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Abstract—We consider the setting where a master wants to
run a distributed stochastic gradient descent (SGD) algorithm
on n workers each having a subset of the data. Distributed SGD
may suffer from the effect of stragglers, i.e., slow or unresponsive
workers who cause delays. One solution studied in the literature
is to wait at each iteration for the responses of the fastest
k < n workers before updating the model, where k is a fixed
parameter. The choice of the value of k presents a trade-off
between the runtime (i.e., convergence rate) of SGD and the error
of the model. Towards optimizing the error-runtime trade-off,
we investigate distributed SGD with adaptive k. We first design
an adaptive policy for varying k that optimizes this trade-off
based on an upper bound on the error as a function of the wall-
clock time which we derive. Then, we propose an algorithm for
adaptive distributed SGD that is based on a statistical heuristic.
We implement our algorithm and provide numerical simulations
which confirm our intuition and theoretical analysis.

Index Terms—Distributed SGD, adaptive policy, stragglers.

I. INTRODUCTION

We consider a distributed computation setting in which a
master wants to learn a model on a large amount of data in his
possession by dividing the computations on n workers. The
data at the master consists of a matrix X ∈ Rm×d representing
m data vectors x`, ` = 1, . . . ,m, and a vector y ∈ Rm
representing the labels of the rows of X . Define A , [X|y]
to be the concatenation of X and y. The master would like
to find a model w? ∈ Rd that minimizes a loss function
F (A,w), i.e, w? = arg minw∈Rd F (A,w). This optimization
problem can be solved using Gradient Descent (GD), which is
an iterative algorithm that consists of the following update at
each iteration j,

wj+1 = wj−η∇F (A,wj) , wj−
η

m

m∑
`=1

∇F (a`,wj), (1)

where η is the step size, and ∇F (A,w) is the gradient of
F (A,w). To distribute the computations, the master partitions
the data equally to n workers. The data partitioning is
horizontal, i.e., each worker receives a set of rows of A with all
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their corresponding columns. Let Si be the sub-matrix of A sent
to worker i. Each worker computes a partial gradient defined

as ∇F (Si,wj) ,
1

s

∑
a`∈Si ∇F (a`,wj), where s = m/n is

the number of rows in Si (assuming n divides m). The master
computes the average of the received partial gradients to obtain
the actual gradient ∇F (A,w), and then updates wj .

In this setting, waiting for the partial gradients of all the
workers slows down the process as the master has to wait
for the stragglers [1], i.e., slow or unresponsive workers, in
order to update wj . Many approaches have been proposed in
the literature to alleviate the problem of stragglers. A natural
approach is to simply ignore the stragglers and obtain an
estimate of the gradient rather than the full gradient, see [2],
[3]. This framework emerges from single-node (non-distributed)
mini batch stochastic gradient descent (SGD) [4]. Batch SGD
is a relaxation of GD in which wj is updated based on a
subset (batch) B (|B| < m) of data vectors that is chosen
uniformly at random from the set of all m data vectors, i.e.,
wj+1 = wj −

η

|B|
∑

a`∈B F (a`,wj). It is shown that SGD

converges to w? under mild assumptions on the loss function
F (A,w), but may require a larger number of iterations as
compared to GD [4]–[10].

Consider the approach where the master updates the model
based on the responses of the fastest k < n workers and ignores
the remaining stragglers. Henceforth, we call this approach
fastest-k SGD. The update rule for fastest-k SGD is given by

wj+1 = wj −
η

k

∑
i∈Rj

∇F (Si,wj) , wj − η ĝ(wj), (2)

where Rj is the set of the fastest k workers at iteration j; and
ĝ(wj) is the average of the partial gradients received by the
master at iteration j which is an estimate of the full gradient
∇F (A,wj). Note that if we assume that the response times
of the workers are random iid, then one can easily show that
fastest-k SGD is essentially equivalent to single-node batch
SGD since the master updates the model at each iteration
based on a uniformly random batch of data vectors belonging
to the set of the fastest k workers. Therefore, fastest-k SGD
converges to w? under the random iid assumption on the
response times of the workers and the standard assumptions
on the loss function F (A,w).

The convergence rate of distributed SGD depends on two
factors simultaneously: (i) the error in the model versus the
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number of iterations; (ii) the time spent per iteration. Therefore,
in this work we focus on studying the convergence rate with
respect to the wall-clock time rather than the number of
iterations. In fastest-k SGD with fixed step size, the choice of
the value of k presents a trade-off between the convergence
rate and the error floor. Namely, choosing a small value of k
will lead to fast convergence since the time spent per iteration
would be short, however, this will also result in a low accuracy
in the final model, i.e., higher error floor. Towards optimizing
this trade-off, we study adaptive policies for fastest-k SGD
where the master starts with waiting for a small number of
workers k and then gradually increases k to minimize the error
as a function of time. Such an optimal adaptive policy would
guarantee that the error is minimized at any instant of the wall-
clock time. This would be particularly useful in applications
where SGD is run with a deadline, since the learning algorithm
would achieve the best accuracy within any time restriction.

