
 
 
 

VOLUME XX, 2020 1 

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000. 

Digital Object Identifier 10.1109/ACCESS.2019.Doi Number 

Optimal Life-Cycle Resilience Enhancement of 
Aging Power Distribution Systems: A MINLP-
Based Preventive Maintenance Planning  
Nariman L. Dehghani1, Yousef Mohammadi Darestani1&2, and Abdollah Shafieezadeh.1 
1Risk Assessment and Management of Structural and Infrastructure Systems (RAMSIS) lab, Department of Civil, Environmental, and Geodetic 
Engineering, The Ohio State University, Columbus, OH 43210 USA  
2Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005 USA  

Corresponding author: Abdollah Shafieezadeh (e-mail: Shafieezadeh.1@osu.edu). 

This paper is based upon work supported by the National Science Foundation under Grant Nos. CMMI-1333943, 1635569, and 1762918. This support is 
greatly appreciated.   

ABSTRACT Power distribution systems in the US are commonly supported by wood utility poles. These 
assets require regular maintenance to enhance the reliability of power delivery to support many dependent 
functions of the society. Limitations in budget, however, warrant efficient allocation of limited resources 
based on optimal preventive maintenance plans. A few studies have developed risk-based metrics to support 
risk-informed decision making in preventive maintenance planning for power distribution systems. However, 
integration of risk-based metrics and optimization for enhancing the life-cycle resilience of distribution 
systems has not been explored. To address this gap, this paper proposes a mixed-integer nonlinear 
programming (MINLP) model to maximize the life-cycle resilience of aging power distribution systems 
subject to multi-occurrences of hurricane events using an optimal risk-based maintenance planning. For this 
purpose, a risk-based index called the Expected Outages is proposed and integrated into the optimization 
problem to minimize the total expected number of power outages in the entire planning horizon. Various 
uncertainties in the performance of poles under stochastic occurrences of hazards are taken into account 
through advanced fragility models and an efficient recursive formulation that models the uncertainty of 
precedent pole failures. The proposed approach is applied to a large, realistic power distribution system for 
long-term maintenance planning given a total budget limit and different levels of periodic budget constraints. 
The resulting optimization problems are solved through the branch and bound algorithm. Results indicate that 
applying the presented methodology leads to a significant enhancement of the life-cycle resilience of distribution 
systems compared to the commonly implemented strength-based maintenance strategy set by National 
Electric Safety Code. 

INDEX TERMS Mixed-integer nonlinear programming, hurricane hazards, power distribution systems, 
preventive maintenance, resilience enhancement.  

I. INTRODUCTION 
Electric power supports numerous activities in the modern 
society. Disruptions in the constant flow of electricity have 
the potential to incur significant hardship to communities. 
Over 80% of power outages in the US between 2003 and 
2012 have been caused by weather-related hazards such as 
hurricane events  [1], [2]. A large portion of these power 
outages were caused due to failure of wood poles. Because 
of the availability and cost-effectiveness of wood poles, they 
are extensively used for supporting distribution systems. 
However, wood poles suffer from a significant rate of decay 

especially in coastal regions with high levels of humidity. 
Storm-related outages in the US have incurred extensive 
economic losses that are estimated to be as high as $55 
billion every year [3]. For example, in 2005, 12000 poles 
were damaged in Hurricane Wilma and Hurricane Hugo [4]. 
Hurricane Irene in 2011 and Hurricane Sandy in 2012 left 
6.69 and 8.66 million customers without power, respectively 
[5]. More recently, in 2017, hurricane Irma damaged over 
2900 poles and caused outages for 62% of customers in 
Florida [6]. The historical evidence along with the high 
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susceptibility of coastal regions to frequent and intense 
winds from hurricanes highlight the critical need to improve 
the current and future performance of distribution systems 
supported by wood poles in coastal regions to mitigate 
potential direct and indirect socio-economic losses.  

A practical strategy to improve the performance of power 
distribution systems is to apply preventive maintenance during 
their service life. Unlike the run-to-fail maintenance strategy 
that is applied after the occurrence of a failure, preventive 
maintenance is performed prior to a potential failure to 
decrease the likelihood of disruption in the services provided 
by the system. For this purpose, utilities perform annual 
inspection, maintenance, and replacement of wood poles to 
ensure the safety of distribution systems. The maintenance 
strategy set by the National Electric Safety Code (NESC) [7] 
necessitates replacing poles whose strength has fallen below 
67% of their initial strength. However, this preventive strategy 
is not optimal as it only considers the strength reduction and 
entirely neglects the demand level. Moreover, the importance 
of the pole in the distribution system is not considered. 
According to NESC [7] strategy, a pole that serves in the main 
feeder and provides power for a large number of customers is 
treated equal to a pole in a side branch of the network and 
provides power for a small number of customers.  

To mitigate these limitations, Salman et al. [8] separated the 
main feeders from the rest of the distribution system and 
investigated the performance of the system if the main feeders 
are only strengthened. For this purpose, an index called Risk 
Achievement Worth (RAW) was adopted which considers the 
vulnerability and the consequence of failure for an entire line 
segment. As this index is not calculated for each individual 
pole, it does not take into account differences in the properties 
of adjacent poles. These differences can be significant as 
distribution systems are often composed of poles with 
different ages, classes, and span lengths, among others. 
Subsequently, this index cannot differentiate the importance 
of individual poles in the distribution system. Second, this 
index is calculated only one time when the system is assumed 
to be new and therefore, the evolution of decay, failure, and 
replacement in the coming years within the service life of the 
system is not considered. This limitation can potentially lead 
to a strategy that may not be effective for the future state of the 
power system when individual poles can experience multiple 
instances of failure and replacement within the service life of 
the distribution system. Recently, the authors [9] have 
proposed an index called Expected Outage Reduction (EOR) 
for prioritizing maintenance and replacement of wood poles at 
different time instances within the service life of the 
distribution system. This index considers the expected 
reduction in the number of power outages if a decayed pole is 
replaced by a new pole. Therefore, it not only considers the 
benefits of replacing a pole with a new pole in terms of damage 
mitigation, but also considers the benefits in terms of the 
importance of the pole in the distribution system. Furthermore, 
this index is capable of considering multiple occurrences of 

failure and replacement due to multi-occurrences of hurricane 
hazards that are considerably probable in coastal regions with 
small hurricane return periods.  

Although strategies based on RAW and EOR indices 
support risk-informed decision making in planning for 
preventive maintenance, they are still considered as 
predetermined preventive maintenance strategies and yet to be 
integrated with optimization procedures to efficiently enhance 
life-cycle performance of distribution systems. Thus, an 
optimization problem needs to be solved to efficiently allocate 
limited budget for enhancing the performance of power 
distribution systems. It should be noted that performance of 
infrastructure systems throughout their service life can be 
estimated based on different metrics, including life-cycle cost 
(e.g., [10], [11]), life-cycle sustainability (e.g., [12], [13]), and 
life-cycle resilience (e.g., [9]). Among these metrics, life-cycle 
resilience is deemed as the most comprehensive measure due 
to its ability to reflect the damage and recovery performance 
of systems over their lifetime. A few studies investigated 
resilience enhancement of distribution systems exposed to an 
individual occurrence of an extreme hazard event by 
optimizing repair crew mobilization. For example, Arab et al. 
[14] formulated a procedure to assign repair crews to damaged 
components as a mixed-integer linear programming (MILP) 
model. Van Hentenryck and Coffrin [15] proposed a two-stage 
deterministic optimization problem for routing repair crews in 
transmission systems after a significant disruption. Arif et al. 
[16] proposed a two-stage stochastic MILP model for 
optimizing repair crew routing in distribution systems after 
extreme weather events. Recently, Hafiz et al. [17] proposed a 
framework including three optimization problems to improve 
the restoration of distribution services in post-outage 
conditions. The above studies have provided valuable insights 
on effective hazard restoration strategies. However, 
optimization of planning strategies taken in advance of 
hazards to enhance the life-cycle resilience of power 
distribution systems has not been explored.  

In previous studies on optimal maintenance planning of 
distribution systems, optimization models are generally 
categorized into three main methods, including (a) minimizing 
cost given a minimum level of reliability (e.g. [18]–[20]), (b) 
maximizing reliability subjected to time or budget constraints 
(e.g. [21]), and (c) minimizing the overall risk (e.g. [22], [23]). 
Among the proposed methods, category (c) (risk-based 
maintenance) identifies an optimal level of risk and has been 
shown as a more realistic and efficient maintenance strategy 
for distribution networks [22]. Most of previous studies on 
risk-based optimization assumed that components of 
distribution networks are only subjected to gradual 
deterioration and the impacts of extreme hazards such as 
hurricanes were neglected. For example, Janjic and Popovic 
[22] used dynamic programing to minimize the total expected 
maintenance cost of distribution networks without considering 
impacts of extreme events. Similarly, Abiri-Jahromi et al. [23] 
solved a MILP problem to identify optimal preventive 
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maintenance actions through minimizing the expected cost of 
maintenance for a real-size distribution network with no 
consideration of hurricane hazards. Nonetheless, extreme 
events such as hurricanes especially in coastal regions incur 
extensive damage to distribution networks. Subsequently 
wind-related hazards need to be considered in preventive 
maintenance strategies. 

To address this limitation, Yuan et al. [24] proposed a two-
stage robust optimization model to enhance the resilience of 
distribution networks exposed to natural disasters. However, 
they represented damage uncertainty via a polyhedral set. 
Subsequently, unlike most of the studies on risk analysis of 
infrastructure systems (e.g. [8], [9]) they did not use fragility 
models to identify performance of components. Recently, Ma 
et al. [25] performed a two-stage stochastic optimization to 
select the optimal preventive maintenance of distribution 
systems subjected to extreme weather events. They 
investigated resilience enhancement through minimizing the 
expected cost. In their study, the potential and the associated 
stochasticity of multiple occurrences of failure and 
replacement of utility structures due to multiple occurrences 
of extreme hazards were neglected. Moreover, the same 
fragility curve was used for all poles of a distribution line. 
However, fragility of each pole is highly dependent on the 
properties of that pole. Thus, using the same fragility curve 
without considering poles’ characteristics can result in 
inaccurate estimate of failure probability of poles.  

To address these gaps, this study proposes a mixed-integer 
nonlinear programming (MINLP) model to enhance the 
resilience of distribution systems exposed to hurricanes 
through an optimal preventive maintenance planning. For this 
purpose, a novel risk-based index called the Expected Outages 
(EO) is proposed and integrated into this MINLP problem. 
The EO – a new risk-based performance metric for power 
distribution systems – estimates the number of power outages 
in a distribution system when a pole fails. In this MINLP 
problem, the EO for the entire system over the planning 
horizon is minimized subjected to total and periodic cost 
constraints. In fact, minimizing the EO directly enhances 
resilience of distribution systems. To evaluate this metric, 
uncertainties in hazard occurrences, pole degradation, and 
pole performance are incorporated. A state-of-the-art fragility 
function is adopted to describe the extreme wind performance 
of each pole based on its characteristics. Subsequently, the 
proposed MINLP formulation is applied to a realistic power 
distribution system for a long-term maintenance planning. 

The rest of this paper in organized as follows: in Section II, 
the proposed mathematical formulation of the optimization 
problem is presented. Section III provides numerical results of 
this investigation. Finally, in Section IV, concluding remarks 
are presented.  

II. MATHEMATICAL FORMULATION 
Identifying the optimal preventive maintenance plan for a 
system requires solving an optimization problem. The 

optimization model determines what components require 
maintenance at each period of the planning horizon. For this 
purpose, a MINLP problem is proposed to identify the optimal 
preventive maintenance scheduling for resilience 
enhancement of power distribution systems. The presented 
MINLP problem minimizes the total expected number of 
power outages for the entire planning time horizon subjected 
to a total budget limit and different levels of periodic budget 
constraints. Consequently, minimizing the total expected 
number of power outages directly improves the resilience of 
the power system subjected to hurricane hazards. Herein, two 
maintenance actions are considered for each wood pole per 
period, including (a) do nothing and (b) replace the pole with 
a new one. When an existing pole is replaced with a new one, 
deterioration and aging restart. In the following subsections, 
after introducing the EO index, the mathematical optimization 
formulation and its solution are elaborated.  

