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ABSTRACT Power distribution systems in the US are commonly supported by wood utility poles. These
assets require regular maintenance to enhance the reliability of power delivery to support many dependent
functions of the society. Limitations in budget, however, warrant efficient allocation of limited resources
based on optimal preventive maintenance plans. A few studies have developed risk-based metrics to support
risk-informed decision making in preventive maintenance planning for power distribution systems. However,
integration of risk-based metrics and optimization for enhancing the life-cycle resilience of distribution
systems has not been explored. To address this gap, this paper proposes a mixed-integer nonlinear
programming (MINLP) model to maximize the life-cycle resilience of aging power distribution systems
subject to multi-occurrences of hurricane events using an optimal risk-based maintenance planning. For this
purpose, a risk-based index called the Expected Outages is proposed and integrated into the optimization
problem to minimize the total expected number of power outages in the entire planning horizon. Various
uncertainties in the performance of poles under stochastic occurrences of hazards are taken into account
through advanced fragility models and an efficient recursive formulation that models the uncertainty of
precedent pole failures. The proposed approach is applied to a large, realistic power distribution system for
long-term maintenance planning given a total budget limit and different levels of periodic budget constraints.
The resulting optimization problems are solved through the branch and bound algorithm. Results indicate that
applying the presented methodology leads to a significant enhancement of the life-cycle resilience of distribution
systems compared to the commonly implemented strength-based maintenance strategy set by National
Electric Safety Code.

INDEX TERMS Mixed-integer nonlinear programming, hurricane hazards, power distribution systems,
preventive maintenance, resilience enhancement.

. INTRODUCTION

Electric power supports numerous activities in the modern
society. Disruptions in the constant flow of electricity have
the potential to incur significant hardship to communities.
Over 80% of power outages in the US between 2003 and
2012 have been caused by weather-related hazards such as
hurricane events [1], [2]. A large portion of these power
outages were caused due to failure of wood poles. Because
of the availability and cost-effectiveness of wood poles, they
are extensively used for supporting distribution systems.
However, wood poles suffer from a significant rate of decay
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especially in coastal regions with high levels of humidity.
Storm-related outages in the US have incurred extensive
economic losses that are estimated to be as high as $55
billion every year [3]. For example, in 2005, 12000 poles
were damaged in Hurricane Wilma and Hurricane Hugo [4].
Hurricane Irene in 2011 and Hurricane Sandy in 2012 left
6.69 and 8.66 million customers without power, respectively
[5]. More recently, in 2017, hurricane Irma damaged over
2900 poles and caused outages for 62% of customers in
Florida [6]. The historical evidence along with the high



susceptibility of coastal regions to frequent and intense
winds from hurricanes highlight the critical need to improve
the current and future performance of distribution systems
supported by wood poles in coastal regions to mitigate
potential direct and indirect socio-economic losses.

A practical strategy to improve the performance of power
distribution systems is to apply preventive maintenance during
their service life. Unlike the run-to-fail maintenance strategy
that is applied after the occurrence of a failure, preventive
maintenance is performed prior to a potential failure to
decrease the likelihood of disruption in the services provided
by the system. For this purpose, utilities perform annual
inspection, maintenance, and replacement of wood poles to
ensure the safety of distribution systems. The maintenance
strategy set by the National Electric Safety Code (NESC) [7]
necessitates replacing poles whose strength has fallen below
67% of their initial strength. However, this preventive strategy
is not optimal as it only considers the strength reduction and
entirely neglects the demand level. Moreover, the importance
of the pole in the distribution system is not considered.
According to NESC [7] strategy, a pole that serves in the main
feeder and provides power for a large number of customers is
treated equal to a pole in a side branch of the network and
provides power for a small number of customers.

To mitigate these limitations, Salman et al. [8] separated the
main feeders from the rest of the distribution system and
investigated the performance of the system if the main feeders
are only strengthened. For this purpose, an index called Risk
Achievement Worth (RAW) was adopted which considers the
vulnerability and the consequence of failure for an entire line
segment. As this index is not calculated for each individual
pole, it does not take into account differences in the properties
of adjacent poles. These differences can be significant as
distribution systems are often composed of poles with
different ages, classes, and span lengths, among others.
Subsequently, this index cannot differentiate the importance
of individual poles in the distribution system. Second, this
index is calculated only one time when the system is assumed
to be new and therefore, the evolution of decay, failure, and
replacement in the coming years within the service life of the
system is not considered. This limitation can potentially lead
to a strategy that may not be effective for the future state of the
power system when individual poles can experience multiple
instances of failure and replacement within the service life of
the distribution system. Recently, the authors [9] have
proposed an index called Expected Outage Reduction (EOR)
for prioritizing maintenance and replacement of wood poles at
different time instances within the service life of the
distribution system. This index considers the expected
reduction in the number of power outages if a decayed pole is
replaced by a new pole. Therefore, it not only considers the
benefits of replacing a pole with a new pole in terms of damage
mitigation, but also considers the benefits in terms of the
importance of the pole in the distribution system. Furthermore,
this index is capable of considering multiple occurrences of

failure and replacement due to multi-occurrences of hurricane
hazards that are considerably probable in coastal regions with
small hurricane return periods.

