for any k and θ. For (1)
we have a similar theorem to Theorem 4.7. For j > 0, denote Gj(x) =

∑j
i=0 Fi(x).

Theorem 4.12 ([10]). Let r(j) be the largest zero of Gj(x) for j > 1. Then⋃∞
j=1(r(j), r(j+1)] = (−1, 2

√
k − 1). If t > 3 satisfies r(t−2) < θ 6 r(t−1), then

v(k, θ) 6 N(k, t, c) = 1 +
t−3∑
i=0

k(k − 1)i + k(k − 1)t−2

c
,

where c = −Ft−1(θ)/Gt−2(θ).

Theorem 4.13. Let k > 2 be an integer. For θ ∈ (0, 2
√
k − 1), let M(k, t1, c1) and

N(k, t2, c2) be defined as in Theorems 4.7 and 4.12, where c1 = −Ft1−2(θ)/Gt1−4(θ),
c2 = −Ft2−1(θ)/Gt2−2(θ), λ(t1−3) < θ 6 λ(t1−2), and r(t2−2) < θ 6 r(t2−1). Then

M(k, t1, c1) 6 N(k, t2, c2).

Equality holds only if t1 = t2 = t+ 1, θ = λ(t−1), c1 = 1, and c2 = k.

Proof. Note that λ(t−2) < r(t−1) < λ(t−1) because Gt−1(x) = Gt−1(x) + Gt−2(x) for
any t > 3.

Because θ ∈ (0, 2
√
k − 1) = ∪j>3(λ(j−2), λ(j−1)], there is t > 3 such that θ ∈

(λ(t−2), r(t−1)] ∪ (r(t−1), λ(t−1)]. We consider each of the two possible cases λ(t−2) <
θ 6 r(t−1) and r(t−1) < θ 6 λ(t−1) separately.

Suppose λ(t−2) < θ 6 r(t−1). Then t1 = t + 1 and t2 = t. From Theorem 4.12, a
simple calculation yields that

N(k, t2, c2) = 2
t2−3∑
i=0

(k − 1)i + (k − 1)t2−2 + k(k − 1)t2−2

c2
,

and therefore,

N(k, t, c2)−M(k, t+ 1, c1) =
(

1 + k

c2
− 2k
c1

)
(k − 1)t−2

=
(

1− kGt−2(θ)
Ft−1(θ) + 2kGt−3(θ)

Ft−1(θ)

)
(k − 1)t−2

=
(

1− kGt−2(θ)− kGt−3(θ)
Gt−1(θ)−Gt−3(θ)

)
(k − 1)t−2.

Because the zeroes of Gt−2 and Gt−1 interlace, we get that Gt−1(θ) < 0 < Gt−3(θ).
Thus, Gt−1(θ) − Gt−3(θ) < 0. If Gt−2(θ) − Gt−3(θ) > 0, then it is clear that
N(k, t, c2) > M(k, t+ 1, c1). Otherwise, if Gt−2(θ)−Gt−3(θ) < 0, then

|kGt−2(θ)−kGt−3(θ)|−|Gt−1(θ)−Gt−3(θ)|= (k − 1)Gt−3(θ)+Gt−1(θ)−kGt−2(θ)
= (θ − k)Gt−2(θ) < 0

which implies that N(k, t2, c2) > M(k, t1, c1).
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Suppose r(t−1) < θ 6 λ(t−1). Then t1 = t+ 1 and t2 = t+ 1. Thus we have

N(k, t+ 1, c2)−M(k, t+ 1, c1) =
(
k + 1 + k(k − 1)

c2
− 2k
c1

)
(k − 1)t−2

=
(
k + 1− k(k − 1)Gt−1(θ)

Ft(θ)
+ 2kGt−3(θ)

Ft−1(θ)

)
(k − 1)t−2

=
(
k + 1− k(k − 1)(Gt−1(θ) +Gt−2(θ))

Ft(θ)
+ 2k(Gt−1(θ)− Ft−1(θ))

Ft−1(θ)

)
(k − 1)t−2

=
(
−k(k − 1)Gt−1(θ)

Ft(θ)
+ 2kGt−1(θ)

Ft−1(θ) − (k − 1)
(

1 + k
Gt−2(θ)
Ft(θ)

))
(k − 1)t−2

=
(
−k(k − 1)Gt−1(θ)

Ft(θ)
+ 2kGt−1(θ)