A. EXPECTED NUMBER OF POWER OUTAGES 
In the proposed MINLP model, the objective function is 
considered to be the total expected number of power outages 
throughout the planning horizon. The expected number of 
power outages caused by a pole, in each period of planning 
horizon, is estimated as the product of the number of power 
outages that the system would sustain if the pole fails and the 
failure probability of the pole in that period. The number of 
power outages associated with each pole is estimated as the 
number of nodes (customers) that are not connected to any 
source of power (substation) assuming that the pole is failed. 
The failure probability of each pole is estimated through a 
recursive formula, which is described in the following 
subsection.   
1) ESTIMATING THE FAILURE PROBABILITY OF POLES 
As noted earlier, one major objective of this paper is to 
optimize replacement of wood poles to enhance the current 
and future resilience of distribution systems. It should be noted 
that utilities often perform annual inspection, maintenance, 
and replacement to maintain the reliability of their system. 
However, this procedure is applied based on the current 
conditions of the system; therefore, the future performance of 
distribution systems is often largely neglected. Although some 
studies investigated the future performance of distribution 
systems, it is typically assumed that the entire system is aged 
𝑡𝑡 years. This is not a realistic assumption as between time 0 
and time 𝑡𝑡, a distribution system may undergo several run-to-
fail or preventive maintenance actions. Therefore, it is highly 
likely that some of the poles at time 𝑡𝑡 have already failed or 
been replaced at a time before 𝑡𝑡. To address this issue, the 
authors [9] proposed a recursive formulation for pole 
vulnerability that takes into account multiple occurrences of 
hazards within the service life of distribution systems. This 
approach is also capable of considering multiple replacements 
of poles through updating the fragility estimates at the time of 
replacement in the recursive formulation. Based on this 
approach, the probability of failure of a pole at time 𝑡𝑡𝑖𝑖 given 
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the wind speed 𝑣𝑣 and wind direction 𝜃𝜃 can be determined as 
follows: 

𝑃𝑃�𝐹𝐹𝑣𝑣,𝜃𝜃,𝑡𝑡𝑖𝑖�

=  � �𝑃𝑃�𝐹𝐹𝑣𝑣,𝜃𝜃,𝑡𝑡𝑖𝑖�𝑆𝑆𝑡𝑡𝑖𝑖−1>𝑘𝑘+1 , … , 𝑆𝑆𝑡𝑡0≥𝑘𝑘+1 ,𝐹𝐹𝑡𝑡𝑘𝑘≥0�
𝑖𝑖−1

𝑘𝑘=−1

× � � 𝑃𝑃 �𝑆𝑆𝑡𝑡𝑗𝑗� 𝑆𝑆𝑡𝑡𝑗𝑗−1>𝑘𝑘+1 , … , 𝑆𝑆𝑡𝑡0≥𝑘𝑘+1 ,𝐹𝐹𝑡𝑡𝑘𝑘≥0�
𝑖𝑖−1

𝑗𝑗=𝑘𝑘+1

�

× 𝑃𝑃�𝐹𝐹𝑡𝑡𝑘𝑘≥0�� 

(1) 

where 𝑃𝑃�𝐹𝐹𝑣𝑣,𝜃𝜃,𝑡𝑡𝑖𝑖� is the probability of failure calculated using 
the multi-dimensional fragility model proposed by Darestani 
and Shafieezadeh [26] (more detail on this fragility model is 
provided in the next subsection) with the modified age 𝑡𝑡𝑖𝑖 
conditioned on a set of failure and replacement events (e.g., 
surviving at all previous times 𝑆𝑆𝑡𝑡𝑖𝑖−1 , … , 𝑆𝑆𝑡𝑡0). 
𝑃𝑃(𝐹𝐹𝑡𝑡𝑖𝑖−1), … ,𝑃𝑃(𝐹𝐹𝑡𝑡0) are the probabilities of failure at 
previous periods and 𝑃𝑃(𝑆𝑆𝑡𝑡𝑖𝑖−1), … ,𝑃𝑃(𝑆𝑆𝑡𝑡0) are the 
probabilities of survival at previous time epochs. It should be 
noted that if a pole is replaced at year 𝑡𝑡, its age should be 
changed to zero and subsequently, 𝑃𝑃(𝐹𝐹𝑡𝑡) and 𝑃𝑃(𝑆𝑆𝑡𝑡) should 
be replaced by 𝑃𝑃(𝐹𝐹0) and 𝑃𝑃(𝑆𝑆0), respectively. The present 
study adopts this recursive model to account for multiple 
replacement and failure incidents to accurately estimate the 
failure probability of poles. The adopted multi-dimensional 
fragility function is elaborated in the following subsection. 
2) MULTI-DIMENSIONAL FRAGILITY FUNCTION 
Distribution systems normally consist of a large number of 
poles; a set of components that considerably vary in their 
properties. For example, span length, class, age, and height of 
poles as well as number and diameter of conductors may vary 
from one pole to the adjacent poles. In addition, probabilistic 
risk and resilience analyses of distribution lines require 
estimation of the failure probability of poles for many 
realizations of wind speeds and wind directions. Estimation of 
failure probabilities for these many scenarios would require a 
significantly large number of simulations. Fragility models 
facilitate this process as they provide fast estimates of the 
failure probability of poles. Recently, Darestani and 
Shafieezadeh [26] developed a set of multi-dimensional wind 
fragility models for Class One through Class Seven Southern 
Yellow Pine wood poles. The fragility model is introduced as 
the cumulative density function (CDF) of a lognormal 
distribution with the following form: 

𝑃𝑃[𝐺𝐺(𝑋𝑋) < 0|𝑣𝑣,𝜃𝜃, 𝑡𝑡,𝐴𝐴𝐶𝐶 ,𝐻𝐻]

= 𝛷𝛷 �
𝑙𝑙𝑙𝑙(2.23694 × 𝑣𝑣) − 𝜇𝜇(𝜃𝜃, 𝑡𝑡,𝐴𝐴𝐶𝐶 ,𝐻𝐻)

𝜎𝜎(𝜃𝜃, 𝑡𝑡,𝐴𝐴𝐶𝐶 ,𝐻𝐻) � (2) 

where 𝐺𝐺(𝑋𝑋) is referred to as the limit state function. For the 
structural failure of poles, this function is defined as: 

𝐺𝐺(𝑋𝑋) = 𝑀𝑀𝑅𝑅(𝑋𝑋) −𝑀𝑀𝑆𝑆(𝑋𝑋) (3) 

where 𝑀𝑀𝑅𝑅 is the moment capacity of the wood pole at ground 
line, 𝑀𝑀𝑆𝑆 is the wind induced moment demand on the wood 
pole at ground line, and 𝑋𝑋 is the set of random variables that 
define the demand and capacity of the pole. 𝛷𝛷(. ) is the CDF 
of the standard normal distribution. Moreover, 𝑣𝑣 is the wind 
speed in m/s, and 𝜇𝜇 and 𝜎𝜎 are the parameters of the lognormal 
distribution estimated through the following response 
surface model: 