Although strategies based on RAW and EOR indices
support risk-informed decision making in planning for
preventive maintenance, they are still considered as
predetermined preventive maintenance strategies and yet to be
integrated with optimization procedures to efficiently enhance
life-cycle performance of distribution systems. Thus, an
optimization problem needs to be solved to efficiently allocate
limited budget for enhancing the performance of power
distribution systems. It should be noted that performance of
infrastructure systems throughout their service life can be
estimated based on different metrics, including life-cycle cost
(e.g., [10], [11]), life-cycle sustainability (e.g., [12], [13]), and
life-cycle resilience (e.g., [9]). Among these metrics, life-cycle
resilience is deemed as the most comprehensive measure due
to its ability to reflect the damage and recovery performance
of systems over their lifetime. A few studies investigated
resilience enhancement of distribution systems exposed to an
individual occurrence of an extreme hazard event by
optimizing repair crew mobilization. For example, Arab et al.
[14] formulated a procedure to assign repair crews to damaged
components as a mixed-integer linear programming (MILP)
model. Van Hentenryck and Coffrin [15] proposed a two-stage
deterministic optimization problem for routing repair crews in
transmission systems after a significant disruption. Arif et al.
[16] proposed a two-stage stochastic MILP model for
optimizing repair crew routing in distribution systems after
extreme weather events. Recently, Hafiz et al. [17] proposed a
framework including three optimization problems to improve
the restoration of distribution services in post-outage
conditions. The above studies have provided valuable insights
on effective hazard restoration strategies. However,
optimization of planning strategies taken in advance of
hazards to enhance the life-cycle resilience of power
distribution systems has not been explored.

In previous studies on optimal maintenance planning of
distribution systems, optimization models are generally
categorized into three main methods, including (a) minimizing
cost given a minimum level of reliability (e.g. [18]-[20]), (b)
maximizing reliability subjected to time or budget constraints
(e.g. [21]), and (c) minimizing the overall risk (e.g. [22], [23]).
Among the proposed methods, category (c) (risk-based
maintenance) identifies an optimal level of risk and has been
shown as a more realistic and efficient maintenance strategy
for distribution networks [22]. Most of previous studies on
risk-based optimization assumed that components of
distribution networks are only subjected to gradual
deterioration and the impacts of extreme hazards such as
hurricanes were neglected. For example, Janjic and Popovic
[22] used dynamic programing to minimize the total expected
maintenance cost of distribution networks without considering
impacts of extreme events. Similarly, Abiri-Jahromi et al. [23]
solved a MILP problem to identify optimal preventive
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maintenance actions through minimizing the expected cost of
maintenance for a real-size distribution network with no
consideration of hurricane hazards. Nonetheless, extreme
events such as hurricanes especially in coastal regions incur
extensive damage to distribution networks. Subsequently
wind-related hazards need to be considered in preventive
maintenance strategies.

To address this limitation, Yuan et al. [24] proposed a two-
stage robust optimization model to enhance the resilience of
distribution networks exposed to natural disasters. However,
they represented damage uncertainty via a polyhedral set.
Subsequently, unlike most of the studies on risk analysis of
infrastructure systems (e.g. [8], [9]) they did not use fragility
models to identify performance of components. Recently, Ma
et al. [25] performed a two-stage stochastic optimization to
select the optimal preventive maintenance of distribution
systems subjected to extreme weather events. They
investigated resilience enhancement through minimizing the
expected cost. In their study, the potential and the associated
stochasticity of multiple occurrences of failure and
replacement of utility structures due to multiple occurrences
of extreme hazards were neglected. Moreover, the same
fragility curve was used for all poles of a distribution line.
However, fragility of each pole is highly dependent on the
properties of that pole. Thus, using the same fragility curve
without considering poles’ characteristics can result in
inaccurate estimate of failure probability of poles.

To address these gaps, this study proposes a mixed-integer
nonlinear programming (MINLP) model to enhance the
resilience of distribution systems exposed to hurricanes
through an optimal preventive maintenance planning. For this
purpose, a novel risk-based index called the Expected Outages
(EO) is proposed and integrated into this MINLP problem.
The EO — a new risk-based performance metric for power
distribution systems — estimates the number of power outages
in a distribution system when a pole fails. In this MINLP
problem, the EO for the entire system over the planning
horizon is minimized subjected to total and periodic cost
constraints. In fact, minimizing the EO directly enhances
resilience of distribution systems. To evaluate this metric,
uncertainties in hazard occurrences, pole degradation, and
pole performance are incorporated. A state-of-the-art fragility
function is adopted to describe the extreme wind performance
of each pole based on its characteristics. Subsequently, the
proposed MINLP formulation is applied to a realistic power
distribution system for a long-term maintenance planning.