A. Related work

1) Distributed SGD: The works that are closely related to
our work are that of [2], [3]. In [3] the authors study fastest-k
SGD for a predetermined k. In [2], the authors consider the
same setting as [3] and analyze the convergence rate of fastest-
k SGD with respect to the number of iterations. In addition
to the convergence analysis with respect to the number of
iterations, the authors in [2] separately analyze the time spent
per iteration as a function of k.

Several works proposed using redundancy when distributing
the data to the workers. The master then uses coding theoretical
tools to recover the gradient in the presence of a fixed number
of stragglers, for example [11]–[24]. In [25]–[27] the authors
propose a mixed strategy in which the master distributes the
data redundantly and uses coding techniques to obtain the
whole gradient for a given number of stragglers. In addition,
if more workers than accounted for are stragglers, the master
can use the same coding techniques to compute an estimate of
the gradient.

Note that the setting of the previously mentioned works, and
the setting of interest for our work, focuses on the so-called
synchronous SGD in which the workers are all synchronized at
each iteration (i.e., have the same model). The literature also
studies the asynchronous setting. In asynchronous distributed
SGD, whenever a worker finishes its assigned computation, it
sends the result to the master who directly updates w and sends
an updated w to that worker who starts a new computation
of the partial gradient while the other workers continue their
previous computation, see for example [2], [28]–[32].

2) Single-node SGD: Murata [33] showed that irrespective
of its convergence speed, the single-node SGD algorithm with
fixed step size goes through a transient phase and a stationary
phase. In the transient phase, wj approaches w? exponentially
fast in the number of iterations. Whereas, in the stationary
phase, wj oscillates around w?. Note that if a decreasing
step size over the iterations is used, then wj converges to w?

rather than oscillating around it, however this leads to a long
transient phase and hence a lower convergence rate. To detect

the phase transition, [34] uses a statistical test based on Pflug’s
method [35] for stochastic approximation. Detecting the phase
transition serves many purposes, such as indicating when to
stop the SGD algorithm or when to start implementing further
tricks to reduce the distance between wj and w?. In this paper,
we build on this line of work to derive the times at which the
master should start waiting for more workers in fastest-k SGD.

In another line of work on single-node SGD, the authors
in [36] suggested increasing the batch size with the number
of iterations as an alternative to decreasing the step size. The
results in [36] show that increasing the batch size while keeping
a constant step size, leads to near-identical model accuracy as
decreasing the step size, but with fewer parameter updates, i.e.,
shorter training time.

B. Our contributions

We focus on straggler mitigation in synchronous distributed
SGD with fixed step size. We consider a setting where the
master distributes the data without redundancy. Under standard
assumptions on the loss function, and assuming independent
and identically distributed random response times for the
workers, we give a theoretical bound on the error of fastest-k
SGD as a function of time rather than the number of iterations.
We derive an adaptive policy which shows that this bound on
the error can be optimized as a function of time by increasing
the value of k at specific times which we explicitly determine
in terms of the system parameters. Furthermore, we develop
an algorithm for adaptive fastest-k SGD that is based on a
statistical heuristic which works while being oblivious to the
system parameters. We implement this algorithm and provide
numerical simulations which show that the adaptive fastest-k
SGD can outperform both non-adaptive fastest-k SGD and
asynchronous SGD.

II. PRELIMINARIES

In this paper we focus on fastest-k SGD with fixed step size.
We consider a random straggling model where the time spent
by worker i to finish the computation of its partial gradient (i.e.,
response time) is a random variable Xi, for i = 1, . . . , n. We
assume that Xi, i = 1, . . . , n, are iid and independent across
iterations. Therefore, the time per iteration for fastest-k SGD
is given by the kth order statistic of the random variables
X1, . . . , Xn, denoted by X(k). In the previously described
setting, the following bound on the error of fastest-k SGD as
a function of the number of iterations was shown in [2], [5].

Proposition 1 (Error vs. iterations of fastest-k SGD [2], [5]).
Under certain assumptions (stated in [2], [5]), the error of
fastest-k SGD after j iterations with fixed step size satisfies

E [F (wj)− F ?] ≤
ηLσ2

2cks
+(1−ηc)j

(
F (w0)−F ?− ηLσ

2

2cks

)
,

where L and c are the Lipschitz and the strong convexity
parameters of the loss function respectively, F ? is the optimal
value of the loss function, and σ2 is the variance bound on
the gradient estimate.
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III. THEORETICAL ANALYSIS

In this section, we present our theoretical results. The proofs
of these results are available in [37]. In Lemma 1, by applying
techniques from renewal theory, we give a bound on the error
of fastest-k SGD as a function of the wall-clock time t rather
than the number of iterations. The bound holds with high
probability for large t and is based on Proposition 1.