𝜇𝜇 𝑜𝑜𝑜𝑜 𝜎𝜎 = 𝑎𝑎0 + 𝑎𝑎1 𝜃𝜃 + 𝑎𝑎2𝐴𝐴𝐶𝐶 + 𝑎𝑎3𝑡𝑡 + 𝑎𝑎4𝐻𝐻
+ 𝑎𝑎5𝜃𝜃2 + 𝑎𝑎6𝐴𝐴𝐶𝐶 .𝜃𝜃 + 𝑎𝑎7𝐴𝐴𝐶𝐶2

+ 𝑎𝑎8𝑡𝑡.𝜃𝜃 + 𝑎𝑎9𝑡𝑡.𝐴𝐴𝐶𝐶 + 𝑎𝑎10𝑡𝑡2
+ 𝑎𝑎11𝜃𝜃.𝐻𝐻 + 𝑎𝑎12𝐴𝐴𝐶𝐶 .𝐻𝐻
+ 𝑎𝑎13𝑡𝑡.𝐻𝐻 + 𝑎𝑎14𝐻𝐻2 

(4) 

where  𝑎𝑎𝑖𝑖 (𝑖𝑖 = 0, … ,14) are the contribution of each term to 
the response surface model, 𝑡𝑡 is the modified age of the pole 
(years) calculated as maximum of the age of the pole and 25 
years, and 𝜃𝜃 is the wind direction (degree). 𝐴𝐴𝐶𝐶 is the conductor 
area (m2), which is calculated as the product of the conductor 
diameter (m), conductor span length (m), and the number of 
conductors. Moreover, 𝐻𝐻 is the height of the pole (m). This 
fragility model provides a simple yet accurate pole specific 
estimate for the probability of failure of wood poles in 
distribution systems. Detailed information of this fragility 
model is provided in [26]. 
3) RISK-BASED INDICES 
In resilience enhancement of distribution systems supported 
by wood poles, inspection and replacement should be 
prioritized based on the risk that each pole poses to the 
delivery of power to the customers. For this purpose, a risk 
based index called Expected Outage Reduction (EOR) has 
been proposed [9]. This index is adopted here to classify poles 
into a few groups at the beginning of the planning horizon. 
More details on grouping poles are provided later in Section 
II.B.2. The EOR index is determined for each pole as follows: 

𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖 = 𝑁𝑁𝑖𝑖�[𝑃𝑃𝑖𝑖(𝐹𝐹𝑉𝑉 = 𝑣𝑣,𝛩𝛩 = 𝜃𝜃,𝛤𝛤 = 𝑡𝑡)

− 𝑃𝑃𝑖𝑖(𝐹𝐹𝑉𝑉 = 𝑣𝑣,𝛩𝛩 = 𝜃𝜃,𝛤𝛤 = 0)]
× 𝑓𝑓𝑉𝑉(𝑣𝑣) × 𝑓𝑓𝛩𝛩(𝜃𝜃) × 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑  

(5) 

where 𝑁𝑁𝑖𝑖  is the number of power outages that will occur in the 
system due to the failure of pole 𝑖𝑖. 𝑃𝑃𝑖𝑖  is the probability of 
failure of pole 𝑖𝑖 considering precedent stochastic failure and 
replacement scenarios. 𝑓𝑓𝑉𝑉 and 𝑓𝑓𝛩𝛩 are the probability density 
functions of wind speed and wind direction, respectively. The 
𝐸𝐸𝑂𝑂𝑂𝑂𝑖𝑖 index denotes the direct expected reduction in the 
expected outages if pole 𝑖𝑖 is replaced with a new pole. Based 
on concepts in the EOR index, the EO is introduced here as a 
new risk-based metric for each pole. The EO index is 
integrated into the objective function of the MINLP 
optimization model to estimate the number of power outages 
in a distribution system when a pole fails. The EO for each 
pole is estimated as: 



                                                                                                 Dehghani et al.: Optimal Resilience Enhancement of Aging Power Distribution Systems 

VOLUME XX, 2020 5 

𝐸𝐸𝑂𝑂𝑖𝑖 = 𝑁𝑁𝑖𝑖�𝑃𝑃𝑖𝑖(𝐹𝐹𝑉𝑉 = 𝑣𝑣,𝛩𝛩 = 𝜃𝜃,𝛤𝛤 = 𝑡𝑡) × 𝑓𝑓𝑉𝑉(𝑣𝑣)

× 𝑓𝑓𝛩𝛩(𝜃𝜃) × 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑  
(6) 

B. OPTIMIZATION MODEL 
As previously mentioned, the current study proposes a MINLP 
model to efficiently optimize the long-term resilience of 
distribution systems via maintenance planning. Due to the 
high complexity of solving MINLP problems, most existing 
algorithms are not capable of finding optimal solutions for 
large, complex problems. Thus, to rectify the computational 
complexity of a long-term optimal preventive maintenance 
planning for a system with thousands of components, two 
tactics are employed. First, a risk-based approach is used to 
group the poles and reduce the dimension of the problem. 
Second, a surrogate model is developed to estimate the 
objective function in the optimization problem. In the 
following subsections, first, the general optimization model is 
introduced. Second, two tactics for reducing the computational 
complexity are presented. Finally, the proposed MINLP 
formulation is explained. 
1) GENERAL OPTIMIZATION MODEL 
Equation (6) is used to minimize the EO for the entire system 
over the planning horizon. Using this quantity as the cost 
function, the general formulation of the optimization problem 
can be presented as: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

���𝑁𝑁𝑖𝑖�𝑃𝑃𝑖𝑖 �𝐹𝐹𝑉𝑉 = 𝑣𝑣,𝛩𝛩 = 𝜃𝜃,𝛤𝛤
𝑁𝑁𝑇𝑇

𝑗𝑗=1

𝑁𝑁𝐶𝐶

𝑖𝑖=1

= 𝑡𝑡𝑖𝑖,𝑗𝑗 − 𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘=1,…,𝑗𝑗

�𝑡𝑡𝑖𝑖,𝑘𝑘 × 𝑟𝑟𝑖𝑖,𝑘𝑘�� 

× 𝑓𝑓𝑉𝑉(𝑣𝑣) × 𝑓𝑓𝛩𝛩(𝜃𝜃) × 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑� 

(7) 

𝑠𝑠. 𝑡𝑡. 𝑟𝑟𝑖𝑖,𝑗𝑗 = 0 𝑜𝑜𝑜𝑜 1, 𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶     
𝑗𝑗 = 1, … ,𝑁𝑁𝑇𝑇 (8) 

 ��𝑟𝑟𝑖𝑖,𝑗𝑗 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖

𝑁𝑁𝑇𝑇

𝑗𝑗=1

𝑁𝑁𝐶𝐶

𝑖𝑖=1

≤ 𝑇𝑇𝑇𝑇   (9) 