Ft−1(θ) − (k − 1)θGt−1(θ)
Ft(θ)

)
(k − 1)t−2

=
(
kFt(θ)− k(k − 1)Ft−1(θ)

Ft(θ)Ft−1(θ) + kFt(θ)− θ(k − 1)Ft−1(θ)
Ft(θ)Ft−1(θ)

)
(k − 1)t−2Gt−1(θ)

=
(
k(θ − k)Gt−1(θ)
Ft(θ)Ft−1(θ) + (θ2 − k2)Gt−2(θ)

Ft(θ)Ft−1(θ)

)
(k − 1)t−2Gt−1(θ)

=
(
kGt−1(θ) + (θ + k)Gt−2(θ)

Ft(θ)Ft−1(θ)

)
(k − 1)t−2(θ − k)Gt−1(θ) > 0.

Equality holds only if Gt−1(θ) = 0 meaning that θ = λ(t−1). Since c1 = −Ft−1(θ)
Gt−3(θ) =

Gt−3(θ)−Gt−1(θ)
Gt−3(θ) = 1 − Gt−1(θ)

Gt−3(θ) and c2 = −Ft(θ)
Gt−1(θ) = Gt−2(θ)−Gt(θ)

Gt−1(θ)+Gt−2(θ) = kGt−2(θ)
Gt−2(θ) , this

means that c1 = 1, and c2 = k. �

5. Non-existence of certain distance-regular graphs
In this section, we prove the non-existence of the graph that attains the bound in
Theorem 4.1 for t > 15 and t = 12. Namely we prove the following.
Theorem 5.1. Let k and c be two integers such that k > 3 and 1 6 c 6 k−1. If d = 11
or d > 15, there is no distance-regular graph Γ with the quotient matrix B(k, d+1, c).

We prove Theorem 5.1 by the manner given by Fuglister [14]. Let x = (t +
1/t)
√
k − 1. The polynomial Gi(x) can be expressed by

Gi(x) =
√

(k − 1)i
ti(t2 − 1) (t2i+2 − 1).

The characteristic polynomial of B(k, d+1, c) is (x2−k2)
(
(c−1)Gd−3(x)+Gd−1(x)

)
,

and we have the expression
Sd(x) = (c− 1)Gd−3(x) +Gd−1(x)

=
√

(k − 1)d−1

td−1(t2 − 1)

(
t2d + c− 1

k − 1 t
2d−2 − c− 1

k − 1 t
2 − 1

)
.

Let θ be an eigenvalue of Γ that is not ±k. Put θ = (τ+1/τ)
√
k − 1 for some complex

number τ . Let n be the order of Γ. The multiplicity mθ is given by

mθ = nck(k − c)(k − 1)d−2

(k2 − θ2)S ′d(θ)fd−1(θ) ,

where S ′d(x) is the derivative with respect to x, fd−1 = (x − 1 + c)Gd−2 + (x − k +
c)Gd−3 − (k − 1)Gd−4 and G−1 = 0. From Sd(θ) = 0, we can obtain

τ2d−2 = (c− 1)τ2 + k − 1
(k − 1)τ2 + c− 1 .
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Then we may calculate that

fd−1(θ) = − c(k − c)
√

(k − 1)d−2

τd−2((k − 1)τ2 + c− 1) ,

and

S ′d(θ) =
2
√

(k−1)d−4[(d−1)(k−1)(c−1)(τ4 +1)+
(
d(k−1)2 +(d−2)(c−1)2)τ2]

τd−2(τ2 − 1)2
(
(k − 1)τ2 + c− 1

) .

From these equations, the multiplicity mθ can be expressed by

mθ =
nk(k − 1)(τ2 − 1)2((c− 1)τ2 + k − 1

)(
(k − 1)τ2 + c− 1

)
2(θ2 − k2)τ2[(d− 1)(k − 1)(c− 1)(τ4 + 1) +

(
d(k − 1)2 + (d− 2)(c− 1)2

)
τ2]

=
nk
(
θ2 − 4(k − 1)

)(
(c− 1)θ2 + (k − c)2)

2(θ2 − k2)[(d− 1)(c− 1)θ2 + d(k − c)2 + 2(c− 1)(k − c)]

=
nk(k − 1)

(
φ− 4

)(
(c− 1)(k − 1)φ+ (k − c)2)

2
(
(k − 1)φ− k2

)
[(d− 1)(c− 1)(k − 1)φ+ d(k − c)2 + 2(c− 1)(k − c)]

,

(13)

where θ2 = (k−1)φ. Unless (k, c) = (2, 1), expression (13) gives a non-trivial rational
quadratic polynomial in φ.