Lemma 1 (Error vs. wall-clock time of fastest-k SGD). Under
the same assumptions as Proposition 1, the error of fastest-k
SGD after wall-clock time t with fixed step size satisfies

E [F (wt)− F ?| J(t)] ≤ ηLσ2

2cks

+ (1− ηc)
t
µk

(1−ε)
(
F (w0)− F ? − ηLσ2

2cks

)
, (3)

with high probability
(
Pr ≥ 1 − σ2

k

ε2 ( 2
tµk

+ 1
t2 )
)

for large t,
where 0 < ε� 1 is a constant error term, J(t) is the number
of iterations completed in time t, and µk is the average of the
kth order statistic X(k).

Notice that the first term in (3) is constant (independent of t),
whereas the second term decreases exponentially in t (ηc < 1
from [5]). In fact, it is well-known that SGD with constant
step size goes first through a transient phase where the error
decreases exponentially fast, and then enters a stationary phase
where the error oscillates around a constant term [33]. From (3),
it is easy to see that the rate of the exponential decrease in
the transient phase is governed by the value of 1/µk. µk is an
increasing function of k, thus the exponential decrease is fastest
for k = 1 and slowest for k = n. Whereas the stationary phase
error which is upper bounded by ηLσ2/2cks, is highest for
k = 1 and lowest for k = n. This creates a trade-off between
the rate of decrease of the error in the transient phase, and
the error floor achieved in the stationary phase. Ultimately, we
would like to first have a fast decrease through the transient
phase, and then have a low error in the stationary phase. To
this end, we look for an adaptive policy for varying k that
starts with k = 1 and then switches to higher values of k at
specific times in order to optimize the error-runtime trade-off.
Such an adaptive policy guarantees that the error is minimized
at every instant of the wall-clock time t.

Since the bound in (3) holds with high probability for large t,
we explicitly derive the switching times that optimize this
bound. Note that for the sake of simplicity, we drop the constant
error term ε in our analysis.

Theorem 1 (Bound-optimal Policy). The bound-optimal times
tk, k = 1, . . . , n− 1, at which the master should switch from
waiting for the fastest k workers to waiting for the fastest k+1
workers are given by

tk = tk−1 +
µk

− ln(1− ηc)
×
[

ln (µk+1 − µk)− ln
(
ηLσ2µk

)
+ ln

(
2ck(k + 1)s(F (wtk−1

)− F ?)− ηL(k + 1)σ2)
) ]
,

where t0 = 0.

Example 1 (Theoretical analysis on adaptive fastest-k
SGD with iid exponential response times). Suppose Xi ∼
exp(µ), i = 1, . . . , n. The average time spent per iteration
is µk = Hn −Hn−k, where Hn is the harmonic number. Let
n = 5, µ = 5, η = 0.001, σ2 = 10, F (w0) − F ? = 100, L =
2, c = 1, s = 10. We evaluate the bound in Lemma 1 for
multiple fixed values of k (non-adaptive) and compare it to
adaptive fastest-k SGD if we apply the switching times in
Theorem 1. The results are shown in Fig. 1.

Fig. 1: The upper bound on the error given by (3) as a function
of time, evaluated for k = 1, 2, 3, 4, 5.

Notice from Fig. 1 that for the time interval [0, t1), the
adaptive policy assigns k = 1 since it gives the fastest error
decrease in the beginning. Then, as the error approaches the
stationary phase, the policy increases k to k = 2. This allows
the error to decrease below the error floor for k = 1. The
procedure continues until k attains its maximum value of k =
n = 5. The results demonstrate the adaptive version enables
achieving lower error values in less time.

This analysis shows the potential of adaptive strategies in
optimizing the error-runtime trade-off. It also suggests that the
value of k should be gradually increased throughout the runtime
of fastest-k SGD in order to optimize this trade-off. Although
this analysis provides useful insights about how to adapt k over
time, it may not be effective in practice for the following two
reasons: (i) the policy optimizes an upper bound on the error
(Lemma 1) which is probabilistic and may be loose; (ii) the
policy requires the knowledge of several system parameters
including the optimal value of the loss function F ? which is
typically unknown. Nevertheless, we use the insights provided
by the theoretical analysis to design a practical algorithm for
adaptive fastest-k SGD. This algorithm is based on a statistical
heuristic and is oblivious to the system parameters as we
explain in Section IV.