 �𝑟𝑟𝑖𝑖,𝑗𝑗 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖

𝑁𝑁𝐶𝐶

𝑖𝑖=1

≤ 𝑃𝑃𝑃𝑃, 𝑗𝑗 = 1, . . . ,𝑁𝑁𝑇𝑇 (10) 

where 𝑁𝑁𝐶𝐶  and 𝑁𝑁𝑇𝑇 indicate the total number of components and 
number of planning periods in the planning horizon, 
respectively. 𝑟𝑟𝑖𝑖,𝑗𝑗  denotes a binary decision variable for 
component 𝑖𝑖 in the planning period 𝑗𝑗. This variable is zero 
when no preventive maintenance action is applied to 
component 𝑖𝑖 in the planning period 𝑗𝑗 and it becomes one 
when the component is replaced with a new one. Equation 
(9) and (10) are a constraint on the total budget of preventive 
maintenance actions and a limit on the budget per period, 

respectively. 𝑇𝑇𝑇𝑇, 𝑃𝑃𝑃𝑃, and 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖 indicate the total budget, 
budget limit per period, and the replacement cost of 
component 𝑖𝑖, respectively. In the optimization formulation, 
age of component 𝑖𝑖 is defined by 𝑡𝑡𝑖𝑖,𝑗𝑗 − 𝑚𝑚𝑚𝑚𝑚𝑚

𝑘𝑘=1,…,𝑗𝑗
�𝑡𝑡𝑖𝑖,𝑘𝑘 × 𝑟𝑟𝑖𝑖,𝑘𝑘� 

where 𝑡𝑡𝑖𝑖,𝑗𝑗 denotes the age of component 𝑖𝑖 at planning period 
𝑗𝑗 if no replacement is applied to the component. In addition, 
𝑚𝑚𝑚𝑚𝑚𝑚
𝑘𝑘=1,…,𝑗𝑗

�𝑡𝑡𝑖𝑖,𝑘𝑘 × 𝑟𝑟𝑖𝑖,𝑘𝑘� indicates the age of the pole at the most 

recent replacement. 
Solving this optimization model is computationally 

intractable for a distribution system with a large number of 
components and an extended planning horizon. Thus, two 
strategies are developed to reduce the complexity, including 
first, grouping wood poles and second, developing a 
surrogate model. 
2) GROUPING POLES 
Poles are categorized into groups to reduce the dimension of 
the optimization problem. For this purpose, poles can be 
classified into several groups based on their properties. In this 
study, the EOR index is used as the only metric for 
classification because this index incorporates all 
characteristics of poles that are significant for the risk of 
outage into one metric. Based on this index, poles with higher 
EOR are considered as more important poles in the system 
because replacing them will result in more reduction in the 
expected number of power outages of the system. Thus, 
grouping poles using EOR can categorize poles based on their 
importance in the system.  It is worth noting that the EOR 
index for each pole varies if the age of the pole changes (i.e. 
when the pole is replaced with a new one). Thus, EOR is 
evaluated for all poles in the distribution system at the end of 
the first period of the planning horizon – referred to as the 
initial EOR, here. Subsequently, poles are categorized into a 
few groups and at each time epoch, a similar maintenance 
action is applied to the poles in the same group. Based on this 
classification, each component in (7)-(10) represents a group 
of poles. Grouping poles reduces the dimension and therefore 
the complexity of the optimization problem. This assumption 
is also practical as utilities perform maintenance actions on a 
group of poles rather than maintaining individual poles 
separately [27], [28]. 
3)  SURROGATE MODEL 
Based on (7) for each time that the objective function is 
evaluated, it is required to quantify the EO for all poles for the 
entire planning periods. Moreover, the calculation of these 
expected outages requires quantification of the failure 
probability of each pole at each time epoch that is based on the 
recursive model presented in (1). Therefore, using the 
objective function in the form of (7) is significantly costly for 
optimization purposes. To overcome this limitation, a machine 
learning technique called symbolic regression [29] is adopted 
here to develop a surrogate model for the EO calculation. 
Symbolic regression generates a mathematical expression for 
a set of input and output data through combining mathematical 
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building blocks such as arithmetic operators, trigonometric 
functions, constants, and state variables. Symbolic regression 
not only searches for appropriate parameters, but also unlike 
traditional regression techniques, improves the form of 
equations using an evolutionary process [30]. 

In this study, Eureqa [31] is used to perform symbolic 
regression. To develop a surrogate model by performing 
symbolic regression, first, the EO is estimated using (6) for all 
components with all possible ages over the planning horizon. 
Although estimating the EO for all components with all 
possible ages is a time-consuming process, it is a one-time 
calculation and avoids these costly computations for every 
evaluation of the objective function during the optimization 
process. Then, a model is generated for these data where the 
inputs are component’s age (𝑥𝑥′), number of years that passed 
since the most recent replacement is applied to the component 
(𝑦𝑦′), and the initial EOR of the component (𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖). The 
output of the model is the EO for each component. It should 
be noted that here, each component represents a group of 
poles. Developing a model based on this assumption requires 
selection of a single representative value for each group’s age. 
Here, the mean value of all the poles’ ages in each group is 
used as the representative age of the group. 𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖  of each 
group is also determined as the summation of the initial EOR 
of all the poles in the group. Since the same decision is taken 
for the entire group, at each period of planning horizon, 𝑦𝑦′ 
remains the same for all poles in a group. It is worth noting 
that 𝑥𝑥′ and 𝑦𝑦′ can be the same if the initial age of all 
components in the system is zero.  
4) MINLP FORMULATION 
According to the previous section, for each component and 
period, the generated model using Eureqa returns the EO for 
that component, which is a function of the component’s age at 
that period, the total number of years passed since the most 
recent replacement of the component, and the initial EOR of 
the component. Thus, minimizing the expected number of 
power outages in the entire system over the planning horizon 
is modeled as follows: 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑟𝑟

��𝑓𝑓(𝑥𝑥𝑖𝑖,𝑗𝑗′ ,𝑦𝑦𝑖𝑖,𝑗𝑗′ ,𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑇𝑇

𝑗𝑗=1

)
𝑁𝑁𝐶𝐶

𝑖𝑖=1

 (11) 

𝑠𝑠. 𝑡𝑡. 𝑥𝑥𝑖𝑖,1 = 𝐴𝐴𝐴𝐴𝑒𝑒𝑖𝑖 ,  𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶  (12) 

 𝑥𝑥′𝑖𝑖,𝑗𝑗 = 𝑥𝑥𝑖𝑖,𝑗𝑗 + 𝑑𝑑, 𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶     
𝑗𝑗 = 1, . . . ,𝑁𝑁𝑇𝑇 (13) 

