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ABSTRACT ARTICLE HISTORY
In many application areas, data are collected on a count or binary response with spatial covariate infor- Received September 2018
mation. In this article, we introduce a new class of generalized geoadditive models (GGAMs) for spatial Accepted January 2019

data distributed over complex domains. Through a link function, the proposed GGAM assumes that the

mean of the discrete response variable depends on additive univariate functions of explanatory variables KEYWORDS

and a bivariate function to adjust for the spatial effect. We propose a two-stage approach for estimating Bivariate splines; