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Let I' = (V(I'), E(I")) be a simple undirected graph of order n with adjacency matrix
A(T"). The eigenvalues of A(T"), denoted by A\ (I") > A\o(T") = -+ = A\, (T'), are also called
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the eigenvalues of I'. For a k-regular graph I', the spectral gap A{(I") — Ao(I") = k& — \o(T)
is closely related to the connectivity and expansion properties of I' [2, 3, 16, 17, 30, 31, 23].

Let G be a finite group, and let 7" be a subset of G such that e ¢ T (e is the identity
element of G) and T = T~'. The Cayley graph Cay(G,T) of G with respect to T
(called connection set) is defined as the undirected graph with vertex set G and edge set
{{g,79} | g € G,7 € T}. Clearly, Cay(G,T) is a regular graph which is connected if and
only if 7" is a generating subset of G. A Cayley graph Cay(G,T) is called normal if T is
closed under conjugation.

Let S, be the symmetric group on [n] = {1,2,...,n} with n > 3, and T" a subset
of S, consisting of transpositions. The transposition graph Tra(T) of T is defined as
the graph with vertex set {1,2,...,n} and with an edge connecting two vertices ¢ and
j if and only if (z,5) € T. It is known that 7" can generate S, if and only if Tra(7T) is
connected [21]. In 1992, Aldous [1] (see also [19, 9]) conjectured that the spectral gap
of Cay(S,,T) is equal to the algebraic connectivity (second least Laplacian eigenvalue)
of Tra(T). Earlier efforts of several researchers solved various special cases of Aldous’
conjecture. For instance, Diaconis and Shahshahani [15], and Flatto, Odlyzko and Wales
[18] confirmed the conjecture for Tra(T') being a complete graph and a star, respectively;
Handjani and Jungreis [22] confirmed the conjecture for Tra(7") being a tree; Friedman
[19] proved that if Tra(7T) is a bipartite graph then the spectral gap of Cay(S,,T) is at
most the algebraic connectivity of Tra(T"); Cesi [9] confirmed the conjecture for Tra(T)
being a complete multipartite graph. At last, Caputo, Liggett and Richthammer [7]
completely confirmed the conjecture in 2010, their proof is an ingenious combination of
two ingredients: a nonlinear mapping in the group algebra CS,, which permits a proof by
induction on n, and a quite complicated estimate named the octopus inequality (see also
[10] for a self-contained algebraic proof). Very recently, Cesi [11] proved an analogous
result of Aldous’ conjecture (now theorem) for the Weyl group W (B,,). Most of the above
results rely heavily on the representation theory of the symmetric group S,.

The second eigenvalues of Cayley graphs of the symmetric group S, or the alternating
groups A, have been determined also for some special generators that are not transposi-
tions. For 1 <i < j < n,let r;; € S, be defined as

ot li il o1 el
WL =1 f =1 i+l i 41 em)

In [8], Cesi proved that the second eigenvalue of the pancake graph P,, = Cay(S,, {r1, |
2 < j < n})isequal ton—2. In [12], Chung and Tobin determined the second eigenvalues
of the reversal graph R, = Cay(S,,{r:; | 1 <i < j < n}) and a family of graphs that
generalize the pancake graph P,. In [33], Parzanchevski and Puder proved that, for large
enough n, if S C 5, is a full conjugacy class generating .S,, then the second eigenvalue
of Cay(S,,S) is always associated with one of eight low-dimensional representations of
Sp. In [25], the authors determined the second eigenvalues of the alternating group graph
AG,, = Cay(A,,{(1,2,4),(1,4,2) | 3 <i < n}) (introduced by Jwo, Lakshmivarahan and
Dhall [28]), the extended alternating group graph FAG,, = Cay(A,, {(1,4,7),(1,7,7) | 2 <
i < j < n})and the complete alternating group graph CAG,, = Cay(A,,{(,j, k), (i, k,7) |
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1<i<j<k<n}) (defined by Huang and Huang [24]).

Suppose that G is a finite group acting transitively on [n] and let I' = Cay(G, T). In the
present paper, we first show that, for each i € [n], the left coset decomposition of G with
respect to the stabilizer subgroup G, is an equitable partition of I'; and all these equitable
partitions share the same quotient matrix By. Based on this fact, we also prove that
those eigenvalues of I" not belonging to By can be bounded above by the sum of second
eigenvalues of some subgraphs of I'. Now suppose further that I" is connected and normal,
and that the action of G on [n] is of high transitivity. Using the previous result, we reduce
the problem of proving Ao(I') = A\o(Bp) to that of verifying the result for some smaller
graphs. This leads to a recursive procedure for determining the second eigenvalue of T'.
As applications, we determine the second eigenvalues of a majority of connected normal
Cayley graphs of S, with max,cr |[supp(7)| < 5 (see Theorem 15 and Table 2), where
supp(7) is the set of points in [n] non-fixed by 7. There are 56 families of such graphs,
and we determine the second eigenvalues for 41 families of them. In the process, we also
determine the second eigenvalues of some subgraphs (over one hundred families) of these
41 families of normal Cayley graphs. From these results we can determine the spectral gap
of Cay(S,,{(p,q) | 1 < p,q < n}) (previously done by Diaconis and Shahshahani [15])
and Cay(S,, {(1,q) | 2 < g < n}) (previously obtained by Flatto, Odlyzko and Wales [18,
Theorem 3.7]). We show that a recent conjecture of Dai [14] is true as a consequence of
Aldous’ theorem and we discuss some related questions and open problems.

2 Main tools

Let I' be a graph on n vertices. The vertex partition IT : V(I') = VU VLU --- UV, is
said to be an equitable partition of I' if every vertex of V; has the same number (denoted
by b;;) of neighbors in Vj, for all 4,5 € {1,2,...,¢}. The matrix By = (bij)gxq 1S the
quotient matriz of T' with respect to I, and the n x ¢ matrix x;; whose columns are the
characteristic vectors of Vi, ..., V, is the characteristic matriz of II.

Lemma 1 (Brouwer and Haemers [5], p. 30; Godsil and Royle [21], pp. 196-198). Let
I' be a graph with adjacency matriz A(I'), and let 11 : V(I') = ViUV, U--- UV, be an
equitable partition of I' with quotient matriz By. Then the eigenvalues of By are also
eigenvalues of A(T). Furthermore, A(T') has the following two kinds of eigenvectors:

(i) the eigenvectors in the column space of xm, and the corresponding eigenvalues coin-
cide with the eigenvalues of Br;

(i1) the eigenvectors orthogonal to the columns of xm, i.e., those eigenvectors that sum
to zero on each block V; for 1 <i <q.

If S is a subset of vertices of a graph I', let I'[S] denote the subgraph of I' induced by
S. For regular graphs, we have the following useful result.
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Theorem 2. Let T be a r-reqular graph, and let X (X # r) be an eigenvalue of T. If T
has an eigenvector f with respect to A and a vertex partition 11 : V(I') = VUV, U---UV
such that U[V;] is ry-regular (r1 < r) and f sums to zero on'V; for all i € {1,2,...,q},
then

A < max A\ (I[Vi]) + Ao (Ty),

1<i<q
where I'y is the (r—rq)-reqular graph obtained from T' by removing all edges in Ul_, E(T[V}]).
Proof. By assumption, the induced subgraphs I'[V;] share the same degree 11, so I'y is

(r —r1)-regular because I is r-regular. Also, the eigenvector f of A sums to zero on V; for
each i. Set £y = UL, E(T'[V;]) and E, = E(I') \ E; = E(T'1). By the Rayleigh quotient,

we obtain
fTAM) f
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where f|y; is the restriction of f on V;, 1y, is the all ones vector on V;, and the second
inequality follows from »_ .. f(z) = 0 (1 < i < ¢). For the second term, since I'; is
regular and f is orthogonal to the all ones vector 1, we have

2 > f@)fy)

{z,y}€E> fTA(Fl)f hTA(Fl)h
g < —_—
S ) R S ()
zeV ()
Combining (1), (2) and (3), we conclude that
A < max L (TVi]) + Ao(T),
and the result follows. O

If the partition I : V(I') = V;UVLU- - - UV, is exactly an equitable partition of I' with
quotient matrix By, then the eigenvectors of I' with respect to those eigenvalues other
than that of By must sum to zero on each V; by Lemma 1. From Theorem 2 one can
immediately deduce the following result.

Corollary 3. Let I' be a r-regular graph. Assume that1l: V(') =V UVLU---UV, is an
equitable partition of I' whose quotient matriz By has constant diagonal entries. Then,
for any eigenvalue A of I' that is not that of By, we have

A < max A (T[Vi]) + Ao(Ty),

1<i<q
where T'y is the graph obtained from T’ by removing all edges in Ul_, E(T[V}]).
Here we give an example to show how to use the result of Corollary 3.

Example 4. Let ©1,0, be two connected k-regular graphs on n vertices. Let I' be the
graph (not unique) obtained from ©; U Oy by adding some new edges between ©; and
©, such that these edges form a r-regular bipartite graph I'y (I'; is easy to construct, cf.
[26], Lemma 3.2). Clearly, I is a connected (k + r)-regular graph. Let V; and V, be the
vertex subsets of I' corresponding to ©; and s, respectively. Then V(I') = V3 U V4 is
clearly an equitable partition of I' with quotient matrix

Since A2(I'1) < 7, each eigenvalue of I" not belonging to By is bounded above by
maX{/\g(Gl), )\2(@2)} +r
according to Corollary 3. As \y(By) = k — r, we conclude that

E—r < A(T) < max{max{A2(01), \2(O2)} + 1, k —r}.
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Note that the above bounds could be tight. Take ©; = ©,; = (@), the n-dimensional
hypercube, and let I" be the graph (not unique) obtained from ©; U O, by adding a
perfect matching between ©1 and O, (such graphs contain the (n + 1)-dimensional locally
twisted cubes, cf. [34]). Since A\o(Q,) =n — 2 (cf. [5], p. 19), we have

n—1< ) <max{(Q,) +1,n—1}=n—1,

and thus \y(I') = n — 1, which attains the lower bound. Also, the Cartesian product
C,UK,, which can be regarded as the graph obtained by adding a perfect matching
between two copies of C,,, has second eigenvalue 2 cos 27” +1 = X2(C,) + 1, and so attains
the upper bound.