 𝑦𝑦𝑖𝑖 ,1 = 0,  𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶  (14) 

 𝑦𝑦′𝑖𝑖,𝑗𝑗 = 𝑦𝑦𝑖𝑖,𝑗𝑗 + 𝑑𝑑,  𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶     
𝑗𝑗 = 1, . . . ,𝑁𝑁𝑇𝑇 (15) 

 𝑥𝑥𝑖𝑖,𝑗𝑗 = �1 − 𝑟𝑟𝑖𝑖,𝑗𝑗−1� × 𝑥𝑥𝑖𝑖,𝑗𝑗−1′ ,  𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶    
𝑗𝑗 = 2, . . . ,𝑁𝑁𝑇𝑇 (16) 

 𝑦𝑦𝑖𝑖 ,𝑗𝑗 = �1 − 𝑟𝑟𝑖𝑖,𝑗𝑗−1� × 𝑦𝑦𝑖𝑖,𝑗𝑗−1′ ,    𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶     
𝑗𝑗 = 2, . . . ,𝑁𝑁𝑇𝑇 (17) 

 𝑟𝑟𝑖𝑖,𝑗𝑗 = 0 𝑜𝑜𝑜𝑜 1,  𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶     
𝑗𝑗 = 1, . . . ,𝑁𝑁𝑇𝑇 (18) 

 𝑥𝑥𝑖𝑖,𝑗𝑗 , 𝑥𝑥𝑖𝑖,𝑗𝑗′ ,𝑦𝑦𝑖𝑖,𝑗𝑗 ,𝑦𝑦𝑖𝑖,𝑗𝑗′ ≥ 0,   𝑖𝑖 = 1, … ,𝑁𝑁𝐶𝐶     
𝑗𝑗 = 2, … ,𝑁𝑁𝑇𝑇 (19) 

 ��𝑟𝑟𝑖𝑖,𝑗𝑗 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖

𝑁𝑁𝑇𝑇

𝑗𝑗=1

𝑁𝑁𝐶𝐶

𝑖𝑖=1

≤ 𝑇𝑇𝑇𝑇   (20) 

 �𝑟𝑟𝑖𝑖,𝑗𝑗 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑖𝑖

𝑁𝑁𝐶𝐶

𝑖𝑖=1

≤ 𝑃𝑃𝑃𝑃, 𝑗𝑗 = 1, . . . ,𝑁𝑁𝑇𝑇 (21) 

where 𝑓𝑓(𝑥𝑥𝑖𝑖,𝑗𝑗′ ,𝑦𝑦𝑖𝑖 ,𝑗𝑗′ ,𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖) in (11) denotes the generated 
regression model using symbolic regression, which returns the 
expected number of power outages for each component per 
period. 𝑥𝑥𝑖𝑖,𝑗𝑗′ ,𝑦𝑦𝑖𝑖,𝑗𝑗′  and 𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  are the age of component 𝑖𝑖 at the 
end of period 𝑗𝑗, the number of years from the most recent 
replacement of component 𝑖𝑖 to the end of period 𝑗𝑗, and the 
initial EOR of component 𝑖𝑖, respectively. In (12)-(19), 𝑥𝑥𝑖𝑖,𝑗𝑗, 
𝑦𝑦𝑖𝑖 ,𝑗𝑗, and 𝑑𝑑 represent the age of component 𝑖𝑖 at the beginning 
of period 𝑗𝑗, the total number of years from the most recent 
replacement of component 𝑖𝑖 to the beginning of period 𝑗𝑗, and 
the duration of each period (in years), respectively. The rest of 
the decision variables and parameters in this optimization 
problem were described previously. 

C. SOLUTION ALGORITHM 
As reported by Neumann et al. [32], several global solvers are 
available to deterministically solve non-convex MINLP 
problems. These solvers include ANTIGONE [33], BARON 
[34], Couenne [35], LINDO [36], and SCIP [37]. Considering 
the successful application of the LINDO solver for MINLP 
maintenance scheduling problems (e.g. [38], [39]), herein, this 
solver is selected to tackle the minimization problem in 
Section II.B. The LINDO solver uses convex relaxations and 
reformulations within a Branch and Bound (BB) framework 
to solve non-convex problems [40].  

The BB algorithm generally solves MINLP problems by 
neglecting integer restrictions of the problem. Neglecting 
these restrictions converts the MINLP to a nonlinear 
programming problem. Subsequently, the BB algorithm 
solves the resulting nonlinear programming problem and 
considers the solution of this new problem as a valid lower 
bound for the original MINLP problem. If the solution 
satisfies the integer restrictions, BB takes it as the optimal 
solution of the original problem. Otherwise, the nonlinear 
programming problem, which is called a parent node, is 
branched into two new nonlinear programming sub-problems 
that are called child nodes. The process of branching continues 
until two scenarios occur. First, if one of the sub-problems 
provides a solution that satisfies the integer constraints, BB 
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returns it as a valid upper bound. Second, if one of the nodes 
becomes infeasible or it returns an optimum solution worse 
than the upper bound, the node is pruned [40], [41]. 

III. NUMERICAL RESULTS 
The objective of this paper is to present an optimal preventive 
maintenance planning framework to efficiently enhance the 
long-term resilience of power distribution systems. To this 
end, the proposed methodology in Section II is applied to a 
large, realistic distribution system located in the southern US. 
Results of the proposed methodology is compared to the 
common practice (NESC guideline [7]) for the replacement of 
poles. 

A. CASE STUDY 
The studied distribution system is assumed to be located in 
Harris County, Texas, US. The distribution system consists of 
7051 wood poles, 115 protective devices and three 
substations. Height, span length, and class of poles are 
different, while the age of all poles is considered to be 25 
years. Poles’ height varies between 7.62 m and 21.34 m and 
their span length ranges from 4.71 m to 283.76 m. This 
distribution network includes poles of class one to seven; 
however, most of the poles are class three and five. A sketch 
of the distribution system is presented in Fig. 1. More 
information about this network including its topology can be 
found in [42]. 

 

FIGURE 1.  The studied distribution system (courtesy of Darestani 
and Shafieezadeh [42]). 