The rest of this paper in organized as follows: in Section II,
the proposed mathematical formulation of the optimization
problem is presented. Section III provides numerical results of
this investigation. Finally, in Section IV, concluding remarks
are presented.

. MATHEMATICAL FORMULATION
Identifying the optimal preventive maintenance plan for a
system requires solving an optimization problem. The
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optimization model determines what components require
maintenance at each period of the planning horizon. For this
purpose, a MINLP problem is proposed to identify the optimal
preventive = maintenance  scheduling for  resilience
enhancement of power distribution systems. The presented
MINLP problem minimizes the total expected number of
power outages for the entire planning time horizon subjected
to a total budget limit and different levels of periodic budget
constraints. Consequently, minimizing the total expected
number of power outages directly improves the resilience of
the power system subjected to hurricane hazards. Herein, two
maintenance actions are considered for each wood pole per
period, including (a) do nothing and (b) replace the pole with
anew one. When an existing pole is replaced with a new one,
deterioration and aging restart. In the following subsections,
after introducing the EO index, the mathematical optimization
formulation and its solution are elaborated.

A. EXPECTED NUMBER OF POWER OUTAGES

In the proposed MINLP model, the objective function is
considered to be the total expected number of power outages
throughout the planning horizon. The expected number of
power outages caused by a pole, in each period of planning
horizon, is estimated as the product of the number of power
outages that the system would sustain if the pole fails and the
failure probability of the pole in that period. The number of
power outages associated with each pole is estimated as the
number of nodes (customers) that are not connected to any
source of power (substation) assuming that the pole is failed.
The failure probability of each pole is estimated through a
recursive formula, which is described in the following
subsection.

1) ESTIMATING THE FAILURE PROBABILITY OF POLES

As noted earlier, one major objective of this paper is to
optimize replacement of wood poles to enhance the current
and future resilience of distribution systems. It should be noted
that utilities often perform annual inspection, maintenance,
and replacement to maintain the reliability of their system.
However, this procedure is applied based on the current
conditions of the system; therefore, the future performance of
distribution systems is often largely neglected. Although some
studies investigated the future performance of distribution
systems, it is typically assumed that the entire system is aged
t years. This is not a realistic assumption as between time 0
and time t, a distribution system may undergo several run-to-
fail or preventive maintenance actions. Therefore, it is highly
likely that some of the poles at time t have already failed or
been replaced at a time before t. To address this issue, the
authors [9] proposed a recursive formulation for pole
vulnerability that takes into account multiple occurrences of
hazards within the service life of distribution systems. This
approach is also capable of considering multiple replacements
of poles through updating the fragility estimates at the time of
replacement in the recursive formulation. Based on this
approach, the probability of failure of a pole at time t; given



the wind speed v and wind direction 8 can be determined as
follows:
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where P(F,,_g_ti) is the probability of failure calculated using
the multi-dimensional fragility model proposed by Darestani
and Shafieezadeh [26] (more detail on this fragility model is
provided in the next subsection) with the modified age t;
conditioned on a set of failure and replacement events (e.g.,
surviving at  all  previous times  S;_,..,S¢)
P(F,_,),..,P(F,) are the probabilities of failure at
previous periods and P(S;_), .., P(S;,) are the
probabilities of survival at previous time epochs. It should be
noted that if a pole is replaced at year t, its age should be
changed to zero and subsequently, P(F;) and P(S;) should
be replaced by P(F,) and P(S,), respectively. The present
study adopts this recursive model to account for multiple
replacement and failure incidents to accurately estimate the
failure probability of poles. The adopted multi-dimensional
fragility function is elaborated in the following subsection.
2) MULTI-DIMENSIONAL FRAGILITY FUNCTION
Distribution systems normally consist of a large number of
poles; a set of components that considerably vary in their
properties. For example, span length, class, age, and height of
poles as well as number and diameter of conductors may vary
from one pole to the adjacent poles. In addition, probabilistic
risk and resilience analyses of distribution lines require
estimation of the failure probability of poles for many
realizations of wind speeds and wind directions. Estimation of
failure probabilities for these many scenarios would require a
significantly large number of simulations. Fragility models
facilitate this process as they provide fast estimates of the
failure probability of poles. Recently, Darestani and
Shafieezadeh [26] developed a set of multi-dimensional wind
fragility models for Class One through Class Seven Southern
Yellow Pine wood poles. The fragility model is introduced as
the cumulative density function (CDF) of a lognormal
distribution with the following form:

P[G(X) < 0|v,6,t,Ac, H]
In(2.23694 x v) — u(6,t,Ac, H) (2)
o(0,t,A;, H)

where G (X) is referred to as the limit state function. For the
structural failure of poles, this function is defined as:

G(X) = Mp(X) — Ms(X) (3)

where Mj is the moment capacity of the wood pole at ground
line, M is the wind induced moment demand on the wood
pole at ground line, and X is the set of random variables that
define the demand and capacity of the pole. @(.) is the CDF
of the standard normal distribution. Moreover, v is the wind
speed in m/s, and u and o are the parameters of the lognormal
distribution estimated through the following response
surface model:

uoro=ay+a, 0+ aAc+aszt+a,H
+ as0? + agAc. 0 + a, Az
+ agt.0 + aqt. Ac + ajot? 4)
+a,60.H+ a,Ac.H
+ ay3t.H + a; H?

where a; (i =0, ...,14) are the contribution of each term to
the response surface model, t is the modified age of the pole
(years) calculated as maximum of the age of the pole and 25
years, and 6 is the wind direction (degree). A is the conductor
area (m?), which is calculated as the product of the conductor
diameter (m), conductor span length (m), and the number of
conductors. Moreover, H is the height of the pole (m). This
fragility model provides a simple yet accurate pole specific
estimate for the probability of failure of wood poles in
distribution systems. Detailed information of this fragility
model is provided in [26].

3) RISK-BASED INDICES

In resilience enhancement of distribution systems supported
by wood poles, inspection and replacement should be
prioritized based on the risk that each pole poses to the
delivery of power to the customers. For this purpose, a risk
based index called Expected Outage Reduction (EOR) has
been proposed [9]. This index is adopted here to classify poles
into a few groups at the beginning of the planning horizon.
More details on grouping poles are provided later in Section
I1.B.2. The EOR index is determined for each pole as follows:

EOR; = NiJ- [P(F,=v,0=6, =t)

_P(F,=v,0=06,r=0)] O
X fy(v) X fo(0) x dv db

where N; is the number of power outages that will occur in the
system due to the failure of pole i. P; is the probability of
failure of pole i considering precedent stochastic failure and
replacement scenarios. f, and f, are the probability density
functions of wind speed and wind direction, respectively. The
EOR; index denotes the direct expected reduction in the
expected outages if pole i is replaced with a new pole. Based
on concepts in the EOR index, the EO is introduced here as a
new risk-based metric for each pole. The EO index is
integrated into the objective function of the MINLP
optimization model to estimate the number of power outages
in a distribution system when a pole fails. The EO for each
pole is estimated as:
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EO; = N, ff P(F, =v,0 =0,T =t) X f,(v)
X fo(8) x dv df

(6)

B. OPTIMIZATION MODEL

As previously mentioned, the current study proposes a MINLP
model to efficiently optimize the long-term resilience of
distribution systems via maintenance planning. Due to the
high complexity of solving MINLP problems, most existing
algorithms are not capable of finding optimal solutions for
large, complex problems. Thus, to rectify the computational
complexity of a long-term optimal preventive maintenance
planning for a system with thousands of components, two
tactics are employed. First, a risk-based approach is used to
group the poles and reduce the dimension of the problem.
Second, a surrogate model is developed to estimate the
objective function in the optimization problem. In the
following subsections, first, the general optimization model is
introduced. Second, two tactics for reducing the computational
complexity are presented. Finally, the proposed MINLP
formulation is explained.

1) GENERAL OPTIMIZATION MODEL

Equation (6) is used to minimize the EO for the entire system
over the planning horizon. Using this quantity as the cost
function, the general formulation of the optimization problem
can be presented as:

N¢ Nt
mrinZZ{Ni ff P; (FV =v,0=0,I
i=1 j=1
=ty )
X f () X f5(8) X dv de}
st. 1, =00r1, ]l - 1 II\\;CT )
N¢ Np
1, X cost; < TB €))
i=1 j=1
N¢
Zri,]- X cost; < PB, j=1,...,Nr (10)
i=1

where N and Ny indicate the total number of components and
number of planning periods in the planning horizon,
respectively. 7;; denotes a binary decision variable for
component i in the planning period j. This variable is zero
when no preventive maintenance action is applied to
component i in the planning period j and it becomes one
when the component is replaced with a new one. Equation
(9) and (10) are a constraint on the total budget of preventive
maintenance actions and a limit on the budget per period,
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respectively. TB, PB, and cost; indicate the total budget,
budget limit per period, and the replacement cost of
component i, respectively. In the optimization formulation,
age of component i is defined by t;; — kzllc,l..)fj(ti'k X ri_k)

where t; ; denotes the age of component { at planning period
j if no replacement is applied to the component. In addition,

kmax,(ti K X1 k) indicates the age of the pole at the most
=1,.,j ’

recent replacement.

