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of them are based on Rayleigh quotients, Cauchy interlacing using induced
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1. INTRODUCTION

Our graph notation is standard, see [11] for undefined terms or notation. The
eigenvalues of a graph G = (V, E) are the eigenvalues of its adjacency matrix
A = A(G). For a graph G with n vertices and ¢ > 1, denote by A\¢(G) the ¢-th
greatest eigenvalue of G and let \(G) = \,_¢11(G) be its [-th smallest eigenvalue.
Let A(G) denote the smallest eigenvalue ' (G). The smallest eigenvalue of a graph
is closely related to its chromatic number and independence number [11, 22].
Since the spectrum of a connected graph is symmetric if and only if the graph is
bipartite, it is natural to think of A(G) as a measure of how bipartite G is. It is
therefore not surprising that the smallest eigenvalue has close connections to the
max-cut [5, 10, 24, 26]. There are several methods to obtain upper bounds for
A(G). Using Rayleigh quotients, it is well known that

(1) MG) = min 22X

x#0 xTx .

Depending on the context, choosing appropriate vectors can yield useful upper
bounds on A\(G) such as the ones involving the max-cut [5, 24] or Hoffman’s ra-
tio bound on the independence number (see [11, Section 3.5] for example). The
connection between eigenvalues and Rayleigh quotients also yields important in-
terlacing results such as Cauchy interlacing or Haemers interlacing [11, Section
3.5]. In each case, the eigenvalues of a smaller matrix (principal submatrix of
A in the case of Cauchy interlacing or quotient matrix in the case of Haemers
interlacing) interlace the eigenvalues of A and therefore, A(G) is bounded from
above by the smallest eigenvalue of this smaller matrix. Again, these impor-
tant methods yield interesting consequences such Cvetkovic’s inertia bound for
the independence number [11, Theorem 3.5.1] or Hoffman’s ratio bound for the
chromatic number [11, Theorem 3.6.2] to name just a few. In other situations,
manipulations of the trace of powers of the adjacency matrix of a graph (see [15]
for example) or edge perturbations in graphs (see [6, 7]) can yield upper bounds
for A.

In this paper, we are interested in the finding lower bounds for the smallest
eigenvalue A\(G) using graph decompositions. We apply our methods to vari-
ous situations and we describe their successes and limitations. In general, lower
bounds on the smallest eigenvalue of a graph are not easy to obtain. In [5], Alon
and Sudakov show that A > —A + m for a nonbipartite simple graph with
maximum degree A and diameter D (see also [16, 32] for small improvements).

Trevisan [34] obtained interesting connections between A\(G) and the bipartite-
2e(L)+2e(R)+e(S,V\S)
veES d(v

minimum is taken over all subsets S of V and all partitions L U R of S, e(L)
denotes the number of edges in the subgraph induced by L (similar definition for

ness ratio 5(G) which is defined as mingcy.s=rur , where the
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e(R)) and e(S, V'\S) denotes the number of edges with exactly one endpoint in S.
Trevisan’s results are similar to the ones relating the second largest eigenvalue of
a graph to its expansion/isoperimetric constant (see [1, 3, 34]) and for a d-regular
graph, give the following interesting lower bound: A\(G) > —d + %2. However, we
have not been able to use this bound for the graphs considered in this paper as
the parameter 5 does not seem easy to calculate.

In Section 2, we use weighted graph decompositions of the edge set of a graph
to bound the spectrum of a graph from below. Our results are similar and have
been obtained independently from the recent work of Knox and Mohar [27].

In Section 3, we specialize these decompositions to clique decompositions
and give examples when the bounds are tight and when they are not. It is not
surprising that for line graphs, generalized line graphs and point-line graphs of
finite geometries, our bounds are tight, but there are many graphs where our
methods do not yield tight bounds.

In Section 4, we discuss the smallest eigenvalue of K p-free graphs. Linial
[30] asked whether the property of the eigenvalues of line graphs to be bounded
from below by an absolute constant also holds for claw-free simple graphs. In
[14], the first author showed that the answer is negative by describing a family of
regular claw-free simple graphs with arbitrarily negative eigenvalues. Recently,
motivated by problems in topological combinatorics, Aharoni, Alon and Berger
[4] studied the largest eigenvalue of the Laplacian of K j-free graphs which when
restricted to regular graphs, is equivalent to studying the smallest eigenvalue of
regular K p-free graphs. In Section 4, we describe their results and remark that
their proof actually gives a more general lower bound for the smallest eigenvalue
of graphs with dense neighborhoods. In [4], the authors also constructed examples
of d-regular K j-free graphs with very negative A by taking clique blowups of
bipartite (k — 1)-regular graphs. Their construction works when d = ks — 1 for
k> 3 and s > 2. In the case of claw-free graphs (k = 3), their construction works
for d = 3s — 1 and s > 2. In this section, we also show that every cubic claw-free
graph has A > —2.272 which slightly improves the lower bound of —2.5 from [4].

2. SMALLEST EIGENVALUE AND GRAPH DECOMPOSITIONS

In this section, we introduce graph decompositions as a means of obtaining lower
bounds on the least adjacency eigenvalue of a graph. Like many such general
bounds, there are cases where the estimates are strong and others where they
are weak. The advantage of using decompositions lies in the flexibility of choice:
for graphs with many triangles, decompositions by complete graphs are often
successful, while for graphs with few triangles, decompositions allowing paths
and cycles may be more fruitful. Also, taking decompositions of an odd power of
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a graph can sometimes improve a lower bound.

We begin with a simple observation on matrix decompositions and then intro-
duce weighted graphs to capture the generality of an arbitrary symmetric matrix.
All matrices are assumed to be symmetric and have real entries.

A decomposition of a matrix M of order n is a collection My, ..., M,, of
matrices such that

Using Rayleigh quotients, we quickly obtain a lower bound on the least eigenvalue
of M:

2) A(M) > A(My) + -+ + AN(Myp,).

The support of a matrix M is the set of all row indices ¢ of M such that M;; # 0 for
some column index j of M. Arbitrary real symmetric matrices may be regarded
as adjacency matrices of edge-weighted graphs and, in our application to graph
decompositions, often have small support. In such cases, the simple estimate (2)
can be improved. We require the following notation.

A weighted graph H = H(w) = H(V,w) is a graph H with vertex set V'
together with a function w that assigns a (possibly negative) real number w(uv)
to each unordered vertex pair uv. Also, w(uv) = 0 if u o v. This implies that
w(uu) = 0 if there is no loop on v in H.

We say that a set D = {H/(V;,w;) : 1 < j < m} of weighted graphs is a
decomposition of a weighted graph H(V,w) and write

H=H'+H*+...+H™

if V; CViforl<j<mand w(u) = 377 wj(uv) for all unordered pairs
of vertices u,v of V. Here, we take w;(uv) = 0 if either w or v is not in Vj.
The (weighted) adjacency matrix of a weighted graph H(V,w) is the symmetric
matrix A(w), indexed by the vertices in V', with u,v entry equal to w(uv). Let
D, denote the set of graphs in D that contain vertex wu.