B. DEVELOPED SURROGATE MODEL 
As mentioned in Section II.B, poles are categorized into a few 
groups to reduce the computational cost of the optimization 

problem. For this purpose, the 7051 poles are categorized into 
15 groups with the equal size of 470 (6.7% of the poles in the 
system), except for one group that includes 471 poles. The 
groups are classified based on their initial EOR where groups 
1 and 15 have the lowest and highest initial EOR, respectively. 
As mentioned previously, the initial EOR is the EOR of poles 
at the end of the first period of the planning horizon. This index 
serves as an objective measure for grouping the poles because 
it incorporates all characteristics that are key to the risk of 
outage. The optimization is performed to minimize the total 
number of expected power outages for a long-term planning 
horizon. Herein, the total planning horizon is considered to be 
60 years, which is divided into 20 periods of three years. This 
discretization allows for optimal planning for the long horizon 
of 60 years. The outcome of the optimization specifies the 
groups that are needed to be replaced in each period. The 
three-year period also offers the utility the flexibility to 
perform the replacement of the poles in the specified groups 
in that period.  A second level optimization or prioritization 
can be applied to the results of this optimization to determine 
the optimal short-term planning schedule for the replacement 
of the individual poles in each group per period. However, the 
second level optimization is out of the scope of this study since 
here the focus is on long-term optimal scheduling.  

As noted earlier in Section II.B, a surrogate model is 
developed to reduce the complexity of the optimization. Since 
calculation of the EO as part of the objective function is 
computationally very demanding during the course of 
optimization, the surrogate model is trained and constructed 
prior to the optimization and subsequently replaces the direct 
calculation of the objective function. For this purpose, the 
expected outages of all possible replacement scenarios for 
each group during the entire planning horizon is evaluated. 
Subsequently, the evaluated expected outages are used to 
develop the regression model using symbolic regression 
method. The developed model has the following form: 

𝑓𝑓(𝑥𝑥′,𝑦𝑦′,𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) =  33.7203 × 𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑦𝑦′  

−
0.05315 × 𝑦𝑦′ × (𝑥𝑥′)4

𝑙𝑙𝑙𝑙𝑙𝑙(𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖) −  5.3624
 

−  32.0835 × 𝑥𝑥′ × 𝑦𝑦′         

(22) 

where 𝑥𝑥′, 𝑦𝑦′ and 𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖𝑖𝑖𝑖𝑖 are the age of the group, number of 
years from the most recent replacement of the group, and 
initial EOR of the group, respectively. This model predicts the 
expected number of power outages associated with a group 
given the specific 𝑥𝑥′ and 𝑦𝑦′ of that group. 

Fig. 2 shows a comparison between the predicted expected 
outages based on the generated model in (22) and the true 
evaluated expected outages based on (6). According to Fig. 2, 
a point that falls into the lower region of 𝑥𝑥 = 𝑦𝑦 indicates 
overestimation by the surrogate model compared to the actual 
EO, while a point in the upper region of 𝑥𝑥 = 𝑦𝑦 represents an 
underestimated EO by the generated surrogate model. Fig. 2 
shows that the developed model is able to properly estimate 
the expected outages. Noting the logarithmic scale of the plot, 
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it is seen that estimated expected outages by the surrogate 
model have higher deviations from the true EOs at smaller 
values. However, the overall trend of the true EO is captured 
properly for this range and especially for larger expected 
outages, which contribute considerably to the cost function. 
More accurate models can be obtained using symbolic 
regression, but with more complex forms which hinder the 
application of MINLP solvers.  

 
 

FIGURE 2.  Comparison of predicted and true expected number of 
power outages using symbolic regression (SR). 

C. OPTIMAL STRATEGY 
The optimal preventive maintenance strategy is obtained after 
applying the BB algorithm to the presented MINLP model. In 
this study, the optimal strategy is obtained for three cases that 
are distinct in terms of limits on budget per period (i.e., 𝑃𝑃𝑃𝑃). 
In all three cases, the total budget (i.e., 𝑇𝑇𝑇𝑇) constraint is the 
same and defined to have a maximum of 7051 pole 
replacements during the entire planning horizon. The 
considered three cases include: (a) no constraints on 𝑃𝑃𝑃𝑃, (b) 
maximum of three groups can be replaced in each period, and 
(c) maximum of two groups can be replaced per period. In the 
rest of this paper, the optimization problems with the 
constraints in case (a), (b), and (c) are called Optimization 1, 
Optimization 2, and Optimization 3, respectively. Results of 
these optimization problems are presented in Fig. 3. 
According to this figure, in all three cases, all groups are 
replaced one time during the planning horizon. Although all 
groups are allowed to be replaced more than once, none of the 
groups is replaced twice or more because there is a total budget 
constraint that allows a total 7051 pole replacements during 
the entire decision horizon. Thus, if one group is replaced 
twice, there will be another group that cannot be replaced. This 
observation shows that the age of the groups plays a more 
significant role in the total life-cycle resilience of the system 
compared to the initial EOR of the groups. To elaborate more, 
the maximum life-cycle resilience will be achieved when all 
groups are replaced once rather than a case in which groups 

with high initial EOR are replaced twice and groups with low 
initial EOR are not replaced. In the latter case, groups that are 
not replaced will have a high age toward the end of the 
planning horizon, which consequently leads to a large 
reduction in the total life-cycle resilience of the system. One 
important observation in Fig. 3(a) is that 10 groups are 
replaced at the end of periods 6 and 7, which indicates that 
many poles need to be replaced between 18 to 21 years after 
the beginning of the planning horizon. Since the age of all the 
poles is considered to be the same (i.e. 25 years) at the 
beginning of the planning horizon, their optimal replacement 
time is close. Moreover, it is shown in Fig. 3(a) that generally 
groups with higher initial EOR are replaced before period 8, 
while the rest of the groups are replaced in subsequent periods. 
This trend highlights the importance of the EOR index in the 
order of replacements. However, groups 12 to 15 with higher 
initial EOR are replaced after groups 4 to 11. Thus, the EOR 
index cannot be the only criterion for determining the order of 
replacements. This is because the distribution system is 
required to be resilient over the entire planning horizon and 
replacing all the critical components in early periods can result 
in a large resilience reduction toward the end of the planning 
horizon. Therefore, there is a trade-off between replacing 
earlier to enhance the resilience of the system sooner and 
replacing later to improve the resilience toward the end of the 
planning horizon. Comparing optimal strategies for all three 
optimization cases shows that groups 10 to 15 that have the 
highest initial EOR should be replaced at the end of periods 6 
to 8, while groups 1 to 3 with the lowest initial EOR can be 
replaced after the end of period 10. This observation highlights 
that more critical poles need to be replaced before the age of 
50 to enhance the life-cycle resilience of the distribution 
system, whereas the replacement of less critical poles can be 
postponed if there exists a budget limit per period. 
 