Set

Hd(x) = Sd(x)
xε
√

(k − 1)d−3−ε
,

where ε = 1 if d is even, and ε = 0 if d is odd. Let z = x2/(k− 1). For u = t2, we have
z = (t+ 1/t)2 = u+ 1/u+ 2. We compute

H2m+1−ε(z) = (c− 1)Pm−1,ε(z) + (k − 1)Pm,ε(z),

where

Pi,ε(z) = u2i+1−ε − 1
ui−ε(u+ 1)ε(u− 1) .

Note that Pi,ε(z) satisfy the recurrence relation

Pi,ε(z) = (z − 2)Pi−1,ε(z)− Pi−2,ε(z)

with the initial conditions P0,ε(z) = 1−ε, P1,1(z) = 1 and P1,0(z) = z−1. This implies
that Pi,ε(z) is a monic polynomial of degree i with integer coefficients. Table 2 shows
some useful identities involving polynomials Pi,ε(z). By (13), the polynomial Hd(z)
must split over the rationals into factors of degree at most 2.

Table 2. Identities involving Pi,ε(z)

d = 2m+ 1− ε
Pm,ε(z) = (ud − 1)/um−ε(u− 1)(u+ 1)ε

Pm−1,ε(z) = (ud−2 − 1)/um−1−ε(u− 1)(u+ 1)ε

Pm−1,ε(z) + Pm,ε(z) = (u+ 1)1−ε(ud−1 − 1)/um−ε(u− 1)
−Pm−1,ε(z) + Pm,ε(z) = (ud−1 + 1)/um−ε(u+ 1)ε
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5.1. Case analysis modulo 2. Let c′ = c − 1 and k′ = k − 1. If c′ and k′ have
a factor in common, we may still factor out the content of Hd(z). Call the resulting
polynomial Ĥd(z). For Ĥd(z) modulo 2, there are three cases A–C, which are listed in
Table 3. For natural numbers n and a, let ordn(a) be the non-negative integer s such
that a = nsb and b is an integer that is not divisible by n. Suppose ordn(0) =∞.

Table 3. Ĥd(z) modulo 2, w ∈ {1, 3, 5}

Cases Conditions Ĥd(z) (mod 2) d

A ord2(c′) > ord2(k′) Pm,ε(z) d = 2rw
B ord2(c′) < ord2(k′) Pm−1,ε(z) d− 2 = 2rw
C ord2(c′) = ord2(k′) Pm−1,ε(z) + Pm,ε(z) d− 1 = 2rw

Each root of Ĥd(z) is a root of one of the three irreducible polynomials of degree
at most 2 over GF(2), which are listed in Table 4. There are also listed the results of
the substitution z = u+ 1/u+ 2, as well as the multiplicative orders modulo 2 of the
roots of the polynomials in u.

Table 4. Irreducible polynomials over GF(2)

f(z) z = u+ 1/u+ 2 order of u
z (u+ 1)2/u 1
z + 1 (u2 + u+ 1)/u 3
z2 + z + 1 (u4 + u3 + u2 + u+ 1)/u2 5

If an expression ui − 1 occurs as a factor of Ĥd(z) modulo 2, then we must have
i = 2rw for w ∈ {1, 3, 5}. From the identities in Table 2, we can obtain the possible
values for the diameter d in Table 3.

5.2. Case analysis modulo 3. For Ĥd(z) modulo 3, there are three cases a–d,
which are listed in Table 5. If ord3(c′) = ord3(k′) = m, then let c′′ = c′/3m and
k′′ = k′/3m.