Solving this optimization model is computationally
intractable for a distribution system with a large number of
components and an extended planning horizon. Thus, two
strategies are developed to reduce the complexity, including
first, grouping wood poles and second, developing a
surrogate model.

2) GROUPING POLES

Poles are categorized into groups to reduce the dimension of
the optimization problem. For this purpose, poles can be
classified into several groups based on their properties. In this
study, the EOR index is used as the only metric for
classification because this index incorporates all
characteristics of poles that are significant for the risk of
outage into one metric. Based on this index, poles with higher
EOR are considered as more important poles in the system
because replacing them will result in more reduction in the
expected number of power outages of the system. Thus,
grouping poles using EOR can categorize poles based on their
importance in the system. It is worth noting that the EOR
index for each pole varies if the age of the pole changes (i.e.
when the pole is replaced with a new one). Thus, EOR is
evaluated for all poles in the distribution system at the end of
the first period of the planning horizon — referred to as the
initial EOR, here. Subsequently, poles are categorized into a
few groups and at each time epoch, a similar maintenance
action is applied to the poles in the same group. Based on this
classification, each component in (7)-(10) represents a group
of poles. Grouping poles reduces the dimension and therefore
the complexity of the optimization problem. This assumption
is also practical as utilities perform maintenance actions on a
group of poles rather than maintaining individual poles
separately [27], [28].

3) SURROGATE MODEL

Based on (7) for each time that the objective function is
evaluated, it is required to quantify the EO for all poles for the
entire planning periods. Moreover, the calculation of these
expected outages requires quantification of the failure
probability of each pole at each time epoch that is based on the
recursive model presented in (1). Therefore, using the
objective function in the form of (7) is significantly costly for
optimization purposes. To overcome this limitation, a machine
learning technique called symbolic regression [29] is adopted
here to develop a surrogate model for the EO calculation.
Symbolic regression generates a mathematical expression for
a set of input and output data through combining mathematical
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building blocks such as arithmetic operators, trigonometric
functions, constants, and state variables. Symbolic regression
not only searches for appropriate parameters, but also unlike
traditional regression techniques, improves the form of
equations using an evolutionary process [30].

In this study, Eureqa [31] is used to perform symbolic
regression. To develop a surrogate model by performing
symbolic regression, first, the EO is estimated using (6) for all
components with all possible ages over the planning horizon.
Although estimating the EO for all components with all
possible ages is a time-consuming process, it is a one-time
calculation and avoids these costly computations for every
evaluation of the objective function during the optimization
process. Then, a model is generated for these data where the
inputs are component’s age (x'), number of years that passed
since the most recent replacement is applied to the component
(¥"), and the initial EOR of the component (EOR™). The
output of the model is the EO for each component. It should
be noted that here, each component represents a group of
poles. Developing a model based on this assumption requires
selection of a single representative value for each group’s age.
Here, the mean value of all the poles’ ages in each group is
used as the representative age of the group. EOR™® of each
group is also determined as the summation of the initial EOR
of all the poles in the group. Since the same decision is taken
for the entire group, at each period of planning horizon, y’
remains the same for all poles in a group. It is worth noting
that x' and y’' can be the same if the initial age of all
components in the system is zero.

4) MINLP FORMULATION

According to the previous section, for each component and
period, the generated model using Eureqa returns the EO for
that component, which is a function of the component’s age at
that period, the total number of years passed since the most
recent replacement of the component, and the initial EOR of
the component. Thus, minimizing the expected number of
power outages in the entire system over the planning horizon
is modeled as follows:

N¢c Nt

minz Z f(xi ;v EOR™) (11)
T

i=1j=1

s.t. x;1 = Age;, i=1,.,N (12

i=1,..,N,
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where f(x; ¥, E OR™) in (11) denotes the generated
regression model using symbolic regression, which returns the
expected number of power outages for each component per
period. x{ ;,¥; ; and E OR™ are the age of component i at the
end of period j, the number of years from the most recent
replacement of component i to the end of period j, and the
initial EOR of component I, respectively. In (12)-(19), x; ;,
Yi,j» and d represent the age of component i at the beginning
of period j, the total number of years from the most recent
replacement of component i to the beginning of period j, and
the duration of each period (in years), respectively. The rest of
the decision variables and parameters in this optimization
problem were described previously.

C. SOLUTION ALGORITHM

As reported by Neumann et al. [32], several global solvers are
available to deterministically solve non-convex MINLP
problems. These solvers include ANTIGONE [33], BARON
[34], Couenne [35], LINDO [36], and SCIP [37]. Considering
the successful application of the LINDO solver for MINLP
maintenance scheduling problems (e.g. [38], [39]), herein, this
solver is selected to tackle the minimization problem in
Section I1.B. The LINDO solver uses convex relaxations and
reformulations within a Branch and Bound (BB) framework
to solve non-convex problems [40].