 
(a) 

 
(b) 
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(c) 

FIGURE 3.  Optimal preventive maintenance planning (a) 
Optimization 1 (b) Optimization 2 (c) Optimization 3 

D. RESILIENCE ASSESSMENT 
This section evaluates the expected resilience of the 
distribution system subject to hurricanes. Hurricane resilience 
for a power distribution system is the capability of the system 
to absorb the imposed shock from hazard-induced loadings 
and to recover to a functional state quickly. It is important to 
assess the hurricane resilience probabilistically since in the 
life-cycle of the system, both hurricane incidents and pole 
failures are uncertain. In this study, a probabilistic resilience 
assessment methodology developed by the authors [9] is 
adopted. Here, the expected life-cycle resilience of the power 
distribution system with the optimized preventive 
maintenance strategies (i.e. results of Optimization 1, 2, and 
3) is compared to the system’s resilience when the NESC 
maintenance strategy is applied. To ensure a fair comparison 
between the NESC strategy and results of optimization, the 
same budget constraints in the optimization problems are 
applied to the NESC strategy. The NESC-based preventive 
maintenance strategies corresponding to Optimization 1, 2, 
and 3 are called NESC 1, NESC 2, and NESC 3, respectively. 
As mentioned previously, NESC requires replacing poles 
when their strength has fallen below 67% of their initial 
strength [7]. This maintenance strategy is feasible if there is no 
budget constraint. In this study, in each time epoch, when the 
total number of required pole replacements by NESC exceeds 
the permissible number of replacements based on periodic 
budget constraints, only the permissible number of poles with 
the highest strength reduction among all the poles are replaced. 
In order to apply the NESC maintenance strategies, it is 
necessary to estimate the residual strength of poles to identify 
the poles that should be replaced per period. For this purpose, 
the age-dependent probabilistic capacity model of poles 
proposed by Shafieezadeh et al. [43] is adopted. The adopted 
model estimates the residual strength of Southern Pine wood 
poles against extreme wind hazards as a function of age. 
According to this model, the residual strength of poles at each 
age follows a lognormal distribution. Using this model, the 
residual strength of poles as a function of age is generated and 
the results are presented in Fig. 4.  

 

FIGURE 4.  Residual strength of the poles as a function of age. 

 
Fig. 5 shows the cumulative number of pole replacements 

by each strategy and Fig. 6 presents the resilience of the power 
distribution system during the planning horizon. As it can be 
seen in Fig. 5, the total number of replacements is equal for all 
strategies because the same constraint for the total budget is 
applied to all cases. It is shown in Fig. 5 that all strategies 
require performing replacements in a short period of time. As 
previously explained, this trend happens because of the 
assumption that all the poles have the same age at the 
beginning of the planning horizon. The proposed 
optimization-based maintenance strategies replace poles 
earlier than the NESC strategies.  Observing the long-term 
resilience (Fig. 6), the optimization-based strategies 
considerably outperform the NESC strategies. This result 
highlights the significance of minimizing the expected number 
of power outages in optimal preventive maintenance 
scheduling for increasing the life-cycle resilience. When no 
periodic budget constraint is considered, the applied NESC 
strategy (i.e., NESC 1) results in a minimum resilience of 
98.23%, however, applying the proposed optimization-based 
strategy (i.e., Optimization 1) increases the minimum 
resilience to 99.39%. The achieved 1.16% enhancement in the 
minimum resilience of the distribution systems is significant. 
According to previous studies on economic loss of engineered 
systems (e.g., [44]–[46]), such improvements in the annual 
expected resilience of power grid systems can save millions of 
dollars per year. For example, Ouyang and Dueñas-Osorio 
[45] showed that for the power system in Harris County, 
Texas, US, a 0.038% decrease in the annual resilience can 
incur economic losses as high as $83 million dollar per year. 
These loss estimates and the observed differences in the life-
cycle resilience of considered cases highlight the significance 
of the proposed optimization model for power distribution 
systems. According to Fig. 6, considering optimization-based 
strategies, there is a noticeable increase in the resilience over 
the most of the planning horizon. However, in a few years 
toward the end of the planning horizon, applying the NESC 
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strategies to the system leads to a slightly higher annual 
resilience. This is because in the NESC maintenance 
strategies, the poles are replaced toward the end of the time 
horizon, whereas in the optimization-based maintenance 
strategies, these poles are replaced earlier. Subsequently, 
following the optimization-based strategies, the poles will be 
much older than the poles in the NESC strategies at the end of 
the planning horizon, thus, it is expected to observe lower 
resilience. However, in the optimization-based strategies, the 
resilience enhancement in all years of the service life is taken 
into consideration, thus, following the optimization process, 
the system remains more resilient over most of the service life. 
Furthermore, if the minimum or average value of life-cycle 
resilience is considered, the optimization-based strategies 
significantly outperform the NESC strategies. 

 
 

FIGURE 5.  Impacts of maintenance strategies on the cumulative 
number of pole replacements throughout the planning horizon. 

 
 

FIGURE 6.  Impacts of maintenance strategies on the resilience of 
the power distribution system throughout the planning horizon. 

 

VII. CONCLUSION 
In this study, a mixed-integer nonlinear programming 
(MINLP) model is proposed to enhance the long-term 
resilience of power distribution systems based on an optimal 
preventive maintenance planning. Distribution systems are 
subjected to probabilistic multi-occurrence hurricane events 
during their service life. To determine the optimal 
maintenance strategy, a novel risk-based objective function is 
integrated into the MINLP problem. This risk-based measure 
is the total expected number of power outages in a distribution 
system throughout the entire planning horizon. The expected 
outage of a pole is computed as the product of the probability 
of failure of that pole and the number of power outages that 
the system would sustain if the pole fails. The proposed 
MINLP model is applied to a realistic power distribution 
system for determining an optimal preventive maintenance 
planning for the system. 

To investigate the effectiveness of the developed 
methodology for resilience enhancement, the MINLP-based 
preventive maintenance strategies are determined and applied 
to the system. Then, the hurricane resilience of the system is 
estimated throughout the long planning horizon. The results 
are compared to the hurricane resilience of the system when 
the common maintenance practice set by the National Electric 
Safety Code (NESC) is applied to the system. The results 
reveal that the optimization-based preventive maintenance 
strategies significantly improve system resilience compared to 
the NESC preventive maintenance strategies. Applying the 
NESC strategies can only increase the resilience at the 
beginning and end of the planning horizon; however, when the 
preventive maintenance planning is determined by 
optimization, the system remains resilient over most of its 
service lifetime. Therefore, the proposed approach can 
significantly enhance the resilience of distribution systems, 
and consequently prevent considerable direct and indirect 
socio-economic losses. 
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