Theorem 2.1. Let D = {H7(Vj,w;) : 1 < j < m} be a decomposition of a

weighted graph H = H(V,w). For each vertexu € V', let A\(D,,) be the sum of the
minimum eigenvalues of the graphs of D that contain vertex u. Then

(3) ANH) > m&n ADy).

Let A(D) = miny A(Dy). Then equality holds in (3) if and only if there is a vector
x # 0 of real numbers indexed by the vertices in V' such that
1. x4 = 0 whenever A\(D) < X\(Dy,); and,

2. for each 1 < j < m, the restriction x; of x to Vj is either a zero vector or an
eigenvector of H’ with eigenvalue A\(H7).
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Proof. Let M = A be the adjacency matrix of H(V,w) and, for 1 < j < m,
let M; be the adjacency matrix A; of Hj(Vj,wj) augmented by zero rows and
columns indexed by vertices of V not in V;. Because H = H' + H* 4+ --- +
H™, we have M = M; + My + --- + M,,. Let E; be the (0,1)-diagonal matrix
with (u,u) entry equal to 1 if vertex w is in V; and 0, otherwise. The matrix
R=-3"" AM(H’)Ej is a diagonal matrix with (u,u) entry 7, = —A(D,). Let
B =37 (M- A(H’)Ej). Then B is positive semidefinite because each of its
summands is. Therefore, letting r = max, r, = —A(D), it follows that the matrix

P=M+rI=DB+ (rI—R)

is positive semidefinite. Thus, A(M) +r = A(M + rI) = A(P) > 0 with equality
if and only if 0 is an eigenvector of P; equivalently, A(H) > A(D) with equality
if and only if Px = 0 for some vector x # 0.

Since P is a positive semidefinite matrix, P = NT N for some matrix N. Thus
Px = 0 if and only if x Px = || Nx||? = 0. Substituting for P and recalling that
each of its summands is positive semidefinite, it follows that Px = 0 if and only
if x’Rx =Y, (r—my)x2 =0 and, for each 1 < j < m, XJT(M]- —AMH')E;)x; = 0.
The first condition holds if and only if x, = 0 whenever r, < r. Because the
matrices involved are positive semidefinite, the second condition holds if and only

if (A4j — NH)))x;=0for 1 <j<m. n

The Cartesian product G = G- --TOG™ of the simple graphs G* = (V;, E;),
1 < ¢ < m, is the simple graph on the vertex set V = V; x --- x V,;;, with two
vertices u,v € V adjacent if there is an index j such that u; ~ v; in G’ and
u; = v; for all ¢ # j. Using the Hadamard product ®, we state the well-known
fact that the adjacency matrix A(G) is the sum of the m products of the form
IRI® - AG)®---®1I,1 < j < m where the j-th term is a product of
m — 1 identity matrices (of orders equal to those of the corresponding graphs)
together with A(G7) in the j-th position. From this it follows that if x; is an
a;-eigenvector of G*, 1 < i < m, then X; ®- - -®@X,,, is an aq +- - -+ ayy, eigenvector
of A(G). As an illustration, in the following example, we also obtain the least
eigenvalue A\(G') + -+ + A\(G™) of G using Theorem 2.1.

Example 2.2 (Cartesian products and Hamming graphs). Let G = G- .- OG™.
Taking the induced subgraphs of G on sets of vertices where all but one of the
coordinates is fixed, we obtain a decomposition D consisting of copies of G?,
1 < i < m. Since each vertex u of G is contained in one copy of G for each
1 < i < m, we have A\(G) > AG') + --- + AM(G™) by (3). However, finding
the eigenvector that satisfies the conditions sufficient for equality in Theorem 2.1

would be difficult without appealing to the above form of the adjacency matrix
for G.
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A Cartesian product of complete graphs, each of order at least 2, is called
a Hamming graph. Thus, if G is a Hamming graph whose vertices are m-tuples,
then A\(G) = —m.

We frequently require the following graphs in decompositions. The loop graph
of order n has a loop at each vertex and no other edges. We use the symbol I,
for both it and its adjacency matrix (the identity matrix of order n). The looped
complete graph of order n is obtained by adding a loop to each vertex of K.
We use the symbol J,, for both it and its adjacency matrix (the all-one matrix).
The simple complete graph of order n has an edge between each pair of distinct
vertices. We use the symbol K, to denote both it and its adjacency matrix,
Jn — I,. The graph K; has no edges and is not used in decompositions. The
graph J; = I; is called a single loop and may appear in decompositions. Note
that although A(J,) =0 when n > 1, we have A\(J;) = 1.

For a graph G and real number ¢ (possibly negative), we write ¢G for the
weighted graph that has constant weight function ¢ on the edges (and 0 on the
non-edges). In particular, each graph G = 1G may be regarded as a weighted
graph with edge weights all 1 while —G is the graph G with edge weights all —1.
Thus, A\(I,) =1 and \(—1I,) = —1. For n > 1, A(J,) =0, but A(J1) = \(I;) = 1.
Also, A\(—J,,) = —n for all n > 1. Because n > 1 for K,, and K,, = J,, — I,,, we
have A\(K,) = —1 while A(-K,) = —(n — 1).

The next three examples use a multigraph G = G® formed from a simple
graph G; that is, a multigraph with adjacency matrix A(G)* where k is a positive
integer. Thus, the number w(uv) of edges in G*) with endpoints u,v is the
number of uv-walks of length k£ in G. For example, if G is a simple graph and u, v
are adjacent vertices in G with degrees d(u), d(v) and neighbour sets N(u), N (v)
then the number of edges in G(®) with endpoints u, v equals d(u)+d(v)—1if u ~ v
and equals the number of edges between N(u) and N(v) if u ¢ v. If k is odd,
the least eigenvalues of G and G¥) are related by the equation \(G)* = )\(G(k)).

Example 2.3 (The 5-cycle). If G is the 5-cycle C5, then
G® = K5 + 2Cs.
Let z = A(G). Then 2° = \(G®)) and so, by Theorem 2.1,
2>22—1 or (z—1)(z2+2-1)>0.

Thus, A\(G) = z > —(1 ++/5)/2 ~ —1.618. In Example 2.5, we shall see that
equality holds.

Example 2.4 (The Petersen graph). If G is the Petersen graph, then

G® = 3G + 2Kq.
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Let z = A(G). Then 2° = \(G®) and so, by Theorem 2.1,
22>32-2 or (z—1)%(z+2)>0.

Thus, A(G) = z > —2. Also we see that A\(G) = —2, by noticing that the 6-cycle
Cg is an induced subgraph of G.

Of course, the eigenvalues for the 5-cycle and for the Petersen graph, indeed,
for any strongly regular graph G(n,k,a,c), may be found immediately from the
equation on the adjacency matrix (see [23, p.218]):

(4) A* =kl +aA+c(J -1 A).

For, by multiplying (4) by an eigenvector x orthogonal to 1 it follows that the
only eigenvalues of G other than k are the roots > 0 and 7 < 0 of the quadratic
equation

(5) 2? —(a—c)x— (k—c)=0.
In particular, for the Petersen graph, 0 =1, 7 = —2.