By using Theorem 2, in what follows, we focus on providing upper bounds for some
special eigenvalues of Cayley graphs. Before doing this, we need to do some preparatory
work. First of all, we give the following useful result, which suggests that each Cayley
graph has an equitable partition derived from left coset decomposition.

Lemma 5. Let G be a finite group, and let ' = Cay(G,T) be a Cayley graph of G. Then
the set of left cosets of any subgroup H of G gives an equitable partition of T'.

Proof. Suppose that Il : G = g1H U goH U --- U g, H is the left coset decomposition of
G with respect to H, where k = |G|/|H| and g1, ..., g are the representation elements.
Clearly, II is a vertex partition of I'. For any g € ¢g;H, we have g = g;h for some h € H.
Let N(g) denote the set of neighbors of g in I". Then

IN(9) Ng;H| = [N(g:h) Ng;H| = |(Tg;h) Ng;H| = [T N (g;Hh "g; )| =T N (g;Hg; )|,

which is independent on the choice of g € g; H. Thus II is exactly an equitable partition
of ', and the result follows. m

Let €2 be a nonempty set, and let G’ be a group acting on 2. We say that the action
of G on Q (|2 > s) is s-transitive if for all pairwise distinct z1,...,z, € Q and pairwise
distinct y1,...,ys € Q there exists some g € G such that z{ = y; for 1 <i < s. Clearly,
a s-transitive action is always t-transitive for any ¢ < s. In particular, we say that the
action is transitive if it is 1-transitive. As usual, we denote by G, = {g € G | 29 = z} the
stabilizer subgroup of G with respect to x € €.

Now suppose that G is a finite group acting transitively on [n] = {1,2,...,n}. For
each fixed i € [n], we have |G|/|G;| = n by the orbit-stabilizer theorem, and furthermore,
we see that G has left coset decomposition

I, : G =1,GiU g2,G;U---U gy, Gi =G, UGy, U---UG,,, (4)
where g;; is an arbitrary element in G that maps j to ¢ and
Gji = 95:Gi ={9 € G| j° =i},
for all j € [n]. Clearly, |G,;| = |Gi| = |G| /n.

THE ELECTRONIC JOURNAL OF COMBINATORICS 26(2) (2019), #P2.44 6



Let I' = Cay(G,T) be a Cayley graph of G. According to Lemma 5, for each i € [n],
the left coset decomposition II; given in (4) is an equitable partition of I with quotient
matrix Br, = (bst)nxn, where

bst = ‘T N gt,z'Gz‘gs_,il’ = ‘T N Gt,s‘ (5)

is exactly the number of elements in 7" mapping ¢ to s. Since by, = |T'NGy | is independent
on the choice of i, all the equitable partitions II; share the same quotient matrix. For
this reason, we use By instead of By,. Also, by counting the edges between G,; and
Gy in two ways, we obtain by - |Gs;| = by - |Grsl, which implies that by = by because
|Gsi| = |Gri| = |G|/n. Therefore, By = (bst)nxn is symmetric.

For any fixed k € [n], we also can partition the vertex set of I' as another form

H;: . G:GhlUGk,QU"'UGkJ,na (6)

which is exactly the right coset decomposition of G with respect to G. In general, IT} is
not an equitable partition of I'. As in Theorem 2, we can decompose the edge set of I’
into E(I') = Ey U Ey, where By, = U | E(I'[G,]) and Ey = E(I') \ Ey. Let I'y denote the
spanning subgraph of I' with edge set E5. The following lemma determines the structure
of I'y and I'[Gy] for all i € [n].

Lemma 6. For any fived k € [n], we have
(1) TG ] = Cay(Gr, T N Gy,) for all i € [n];
(ii) T = Cay(G, T\ (T NGy)).
Proof. For (i), the corresponding isomorphism can be defined as
¢ Gri = griGi — gk,iGigk_,il = G},
Gkid = 9ri9%i> V9 € Gi.

Clearly, ¢ is one-to-one and onto. Furthermore, we have

{91i9 Gi9'} € E(T[Gril) <= grig' (grig) L €T
= geid'9 " 9 € T NgriGigyi = T NGy
— gk,ig,gk_,;‘l (gk,igg];il)_l e T NGy
= {9ri995;  9ri9' 9, } € E(Cay(Gr, T N Gy)),

and so (i) follows. Now we consider (ii). Clearly, I'1[Gy;] is an empty graph for all
i € [n]. For any gx,9 € Gri = gr:G; and gi;9 € Gi; = gr;G; (i # j), we have
{919, 9x.;9'} € E(T1) if and only if gx ;¢ (9x.g)"" € T, which is the case if and only if
k9 (gri9) " € T\ (T N Gy) because gi ;9 (9ri9) " = gk9'9 " 9ri & Gr due to i # j.
Therefore, each edge of I'; comes from 7'\ (T'N Gy). Conversely, T\ (T'N G},) can only
be used to produce the edges in E(I'y) = E, because each edge in £y = U E(I'|Gy.])
comes from 7' N Gy. This proves (ii). O
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Now we are in a position to give the main result of this section, which provides upper
bounds for some special eigenvalues of Cayley graphs.

Theorem 7. Let G be a finite group acting transitively on [n] = {1,2,...,n}, and let
I' = Cay(G,T) be a Cayley graph of G. Then the left coset decomposition I1; of G given in
(4) leads to an equitable partition of T', and the corresponding quotient matriz By = B,
15 symmetric and independent on the choice of ©. Moreover, if X is an eigenvalue of T’
other than that of By, then, for each k € [n], we have

A < )\Q(Cay(Gk, TN Gk)) + )\Q(Cay(G, T\ (T N Gk))),
where Gy, is the stabilizer subgroup of G with respect to k.

Proof. From the above arguments, it suffices to prove the second part of the theorem. Let
f be an arbitrary eigenvector of I' with respect to A. Since II; is an equitable partition
of I' for each ¢, we see that f must sum to zero on G,; for all 4,5 € [n] by Lemma 1. For
any fixed k € [n], let I}, be the vertex partition of I" given in (6). In particular, we have
that f sums to zero on Gy, for all i € [n]. By Lemma 6, all these induced subgraphs
I'[Gy.i (i € [n]) are isomorphic to Cay (G, TNGy), and so share the same degree |T'NG|.
Let I'; be the graph obtained from I' by removing all edges in U ; E(I'[G)]). Note that
'y 2 Cay(G, T\ (T'NGY)) again by Lemma 6. Then, by applying Theorem 2 to the vertex
partition I}, we obtain

= )\Q(Cay(Gk, TN Gk)> + )\Q(Cay(G, T \ (T N Gk)>)
By the arbitrariness of k € [n], our result follows. O

It is worth mentioning that Theorem 7 provides for us a recursive method to determine
the second eigenvalue of the connected Cayley graph I' = Cay(G, T'). Indeed, by Lemma
1, all eigenvalues of By are also that of I', so we have Ao(I') > Ao(Br). Therefore, if there
exists some k € [n] such that

A2 (Cay(Gr, T'N Gy)) + A2(Cay (G, T\ (T'N Gr))) < Ao(Bn), (7)

then we may conclude that Ao(I') = Ao(Bn) by Theorem 7. Thus the problem is reduced
to determining the exact value of A\o(Cay(Gy,T N Gy)) and Ao(Cay(G,T \ (T' N Gg))),
which reminds us that the way of induction could be applied.

In the next section, we shall see that if G and T satisfy some additional conditions
then the problem of proving A\o(I") = Ay(Bpy) can be reduced to that of verifying the result
for some small graphs.

3 Normal Cayley graphs

For a finite group G, the conjugacy class of g € G is defined as the set C, = {h~'gh |
h € G}. Recall that a Cayley graph Cay(G,T) is said to be normal if T is closed under
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conjugation, that is, 7" is the disjoint union of some conjugacy classes of G. It is well-
known that the eigenvalues of a normal Cayley graph can be expressed in terms of the
irreducible characters of G.

Theorem 8 ([4, 29, 32]). The eigenvalues of a normal Cayley graph Cay(G,T) are given
by

1
Ax = W ;X(T)a

where x ranges over all the irreducible characters of G. Moreover, the multiplicity of A,
is x(1)2.

However, it is often difficult to identify the second eigenvalues of normal Cayley graphs
from Theorem 8. In this section, by using Theorem 7, we reduce the problem of deter-
mining the second eigenvalues of normal Cayley graphs of highly transitive groups to that
of verifying the result for some smaller graphs.

From now on, we always assume that G acts transitively on [n], and that I' =
Cay(G,T) is a connected normal Cayley graph of G, i.e., T is a generating subset of
G which is also closed under conjugation. In order to use Theorem 7 recursively, we set
To=T,Ty=Cay(G,Ty) =T, and for k =1,2,...,n, we define

Fk = Cay(G,Tk) with Tk = Tk—l \ (Tk—l N Gk);

8
®k = Cay(Gk, Rk) with Rk = Tk,1 N Gk ( )

We see that both I'y and Oy are subgraphs of I'y_;, and furthermore, by regarding T},
as T in Lemma 6, we have

Remark 9. The edge set of I'y_; (k > 1) can be decomposed into that of 'y and n copies
of @k

Note that 7} = T\ (T'NG1) consists of those elements in 7" moving 1, To = 11\ (171N Gs)
consists of those elements in 7} moving 2, i.e., those elements in T" moving both 1 and 2,
and so on. Thus we have

Remark 10. For each k > 1, Ty is the set of 7 € T satisfying {1,2,...,k} C supp(7), i.e.,
T, = T\ (TN (U,Gy)), and thus Ry, = Ty_; N Gy, is the set of elements in 7' moving
1,2,...,k —1 but fixing k.

Note that G acts transitively on [n]. For 0 < k < n, from Theorem 7 and (5) we see
that the left coset decompositions II; (i € [n]) of G given in (4) are equitable partitions
of I'y = Cay(G, T}) which share the same symmetric quotient matrix

BYY = 0 )sn, where b = |11 G, ©)

In particular, BI(IO) = By.
To achieve our goal, we need to determine the second eigenvalue of BI(Ik) (k> 0).
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Lemma 11. Let 'y, = Cay(G,T}) (k = 0) be the graph defined in (8), and Bﬁk) the
quotient matriz of Ty, defined in (9). If G acts (k+ 2)-transitively on [n], then A2(Bl(]k)) =
Ty N Grg1| — | Tk N Grgopsa]-

Proof. First suppose k = 0. According to (9), we have Bl(-I0 ) = (bgﬁ))nm, where b =

|To N Gis|. Since G acts 2-transitively on [n], for any s € [n], there exists some g € G
such that g maps s to 1. Considering that T, = T is closed under conjugation, we have
b = |ToN Gl = IToN G| = |97 (ToNGo)g| = (97 Tog) N (97 Gsg)| = [To NG| = b{Y.
Similarly, for any two distinct s,¢ € [n], there exists some ¢ in G mapping s to 1 and ¢
to 2 by the 2-transitivity of G acting on [n|. Then b = ToNGisl = lg7HTo N Grg)g| =
(g7 Tog) N (97 Grsg)| = |To N Giroo| = |To N Gaa| = b, Combining these results, we
have
BY =91, + 619 . (J, - I).

Thus the quotient matrix Bﬁo ) has eigenvalues |T| = bgq) +(n—1)- blg of multiplicity one

and bﬁ) —bg) of multiplicity n— 1. Therefore, )\Q(Bl(—[O)) = bg(i) 0) = |ToNG:1|—|ToNGay,
and our result follows.

Now suppose k > 1. By definition, we see that Ty, = T'\ (T'N (UF_,G;)). We claim
that if ¢ is an element in G fixing {1,2, ..., k} setwise then g~ 'T},g = T}.. Indeed, we have
9 ' Thg = (97 Tg)\ (97" T9)N (Vi1 Gig)) = T\(TN(UL,Gr)) = T\ (TN (UL, Gr)) =
T}, as required.

We shall determine all eigenvalues of Bl(qk). According to (9), we see that Bﬁk) = (bgl,f)),
where bg’f) = |T:NGy ). For 1 < s < k, we have bk — |T:NGs 5| = 0 because T}, must move
s but G55 = G does not. For k +1 < s < n, by the (k + 2)-transitivity of G acting on
[n], there is a g € G fixing {1,2,...,k} setwise but moving s to k + 1. Then ¢~ 'Tyg = T},
and ¢~ 'G,g = Gi11 by above arguments, and thus b — T N G| = [T NG| =
971 Tk N Ggl = (g7 Tig) N (971 Gag)] = 1Tk N G| = b, 4py. For 1 <s <t <k (if
k > 2), again by the (k+2)-transitivity, we can choose g € G such that g moves ¢ to 2 and s
to 1 but fixes {1,2, ..., k} setwise. Then we see that bk = TeNGysl = g Y TkNGys)g| =
(g7 Tg) N (g7 Grug)| = [Th N Gaa| = ). For 1 < s <k and k+ 1 < ¢ < n, there also
exists some ¢ in G mapping s to 1, ¢t to k+ 1 but ﬁxing {1 2,...,k} setwise, thus we get

= |Tu N Gis| = g7 (T N Grs)gl = T N Grpr1] = b1 li+1 Fork+1<s<t<n
we take g € GG such that ¢ maps s to k+ 1 and ¢ to k + 2 but fixes {1,2,...,k} setwise.
Then bgf) =Tk NGis| = g7 Tk N Gis)g| = |Tk N Gryopra] = b,ﬁ’f@lm. Concluding these
results, we have

(0, ifl1<s=t<k
|TkﬂGk+1|:b,(€]2Lk+1, fk+1<s=t<

b = pP) = |anmybg, if1<s<t< k&nk;%;
T N Grgr1| = 1k+1, ifl<s<k, bk+1<t<n;
LT N Grpzpit| = 0y e iR+ 1<s<t<n
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Therefore, the quotient matrix Bﬁk) can be written as

k k
Bl('[k) _ lz’iQ) (‘]k - [k) ®) bg,;zﬂ : JkX(nfk)
b1 k41 J(n*k)xk bk+1,k+1 Ik + bk+1,k+2 ’ (Jn—k - In—kz>

Take 71 = (yI,07)T € R® and x5 = (07, y)T € R", where y; € R¥ and y, € R"* are two
arbitrary vectors orthogonal to the all ones vector, respectively. One can easﬂy verify that
B(k) _ _b(k) . d B(k) _ (b(k) N b(k) ) _b( ) d b b(

n 1= 701201 ANA D 2 = (O g1 = Ykpr kq2) -T2, SO —01 5 all k+1 k41— Ok41k+2
are eigenvalues of Bl(f) with multiplicities at least £k — 1 and n — k — 1, respectively. Also
note that |Ty| is always an eigenvalue of Bl(Tk) with the all ones vector as its eigenvector
because Ty, = Cay (G, T},) is |Tj|-regular. Thus there is just one eigenvalue, denoted by u,

that is not known. By computing the trace of Bl(qk) in two ways, we obtain

k k k k)
(= k) By = Thl = (k= 1) 0+ (n = k= 1) - (B, iy — B ga) + 110
which gives that

k k
po= O (= k=1 b — (1T = (k= 1) - b(3)
k k
= b(+1 k1 T (n—Fk—1)- bl(c+)1,k+2 —(n—k)- bg,lzﬂ
k
= b(+1 k1 T (n—k—1)- b;(ﬁ)l,w —(n—k)- b;ll,r

Thus the eigenvalues of Bl(qk) are [T, —b§’f§ (with multiplicity & — 1), b,(;jrl k1 bgi)l kb2

(with multiplicity n — k — 1) and pu = b,(cli)l g+ (n—k—=1)- bl(i‘gl,k+2 (n—k)- b,gﬂ 1

Now we prove that \o( By k)) = b,ﬁgl k1 b,(;jrl Jgo- Since Al(B(k)) |T%|, it remains to
compare the remaining eigenvalues. To prove bk+1,k+1 b,(ﬁl o = M= b(+1 o1 T (n—k—

1)- bgil ft 2 (n—k)-b,(ﬁm, it suffices to show that b,(ﬁl L= b,(gil kb2 Indeed, by the (k+2)-
transitivity of G acting on [n], there exists some g € G such that g moves 1 to k+ 2 but
fixes k+ 1 and {2,...,k} setwise. Then ¢g7'Tg = (¢7'Tg) \ ((97'Tg) N (Ur_,g7'G19)) =
T\ (TN (U Gu)) =T\ (TN (Gryz U (UF_,G)))), and so we obtain

bfﬁH L = T NGy

=g~ (Tk NG g+1)9|
=[(97'Teg) N (¢ G1k+19)]

(10)
= [(T\ (TN (Grr2 U (UZG1)))) N Gryapei]
=T N Gryopi1] — TN (Grr2 U (UG)) N Gryogst]
= TN Gryona] = [T 0 (UG N Grpapal,
where the last equality follows from Gjio N Gryop41 = D. Also, we see that
(k) . k
biri e = Tk N Griopa]| = (TN Grpopsr| = [T N (UL G N Grega s (11)
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Combining (10) and (11) yields
betin = Ol s = [T 0 (UG N Gryapa] = 1T 0 (UGl N Grya | =0

as required. Now let us show that ka ol — b;’fQLM > —bglg. Since —b§2) is not an

eigenvalue of BH) when £ = 1, we can suppose k > 2. If we can prove b > b,(ﬁH ft 25

then the result follows because b,(QLk 41 = 0. As above, by taking g € G Such that g maps
1to k+1and 2 to k+ 2 but fixes {3,...,k} setwise, we get

by = [Ty N Ga |
=g~ (T N Ga.1)y]
= (97" Teg) N Gryapr1 (12)
= |T N Grizgerr| — [T N (UFFG)) N Gz
= TN Gryapn| = TN (UG N Grpapral-

Combining (11) and (12), we have
b2 = U e = 70 (UG N Gz = T 1 (UG 0 Gz > 0,
and the result follows. Hence we conclude that
Ma(BE) = bkt = Bilipee = TN Gra| = 1Te N Gipo |
The proof is complete. O

Set
m = max [supp(7)|.

If m < n, then we claim that I, = Cay(G, T,,) is disconnected. Indeed, by the definition,
T, consists of those 7 € T such that {1,2,...,m} C supp(7). Since each element of T
has at most m supports, we have supp(7) = {1,2,...,m} for any 7 € T,,, which implies
that T, cannot generate G due to m < n.