The BB algorithm generally solves MINLP problems by
neglecting integer restrictions of the problem. Neglecting
these restrictions converts the MINLP to a nonlinear
programming problem. Subsequently, the BB algorithm
solves the resulting nonlinear programming problem and
considers the solution of this new problem as a valid lower
bound for the original MINLP problem. If the solution
satisfies the integer restrictions, BB takes it as the optimal
solution of the original problem. Otherwise, the nonlinear
programming problem, which is called a parent node, is
branched into two new nonlinear programming sub-problems
that are called child nodes. The process of branching continues
until two scenarios occur. First, if one of the sub-problems
provides a solution that satisfies the integer constraints, BB
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returns it as a valid upper bound. Second, if one of the nodes
becomes infeasible or it returns an optimum solution worse
than the upper bound, the node is pruned [40], [41].

lll. NUMERICAL RESULTS

The objective of this paper is to present an optimal preventive
maintenance planning framework to efficiently enhance the
long-term resilience of power distribution systems. To this
end, the proposed methodology in Section II is applied to a
large, realistic distribution system located in the southern US.
Results of the proposed methodology is compared to the
common practice (NESC guideline [7]) for the replacement of
poles.

A. CASE STUDY

The studied distribution system is assumed to be located in
Harris County, Texas, US. The distribution system consists of
7051 wood poles, 115 protective devices and three
substations. Height, span length, and class of poles are
different, while the age of all poles is considered to be 25
years. Poles’ height varies between 7.62 m and 21.34 m and
their span length ranges from 4.71 m to 283.76 m. This
distribution network includes poles of class one to seven;
however, most of the poles are class three and five. A sketch
of the distribution system is presented in Fig. 1. More
information about this network including its topology can be
found in [42].

Pole Protective Device . Substation

Y (km)

X (km)

FIGURE 1. The studied distribution system (courtesy of Darestani
and Shafieezadeh [42]).

B. DEVELOPED SURROGATE MODEL
As mentioned in Section II.B, poles are categorized into a few
groups to reduce the computational cost of the optimization
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problem. For this purpose, the 7051 poles are categorized into
15 groups with the equal size of 470 (6.7% of the poles in the
system), except for one group that includes 471 poles. The
groups are classified based on their initial EOR where groups
1 and 15 have the lowest and highest initial EOR, respectively.
As mentioned previously, the initial EOR is the EOR of poles
at the end of the first period of the planning horizon. This index
serves as an objective measure for grouping the poles because
it incorporates all characteristics that are key to the risk of
outage. The optimization is performed to minimize the total
number of expected power outages for a long-term planning
horizon. Herein, the total planning horizon is considered to be
60 years, which is divided into 20 periods of three years. This
discretization allows for optimal planning for the long horizon
of 60 years. The outcome of the optimization specifies the
groups that are needed to be replaced in each period. The
three-year period also offers the utility the flexibility to
perform the replacement of the poles in the specified groups
in that period. A second level optimization or prioritization
can be applied to the results of this optimization to determine
the optimal short-term planning schedule for the replacement
of the individual poles in each group per period. However, the
second level optimization is out of the scope of this study since
here the focus is on long-term optimal scheduling.

As noted earlier in Section II.B, a surrogate model is
developed to reduce the complexity of the optimization. Since
calculation of the EO as part of the objective function is
computationally very demanding during the course of
optimization, the surrogate model is trained and constructed
prior to the optimization and subsequently replaces the direct
calculation of the objective function. For this purpose, the
expected outages of all possible replacement scenarios for
each group during the entire planning horizon is evaluated.
Subsequently, the evaluated expected outages are used to
develop the regression model using symbolic regression
method. The developed model has the following form:

f(x',y',EOR™) = 33.7203 X EOR™ x y’
0.05315 x y’ x (x')*
" log(EOR™™) — 5.3624
— 32.0835xx'xy'

(22)

where x',y" and EOR™ are the age of the group, number of
years from the most recent replacement of the group, and
initial EOR of the group, respectively. This model predicts the
expected number of power outages associated with a group
given the specific x" and y’ of that group.

Fig. 2 shows a comparison between the predicted expected
outages based on the generated model in (22) and the true
evaluated expected outages based on (6). According to Fig. 2,
a point that falls into the lower region of x =y indicates
overestimation by the surrogate model compared to the actual
EO, while a point in the upper region of x = y represents an
underestimated EO by the generated surrogate model. Fig. 2
shows that the developed model is able to properly estimate
the expected outages. Noting the logarithmic scale of the plot,



it is seen that estimated expected outages by the surrogate
model have higher deviations from the true EOs at smaller
values. However, the overall trend of the true EO is captured
properly for this range and especially for larger expected
outages, which contribute considerably to the cost function.
More accurate models can be obtained using symbolic
regression, but with more complex forms which hinder the
application of MINLP solvers.

10" 10 10* 10
Opredicted

FIGURE 2. Comparison of predicted and true expected number of
power outages using symbolic regression (SR).

C. OPTIMAL STRATEGY

The optimal preventive maintenance strategy is obtained after
applying the BB algorithm to the presented MINLP model. In
this study, the optimal strategy is obtained for three cases that
are distinct in terms of limits on budget per period (i.e., PB).
In all three cases, the total budget (i.e., TB) constraint is the
same and defined to have a maximum of 7051 pole
replacements during the entire planning horizon. The
considered three cases include: (a) no constraints on PB, (b)
maximum of three groups can be replaced in each period, and
(c) maximum of two groups can be replaced per period. In the
rest of this paper, the optimization problems with the
constraints in case (a), (b), and (c¢) are called Optimization 1,
Optimization 2, and Optimization 3, respectively. Results of
these optimization problems are presented in Fig. 3.
According to this figure, in all three cases, all groups are
replaced one time during the planning horizon. Although all
groups are allowed to be replaced more than once, none of the
groups is replaced twice or more because there is a total budget
constraint that allows a total 7051 pole replacements during
the entire decision horizon. Thus, if one group is replaced
twice, there will be another group that cannot be replaced. This
observation shows that the age of the groups plays a more
significant role in the total life-cycle resilience of the system
compared to the initial EOR of the groups. To elaborate more,
the maximum life-cycle resilience will be achieved when all
groups are replaced once rather than a case in which groups

with high initial EOR are replaced twice and groups with low
initial EOR are not replaced. In the latter case, groups that are
not replaced will have a high age toward the end of the
planning horizon, which consequently leads to a large
reduction in the total life-cycle resilience of the system. One
important observation in Fig. 3(a) is that 10 groups are
replaced at the end of periods 6 and 7, which indicates that
many poles need to be replaced between 18 to 21 years after
the beginning of the planning horizon. Since the age of all the
poles is considered to be the same (i.e. 25 years) at the
beginning of the planning horizon, their optimal replacement
time is close. Moreover, it is shown in Fig. 3(a) that generally
groups with higher initial EOR are replaced before period 8,
while the rest of the groups are replaced in subsequent periods.
This trend highlights the importance of the EOR index in the
order of replacements. However, groups 12 to 15 with higher
initial EOR are replaced after groups 4 to 11. Thus, the EOR
index cannot be the only criterion for determining the order of
replacements. This is because the distribution system is
required to be resilient over the entire planning horizon and
replacing all the critical components in early periods can result
in a large resilience reduction toward the end of the planning
horizon. Therefore, there is a trade-off between replacing
earlier to enhance the resilience of the system sooner and
replacing later to improve the resilience toward the end of the
planning horizon. Comparing optimal strategies for all three
optimization cases shows that groups 10 to 15 that have the
highest initial EOR should be replaced at the end of periods 6
to 8, while groups 1 to 3 with the lowest initial EOR can be
replaced after the end of period 10. This observation highlights
that more critical poles need to be replaced before the age of
50 to enhance the life-cycle resilience of the distribution
system, whereas the replacement of less critical poles can be
postponed if there exists a budget limit per period.
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FIGURE 3. Optimal preventive maintenance planning (a)
Optimization 1 (b) Optimization 2 (c) Optimization 3

D. RESILIENCE ASSESSMENT

This section evaluates the expected resilience of the
distribution system subject to hurricanes. Hurricane resilience
for a power distribution system is the capability of the system
to absorb the imposed shock from hazard-induced loadings
and to recover to a functional state quickly. It is important to
assess the hurricane resilience probabilistically since in the
life-cycle of the system, both hurricane incidents and pole
failures are uncertain. In this study, a probabilistic resilience
assessment methodology developed by the authors [9] is
adopted. Here, the expected life-cycle resilience of the power
distribution system with the optimized preventive
maintenance strategies (i.e. results of Optimization 1, 2, and
3) is compared to the system’s resilience when the NESC
maintenance strategy is applied. To ensure a fair comparison
between the NESC strategy and results of optimization, the
same budget constraints in the optimization problems are
applied to the NESC strategy. The NESC-based preventive
maintenance strategies corresponding to Optimization 1, 2,
and 3 are called NESC 1, NESC 2, and NESC 3, respectively.
As mentioned previously, NESC requires replacing poles
when their strength has fallen below 67% of their initial
strength [7]. This maintenance strategy is feasible if there is no
budget constraint. In this study, in each time epoch, when the
total number of required pole replacements by NESC exceeds
the permissible number of replacements based on periodic
budget constraints, only the permissible number of poles with
the highest strength reduction among all the poles are replaced.
In order to apply the NESC maintenance strategies, it is
necessary to estimate the residual strength of poles to identify
the poles that should be replaced per period. For this purpose,
the age-dependent probabilistic capacity model of poles
proposed by Shafieezadeh et al. [43] is adopted. The adopted
model estimates the residual strength of Southern Pine wood
poles against extreme wind hazards as a function of age.
According to this model, the residual strength of poles at each
age follows a lognormal distribution. Using this model, the
residual strength of poles as a function of age is generated and
the results are presented in Fig. 4.
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FIGURE 4. Residual strength of the poles as a function of age.

Fig. 5 shows the cumulative number of pole replacements
by each strategy and Fig. 6 presents the resilience of the power
distribution system during the planning horizon. As it can be
seen in Fig. 5, the total number of replacements is equal for all
strategies because the same constraint for the total budget is
applied to all cases. It is shown in Fig. 5 that all strategies
require performing replacements in a short period of time. As
previously explained, this trend happens because of the
assumption that all the poles have the same age at the
beginning of the planning horizon. The proposed
optimization-based maintenance strategies replace poles
earlier than the NESC strategies. Observing the long-term
resilience (Fig. 6), the optimization-based strategies
considerably outperform the NESC strategies. This result
highlights the significance of minimizing the expected number
of power outages in optimal preventive maintenance
scheduling for increasing the life-cycle resilience. When no
periodic budget constraint is considered, the applied NESC
strategy (i.e., NESC 1) results in a minimum resilience of
98.23%, however, applying the proposed optimization-based
strategy (i.e., Optimization 1) increases the minimum
resilience to 99.39%. The achieved 1.16% enhancement in the
minimum resilience of the distribution systems is significant.
According to previous studies on economic loss of engineered
systems (e.g., [44]-[46]), such improvements in the annual
expected resilience of power grid systems can save millions of
dollars per year. For example, Ouyang and Duefias-Osorio
[45] showed that for the power system in Harris County,
Texas, US, a 0.038% decrease in the annual resilience can
incur economic losses as high as $83 million dollar per year.
These loss estimates and the observed differences in the life-
cycle resilience of considered cases highlight the significance
of the proposed optimization model for power distribution
systems. According to Fig. 6, considering optimization-based
strategies, there is a noticeable increase in the resilience over
the most of the planning horizon. However, in a few years
toward the end of the planning horizon, applying the NESC



strategies to the system leads to a slightly higher annual
resilience. This is because in the NESC maintenance
strategies, the poles are replaced toward the end of the time
horizon, whereas in the optimization-based maintenance
strategies, these poles are replaced earlier. Subsequently,
following the optimization-based strategies, the poles will be
much older than the poles in the NESC strategies at the end of
the planning horizon, thus, it is expected to observe lower
resilience. However, in the optimization-based strategies, the
resilience enhancement in all years of the service life is taken
into consideration, thus, following the optimization process,
the system remains more resilient over most of the service life.
Furthermore, if the minimum or average value of life-cycle
resilience is considered, the optimization-based strategies
significantly outperform the NESC strategies.
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FIGURE 5. Impacts of maintenance strategies on the cumulative
number of pole replacements throughout the planning horizon.
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FIGURE 6. Impacts of maintenance strategies on the resilience of
the power distribution system throughout the planning horizon.

VIl. CONCLUSION

In this study, a mixed-integer nonlinear programming
(MINLP) model is proposed to enhance the long-term
resilience of power distribution systems based on an optimal
preventive maintenance planning. Distribution systems are
subjected to probabilistic multi-occurrence hurricane events
during their service life. To determine the optimal
maintenance strategy, a novel risk-based objective function is
integrated into the MINLP problem. This risk-based measure
is the total expected number of power outages in a distribution
system throughout the entire planning horizon. The expected
outage of a pole is computed as the product of the probability
of failure of that pole and the number of power outages that
the system would sustain if the pole fails. The proposed
MINLP model is applied to a realistic power distribution
system for determining an optimal preventive maintenance
planning for the system.

To investigate the effectiveness of the developed
methodology for resilience enhancement, the MINLP-based
preventive maintenance strategies are determined and applied
to the system. Then, the hurricane resilience of the system is
estimated throughout the long planning horizon. The results
are compared to the hurricane resilience of the system when
the common maintenance practice set by the National Electric
Safety Code (NESC) is applied to the system. The results
reveal that the optimization-based preventive maintenance
strategies significantly improve system resilience compared to
the NESC preventive maintenance strategies. Applying the
NESC strategies can only increase the resilience at the
beginning and end of the planning horizon; however, when the
preventive maintenance planning is determined by
optimization, the system remains resilient over most of its
service lifetime. Therefore, the proposed approach can
significantly enhance the resilience of distribution systems,
and consequently prevent considerable direct and indirect
socio-economic losses.
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