IV. ADAPTIVE FASTEST-k SGD ALGORITHM

In this section we present an algorithm for adaptive fastest-k
SGD that is realizable in practice. As previously mentioned,
SGD with fixed step size goes first through a transient phase
where the error decreases exponentially fast, and then enters a
stationary phase where the error oscillates around a constant
term. Initially, the exponential decrease is fastest for k = 1.
Then, as the stationary phase approaches, the error decrease
becomes slower and slower until a point where the error starts
oscillating around a constant term and does not decrease any
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further. At this point, increasing k allows the error to decrease
further because the master would receive more partial gradients
and hence would obtain a better estimate of the full gradient.
The goal of the adaptive policy is to detect this phase transition
in order to increase k and keep the error decreasing.

The adaptive policy we present in this section detects
this phase transition by employing a statistical test based
on a modified version of Pflug’s procedure for stochastic
approximation [35]. The main component of our policy is
to monitor the signs of the products of consecutive gradients
computed by the master based on (2). The underlying idea
is that in the transient phase, due to the exponential decrease
of the error, the gradients are likely to point in the same
direction, hence their inner product is positive. Our policy
consists of utilizing a counter that counts the difference between
the number of times the product of consecutive gradients is
negative (i.e., ĝj

T ĝj−1 < 0) and the number of times this
product is positive, throughout the iterations of the algorithm.

In the beginning of the algorithm, we expect the value
of the counter to be negative and decrease because of the
exponential decrease in the error. Then, as the error starts
moving towards the stationary phase, negative gradient products
will start accumulating until the value of the counter becomes
larger than a certain positive threshold. At this point, we declare
a phase transition and increase k. The complete algorithm is
given in Algorithm 1.

Algorithm 1: Adaptive fastest-k SGD
input : starting point w0, data {X,y}, number of workers n, step size η,

maximum number of iterations J , adaptation parameters step, thresh,
burnin

output : weight vector wJ
j ← 1
k ← 1
countNegative← 0
countIter← 1
Distribute X to the n workers
while j ≤ J do

Send wj−1 to all workers
Collect the responses of the fastest k workers
wj ← wj−1 − ηĝj−1

if ĝjT ĝj−1 < 0 then
countNegative← countNegative + 1

else
countNegative← countNegative− 1

end
if countNegative > thresh and countIter > burnin and k ≤ n− step

then
k ← k + step
countNegative← 0
countIter← 0

end
countIter← countIter + 1
j ← j + 1

end
return wJ

V. SIMULATIONS

A. Experimental setup

We simulated the performance of the adaptive fastest-k SGD
(Algorithm 1) described earlier for n workers on synthetic
data X . We generated X as follows: (i) we pick each row
vector x`, ` = 1, . . . ,m, independently and uniformly at
random from {1, 2, . . . , 10}d; (ii) we pick a random vector

w̄ with entries being integers chosen uniformly at random
from {1, . . . , 100}; and (iii) we generate y` ∼ N (〈x`, w̄〉 , 1)
for all ` = 1, . . . ,m. We run linear regression using the `2
loss function. At each iteration, we generate n independent
exponential random variables with rate µ = 1.

B. Adaptive fastest-k SGD vs Non-adaptive fastest-k SGD
Figure 2 compares the performance of the adaptive fastest-k

SGD to non-adaptive for n = 50 workers. In the adaptive
version we start with k = 10 and then increase k by 10
until reaching k = 40, where the switching times are given
by Algorithm 1. Whereas for the non-adaptive version, k is
fixed throughout the runtime of the algorithm. The comparison
shows that the adaptive version is able to achieve a better error-
runtime trade-off than the non-adaptive one. Namely, notice that
the adaptive k-sync reaches its lowest error at approximately
t = 2000, whereas the non-adaptive version reaches the same
error only for k = 40 at approximately t = 6000. These results
confirm our intuition and previous theoretical results.

Fig. 2: Error as a function of the wall-clock time for non-adaptive fastest-k
SGD with fixed k = 10, 20, 30, 40; and adaptive fastest-k SGD (Algorithm 1).
The experimental setup is the following: d = 100, m = 2000, n = 50, η =
0.0005. The adaptation parameters chosen here are step = 10, thresh = 10,
and burnin = 0.1×(number of data points) = 200. We start the adaptive
fastest-k SGD with k = 10 and increase k by 10 until reaching k = 40.

C. Comparison to Asynchronous SGD
Figure 3 compares the adaptive fastest-k SGD to the

fully asynchronous version of distributed SGD [2]. Similar
conclusions can be drawn as in the case of Figure 2.

Fig. 3: Error as a function of time for adaptive fastest-k SGD (Algorithm 1)
and asynchronous SGD. The experimental setup is the following: d = 100,
m = 2000, n = 50, η = 0.0002. The adaptation parameters chosen here are
step = 5, thresh = 10, and burnin = 0.1×(number of data points) = 200.
We start the adaptive fastest-k SGD with k = 1 and increase k by 5 until
reaching k = 36.
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