In the following, we suppose further that the action of G on [n] is (m + a)-transitive
with @ > 1. Under this assumption, it is clear that n > m + a, and so m < n, implying
that I',, is disconnected. Denote by

G =G and GV = M Gnojpr for 1 <i<a—1. (13)
Indeed, G (1 < i < a — 1) is just the subgroup of G that fixes each point of {n —
i+ 1,...,n}. For this reason, we can also regard G) as a group acting on [n — 1] =
{1,2,...,n —i}. Moreover, this action is (m + a — 7)-transitive because G acts (m + a)-

transitively on [n]. For 0 < i < a — 1, we define

I = Cay(GYD, T, n GD) for 0 < k < m; (14
1

Ok = Cay(GY N Gy, R, N GY) for

<k <m,
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where G is defined in (13), and Ty, Ry are given in (8). By definition, I'yg = I, =
Cay(G, Ty), O = O = Cay(Gg, Ry), and I'y; is the subgraph of both I'y_;; and I'y ;4.
As in Remark 9, the edge set of I'y_1; can be decomposed into that of I'y; and (n — i)-
copies of ©y;. Also, for each fixed ¢, we see that 7 N GW = T NGY is closed under
conjugation in G, and T, NG is just the set of elements in 7N G moving each point
of {1,2,...,k} (similar as Remark 10). Furthermore, since n—i > m+a—1i>m+1, we
claim that T, € G% and that T, ; = Cay(G®, T,,NG?) = Cay(G®, T,,) is dlsconnected
In particular, we have \y(Tyn;) = [T, NG| = |T,,| for all 0 < i < @ — 1. Recall that
G acts (m + a — 4)-transitively (m +a —14 > m + 1) on [n — i]. According to Lemma
5 and the arguments in Section 2, every left coset decomposition of G with respect to
some stabilizer subgroup leads to an equitable partition of I';;, and all these equitable
partitions share the same quotient matrix

Bl(‘[]w') = (bgltm))(n 1) X (n—1) , where b |Tk: NGYN Gt78|'

Clearly, Bﬁk’o) coincides with B( ). For 0 <k<m-—1,wehave k+2<m+1<m+a—i,
and so G acts (k + 2)—transitively on [n —1i]. By applymg Lemma 11 to I'y;, we obtain

A(BEN = 1T, N GD N Grpr| — [T N GD N Gragsa (15)
where 0 <k<m—-1land 0<i<a—1.

Before giving the main result of this section, we need the following two lemmas.

Lemma 12. Let m, a and Bgm) be defined as above. Assume that a > 2. For 0 < i <
a — 2, we have

ki Eit1 A B(kH’i)7 fO<k<m-—2;
alB) < aalf ) = { BT, A<k <

Proof. Since G acts (m + a)-transitively on [n], there exists some g1, g2 € G such that g,
moves k+1tok+2,n—itok+1, ggmovesk+1tok+2, k+2tok+3andn—1
to k + 1, and both of them fix {1,...,k} and {n — i+ 1,...,n} setwise. Then we have
97 ' Teg; = Tr, g;'GWg; = GO and g7 'GHg; = g7 (Gey N GW)g; = Gy NG for
7 = 1,2, which gives that

g1 (T DN Gri1)gr = T NG N G

o 1(T NG N Gri)gr = Ti N Grpr NG9 N Ghya; (16)
921 (T N G N Gryagerr) g2 = Ti N GY N Gras o

9 (T NG N Griopin)ge = Ti N Gt NGO N Gras o
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Also recall that Ty1 = T} \ (7% N Gi41). According to (15) and (16), we deduce that

Ma(BEY) = Xa(BEY) = (ITen GO NG| = [Ti NG N Gryap]) —
(ITe N G N Grp| — [T NG N Grpopsn)
= (T nGY' NG| — [T NGV N Griq))
(I1Tx NG9 N Grpoprr| — [Te 0 GV N Grpopg])
= (ITe NGY'N G| — [T N Grpr NGD N Gpa]) —
(1T NG N Gryspral — |Te N Grrr NG N Grisiral)
(i

= |Th1 NGY N Gyl — Ty NGY N Grts pral-

Therefore, if 0 < £ < m — 2, we have )\Q(B(k Z')) - /\Q(B(MH)) = A (B (k+1 Y again
by (15); 1f k = m — 1, we have \o(BY" ™)) — MBIy = T, 0 GO N Grpyy| —
T, N G% N Gm+2,m+1| = |T\n| — 0 = |T},,| because supp(r) = {1,2,...,m} for any
TeT,NGY =T, O

Lemma 13. Let m, a, I'y; and Oy, be defined as above. Assume that a > 2. For
0<i<a—2and 0 <k<m—1, we have Opy1,; = Ty it1.

Proof. According to (14), we see that
Ops1i = Cay(GY N Gry, Reer N GY) = Cay(GY N Grpr, Ty N Gy N GD)

and A .
Tiiv1 = Cay (G T, 0 GEHD),

By the (m + a)-transitivity of G acting on [n], we can choose g € G such that g moves
k+ 1 ton—ibut fixes {1,...,k} and {n —i + 1,...,n} setwise. Then we see that
g HGr i NGD)g =G, iNGY = G0+ and ¢ (T NGy NGD)g =T NG, NGO =
T, N GUHY | Thus g induces an isomorphism from Oy, to I'; ;11 naturally. O

Now we give the maln result of this section, which indicates that the problem of
proving A\o(I'y) = )\2(8 ) (0 < kK < m—1) can be reduced to verifying the result for
some small graphs.

Theorem 14. Let G be a finite group acting on [n], and let I' = Cay(G,T) be a connected
normal Cayley graph of G. Let m = max.cr [supp(7)|. If the action of G on [n] is (m+a)-

transitive with a > 1 and ATy q—1) = AQ(B(M 2 ) for all k € {0,1,...,m — 1}, then we
have

Xo(Tk) = Aa(Tho) = Xa(Bf”) = Ma(BY) = [T 0 G| — [T 0 Gryz .

where 0 < k < m — 1. In particular, X\y(I') = Aao(Ty) = )\2( ) T NG| —|T NGl
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Proof. 1f a = 1, there is nothlng to prove. Thus we assume that a > 2. The main idea is
to prove )\Q(F;“) = )\2( ) forall 0 <k <m—1and 0 <4< a—1 by induction on k
and <.

First of all, we shall verify the induction basis. By assumption, we have known that
AQ(FM 1) = )\Q(B (k,a=1) ) for all 0 < & < m — 1. Thus it suffices to verify \o(T'),_1,) =

Ao(By (m—1,) )forall0 <i<a-—1. If i =a— 1, we obtain the result again by assumption.
Now suppose 0 <7 < a— 1, and assume that the result holds for i +1, i.e., Ao(I'n—1,i41) =

Ao(BIH Y We shall prove Ao(Tm-1,) = Ao(BU" ). According to the arguments
below Theorem 7 and (7), we only need to show As(BE™ ") > Ay(©,,1) + )\2( ). From

Lemma 13 we see that ©,,,; = I'y;—1i11, 0 Aa(Oi) = Aa(Tim—1441) = )\2(3 me “*1)) by
the induction hypothesis. Also, as mentioned above, we have Ay(T',,;) = |1, NG| = |T,,,|
because I'y, ; is disconnected. Therefore, from Lemma 12 we deduce that

Ma(BE" Y = Xa(Omi) = Ma(BY ™) = Ma(BE ™) = | T = Ma(Tn),

as required. Thus we have built up the induction basis.

Now suppose 0 < k < m —1and 0 < i < a — 1, and assume that the result holds
for k + 1,Z and k’,Z + 1 i )\Q(Fk+1i) = )\2( k—Hl)) and )\2(Fki+1) = )\ ( kH_l)).
We shall prove A\o(Ty;) = /\Q(B ")) As above, it remains to show that A(BIF") >
A2(Opt1,i) + A2(Tks14). Again by Lemma 13 and the induction hypothesis, we have
A2 (Ops14) = Xa(Tkiv1) = Ao(B ]“H)) and \o(Dyi1,) = )\Q(B (k+1, Z)). Then from Lemma
12 we obtain

Ma(BIE) = Xa(Oks1:) = Ma(B™) = Ma( B ™) = Ma(BEH) = Ao (T 1),

and the result follows.

Therefore, we may conclude that \y(T'y;) = )\2( ) forall 0 < k < m—1 and
0 <i<a—1. In particular, for 0 <k <m—1, we have A(Tx) = Xa(Tro) = (Bl(-[k0 ) =
Ty N Grg| — [Tk N Grga gt O

According to Theorem 14, to prove A\y(I') = Ao(Ig) = )\2( ) = |TNGy| —|T NG 1
(and as by-products, Ag(I'y) = )\Q(Bl(f)) for1 <k <m—1),it sufﬁces to verify Ao(I'ka—1) =
/\Q(Bl(qk’a_l)) for all k € {0,1,...,m — 1}. Note that if a is relatively large, i.e., the action
of G on [n] is of high transitivity, then the graph I'y,_; will be of small order. This
makes it easier to verify the equalities. It is well-known that the symmetric group S,, acts
n-transitively on [n], so Theorem 14 is particularly effective for normal Cayley graphs of
Sp. In the next section, we consider to determine the second eigenvalues of connected
normal Cayley graphs of .S, with m < 5.

4 The second eigenvalues of normal Cayley graphs of symmetric
groups

Let G = S, be the symmetric group on [n] with n > 3. As mentioned earlier, S, acts
n-transitively on [n], and also, two elements in S,, are conjugated if and only if they share
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the same cycle type (see [27, Theorem 6.5]). Let I' = Cay(S,,T) be a normal Cayley
graph of S, that is, T" is the disjoint union of some conjugacy classes of S,,. Then I' is
connected if and only if T" contains some odd permutation. This is because T' generates
a non-identity normal subgroup of .S,, while A,, is the unique nontrivial normal subgroup
of S, for n # 4, and A, and {e, (1,2)(3,4),(1,3)(2,4), (1,4)(2,3)} < A4 are the only
nontrivial normal subgroups of S;.

In this section, as applications of Theorem 14, we consider the second eigenvalues of
connected normal Cayley graphs of 5, for which each element of the connection set has
at most five supports.

For convenience, we first list all the nontrivial conjugacy classes of S,, with each element
having at most five supports:

( C(l

p,q) | 1<p,qg<n};
p.q )|1 P, ¢, < nk;
D, q )(r s)|1<p,qrs<n};

{(
{(
{(
{pq,r,8) [ 1< p,gyr, s <nl
{(
{(p

(17)

p,q,7)(s,t) | 1 < p,q,m st <n};
p,q,1,8,t) | 1 <p,q,rst<n},

where p, ¢, 7, s,t are pairwise distinct. For k € [n], we denote by C @ (see Table 1) the set
of elements in C) that moves each point of {1,2,...,k}, where 1 <14 < 6.

Table 1: The structure of Clii) for 1 <i<6andk € [n].

e
{M,g)12<qg<n}
{(1,2)}

3 (%]
{(1,(],7”) I 2<¢q,r< ’I’L}
{(1’277')7 (177'72) | 3<r< ’n}
{(11273)7(17372)}

4 %]

)(r,s)
[(2)(rms), (1,r)(2,5) | 3<rs < n}
{(1,2)(3,9), (1,3)(2,9), (1,)(2,3) | 4 < s < n}
{(1,2)(3,4), (1,3)(2,4), (1,4)(2,3)}

5 %]

{1, q,m8)[2<qr,s<n}
{(1,2,r,9),(1,r,2,8),(1,r,8,2) | 3< r,s <n}
{(1,2,3,9),(1,2,s,3),(1,3,2,s),(1,3,s,2),(1,s,2,3),(1,s,3,2) | 4 < s < n}
{(1,2,3,4),(1,2,4,3),(1,3,2,4),(1,3,4,2),(1,4,2,3),(1,4,3,2)}
5 %)
{1, p,0)(r,5), (p,q,7)(1,8) | 2<p,q,7, s <n}
{w,q,7)(1,2), (1, p,9)(2,7), (2,0, 0)(1,7),(1,2,p)(g,7), (1, p,2)(q,7) | 3< p, g, 7 <}
continued on next page

U O b ol R B R W W W W WwNnNNNE = =S
N R Y R WY A WN Ry WY D
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i k ct

. ) { (1,2,3)(1,0), (1,3,2)(2,9), (1,2,9)(3,0), (1.7, 2)(3,0). (13, 9) (2,0, (L3 20, [, gn}
(2,3,p)(1,9), (2,0,3)(1,9), (1,9, 9)(2.3), (2,0, 9)(1,3), (3,p, 9)(1,2)
(1,2,3)(4,p), (1,3,2)(4,p), (1,2,4)(3,p), (1,4,2)(3,p), (1,2,p)(3,4),

. . up2x3®mL&®mmqu3xzmml3mm4xup3x2®,5<p<n
(1,4,0)(2,3), (1,,4)(2,3), (2,3,4)(1,p), (2,4,3)(1,p), (2, 3,p)(1,4),
(2,9,3)(1,4), (2,4,p)(1,3), (2,,4)(1,3), (3,4,p)(1,2), (3, p, 4)(1, 2)
(1,2,3)(4,5), (1,3,2)(4,5), (1,2,4)(3, 5), (1,4,2)(3,5), (1, 2, 5)( 4),

. 5 (1,5,2)(3,4), (1,3,4)(2,5), (1,4,3)(2,5), (1,3,5)(2,4), (1,5,3)(2,4),
(1,4,5)(2,3), (1,5,4)(2,3), (2,3,4)(1,5), (2,4,3)(1,5), (2,3,5)(1,4),
(2,5,3)(1,4), (2,4,5)(1,3),(2,5,4)(1, 3), (3,4,5)(1,2), (3 5 4)(1,2)

5 >6 %)

6 1 {(1,q,7,8,t) |2< q,7,8,t <n}

6 2 {(1,2,7,8,¢),(1,7,2,s,¢),(1,7,8,2,¢), (1,7,8,¢,2) | 3< r,s,t <n}

6 3 (1,2,3,3,1&),(1,3,2,s,t),(1,2,s,3,t),(1,3,5,2,t),(1,2,s,t,3),(1,3,s,t,2), 4<s,t<n}
(1,s,2,3,1),(1,s,3,2,%),(1,s,2,¢,3),(1,s,3,¢2),(1,s,¢2,3), (1, s,¢t,3,2)
(1, 2,3, 4,t), (1, 2,3,t, 4)7 (17 2,4,3,t), (1, 2.4,t, 3), (1, 2., 3,4), (1, 2,t,4, 3),
(1, 3, 2,4,t), (1, 3,2,t, 4)7 (17 3,4,2,t),(1,3,4,t, 2)7 (1, 3,t, 2,4), (1, 3,t,4, 2),

6 4 <t<n
(1,47 2,3, t), (1,47 2., 3)7 (17 4,3,2, t)7 (17 4,3,t, 2), (1,4, t,2, 3), (1,4, t,3, 2),
(1,1&7 2,3,4),(1 t,2,4, 3) (1 t,3,2,4),(1,t,3,4, 2),(1,t,4, 2, 3),(1,157 4,3,2)
(1,2,3,4,5),(1,273 5 4) (1,2,4,3,5) (1 2,4,5, 3) (1 2,5,3,4),(1,2,5,4,3)7
(1,3,2,4,5),(1 3,2,5 4),(1,3,4,2,5),(1 3,4,5 2) (1 3,5,2,4),(1,3,5,4,2)7

6 5
(1,4,2,3,5),(1,4,2,5 3),(1,4,3,2,5),(1 4,3,5, 2) (1 4,5,2,3),(1,4,5,3,2)7
(1, 5, 2,3,4), (1, 5,2,4, 3), (1, 5,3, 2,4), (1, 5,3,4, 2) (1 5,4,2,3), (1, 5,4,3,2)

6 > 6 %)

Now suppose that I' = Cay(S,,T) (= I'g) is a normal Cayley graph of S,, with m =
max,cr [supp(7)| < 5. For k € [n], let T, = T\ (T'N (UF_,(S,):)) (see Remark 10) and
[y = Cay(S,,, Tx) be defined as in (8). Then T' (= Tp) and T}, (k € [n]) can be respectively
written as T = Uez,,C® (see (17)) and T}, = UieITClgi) (see Table 1), where Zr is some
nonempty subset of {1,2,3,4,5,6}. Moreover, by the arguments at the beginning of this
section, we obtain that T' = Cay(S,,T') is connected if and only if 7' = UZ-GITC(i) with

Ir € P\ {2,{2}, {3}, {6}, {2,3},{2,6},{3,6},{2,3,6}} (18)

where P is the power set of {1,2,...,6}.

Now we give the main result of this section, which determines the second eigenvalues
of a majority of connected normal Cayley graphs (and some subgraphs of these graphs)
on S, satisfying m = max,cr |[supp(7)| < 5.

Theorem 15. Let I' = Cay(S,,T) (= ') be a connected normal Cayley graph of S,
(n > 7) with m = max,cr [supp(7)| < 5 (that is, T = Ujcz,CY with Ir given in (18)).
Let Ty, and Ty, be defined as in (8). If Ir # {1,3},{1,6},{4,6},{1,2,3},{1,2,6},{1,3,6},
{1,4,6},{2,4,6}, {3,4,6},{1,2,3,6},{1,2,4,6}, {1,3,4,6}, {2,3,4,6},{2,3,5,6}, {1, 2,3,
4,6}, then for 0 < k < m — 1, the graph Ty is connected and has second eigenvalue

Xa(Tr) = Ma(BY) = [T N (Su)isr] — Tk N (Sn)iszira-

Proof. Take a = n —6 (= 1). Since n > 7 and m < 5, we see that S, acts (m + a)-
transitively on [n] due to m + a < n. By Theorem 14, to prove \(I'y) = )\Q(Bl(f)) for
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0 < k < m—1, it remains to verify A\o(I'gq—1) = )\Q(Bl(f’afl)) for 0 < k < m — 1. Since

SV = 8D = (S i1 2 S7, we have Dy = Cay(SU7, T N SI7) =
Cay(S7, Tx N S7) according to (14). Also note that A(BF*™V) = [T, 0 S N (S, )| —
TN SE Y 0 (S ko] = [Tk N (S7)ksa] = [T N (S7)kp211] by (15). Thus the problem
is reduced to verify

Ao (Cay (57, Tp N S7)) = [Ty N (S7)ks1] — [Tk O (S7)ks2,641] (19)

for 0 < k < m — 1. Recall that Ty = T = Uz, C% with Zy given in (18), and
T, = UieITC,iZ) is just the set of 7 € T such that {1,2,...,k} C supp(7r) for 1 < k <
m — 1. Using computer, we can check that (19) is true except for those T”s with Zy =

{1,3},{1,6},{4,6},{1,2,3},{1,2,6},{1,3,6},{1,4,6},{2,4,6},{3,4,6},{1,2,3,6},{1,2,
4,6},{1,3,4,6},{2,3,4,6},{2,3,5,6} or {1,2,3,4,6}. Therefore, for the remaining 7"s,

we may conclude that
Ma(Tk) = Xe(Biy”) = 1T 0 (Su)ia| = 1T 0 (Sl

where 0 < k < m—1 (in Table 2, we list the exact values of the first two largest eigenvalues
of these I'y’s); and furthermore, we observe that Ao(I'y) = AQ(BI(—IIC)) < |Tx] = M(Tx), so
I';, is also connected for 1 <k <m — 1.

This completes the proof. n

Table 2: The first two eigenvalues of I'y, = Cay(S,, T)), where T = UieZTC,g).

IT m k )\1 (Fk) )\2(Fk)

{1} 2 (13 (n(rlt—l))/2 (”(3_3))/2

{4} 40 (n(n—1)(n—2)(n—3))/4 (n(n—2)(n—3)(n—5))/4
1 (n—1)(n—2)(n—3) (n—3)(n®—6n-+6)
2 3(n—2)(n—3) 3n2—21n+34
3 6(n—3) 6(n—4)

{5} 5 0  (n(n—1)(n—2)(n—3)(n—4))/6 (n(n=2)(n—3)(n—4)(n—6))/6
1 (5(n—1)(n—2)(n—3)(n—4))/6 (5(n—3)(n—4)(n?—7Tn+7))/6
2 (10(n—2)(n—3)(n—4))/3 (5(n—4)(2n%—16n+27))/3
3 10(n—3)(n—4) 5(2n? —18n+39)
4 20(n—4) 20(n—5)

{1,2} 3 0 (n(2n-1)(n—-1))/6 (n(n—1)(2n—7))/6
1 (n—1)2 (n—1)(n—3)
2 2n—3 2n—>5

{1,4} 4 0 (n(n—1)(n%2—5n+8))/4 (n(n—4)(n—3)2)/4
1 (n—1)(n?—5n+T7) (n—4)(n?—5n+5)
2 3n%2-15n+19 3n?—21n+35
3 6(n—3) 6(n—4)

{1,5} 5 0 (n(n—1)(n3—9n?+26n—21))/6 (n(n—>5)(n—3)(n%2—Tn+9))/6
1 ((n—1)(5n3—45n24+130n—114))/6 (5n* —70n3 +340n% —659n+408) /6
2 (10n3 —90n2 +260n—237)/3 (10n3—120n2+455n—537)/3
3 10(n—3)(n—4) 5(2n2% —18n+39)
4 20(n—4) 20(n—5)

{2,4} 4 0 (n(B3n-5)(n—1)(n—2))/12 (n(n—2)(3n2—20n+29))/12
1 (n—1)(n—2)2 n3—8n24+19n—13

continued on next page
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Tr m  k  A(Tg) A2 (Ty)
2 (n—2)(3n—7) (Bn—=T)(n—4)
3 2(3n-8) 2(3n—11)

{2,5} 5 0 (n(n—1)(n—2)(n2—7n+14))/6 (n(n—2)(n—>5)(n—4)2)/6
1 ((n—1)(n—2)(5n%—35n+66))/6 ((n—>5)(5n% —45n2+121n—90))/6
2 (2(n—2)(5n2—35n+63))/3 (10n3 —120n2+461n—558)/3
3 2(5n2 —35n+61) 10n2 —90n+197
4 20(n—4) 20(n—>5)

{3,4} 4 0 (Bn(n—1)(n—2)(n—3))/8 Bn(n—2)(n—3)(n—>5))/8
1 (3(n—1)(n—2)(n—3))/2 (3(n—3)(n%2—6n+6))/2
2 (9(n—2)(n—3))/2 (3(3n%2—21n+34))/2
3 9(n—3) 9(n—4)

{3,5} 5 0 (n(n—1)(n—2)(n—3)(4n—13))/24 (n(n—2)(n—3)(4n%—37n+81))/24
1 (n—=1)(n—2)(n—3)(bn—17))/6 ((n—3)(5n%—52n2+157n—122))/6
2 ((n—3)(20n—"71)(n—2))/6 (20n3—231n2+847n—978)/6
3 (n—3)(10n—37) 10n2 —87n+183
4 20n—77 20n—97

{4,5} 5 0 (n(2n—>5)(n—1)(n—2)(n—3))/12 (n(n—2)(2n—11)(n—3)2)/12
1 ((5n—14)(n—1)(n—2)(n—3))/6 ((n—3)(5n3—49n2+139n—104))/6
2 ((n—3)(10n—31)(n—2))/3 (10n3 —111n2+392n—438)/3
3 2(n—3)(5n—17) 10n2 —84n+171
4 2(10n—37) 2(10n—47)

{5,6} 5 0 (11n(n—1)(n—2)(n—3)(n—4))/30 (11n(n—2)(n—3)(n—4)(n—6))/30
1 (11(n—1)(n—2)(n—3)(n—4))/6 (11(n—4)(n—3)(n2—Tn+T7))/6
2 (22(n—3)(n—4)(n—2))/3 (11(n—4)(2n% —16n+27))/3
3 22(n—3)(n—4) 11(2n% —18n+39)
4 44(n—4) 44(n—5)

{1,2,4} 4 0 (n(n—1)(3n%2—11n+16))/12 (n(n—4)(3n%—14n+19))/12
1 (n—1)(n?—4n+5) (n—3)(n?—5n+5)
2 3n?-13n+15 3n2—19n+29
3 2(3n-8) 2(3n—11)

{1,2,5} 5 0 (n(n—1)(n3—9n?+28n—25))/6 (n(n*—15n3482n% —189n+151))/6
1 ((n—1)(5n> —45n24+-136n—126))/6 ((n—3)(5n3—55n2+181n—146))/6
2 (10n3—90n%+4266n—249)/3 ((n—5)(10n%—70n+111))/3
3 2(5n%2-35n+61) 10n2 —90n+197
4 20(n—4) 20(n—5)

{1,3,4} 4 0 (n(n—1)(3n2—15n+22))/8 (n(n—3)(3n%2—21n+34))/8
1 ((n—1)(3n%—15n+20))/2 (3n3—27n2+74n—>58)/2
2 ((3n—T)(3n—8))/2 ((3n—8)(3n—13))/2
3 9(n-3) 9(n—4)

{1,3,5} 5 0 (n(n—1)(4n3—33n2+89n—66))/24 (n(n—3)(n—>5)(4n2%—25n+30))/24
1 ((n—1)(5n3—42n2+115n—96)) /6 (5n* —67n3+313n% —587n+354)/6
2 (20n3 —171n2 +475n—420) /6 ((n—4)(20n2 —151n+243))/6
3 (n—3)(10n—37) 10n2—87n+183
4 20n—"77 20n—97

{1,4,5} 5 0 (n(2n?—13n+24)(n—1)2)/12 (n(n—3)(n—4)(n—>5)(2n—3))/12
1 ((n—1)(5n3 —39n24-100n—78))/6 ((n—4)(n—5)(5n%—19n+15))/6
2 (10n®—81n2+215n—183)/3 ((n—5)(10n2—61n+87))/3
3 2(n—3)(5n—17) 10n? —84n+171
4 2(10n—37) 2(10n—47)

{1,5,6} 5 0 (n(n—1)(11n3 —99n? +286n —249))/30 (n(n—3)(11n3 —132n2 +484n—513))/30
1 ((n—1)(11n3—-99n24286n—258))/6 (11n* —154n3 +748n2 —1457n+912) /6
2 (22n3—198n2+572n—525)/3 (22n3 —264n2+1001n—1185)/3
3 22(n—3)(n—4) 11(2n2—18n+39)
4 44(n—4) 44(n—5)

{2,3,4} 4 0 (n(n—1)(n—2)(9n—19))/24 (n(n—2)(9n>—64n+103))/24
1 ((n=1)(n—2)(3n—7))/2 (3n3—25n2+62n—44)/2
2 ((n—2)(9n—23))/2 (9n2 —59n+90) /2
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Ir m  k  \(Tw) A2 (T)
3 9n—25 9n—34
{2,3,5} 5 0 (n(n—1)(n—2)(4n% —25n+47))/24 (n(n—2)(n—>5)(4n? —29n+55)) /24
1 ((n—1)(n—2)(5n?—32n+57))/6 ((n—4)(5n% —47n24131n—99))/6
2 ((n—2)(20n2 —131n+225))/6 (20n® —231n2 +859n—1014) /6
3 10n?—67n+113 (10n—37)(n—>5)
4 20n—77 20n—97
{2,4,5} 5 0 (n(n—1)(n—2)(2n%—11n+19))/12 (n(n—2)(n—>5)(2n%—13n+23))/12
1 ((n—1)(n—2)(5n%—29n+48))/6 (5n* —64n3+292n2 —551n+342) /6
2 ((n—2)(10n%—61n+99))/3 ((n—4)(10n2—T1n+114))/3
3 2(5n%2-32n+52) 10n? —84n+173
4 2(10n-37) 2(10n—47)
{2,5,6} 5 0  (n(n=1)(n—2)(11n%2—77Tn+142))/30 (n(n—2)(n—4)(11n%—99n+208))/30
1 ((n—1)(n—2)(11n%—77n+138))/6 (11n* —154n3 +754n2 —1493n+954) /6
2 (2(n—2)(11n?—77n+135))/3 (22n3 —264n2+1007n—1206) /3
3 2(11n% —77n+133) 22n2 —198n+431
4 44(n-4) 44(n—5)
{3,4,5} 5 0 (n(4n—T)(n—1)(n—2)(n—3))/24 (n(n—2)(n—3)(4n%—31n+>51))/24
1 (n=1)(n—2)(n—3)(5n—11))/6 ((n—3)(5n3 —46n2+121n—86))/6
2 ((n—3)(20n—53)(n—2))/6 (20n3 —213n2+721n—774)/6
3 (n—3)(10n—31) 10n2 —81n+159
4 20mn—T1 20n—91
{3,5,6} 5 0 (n(n—1)(n—2)(n—3)(44n—161))/120 (n(n—2)(n—3)(44n2 —425n+981)) /120
1 ((n=1)(n—2)(n—3)(11n—41))/6 ((n—3)(11n3 —118n2+367n—290))/6
2 ((n—3)(44n—167)(n—2))/6 (44n3 —519n2 419390 —2274) /6
3 (n—3)(22n—85) 22n? —195n+417
4 44n—173 44n—217
{4,5,6} 5 0 (n(n—1)(n—2)(n—3)(22n—"73))/60 (n(n—2)(n—3)(22n2 —205n+453)) /60
1 ((n—1)(n—2)(n—3)(11n—38))/6 ((n—3)(11n3 —115n2 +349n—272)) /6
2 ((n—3)(22n—"79)(n—2))/3 (22n3 — 25512 +938n—1086)/3
3 2(n—3)(11n—41) 22n? —192n+405
4 2(22n—85) 2(22n—107)
{1,2,3,4} 4 0 (n(n—1)(9n%—37n+50))/24 (n(9n3 —82n2+243n—242)) /24
1 ((n—1)(3n%2—-13n+16))/2 ((n—3)(n—4)(3n—4))/2
2 (9n? —41n+48)/2 ((9n—23)(n—4))/2
3 9n—25 9n—34
{1,2,3,5} 5 0 (n(n—1)(4n3—33n2+97n—82))/24 (n(4n* —57n3 +298n2 —663n+514)) /24
1 ((n—1)(5n3—42n2+121n—108))/6 ((n—3)(5n%—52n2+163n—128))/6
2 (20n3 —171n2+487n—444) /6 (20m3 —231n2 +859n—1008) /6
3 10n2 —67n+113 (10n—37)(n—>5)
4 20n—T7 20n—97
{1,2,4,5} 5 0 (n(n—1)(2n3 —15n2+41n—32))/12 (n(n—4)(2n3—19n24-58n—>53))/12
1 ((n—1)(5n3—39n2+106n—90))/6 ((n—3)(5n3—49n2+145n—110))/6
2 (10n3 —81n2+4221n—195)/3 (10n3 —111n2+398n—453)/3
3 2(5n%2—-32n+52) 10n? —84n+173
4 2(10n—37) 2(10n—47)
{1,2,5,6} 5 0 (n(n—1)(11n3 —99n2 +296n—269)) /30 (n(11n*—165n34-890n2 —20251n+1619))/30
1 ((n—1)(11n3—99n2+292n—270))/6 ((n—3)(11n3 —121n2+391n—314))/6
2 (22n3—-198n2+578n—537)/3 (22n3 —264n2 +1007n—1203)/3
3 2(11n?—77n+133) 22n2 —198n+431
4 44(n—4) 44(n—5)
{1,3,4,5} 5 0 (n(n—1)(4n3—27n2+59n—30))/24 (n(n—>5)(n—3)(4n%—19n+18))/24
1 ((n—1)(5n3—36n2+85n—60))/6 (5n* —61n3+259n2 —443n+246)/6
2 (20n3—153n2+385n—312)/6 (20n3 —213n2+721n—768)/6
3 (n—3)(10n—31) 10n% —81n+159
4 20mn—T1 20n—91
{1,3,5,6} 5 0 (n(n—1)(44n3 —381n2 +1069n—906))/120  (n(n—3)(44n3—513n2+1831n—1902))/120
1

((n—1)(11n3 —96n24271n—240))/6

(11n* —151n3+721n> —1385n+858) /6
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((n—1)(11n3—90n2+247n—216))/6
(44n3 —369n2+1021n—912)/6
22n2 —145n+239

((11n—13)(n—3)(n—4)(n—5))/6
((44n—105)(n—4)(n—5))/6
(22n—79)(n—5)

Ir m  k  \(Tw) A2 (T)
2 (44n3 —387n2+1099n—996)/6 ((n—4)(44n> —343n+567)) /6
3 (n—3)(22n—85) 22n? —195n+417
4 44n—173 44n—217
{1,4,5,6} 5 0 (n(n—1)(2n—3)(11n% —75n+136))/60 (n(n—3)(n—4)(22n?—161n+219))/60
1 ((n—1)(11n3—93n2+256n—222))/6 ((n—4)(11n3—104n2+278n—201))/6
2 (22n3 —189n2+527n—471)/3 (22n3 —2551n2 +938n—1083) /3
3 2(n—3)(11n—41) 22n? —192n+405
4 2(22n—85) 2(22n—107)
{2,3,4,5} 5 0 (n(n—1)(n—2)(4n%—19n+29))/24 (n(n—5)(n—2)(4n%—23n+37))/24
1 ((n—1)(n—2)(5n%—26n+39))/6 (5n* —61n3+265n2 —479n+288)/6
2 ((n—2)(20n2—113n+171))/6 (20n3 —213n2+733n—810)/6
3 10n% —61n+95 (2n—T7)(5n—23)
4 20n—T1 20n—91
{2,4,5,6} 5 0  (n(n—1)(n—2)(22n%—139n+239))/60 (n(n—2)(22n%—271n2 +1088n—1439))/60
1 ((n—1)(n—2)(11n2—71n+120))/6 (11n* —148n3+700n2 — 13490 +846) /6
2 ((n—2)(22n> —145n+243))/3 ((n—4)(22n2—167n+276))/3
3 2(11n2—T4n+124) 22n2 —192n+407
4 2(22n-85) 2(22n—107)
{3,4,5,6} 5 0  (n(n—1)(n—2)(n—3)(44n—131))/120 (n(n—2)(n—3)(44n>—395n+831))/120
1 ((11n—35)(n—1)(n—2)(n—3))/6 ((n—3)(11n3—112n2+331n—254)) /6
2 ((n—3)(44n—149)(n—2))/6 (44n3 —501n2+1813n—2070)/6
3 (n—3)(22n—179) 22n2 —189n+393
4 44n—167 44n—211
{1,2,3,4,5} 5 0 (n(n—1)(4n3—27n2+67Tn—46))/24 (n(4n* —51n3+238n2 —477n+334)) /24
1 ((n—1)(5n% —36n%+91n—172))/6 ((n—3)(n—4)(5n% —26n+23))/6
2 (20n®—153n2+4397n—336)/6 ((n—4)(20n2—133n+201))/6
3 10n2 —61n+95 (2n—T7)(5n—23)
4 20mn—T1 20n—91
{1,2,3,5,6} 5 0 (n(n—1)(44n3 —381n2 +1109n—986))/120  (n(44n*—645n34+3410n2—7635n+6026))/120
1 ((n=1)(11n3—-96n2+4277n—252))/6 ((n—3)(11n3 —118n2+373n—296)) /6
2 (44n3 —387n24+1111n—1020)/6 (44n3 —519n2+1951n—2304) /6
3 22n2 —151n+257 22n2 —195n+419
4 44n—173 44n—217
{1,2,4,5,6} 5 0 (n(n—1)(22n3 —183n2 +517n—448)) /60 (n(n—4)(22n3 —227n2 +722n—697)) /60
1 ((n=1)(11n3—93n2+4262n—234))/6 ((n—3)(11n3 —115n2+355n—278)) /6
2 (22n3 —189n2+533n—483) /3 (22n3 —255n2 +944n—1101) /3
3 2(11n?—T4n+124) 22n? —192n+407
4 2(22n—85) 2(22n—107)
{1,3,4,5,6} 5 0 (n(n—1)(44n3—-351n2+919n—726))/120 (n(n—3)(44n3 —483n2+1621n—1602))/120
1 ((n—1)(11n3 —90n2+241n—204))/6 (11n* —145n3+667n2 —1241n+750) /6
2 (44n3 —369n2+1009n—888) /6 (44n3 —501n2 +1813n—2064) /6
3 (n—3)(22n—"179) 22n? —189n+393
4 44n—167 44n—211
{2,3,4,5,6} 5 0 (n(n—1)(n—2)(44n2—263n+433))/120 (n(n—2)(44n3 —527n2+2056n—2653)) /120
1 ((n—1)(n—2)(11n?—68n+111))/6 (11n* —145n34+673n2 —1277n+792) /6
2 ((n—2)(44n?—281n+459))/6 (44n3 —501n2 +18251n—2106) /6
3 22n%2—145n+239 (22n—T79)(n—5)
4 44n—167 44n—211
{1,2,3,4,5,6} 5 0 (n(n—1)(44n3 —351n2 +959n—806))/120 (n(44n*—615n343110n%—6705n+5126)) /120
1
2
3
4

44n—167

44n—211

Note that the method in Theorem 15 is invalid for those T = U;cz,C? with

{1,3},{1,6},{4,6},{1,2,3},{1,2,6},{1,3,6},{1,4,6},

Ir €

{2,4,6},{3,4,6},{1,2,3,6},{1,2,4,6},{1,3,4,6},

{2,3,4,6},{2,3,5,6},{1,2,3,4,6}

Thus we have the following problem:
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Problem 16. For T' = U;c7,C" with Z; shown in (20), what is the second eigenvalue of
the normal Cayley graph I' = Cay(.S,,T)?

Remark 17. It is worth mentioning that for small m (for example, m = 6 or 7), as in
Theorem 15, one can also determine the second eigenvalues of some connected normal
Cayley graphs (and some subgraphs of these graphs) of S, as long as the computer can
verify the conditions of Theorem 14.

Remark 18. It is well-known that the alternating group A, (n > 3) acts (n—2)-transitively
on [n|. Thus the method used in Theoerm 15 is still valid for determining the second
eigenvalues of those connected normal Cayley graphs (and some subgraphs of these graphs)
of A,, when m is relatively small.

Let T = CW (see (17)) be the set of all transpositions in S, (n > 3). Then m = 2 and
T =T, 1= Cfl) ={(1,9) |2 < ¢<n}. If n>7 by Theorem 15 (see also Table 2), the
spectral gap of I' = Cay(S,, T) and I’y = Cay(S,, T1) are [T| —|T'N(Su)1]|+|TN(Sn)21] =
tn(n—1)—1(n—1)(n—2)+1 = nand |T1|—|T1N(S,)2|+|T1N(Sn)32| = n—1—(n—2)+0 =1,
respectively. If 3 < n < 6, one can easily verify that the result also holds. Thus, the two
results below are consequences of our work.

Corollary 19 (Diaconis and Shahshahani [15]). For n > 3, the spectral gap of Cay(S,,
{(p, @) | 1 <p,qg<n})isn.

Corollary 20 (Flatto, Odlyzko and Wales [18]). For n > 3, the spectral gap of Cay(S,,
{L,g)|2<q<n})isl.

5 Further research

Let G be finite group acts transitively on [n] (for example, G = S, or A4,), and let
Cay(G,T) be a Cayley graph of G. By Theorem 7, the left coset decomposition given in
(4) is always an equitable partition of Cay(G,T'), and the corresponding quotient matrix
B = (bst)nxn (see (5)) is symmetric, where by, (=b; ) is the number of elements in T
moving ¢ to s. Since the eigenvalues of By are also eigenvalues of Cay(G,T'), we have
A2(Br) < A2(Cay (G, T)). Inspired by the main result of Section 4, we pose the following
problem.

Problem 21. Let G be finite group acts transitively on [n]. For which connected Cayley
graphs of G, the equality Ao(By) = A2(Cay(G,T)) holds?