Table 5. Ĥd(z) modulo 3, w ∈ {1, 2, 4, 5, 8, 10}

Cases Conditions Ĥd(z) (mod 2) d

a ord3(c′)> ord3(k′) ±Pm,ε(z) d = 3rw
b ord3(c′)< ord3(k′) ±Pm−1,ε(z) d− 2 = 3rw
c ord3(c′) = ord3(k′), c′′≡ k′′ (mod 3) ±(Pm−1,ε(z)+Pm,ε(z)) d− 1 = 3rw
d ord3(c′) = ord3(k′), c′′≡−k′′ (mod 3) ±(Pm−1,ε(z)−Pm,ε(z)) 2d− 2 = 3rw

There are six irreducible polynomials of degree at most 2 over GF(3), which are
listed in Table 6. We can obtain the possible values for the diameter d in Table 5 by
a similar way to modulo 2. Here w ∈ {1, 2, 4, 5, 8, 10}.
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Table 6. Irreducible polynomials over GF(3)

f(z) z = u+ 1/u+ 2 order of u
z − 1 (u− 1)2/u 1
z (u+ 1)2/u 2
z + 1 (u2 + 1)/u 4
z2 − z − 1 (u2 − u− 1)(u2 + u+ 1)/u2 8
z2 + 1 (u4 + u3 + u2 + u+ 1)/u2 5
z2 + z − 1 (u4 − u3 + u2 − u+ 1)/u2 10

5.3. A bound for the diameter. Using a method similar to the one of Fuglis-
ter [14], we can obtain the possible values of d in all cases A–C and a–d, which are
listed in Table 7.

Table 7. Possible values of d

Case
(mod 2) (mod 3) Possible values of d
A a 3–6,8,10,12,24

b 3–6,8,10,12,20,32
c,d 3–6,10,16

B a 3–6,8,10,12,18,162
b 3–8,10,12,14,26
c,d 3–7,10,82

C a 3–6,9,81
b 3–7,11,17
c 3–7,9,11,13,25
d 3–7,13

We eliminate several choices of d from Table 7 in this subsection.

Proposition 5.2. There does not exist a distance-regular graph Γ with the quotient
matrix B(k, d+ 1, c) for d = 17, 18, 20, 32, 81, 82, 162.

Proof. Using a computer, we can obtain the factorization of c′Pm−1,ε(z) + k′Pm,ε(z)
modulo p into irreducible polynomials for given d, k′ and c′.

For d = 18, 81, 82, 162, we can find an irreducible polynomial of degree at least 3 as
a factor of c′Pm−1,ε(z) + k′Pm,ε(z) over GF(5) for each pair (c′, k′) ∈ GF(5)×GF(5).

For d = 20, 32, we can find an irreducible polynomial of degree at least 3 as a factor
of c′Pm−1,ε(z) + k′Pm,ε(z) over GF(7) for each pair (c′, k′) ∈ GF(7)×GF(7).

For d = 17, we can find an irreducible polynomial of degree at least 3 as a factor
of c′Pm−1,ε(z) + k′Pm,ε(z) over GF(43) for each pair (c′, k′) ∈ GF(43)×GF(43). �

Bannai and Ito [4] proved the unimodal property of the multiplicities of the eigen-
values of Moore polygons. After this work, they also proved the rationality of the
eigenvalues of Moore polygons [5]. The rationality of the eigenvalues is essential for
the proof of the non-existence of Moore polygons [12]. In our case, the unimodal
property of the multiplicities for the positive eigenvalues is easy.
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Lemma 5.3. Let Γ be a distance-regular graph with the quotient matrix B(k, d+ 1, c).
Let d′ = b(d− 1)/2c, which is the number of the positive non-trivial eigenvalues. Let
θ1, . . . , θd′ be the positive non-trivial eigenvalues of Γ with θ1 > · · · > θd′ . Let mθi be
the multiplicity of θi. Then it follows that

mθ1 < mθ2 < · · · < mθi−1 < mθi > mθi+1 > · · · > mθd′

for some i ∈ {1, . . . , d′}.

Proof. The multiplicity mθ of the eigenvalue θ can be expressed by equation (13).
The function mθ has no pole for 0 < φ < 4 and k > 3. This implies the unimodal
property of the multiplicities. �

It is known that
Gi(x) = (k − 1)i/2Ui

(
x

2
√
k − 1

)
,

where Ui is the Chebyshev polynomial of degree i, which is defined by Ui(cos θ) =
sin((i + 1)θ)/ sin θ (see [13]). Thus the zeros of Gi(x) are 2

√
k − 1 cosu(i)

j for j =
1, . . . , i, where u(i)

j = jπ/(i+ 1). Since the expression
Sd(x) = (c− 1)Gd−3(x) +Gd−1(x) = xGd−2(x)− (k − c)Gd−3(x),

the positive zeros θi = 2
√
k − 1 cosαi of Sd(x) with 0 < α1 < · · · < αd′ < π/2 satisfy

u
(d−1)
i < αi < u

(d−2)
i for each i ∈ {1, . . . , d′}.