Example 2.5 (Strongly regular graphs). For a strongly regular graph G, taking
H = G® in Theorem 2.1 often leads to the exact value of A\(G). To see this note
that multiplying (4) by A and substituting (4) for A? gives an equation of the
form

A3 =rA+s(J—1)+tI

for some nonnegative integers r, s, t depending on n, k, a, c. Thus
G® =G + sK,, + tI,.
By Theorem 2.1, if z = A\(G), then
B =XNGC¥)>rz— s+t

Thus, z is at least as large as the minimum root of the cubic 23 — rz + s — t.
Two of the roots are § and 7, inherited from (5), and the other is necessarily
—(0+ 7) = ¢ — a since the coefficient of 22 is 0. Thus, A(G) = z > min{c — a,7}.
Therefore, taking G®) in Theorem 2.1 gives \(G) = 7 when G is a strongly regular
graph such that 7 < ¢ — a. In particular, A\(G) = 7 when a < ¢, a condition that
must be satisfied by at least one of a strongly regular graph and its complement.

Example 2.6 ( The dodecahedral graph ). Let G be the plane graph whose vertices
and edges are those of the dodecahedron. Then G is 3-regular and the 20 face
5-cycles of G constitute a decomposition D of 2G with precisely 3 cycles through
each vertex. Thus by Theorem 2.1, \(G) > —3A(C5)/2 = —3(14+v/5)/4 ~ —2.427.
The exact value is A\(G) = —v/5 ~ —2.236.
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If some weighted graph H7 in a decomposition D is disconnected, it is clear
that replacing H? in D by its set of weighted components cannot weaken the
estimate in Theorem 2.1. Thus, there is no loss in restricting the weighted graphs
in a decomposition D to be connected. In Example 2.5, we could replace each
loop graph I, by its n separate individual loops I; = J;.

By the type of a weighted graph, we mean its underlying unweighted graph.
Each choice of types for the weighted graphs in D in (3) leads to a lower bound on
AG) by maximizing over all weighted graphs of that type and so, when applied
to a simple graph G, yields a new graph parameter. Of course, equality holds if
all types of weighted graph are allowed (take D to be G itself). The trick is to
pick a family of graphs that are easy to deal with and that often yield good lower
bounds in (3) when maximized over all weightings. The conditions for equality in
Theorem 2.1 suggest that the bound (3) might often be best for decompositions D
of a weighted graph H(V,w) that employ weightings of connected graphs whose
minimum eigenvalues have large multiplicity and small absolute value. Such
are the simple complete graphs and looped complete graphs on subsets of V. For
when n > 1, K, has least eigenvalue —1 with multiplicity n— 1, while J,, has least
eigenvalue 0 with multiplicity n — 1. (In both cases, the eigenvectors associated
with the minimum eigenvector are the nonzero vectors x such that ) x, = 0.)
Because K has no edges, it is never used in a decomposition. The graph J; will
be called a loop. It may be used in a decomposition, noting carefully that its
least eigenvalue is +1. We are therefore led to the following definition.

A complete graph decomposition of a weighted graph H(V,w) is a decomposi-
tion C = {a1C*, ..., a,C™} of H(V,w) consisting of scalar multiples of complete
graphs, looped or simple. Because negative weights are allowed, cancellation
may occur (as in Example 2.8), so the graphs C/ = K7 or J7 in C need not be
subgraphs of H. Taking D = C in Theorem 2.1, we obtain the following corollary.

Corollary 2.7. Let C = {alCl, e ,amCm} be a complete graph decomposition
of a weighted graph H = H(V,w) and, for each vertex u € V, let A(C,) equal
the sum of the minimum eigenvalues of the complete graphs in C that contain the
verter u. Then

(6) ANH) > muin ACy).-

Let A\(C) = min, A(Cy,). Then equality holds in (6) if and only if there is a vector
x #£ 0 of real numbers assigned to the vertices of H such that
1. z, = 0 whenever A\(Cy) > A(C);

2. x 1is constant on each vertex set V; for which a; < 0 and, Zuevj xy = 0 for
each vertex set V; of order greater than 1 for which a; > 0.
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Example 2.8 (Complete multipartite graphs). Let G = Ky, . p,. be the complete
multipartite graph with vertex parts Vi, Vo, ..., V,, of orders ny > no > - -+ > nyy,.
Then

G=Jp—dn, ——Jn

m

where J,, is the looped complete graph of order n = nj; + --- + n,, and, for
1 <j <m, —Jp; is the negatively weighted looped complete graph on V;. Since
A(Jn) = 0 and A\(—Jp;) = —ny, we have A(G) > —ny by Corollary 2.7. Moreover,
it is straightforward to check that conditions 1 and 2 imply that equality holds

if and only if n;y = ng. Of course, using the characteristic polynomial of G
[18, p.74], it follows that G has precisely m — 1 negative eigenvalues and that
they interlace —nj, —na, ..., —n,;,. Also, G has one positive eigenvalue (in fact,

this characterizes the complete multipartite graphs [18, p.163]). All remaining
eigenvalues are equal to 0.

If the values of the weight function w of a weighted graph H(w) are nonneg-
ative integers, then H(w) may be regarded as a multigraph with w(uv) distinct
unweighted edges between each unordered pair uv of vertices of H. We call
w(uv) the multiplicity of uv. To emphasize this distinction, we use the notation
G = G( ) = G(V w) for multigraphs and continue to use G for graphs (simple
or looped) and H for weighted graphs.

Example 2.9 (Line graphs of multigraphs). Let G = G(w) be a multigraph with
maximum edge multiplicity g = maxy., w(uv). The line graph L(G) of G has
the edges of G as vertices. Two edge vertices of L(G) are adjacent if they have
precisely one common end vertex in G. Thus edges in G with the same two
endpoints are nonadjacent as vertices in L(G). Note that L(G) is a simple graph.
Also, if a loop at u in G is replaced by an edge with one end at u and the other
at an additional new vertex, then the line graph is not changed. Thus we may
assume that G has no loops.

The line graph L(G’) has a natural decomposition into complete multipartite
graphs. To see this, for each vertex u of G, let T'(u) be the subgraph of L(G)
induced by the claw at u, that is by the edges incident to u in G. The subgraph
T(u) of L(G) is a complete multipartite graph and, because G has no loops, the
part sizes of T'(u) are equal to the multiplicities of the edges incident to w in
G. Thus, by Example 2.8, A(T(u)) > —pu. Because adjacent edge vertices of
L(G) have precisely one vertex in common in G, it follows that the graphs T (u)
decompose L(G) Also since each edge of G has two distinct endpoints, each edge
vertex of L(@) is in precisely two graphs of the decomposition. Thus, by Theorem
2.1,ifG=G (w) is a loopless multigraph with maximum edge multiplicity u, then

(7) ML(G)) > min M(T'(w)) + MT'(v)) > —2p.

u~v
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Equality can be attained in (7). To see this, note first that if G is a simple
graph and M is the adjacency matrix of L(G), then the adjacency matrix of
L(puG) is the Hadamard product M ® J,. Thus, A(L(pG)) = pA(L(G)). There-
fore, if G has maximum edge multiplicity p and puG is an induced subgraph of
G with A(L(G)) = —2 (see Example 2.10), then A(L(G)) < ML(pG)) = —2pu
and so equality is attained in (7). We leave it as an problem to figure out if it is
possible to characterize the multigraphs for which equality (7) is attained.

Example 2.10 (Twig replication and generalized line graphs). There are inter-
esting cases where the lower bound (7) can be improved. Suppose that a loopless
multigraph G=0G (w) is formed from a connected simple graph G by optionally
increasing the multiplicity of twigs of G, that is, of edges of G (if any) that have
an end vertex of degree 1. Decompose L(G) by the complete multipartite graphs
T(u),u € V(G) as in Example 2.9. If u is a vertex of degree 1 in @, then T'(u)
will have no edges in L(G) and may be omitted. Now further decompose each
subgraph T'(u) by graphs J and —J of appropriate orders as in Example 2.8.
Because of the construction, the vertex parts of size 2 or more that occur in the
graphs T'(u) will be vertex disjoint, and so, each vertex of L(G) will be in at
most one —.J graph of order 2 or more. Also, each edge vertex of L(G) will be in
at most two —.J; graphs in the decomposition since it is in at most two T'(u)’s.
Thus, by Theorem 2.1, if G=0G (w) is a multigraph formed from a simple graph
G by replicating twigs, then

(8) ML(G)) = min{~2, —u},

where p = maxy, w(uv) is the maximum twig multiplicity in G(w).

When g = 1, we have G = G and A\(L(G)) > —2 where L(G) is the usual line
graph of a simple graph G. In this case, each vertex uv of L(G) is in precisely
two complete graphs, T'(u),T'(v), and the conditions for equality can be shown to
imply a result of Doob (see, for example, [20, p.29]) which states that A(G) > —2
if and only if each component of G is either a tree or is odd-unicyclic.

When g = 2, we again have A(L(G)) > —2. The graphs L(G) with p = 2
are the generalized line graphs of Hoffman [25] (see also [18, 21] or [20, p.6]).
The usual proofs that A(L(G)) > —2 for a generalized line graph L(G) employ
modifications of the vertex-edge incidence matrix of G [25], [20, p.6].

Let \.(H) be the best possible estimate of A(H) that can be obtained in (6);
that is, let
Ac(H) = sup A(C),
c

where the supremum is taken over all complete graph decompositions C of H =
H(V,w). To see that the supremum is attained, we show that A\}(H) is the
optimal value of a linear programming problem.
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Let M be the incidence matrix with rows indexed by all of the (unordered)
vertex pairs uv and columns indexed by all complete graphs, looped and simple,
with vertex sets contained in V. (Note that because cancellation may occur, all
complete graphs must be taken, whether or not they are subgraphs of H(V,w).)
Let w be the weight vector determined by the given weight function w on G;
that is, wy, = w(uv) for each unordered vertex pair uv. Then a vector z indexed
by the complete graphs specifies a complete graph decomposition C of H(V,w)
with weights z if and only if Mz = w. Now let N be incidence matrix with rows
indexed by the vertices and columns by the complete graphs and let L be the
diagonal matrix with diagonal entries equal to the minimum eigenvalues of all of
the complete graphs with vertex sets contained in V. Then A(C) is the smallest
number A such that NLz > A1. Thus A5(H(V,w)) is the optimal value of the
following linear programming problem in the variables z, A.

Minimize M\

9) Subject to
Mz =w
NLz > M.

Thus, AS(H(V,w)) is attained for some complete graph decomposition C of
H(V,w). Moreover, if w is rational valued, then the optimal value A\* is ra-
tional and an optimal vector z* giving equality in (9) may be chosen to have
rational entries. Consequently, there is a positive integer p such that pA* is an
integer and pz* has integer entries. When w is rational valued, this observation
allows us to work with decompositions D consisting of integer multiples of com-
plete graphs, looped or simple, as long as multiples uH of the weighted graph H
are employed.

Thus, for a simple graph G, the graph parameter \5(G) has the following
equivalent definition:

A(G) = min A(C)
w,C
where the minimum is taken over all positive integers 4 and all decompositions
C of uG by integer multiples (positive or negative) of complete graphs C7 = K7
or JJ.

It is perhaps impossible to classify the simple graphs G for which the param-
eter \5(G) equals the least eigenvalue A(G), but there are a few simple observa-
tions that limit the graphs for which equality holds. Because the characteristic
polynomial of a graph G (or multigraph G) is monic with integer coefficients,
every rational root is an integer. Therefore, if the rational number A% (G) is not
an integer, then A\(G) > A5(G). Also, if A(G) happens to be irrational (as for
example, for the 5-cycle), then A(G) > \5(G).
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3. SMALLEST EIGENVALUE AND CLIQUE PARTITIONS

In this section, we further restrict the type of decompositions C in Corollary 2.7
to a special type that often appear in the literature, clique partitions.

A clique in a multigraph Gisa simple complete subgraph. A clique partition
of a (necessarily loopless) multigraph G is a collection K = {K*,... K™} of
cliques of G whose edge-sets partition the edge-set of G. Here we do not weight
the cliques, but may take the same clique more than once. Consequently, because
all of the cliques in a clique partition have least eigenvalue —1, for each vertex u
of G, we have the convenient expressions

(10) A(KCw) = —ru(K) and A(K) = —r(K)

where 7, = 7,(K) is the number of cliques in K that contain the vertex u and
r(K) = max, ry. Thus,

(11) MG) > —r(K).

We are mainly interested in graphs G that are simple. Because we are now
only allowing copies of cliques in our partitions, taking scalar multiples G= uG
can sometimes improve our bound on A\(G). We have the following corollary to
Theorem 2.1.

Corollary 3.1. Let K be a clique partition of a multiple uG of a simple graph G.
Then
r(K)

I

with equality if and only if there is a vector x # 0 of real numbers assigned to the
vertices of G such that

(13) xy = 0 whenever r,(K) < r(K); and Z 2y = 0 for each clique K € K.
uceK

(12) AG) > —

The conditions (13) for equality in Corollary 3.1 may be restated in a conve-
nient matrix form. If X = {K! ..., K™} is a clique partition of a multiple uG
of a simple graph G, let N = N(K) be the n x m vertex-clique incidence matrix
of IC with rows indexed by the vertices of G and columns by the cliques in K.
Thus, the (u, K7)-entry of N is 1 if u € K7 and is zero otherwise. Then equality
holds in (12) if and only if there is a vector x # 0 indexed by the vertices of G
such that N7x = 0 and x, = 0 whenever 7,(K) < r(K).