Let T be a symmetric generating subset of G. We define the permutation graph
Per(7T) as the edge-weighted graph with vertex set {1,2,...,n} in which each edge e = st
(s # t) has weight w(e) = bs,, the number of elements in 7" moving ¢ to s as mentioned
above. If G = S, and T contains only transpositions, it is clear that the permutation
graph Per(T") coincides with the transposition graph Tra(7") defined in Section 1. Since
Cay(G,T) is |T'|-regular, the sum of each row of the quotient matrix By is equal to |T].
We can verify that By = |T'| - I,, — L(Per(7T)), where L(Per(7")) is the Laplacian matrix
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of the permutation graph Per(T"). This implies that A\o(By) = |T| - I, — ptn—1(L(Per(T))),
where p,,_1(L(Per(T))) denotes the second least eigenvalue of L(Per(T")), i.e., the algebraic
connectivity of Per(T"). Therefore, the spectral gap of Cay(G,T) satisfies the inequality

’T| - >\2(CaY(G> T)) < |T’ - )\Q(BH) = Mn—l(L(Per(T)))~
Then we can restate Problem 21 as below.

Problem 22. Let G be finite group acts transitively on [n]. For which connected Cayley
graphs of G, the spectral gap of Cay(G,T) equals to the algebraic connectivity of the
permutation graph Per(T")?

In fact, Aldous’ theorem give a positive answer of Problem 21 (or Problem 22) in the
case that G = S,, and T consists of transpositions. Also, the result of Theorem 15 in
this paper gives a partial answer of Problem 21 (or Problem 22) for the connected normal
Cayley graphs (and some of their subgraphs) of S,, with max ¢ [supp(7)| < 5.

For any o € S,,, there exists a unique partition [n| = I;U---U1,, of [n] into contiguous
blocks such that o(l;) = I; for each i € [m]. Here, each I; consists of consecutive elements
in [n], so that I; = {a,a + 1,...,b} for some pair of natural numbers a < b. If this
partition is of cardinality m, then we call o an m-reducible permutation. In [13, 14], Dai
introduced and discussed some combinatorial properties of a new variant of the family
of Johnson graphs, the Full-Flag Johnson graphs. He showed that the Full-Flag Johnson
graph FJ(n,r) (r < n) is isomorphic to the Cayley graph Cay(S,, RP™), where RP("
is the set of all (n — r)-reducible permutations of S,,. For a positive integer n, the Cayley
graph Cay(S,, {(i,1+1) | 1 <i < n—1}) is called the permutahedron of order n, which is
a well-known combinatorial graph. Observe that each (n —1)-reducible permutation of .S,
must be of the form (i,i+1) for some i € [n—1], we have RPM = {(i,i+1) | 1 <i < n—1},
and so the permutahedron of order n is just the Full-Flag Johnson graph FJ(n,1). Thus
the Full-Flag Johnson graphs can be also viewed as the generalizations of permutahedra
[14].

Let M,, be the tridiagonal matrix of order n defined as below:

n—2 1 0 000 0 0
1 n-=3 1 00 0 0 O
0 1 n-31--00 0 0
M, = :
0 0 0 0--1n=3 1 0
0 0 0 0+0 1 n-3 1
0 0 0 0+-00 1 n-2

At the end of the paper [14], Dai proved that the eigenvalues of M,, are also eigenvalues
of the permutahedron FJ(n, 1), and conjectured that \y(M,) = Ao(FJ(n,1)). In fact,
since F'.J(n,1) = Cay(S,, RPY) with RPM = {(i,i+1) | 1 <i<n—1}, M, is just the
quotient matrix of F'J(n,1) shown in (5). Thus we may conclude that Dai’s conjecture
follows from Aldous’ theorem immediately by the arguments at the beginning of this
section.

Now consider the graph F'J(n,2) = Cay(S,, RP®) where RP® consists of all (n—2)-
reducible permutations of S,,. By definition, we can check that each (n — 2)-reducible
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permutation of S,, belongs to one of the following three classes:
QW ={(i,i+1,i+2),(i,i+2,i+1)|1<i<n—2}
Q¥ ={(,i+2)|1<i<n—2}
QW ={(,i+1)(G,i+1)]|1<i<n—-33<j<n—1i<j—1}.

Therefore, we have RP? = QM U Q® U Q®. Furthermore, by Theorem 7 and (5), the
graph F'J(n,2) = Cay(S,, RP®) has the quotient matrix

(2206 5 9 2 0 0 00 0 0 0 0 o |
n—2 “22& n—2 2 0 00 0 0 0 0 0
2 n—2 w n-2 2 00 0 0 0 0 0
0 2 n—2 W n—22--0 0 0 0 0 0
B, = :

0 0 0 0 0 0-2p2ni3n6 5 2 0
0 0 0 0 0 002 n2 2236 59 2
0 0 0 0 0 0--0 0 2 n—2 W n—2

| o 0 0 0 0 0--0 0 0 2 n—2 o =1

In accordance with Problem 21, we ask if Ay(F'J(n,2)) = A2(B,)? Using computer, we
can verify that the equality holds for 4 < n < 7 and we make the following conjecture.

Conjecture 23. For n > 4, \y(FJ(n,2)) = Xa(By).

Theorem 7 indicates a possible method to prove Conjecture 23. Now we describe the
detail of the method. For k = 1,2, we define

ij(ﬂ,? 2) = Cay(Sn: RPIE-,Q))&

where RP® = {(1,2,3),(1,3,2), (1,3), (1,2)(3,4),(1,2)(4,5),...,(1,2)(n — 1,n)} and
RP® ={(1,2)(n—1,n)}. Note that RP is the set of elements in RP® = QW uQ® U
Q® moving 1 while RPQ(Q) is the set of elements in RP1(2) moving n. Clearly, F'J;(n,2) is
connected and F'Ja(n,2) is just the disjoint union of %’ K5’s. Again by Theorem 7, the
graph F'Ji(n,2) has the quotient matrix

0 n2 2 0000 0 0
n—2 1 1 0000 0 O
2 1 n410-00 0 0
) 0 0 1 n21--00 0 0

B, = :

0 0 0 0 0--1n-2 1 0
0 0 0 0 00 1 n-2 1

0 0 0 0 000 1 n-1duxn

Using computer, we can check that Ay(F.J;(n,2)) = A(BS”) holds for 4 < n < 7, and so
we propose the following conjecture.

Conjecture 24. For n > 4, \y(FJy(n,2)) = Ao(BSY).
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In order to prove Conjecture 23 by induction on n, we can assume that the result
holds for n — 1, i.e., Ao(F'J(n — 1,2)) = \y(B,_1). By the arguments below Theorem 7
and (7), it suffices to show that

A2(By) = Xao(Cay((Sy)1, RPP N (Sp)1)) + Ae(Cay(S,, RPP\ (RPN (S,)1))).

Note that Cay((S,)1, RP®N(S,)1) = FJ(n—1,2) and Cay(S,, RP@\(RP®N(S,),)) =
Cay(Sn,RPfQ)) = FJi(n,2). Thus, if Conjecture 24 is true, it remains to verify the
following inequality:

Xa(By) = Aa(Bao1) + Ao BY). (21)

—_

Thus we also need to prove Conjecture 24. As above, we can assume Ao (FJ;(n —1,2))
A(BY,), and it suffices to show that

Aa(BD) = Xo(Cay ((Sn)ns RPN (S0)n)) + Ao(Cay (Sn, RP\ (RPN (Sw)a)))
= (BY) + 1,

here we use the facts Cay((Sn)n,RPl(Q) N (Sp)n) = FJi(n —1,2) and Cay(Sn,RPl(Q) \
(RPl(Q) N (Su)n)) = FJa(n,2) = 2 K,. Therefore, if one can prove (21) and (22), then
Conjecture 23 and Conjecture 24 follow immediately. However, it is not easy to identify
the second eigenvalues of B,, and qul), so we leave it as an open problem.

In accordance with Problem 21, for » > 3, we pose the following problem.

Problem 25. For 3 < r < n, does the quotient matrix given in (5) always contain the
second eigenvalue of the Full-Flag graph F.J(n,r) = Cay(S,, RP™)?

On the other hand, for regular graphs, the smallest eigenvalue is closely related to
the independent number. Let I" be a k-regular graph with smallest eigenvalue 7 and
independent number «(I), the well-known Hoffman ratio bound asserts that

VL)l
« < ,
() 1—k/T
and that if the equality holds for some independent set S with characteristic vector vg,
then vg — |v|(sr|)\ 1 is an eigenvector of the eigenvalue 7. By applying the Hoffman ratio

bound to several important families of graphs belonging to classical P- or ()-polynomial
association schemes (such as Johnson scheme, Hamming scheme, Grassmann scheme)
and some famous Cayley graphs (such as the derangement graph) on the symmetric
group S,, variants of Erdos-Ko-Rado Theorems for sets, vector spaces, integer sequences
and permutations have been obtained by various researchers (see Godsil and Meagher
20] for the detail). Recently, Brouwer, Cioabd, Ihringer and McGinnis [6] determine
the smallest eigenvalues of (distance-j) Hamming graphs, (distance-j) Johnson graphs,
and the graphs of the relations of classical P- and )-polynomial association schemes.
Motivated by these works, it is interesting to consider the smallest eigenvalues of normal
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Cayley graphs of S,,. A natural question is that whether the method developed in this
paper is valid for the smallest eigenvalues. However, it is not the case. According to
the proof of Lemma 11, the quotient matrix By (= BY) of the normal Cayley graph
'y = Cay(S,,To = T) has eigenvalues |T'| and |T'N G| — |T' N Ga1| (with multiplicity
n — 1). Thus we have A\, (Bn) = XA(Bn) = [T NG| — [T NGay|]. Ifn > 7, we can
verify that A\,(Bn) = A2(Bn) = 0 holds for all connected normal Cayley graphs of S,
with max,er [supp(7)| < 5, which implies that \,,(By) cannot be the smallest eigenvalue.
Thus we pose the following problem.

Problem 26. For normal Cayley graphs of .S,,, are there some good general methods to
determine the smallest eigenvalues?
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