Let a(φ) and b(φ) be the functions defined by

a(φ) = φ− 4
(k − 1)φ− k2 ,

b(φ) = (c− 1)(k − 1)φ+ (k − c)2

(d− 1)(c− 1)(k − 1)φ+ d(k − c)2 + 2(c− 1)(k − c)

= Xφ

(d− 1)Xφ + Y
,

where Xφ = (c − 1)(k − 1)φ + (k − c)2 and Y = (k − c)(k + c − 2). Note that
mθ = nk(k − 1)a(φ)b(φ)/2. Let θ2

α = (k − 1)α and θ2
β = (k − 1)β. It follows that

mθβ > mθα if and only if
a(β)
a(α) ·

b(β)
b(α) > 1.

Let α = 4 cos2 v and β = 4 cos2 w. By direct calculation,
a(β)
a(α) = 1 + cos 2v − cos 2w

1− cos 2v · (k − 2)2

(k − 2)2 + 2(k − 1)(1− cos 2w)
and

b(β)
b(α) = 1− Y (Xα −Xβ)

(d− 1)XαXβ + Y Xα
.

Let
A = cos 2v − cos 2w

1− cos 2v · (k − 2)2

(k − 2)2 + 2(k − 1)(1− cos 2w)
and

B = Y (Xα −Xβ)
(d− 1)XαXβ + Y Xα

.

Note that
a(β)
a(α) ·

b(β)
b(α) = (1 +A)(1−B) = 1 +B

(
A

(
1
B
− 1
)
− 1
)
.

If A(1/B − 1) > 1 holds, then a(β)b(β)/(a(α)b(α)) > 1.
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Lemma 5.4. If π/4 < v < w < π/2 holds, then it follows that

A

(
1
B
− 1
)
> L(v, w)

where L(v, w) := 3
√

3(d−1)
4

(
1− 2

k

)2 (1 + cos 2v) sin2 2w.

Proof. We can calculate
1
B
− 1 = (d− 1)XαXβ + Y Xβ

Y (Xα −Xβ) .

Since it follows that

Xα =
(
(c− 1) + (k − 1) cos 2v

)2 + (k − 1)2(1− cos2 2v) > (k − 1)2 sin2 2v,

we have
(d− 1)XαXβ > (d− 1)(k − 1)4 sin2 2v sin2 2w

and
Y Xβ > (k − c)(k + c− 2)(k − 1)2 sin2 2w.

It follows that

Y (Xα −Xβ) = 2(k − c)(k + c− 2)(c− 1)(k − 1)(cos 2v − cos 2w).

For 1 6 c 6 k − 1, the function f(c) = (k − c)(k + c − 2)(c − 1) is maximum at
c = 1 + (k − 1)/

√
3. It therefore follows that

Y (Xα −Xβ) < 4
3
√

3
(k − 1)4(cos 2v − cos 2w).

Thus we obtain
1
B
− 1 >

3
√

3
(
(d− 1)(k − 1)2 sin2 2v sin2 2w + (k − c)(k + c− 2) sin2 2w

)
4(k − 1)2(cos 2v − cos 2w)

>
3
√

3(d− 1) sin2 2v sin2 2w
4(cos 2v − cos 2w) ,

and hence

A

(
1
B
− 1
)

>
cos 2v−cos 2w

1−cos 2v · (k−2)2

(k−2)2 +2(k−1)(1− cos 2w) ·
3
√

3(d− 1) sin2 2v sin2 2w
4(cos 2v−cos 2w)

>
3
√

3(d− 1)
4 · (k − 2)2

(k − 2)2 + 4(k − 1) · (1 + cos 2v) sin2 2w

= 3
√

3(d− 1)
4

(
1− 2

k

)2
(1 + cos 2v) sin2 2w. �

Lemma 5.5. Suppose α = 4 cos2 v = θ2
α/(k − 1), β = 4 cos2 w = θ2

β/(k − 1), and
π/4 < v < w < π/2. If L(v, w) > 1, then mθα < mθβ .