Example 3.2 (Line graphs). It is an immediate consequence of Corollary 3.1
that if a simple graph G can be edge-partitioned by simple cliques so that each
vertex is in at most two of the cliques, then A\(G) > —2. But we have already
encountered these graphs in Example 2.9: by a result of J. Krausz [28], they are
precisely the line graphs of simple graphs.
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Example 3.3 (Partial geometries). A partial geometry pg(K, R,T) is an inci-
dence structure of points and lines such that any two points are incident with
at most one line, every line has K points, every point is on R lines, and for any
line L and any point p ¢ L, there are exactly T lines through p that intersect
L. Partial geometries were introduced by Bose [9] along with strongly regular
graphs. The point graph of a partial geometry pg(K, R,T) is the graph whose
vertices are the points of the geometry where two vertices/points are adjacent if
there is a line that contains them. It is known (see [35, Problem 21H]) that the
point graph of a partial geometry pg(K, R,T) is a strongly regular graph with
smallest eigenvalue —R. Note that the edge set of this graph can be partitioned
into cliques (corresponding to the lines of the geometry) such that each vertex is
contained in exactly R cliques. Corollary 3.1 with y = 1 implies that the smallest
eigenvalue of this graph is at least —R which is tight. The point graphs of partial
geometries also appear in [17] where it is proved that certain random walks on
them mix faster than the non-backtracking walks considered in [2].

Example 3.4 (The Johnson graphs). Let v, k be positive integers with v > 2k.
The Johnson graph J(v, k) has the k-subsets of a v-set X as vertices with S,T C
X adjacent if [SNT| =k —1. If C is a (k — 1)-subset of X, then the set K(C)
of all k-subsets of X that contain C' is the vertex set of a clique in J(v, k). Each
pair S, T of adjacent vertices is in precisely one such clique, the clique K(SNT).
Thus, the family £ = {K(C) : |C| = k—1,C C X} is a clique partition of J(v, k).
Also, rs(K) = k for each S € V. By Corollary 3.1, A(J(V,k)) > —k. Moreover,
a nonzero vector x = (xg)g satisfies the conditions for equality if and only if
> sek(c)@s = 0 for each clique K(C), |C| =k —1. This is a system of (%)
homogeneous linear equations in (Z,) variables and so has a nontrivial solution.
Thus A(J(v,k)) = —k (with multiplicity () — (,”,), since the constraints can
be shown to be linearly independent). There are explicit formulas for all of the
eigenvalues and multiplicities of the relation graphs of the Johnson schemes and,
in particular, for the Johnson graphs [35, p.413].

Corollary 3.1 leads us to a graph parameter based on clique partitions. For
a simple graph G, let A% (G) be the best possible estimate of A\(G) that can be
obtained using clique partitions of scalar multiples of G; that is, let

(14) M(G) = —maxr(K)/p

)

where the maximum is taken over all positive integers p and all clique partitions
K of G = uG. Then

(15) AMG) 2 A(G) = Ae(G).

Asin (9) with A5 (G), a linear programming problem shows that A (G) is attained
by some u, K and is rational.



480 S.M. CioaBA, R.J. ELZINGA AND D.A. GREGORY

Remark 3.5. As with the equality \(G) = A;(G), it may be impossible to
classify the simple graphs G for which A(G) = A% (G), but there are conditions
that restrict the possible simple graphs. Again, because rational roots of monic
polynomials are integers, A5 (G) must be an integer if A\(G) = A5 (G). We also
note that we may as well restrict our attention to simple graphs G that contain
triangles, K3. For if G is K3 free, then the only cliques in G are edges and it
follows that A\ (G) = —A(G), the maximum vertex degree in G. Thus, if G is
connected and triangle free, A(G) = A\ (G) if and only if G is a regular bipartite
graph. (This can be seen by standard results, or from Remark 3.7 below.)

Another limitation on the equality A(G) = A% (G) follows by noting that
conditions (13) for equality in Corollary 3.1 can sometimes be extended if r,,(K) <
r(K) for some vertex u. Let V! = {u € V : 7,(K) = r(K)} and let x be a vector
satisfying conditions (13). If V! = V, stop. If V! # V| then z, = 0 for all
u € V\V!. There may now be a clique K € K that meets V! in only one vertex
v, say. Then z, = 0 since z, = 0 for all v € V(K)\{v} and }_,cy () 2u = 0.
Let V2 be the set of vertices obtained by deleting all vertices v € V! for which
there is a clique K € K that meets V! only in v. Then z,, = 0 for all u € V\V2.
Repeat this last step. That is, given V?, let

VAl =VA\{v: V(K)N V' = {v} for some K € K}.

Eventually, we obtain a set V* (possibly empty) such that each clique in K
is either disjoint from V* or else meets V* in two or more vertices. We call
the vertices in V* the K-essential vertices. Note that if x satisfies conditions
(13), then z, = 0 for all w € V\V*. Also, because each clique in K is either
disjoint from V* or meets V* in two or more vertices, if V* # (), we must have
ru(K*) = ry(K) = r(K) for each vertex u € V*. Thus,

(16) ro(K*) = r(K*) for all w € V*, and so r(K*) = r(K).
We now have the following result.

Lemma 3.6. Let G be a simple graph with vertex set V. Let K be a clique
partition of uG and let V* be the set of K-essential vertices. Then

MG) = —r(K)/w if and only if V¥ # 0 and \(G*) = —r(K™)/p,

where G* = G[V*| and K* is the set of nonempty restrictions of cliques in K to
V*. Moreover, if N(G) = —r(K)/u, then \(G) = MG*) and r,(K*) = r(K) for
allu e V*.

Proof. Suppose that A(G) = —r(K)/u. Then there is a vector x # 0 satisfying
conditions (13) for equality in Corollary 3.1. Thus V* is nonempty, otherwise
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the observations above imply that z,, = 0 for all u € V\V* =V a contradiction.
Let x* be the restriction of x to V*. Because x # 0 and z,, = 0 for u € V\V*,
we have x* # 0 and v (g 2y, = 0 for each restricted clique K* = K[V7].
Also, by 16, 7, (K*) = r(K*) = r(K) for u € V*. Thus, x* is a nonzero vector
that satisfies the conditions (13) for equality for the clique partition K* of uG*.
Therefore, A\(G*) = —r(K*)/u. Also, A(G) = A(G*) since r(K*) = r(K).
Suppose now that A(G*) = —r(K*)/u. By Corollary 3.1 and (16), \(G) >
—r(K)/p = —r(K*)/u. Thus, A(G) > A(G*). The reverse inequality holds since
G* is an induced subgraph of G. Thus, A\(G) = \(G¥). |

Remark 3.7. For Lemma 3.6 to hold, it is necessary that the clique partition
K* of uG* be obtained by the restrictions of the cliques in K. In particular, if
there is a clique partition K of uG* with r(K) < r(K), then \(G*) = —r(K*)/u
and so A(G) > —r(K)/p.

In the special case that each clique in K* is a single edge (in particular, if
G* is bipartite), it follows from Lemma 3.6 and the conditions (13) that A\(G) =
—r(K)/p if and only if G* is regular and some component is bipartite. The key
observation needed here is that if x}, +x;, = 0 for each edge uv in G*, then the set
of vertices {u € V* : z,, # 0} is the vertex set of a union of connected components
of G* and the two subsets {u € V* : x,, > 0}, {u € V* : 2, < 0} are a bipartition.

Example 3.8. Let GV be a simple k-regular bipartite graph and let U be a set
of vertices disjoint from V°? = V(G°). Let G be a simple graph obtained from G°
by replacing some (or all) of the edges uv of G® by cliques in U U V? that meet
GY in the vertices u, v only so that:

1. Each vertex of U is in at most k — 1 of the cliques.

2. Each pair of distinct vertices in U is in at most one clique.

Let K be the cliques that replaced the edges together with the edges of G° that
were not replaced. Then G* = G, K* is the edge set of G* and \(G) = —r(K) =
—k since A(G*) = —r(K*) = —k.

In Lemma 3.6, we observed that if the set V* of K-essential vertices is
nonempty and K* is the set of nonempty restrictions of cliques in K to V*,
then 7, (K*) = r(K) for each vertex u € V*. Therefore, when searching for simple
graphs G for which A(G) = A\ (G), we may focus our attention on simple graphs
G* such that some multiple uG* has a clique partition K* for which r,(K*) is
constant and A\(G*) = —r(K*)/pu.

Lemma 3.9. Let G be a simple graph with maximum vertex degree A. If KC is a
clique partition of uG and c is the smallest of the orders of the cliques in K, then
r(K) A

< Y
uw T c—1
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where equality holds if and only if for some verter uw of maximum degree in G,
each clique in KC containing u has order c.

Proof. Let d, denote the degree of u in G. There are r,(K) cliques of K con-
taining vertex w. Since each of these cliques cover at least ¢ — 1 of the ud, edges
incident to w in uG, r,(K)(c — 1) < pd, < Ap. Thus

r(K) A
N e T
w T c—1
with equality if and only if the stated condition holds. [

The estimate on 7,(K) in the proof of Lemma 3.9 can be improved if the
number of cliques of smallest order at u is known.

Lemma 3.10. Let G be a simple graph and let K be a clique partition of uG. Let
¢ be the smallest of the orders of the cliques in K. For each vertex u, denote by
d, its degree in G, and by e, the number of cliques of order c in K that contain u.
Then

(17) ro(KC) < '“d“i:e“

with equality if and only if each clique in IC,, has order ¢ or ¢+ 1.

Proof. Of the ud, edges incident to u in uG, the e, cliques of order ¢ cover
ey(c—1) of the edges, while the remaining r,, — e,, cliques cover at least (r, —e,)c
of the edges. Thus pud, > ey(c— 1) + (ry — ey)c or 7, (K) < (udy + ey,)/c with
equality if and only if each clique in K, of order greater than c has order c+1. m

The direct product (or simply, product) of two graphs G' and G2, denoted
G' x G?, has vertex set V(G') x V(G?) with vertices (u,v) and (u’,v’) adjacent
if v and ' are adjacent in G' and v and v’ are adjacent in G?. If either G!
or G? is simple, then G' x G? is simple. The adjacency matrix of G' x G? is
A(GY) ® A(G?), and the eigenvalues are \;(G'))\;(G?), where 1 < i < |[V(GY)|
and 1 < j < |[V(G?)].

The next example illustrates how taking clique partitions of a multiple of a
simple graph G can sometimes give a better bound on A(G) than clique partitions
of G alone.

Example 3.11 (Direct products of simple complete graphs). Let K be the set of
all simple cliques of order m in K,, x K,,,m < n. Then K is a clique partition
of u(K,, x K,) where p is the number of simple cliques of K containing an edge
of Ky % Kp. Thus MK, x K,) > -2, = D02l 1) But
AMEm x Ky) = min{—(m —1),—(n — 1)} = —(n — 1), so equality is attained in
Lemma 3.9. That equality is attained can also be seen later in Example 3.15.
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It was necessary to take a multiple of K, X K, in this example in order to
be able to have an edge-partition by cliques of order m. For, it can be shown
that results of Pullman et al. [33] imply that K, x K, can be edge-partitioned
by cliques of order m if and only if there exists an m x n? orthogonal array with
n constant columns.

The result in Example 3.11 can be extended to obtain A(G' x G?) in some
cases. Let G be a k;-regular graph for i € {1,2}. Suppose that A\(G?) = A% (G?).
Furthermore, let IC; be a clique partition of y; into cliques of order ¢; such that
AL(GY) = —r(K;)/pi. Then

k;

MGY) = ML (GY = pPt

Let G = G' x G%. The set of all subgraphs k1 X k2 of G, where k; € K;, partitions
the edge set of piueG. Each of these subgraphs is isomorphic to K. x K,.
Suppose ¢; < cg. If p is the number of cj-cliques containing an edge in 1 X ka,
then the set of all such cliques, over all subgraphs k1 X ke, partitions the edge
set of ppipaG. Therefore

ANG) > —-A(G) _ k1ko

61—1 Cl—l’

where the inequality follows from Lemma 3.9. But
MG) = min{—\(GY)ka, —k1N(G?)}

{ kiky  kiko } k1ks
= —max , =—
Cc1 — 1 Cy — 1 CcC1 — 1

so equality is attained. Thus A(G) = A5 (G).
Therefore we have the following result.

Theorem 3.12. Let G* be a k;-reqular graph fori € {1,2}. Suppose that A\(G?) =
NL(GY) and there is a clique partition KC; of p; into cliques of order c; such that
NA(GH) = —r(K;) /i Then MG x G?) = N (G x G?).

An independent set of vertices in a simple graph G is a set of vertices no two
of which are adjacent. The independence number, a = a(G), is the maximum
cardinality of an independent set of vertices in G. Hoffman’s ratio bound (see,
for example, [23, Lemma 9.6.2]) asserts that if G is a k-regular simple graph of
order n, then a(G) < —nA(G)/(k — A(G)). Thus

ak

9
n—uoa

(18) AG) < -
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which is an upper bound on A(G) for a k-regular simple graph of order n.

Let B be the matrix whose rows are indexed by the vertices of G and whose
columns are indexed by the independent sets of G' with B;; = 1 if vertex 7 is
in independent set j. The fractional chromatic number of a simple graph G is
the minimum value of 17x over all non-negative vectors x that satisfy Bx > 1
(restricting x to integral vectors yields the usual chromatic number). For every
simple graph G of order n, we have x(G) > x¢(G) > n/a(G), where x(G) is the
chromatic number of G [23, p. 136]. In particular, if G is k-regular this implies
the following weakened forms of (18):

ak k k

1) NI = @15 @ 1

If G is a simple graph of order n, not necessarily regular, results of Lovész [31,

Theorems 6,10 | imply that x(G) > xf(G) > 1 =X (G)/A(G). (The last bound is

Hoffman’s lower bound on x(G).) This implies the following refinement of (19):
A(G) A(G)

(20) MO =@ -1° x@ -1

The following theorem gives sufficient conditions for equality to be attained
n (12). The cligue number w(G) is the order of the largest clique in G. In general,
w(G) < x¢(GQ) (see [23, Ch. 7]).

Theorem 3.13. Let G be a k-regular simple graph and suppose that for some p
there is a clique partition K of uG into cliques of order w(G). Then
r(K) k

Nl@) = =TT =

and so

AG) = = i

R (e)

) —
For equality to hold, it is sufficient that w(G) = x(G).

Proof. By the definition of the parameter A} (G), there is a positive integer fi
and a clique partition K of G such that

K u(K
N PLA L — ¢ O}
1 u i
Since the kji edges of 4G incident to vertex u are partitioned by ru(f( )A cliques
of order at most w(G), we have r,(K)(w(G) — 1) > k. Thus, r(K)/p >

kE/(w(G) — 1) and so A\ (G) < —k/(w(G) —1). But, by Lemma 3.9 the clique
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partition K of uG gives A\ (G) > —r(K)/u > k/(w(G) — 1), so equality holds for
AL (G).

When w(G) = x7(G), equality holds for A(G) by (19). We also have the
following direct proof using the conditions for equality in Corollary 3.1. By [23,
Theorem 7.4.5] there is some n and some k such that x;(G) = n/k and the
vertices of G can be coloured by k-subsets of [n] such that subsets of adjacent
vertices do not intersect. If c is a clique of order xy, then the k-subsets of the
vertices of ¢ partition [n]. Associate to each element i € [n] a variable a;. Pick the
a; so that Y. a; = 0. Let S; be the subset of vertex j and z; = Ziesj a;. Then
the sum of the weights of the vertices of a clique is ), a;. But we have chosen the
a; so that this sum is equal to 0. Thus if K is a partition of the edge set into cliques
of order xy, then x is a nonzero vector satisfying the conditions for equality in
Corollary 3.1. Therefore by Corollary 3.1, A(G) = —r(K)/pu = A\ (G). |

We have the following corollary to Theorem 3.13.

Corollary 3.14. Let G be a a simple graph that is both vertex transitive and edge
transitive and suppose also that a(G)w(G) = n. Then G is k-regular for some k

and A\(G) = —k/(w(G) — 1).

Proof. Because G is edge transitive, each edge of G is in the same number,
say, of cliques of order w = w(G). Thus the set I of all cliques of order w in G
is a clique partition of uG. Because G is vertex transitive, x(G) = n/a(G) [23,
p.142]. Thus x¢(G) = w(G) and the corollary follows from Theorem 3.13. |

Example 3.15 (Graph compositions). Examples of simple graphs that satisfy the
conditions of Corollary 3.14 are the even cycles Cy,,, the complete graphs K,
the empty graphs K¢, and the direct product K, x K,. If G! and G? are simple
graphs, the composition G'[G?] is the graph on the vertex set V(G') x V(G?)
with (u,z) ~ (v,y) if either u ~ v or u = v and = ~ y. It is straightforward
to show that if G' and G? satisfy the conditions of Corollary 3.14 then so does
GY[G?]. For example, K,,[K¢] is the regular complete multipartite graph with m
vertex parts of order n and, as we have already seen (more generally) in Example
2.8, it must have least eigenvalue A = —k/(w — 1) = =(mn —n)/(m — 1) = —n.

Of course, if G! has order m and G? has order n, then the adjacency matrix of
GG is A(GY) ® Jp+ I, @ A(G?). Thus, if G? is k-regular, then the eigenvalues
of GYG?] are N\i(G?), i = 2,...,n, each with multiplicity m, and n\;(G') + k,
I1<j<m.

Example 3.16 ( Triangulated plane graphs). Let G be a plane graph every face of
which is a triangle, including the outer face. Then the set K of all 3-cliques formed
by the faces of G is a clique partition of 2G. By Lemma 3.9, A(G) > —A(G)/2.
If G has n vertices and e edges, then we also have A\(G) < =\ (G)/(x(G) —1) <
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—2¢/3n by (20) and the Four Color Theorem. Thus, if G is a triangulated
k-regular plane graph with x(G) = 3, then \(G) = —k/2. For example, if
G = Ky is the octahedral graph, then A(G) = —2. However, if G is the
icosahedral graph, then A\(G) = —v/5 ~ —2.236 (the same least eigenvalue as the
dodecahedral graph), but the best estimate we can obtain using clique partitions
is A(G) > —A/2 =-25.

If G contains no K4's and is k-regular, then w(G) = 3 and so, by Corollary
3.14, M(G) = —k/2 if G is vertex-transitive and oo = n/3.

The next two examples present something of a challenge. Perhaps better
lower bounds on A(G) can be found using Theorem 2.1.

Example 3.17 (The Shrikhande graph). The Shrikhande graph G is a strongly
regular graph with parameters (16,6,2,2) and so has least eigenvalue A = —2.
But w(G) = 3 and G yields a triangulation of the torus [8, p. 21|, so, by Theorem
3.13, the best lower bound on A(G) that can be obtained using clique partitions
of multiples of G is only A\ (G) = —A(G)/2 = —3.

Example 3.18 (Kneser graphs). The Kneser graph Kn(v, k) is the graph whose
vertices are the k-subsets of a v-set X. Two vertices are adjacent if their in-
tersection is empty. If G = Kn(v, k), then x;(G) = v/k. If v = mk for some
m, then partitions of X into k-subsets are simple cliques of order m = v/k,
so w(G) = x¢(G). Taking all such simple cliques yields a clique partition of
wKn(v, k) with constant r,, where

_ (mk —2k)!
B = teym=2(m — 2)!
and
_ (mk—k)!
" R — 1)1

Thus by Theorem 3.13, A = A\; = —(mijkfl). The complete set of eigenvalues

of Kn(v, k) is computed in [22, Ch. 6] or [23, Sec. 9.4].

4. SMALLEST EIGENVALUE OF K ;-FREE GRAPHS

A claw free graph G is a graph that does not contain K 3 as an induced subgraph.
An equivalent formulation is that for each vertex x € V(G), the neighbours of x
induce a subgraph with independence number at most 2. To quote from a paper
of Chudnovsky and Seymour [13], line graphs are claw-free, and it has long been
recognized that claw-free graphs are an interesting generalization of line graphs,
sharing some of their properties. The eigenvalues of line graphs are at least —2.
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Linial [30] asked if the property of the eigenvalues of line graphs being bounded
below by an absolute constant is also true for regular claw free graphs. In [14], the
first author showed that the answer is negative by describing a family of regular
claw-free graphs with arbitrarily negative eigenvalues. For sake of completeness,
we briefly describe these examples here. If (', +) is an additive finite group and
S is a symmetric subset of I (s € S implies —s € S) such that 0 ¢ S, the Cayley
graph Cay(I",S) has the elements of I as vertices with x adjacent to y if and only
if x—y € S. Note that Cay(I', S) is an undirected d-regular graph, where d = |S]|.
The eigenvalues of Abelian Cayley graphs G = Cay(T', S) can be easily expressed
in terms of the irreducible characters of the group I'. See Li [29] for a proof and
more details.

Lemma 4.1. If ' is an Abelian group and S a symmetric d-subset of elements
of I, then the eigenvalues of Cay(I',S) are 0, = Y ..o X(s), where x ranges over
the characters of I.

Let C,,, be the graph with vertex set Z, having z adjacent to y if and only
if  —y € S, (mod n), where S, = {£1,42,...,+r}. This graph is the Cayley
graph of Z,, with generating set S, and is a 2r-regular graph. It is easy to see
that C,,, is claw-free since the neighborhood of each vertex of (), , contains two
disjoint cliques of order r and thus, it has independence number at most 2. Using
Lemma 4.1, we can now calculate the eigenvalues of C, .

Proposition 4.2. The nontrivial eigenvalues of C,,, are

N sin ((2r + 1))

)
sin Le

for1<f<n-—1.

Proof. For any n-th root of unity €, = e T , the character of Z,, associated with
it is x(s) = ¢ for s € {0,...,n — 1}. Lemma 4.1 implies that for 1 </ <n—1,

(r+1)

1—¢€, 1—¢,
_ -5 _ - " {4 —
QX—ZEE—I—ZE T -1+ 1_%_1 1
1_67"—1—1_6 1_6—7‘—1 —-r _ r+l
= -2+ ¢ Z( £ >:_1+u
1—¢ 1—¢
T-‘r% r—% . 0
€ —€ sin ((2r +1)%
o EL)
2 —¢,? sin 7= .
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If we choose n and 7 such that ¢ = 5

3n . . .
we ch . 20T 1S an integer, then the previous
proposition implies

1 2 2
AMCpp) < —1——— o1 — = = Zop,

s . 3
SN 55,17y

Hence, the eigenvalues of the claw-free graphs C'(n,r) can be arbitrarily negative.

Recently, Aharoni, Alon and Berger [4] studied the largest eigenvalue of the
Laplacian of K j-free graphs for k > 3. A graph is K j-free if it has no induced
K ;. When k = 3, this is the same as being claw-free. For simplicity, we will state
the results from [4] for regular graphs and in terms of their smallest adjacency
eigenvalue. For d > k > 3, let t(d, k) denote the maximum number of edges
in a graph of order d whose independence number is & — 1 or less. By Turan’s
theorem, t(d, k) equals the number of edges of a graph of order d whose vertex

set is partitioned into k — 1 cliques, each of order | 4| or [4].

Theorem 4.3 [4]. If G is a d-regular connected graph that is K j-free, then

(21) AG) > —d +

We note here that the same argument from [4] can be used to prove a more
general lower bound for A\(G).

Proposition 4.4. If G is a connected d-reqular graph where each vertex is con-
tained in at least m triangles and each edge is contained in at most t triangles,
then

(22) AG) > —d + %

Proof. The proof is the same as in [4], but for the sake of completeness, we
describe it here. Take an eigenvector x of length 1 corresponding to A. It is
easy to see that d + A = 3 .. p(zi + z;)%. Let T be the set of triangles of
G. For any edge ij, let t;; denote the number of triangles containing ¢j and
for any vertex ¢, let ¢, denote the number of triangles containing ¢. Clearly,
tij <t for any edge ij and t, > m for any vertex £. Summing up the entries of
(z; + ;)% + (25 + 20)* + (z¢ + 7;)? over all the triangles ij¢ of G, we get that

D (@it 2+ (g wo)® + (e +2:) = D il + ;)
T:ije ijEE

Sty (mitm)? =t(d+ ).
ijeE
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On the other hand, for any triangle with vertices i, j, £, we have that

(zi +2)% + (25 +20)® + (w0 + 25)* = 27 + x? + 27 + (2 + ) + 2)?

> 2?2 + 1‘? + 22,
and therefore,

Z (zi +25)? + (x5 + 20)* + (2 + 2) > Z (27 + 27 + a7)

T:ij4 T:ijl
:5 tingmE x%zm.
i€V i€V

Combining these inequalities, we get that ¢(d + \) > m which gives the desired
result u

To see how one gets Theorem 4.3 from Proposition 4.4, note that a d-regular
K j-free graph will have the property that ¢ < d—1 and m > t(d, k). We believe
that the inequality in Theorem 4.3 may be improved although we have not been
able to do so. Note that the hypothesis of K j-free is not fully used in the proof
of the previous theorem, but only its corollary that each neighborhood is dense.
Perhaps for k = 3, structural results on claw-free graphs like those in [13] may
be used to improve these bounds. When d = k = 3, Theorem 4.3 implies that a
cubic claw-free graph G must have A\(G) > —2.5. We slightly improve this bound
as follows.

Theorem 4.5. Let G be a connected 3-reqular claw-free graph on n > 6 vertices.
Then

(23) AMG) > 0~ —2.272,
where 0 is the smallest root of 3 + = + 14.

Proof. Let A\ = A\(G). Because G is claw-free and cubic on n > 6 vertices, the
neighborhood of each vertex is either Ky U K3 or K. If all the neighborhoods
are K1 U Ko, then A > —2. To see this, consider the edge-partition of G into
triangles and edges (such partition is unique in this case) and denote by N its
vertex-clique incidence matrix. Then A(G) = NNT 4 2I which gives the bound
above.

Otherwise, if there are Ko neighborhoods, then the graph will contain in-
duced subgraphs on 4 vertices consisting of K4 minus one edge. We call such
subgraphs diamonds and note that distinct diamonds will be vertex disjoint. If
H is a diamond with vertex set {a, b, u, v}, where u and v have degree 3, then we
call the edge uv the middle edge of the diamond H. Let M be the set of middle
edges of G.
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We consider now the covering of the edges of G by triangles where we used
both triangles of each diamond (and where the triangles involved in a diamond
cover the middle edge twice) and the triangles not involved in diamonds and the
remaining edges. Let M be the vertex-clique incidence matrix. Then

MMT = A+2I+B

where B is the adjacency matrix of the union of the disjoint middle edges and
the remaining isolated vertices.
If = is a unit eigenvector corresponding to A, then

(24) AN=aTAz = (MT2)'(MTz) -2 — 2" Bz
which implies that

(25) A>-2-2"Br=-2-2 > ..
uveM

We find an upper bound for Zuve M Tuy as follows. First, note that z, = x, for
every middle edge uv. To see this, consider the eigenvalue-eigenvector equation
for the vertices u and v (where a and b are the other vertices involved in this
diamond):

ALy = Ty + XTg + Xp

ALy = Ty + Tq + Xp-
Therefore, (A — 1)z, = (A — 1)z, = x4 + xp. This implies that
(26) (A= 1)%2} = (20 + p)? < 2(2 + 7).

Combining (25) and (26) with the facts that = has length one and that distinct
diamonds are vertex disjoint, we will get

2 2
) S < s 0D) 4122 S i)
urv

—1)2 — —1)2
= (A=1) (A=1)
If S =2% cmTuTo, then § < % which implies that S < m. Plug-
ging this into (25), we get that
4
27 A>-2—-—
(27) - 44+ (A—1)2

which implies that A2 + X\ + 14 > 0. Hence, A > 0 ~ —2.272. [



SOME OBSERVATIONS ON THE SMALLEST ADJACENCY EIGENVALUE OF ... 491

It may be possible that this type of argument can be extended for higher

degrees in the case of quasi-line graphs (a special case of claw-free graphs where
each neighborhood is a union of two cliques), but we leave this for a future work.
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