Proof. By Lemma 5.4 and B > 0, we have
mθβ

mθα

= a(β)
a(α) ·

b(β)
b(α) = (1 +A)(1−B)

= 1 +B

(
A

(
1
B
− 1
)
− 1
)
> 1 +B

(
L(v, w)− 1

)
> 1. �
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Lemma 5.6. Let Γ be a distance-regular graph with the quotient matrix B(k, d+ 1, c).
Let u(i)

j = jπ/(i+ 1) and d′ = b(d− 1)/2c. If L(u(d−2)
d′−j−1, u

(d−2)
d′−j ) > 1 for some integer

j with 0 6 j < d′− (d+ 3)/4, then the number of positive eigenvalues θ of Γ such that
θ2 is irrational is less than or equal to j.

Proof. The inequality j < d′ − (d+ 3)/4 implies u(d−2)
d′−j−1 > π/4. If θ = 2

√
k − 1 cosu,

we write mθ = m(u). By Lemma 5.5, we have m(u(d−2)
d′−j−1) < m(u(d−2)

d′−j ). Note that
the eigenvalues θi = 2

√
k − 1 cosαi satisfy u(d−1)

i < αi < u
(d−2)
i . By m(u(d−2)

d′−j−1) <
m(u(d−2)

d′−j ) and the unimodal property of the function m(u), we have m(αd′−j−1) <
m(αd′−j). Note that if θ2 is irrational, then mθ = mθ′ for some eigenvalue θ′ with θ′ 6=
θ. The assertion therefore follows from m(αd′−j−1) < m(αd′−j) and Lemma 5.3. �

Proposition 5.7. There does not exist a distance-regular graph Γ with the quotient
matrix B(k, d+ 1, c) for d = 11, 16, 24, 25, 26.

Proof. By Lemma 5.6, we can estimate the number of irrational square eigenvalues
(k − 1)φ = θ2 by checking L(u(d−2)

d′−j−1, u
(d−2)
d′−j ) > 1 with a computer.

For d = 11, the number of irrational φ is at most 1 for k > 5. For k = 3, 4, we
can find an irreducible polynomial of degree at least 3 as a factor of c′Pm−1,ε(z) +
k′Pm,ε(z) over Q for each pair (c′, k′) with 0 6 c′ 6 k′− 1. We can find an irreducible
polynomial of degree at least 3 or two irreducible polynomials of degree 2 as a factor
of c′Pm−1,ε(z) + k′Pm,ε(z) over GF(2) for each pair (c′, k′) ∈ GF(2)×GF(2).

For d = 16, the number of irrational φ is at most 2 for k > 3. We can find an
irreducible polynomial of degree at least 3 or three irreducible polynomials of degree 2
as a factor of c′Pm−1,ε(z)+k′Pm,ε(z) over GF(3) for each pair (c′, k′) ∈ GF(3)×GF(3).

For d = 25, the number of irrational φ is at most 2 for k > 6. For k = 3, 4, 5, we
can find an irreducible polynomial of degree at least 3 as a factor of c′Pm−1,ε(z) +
k′Pm,ε(z) over Q for each pair (c′, k′) with 0 6 c′ 6 k′− 1. We can find an irreducible
polynomial of degree at least 3 or three irreducible polynomials of degree 2 as a factor
of c′Pm−1,ε(z) + k′Pm,ε(z) over GF(3) for each pair (c′, k′) ∈ GF(3)×GF(3).

For d = 24, 26, the number of irrational φ is at most 2 for k > 4. For k = 3, we can
find an irreducible polynomial of degree at least 3 as a factor of c′Pm−1,ε(z)+k′Pm,ε(z)
over Q for each c′ with 0 6 c′ 6 k′−1. We can find an irreducible polynomial of degree
at least 3 or three irreducible polynomials of degree 2 as a factor of c′Pm−1,ε(z) +
k′Pm,ε(z) over GF(3) for each pair (c′, k′) ∈ GF(3)×GF(3). �

Theorem 5.1 follows from Table 7 and Propositions 5.2, 5.7.

6. Conclusions
In this paper, we studied b(k, θ), the maximum number of vertices in bipartite regular
graph of valency k whose second largest eigenvalue is at most θ. Our results extend
previous work from [10, 18, 19, 24, 29]. Our general bound for b(k, θ) is attained
whenever there exists a bipartite distance-regular graph of valency k, second largest
eigenvalue θ, girth g and diameter d with g > 2d − 2. For d = 3 and g > 4 all the
point-block incidence graphs of symmetric designs give equality in our bound so the
situation is well-understood. For d > 4 we only have the Van Lint-Schrijver geometry
besides the generalized polygons. We believe that for d > 5 the only examples must
have c = 1 and are generalized polygons.
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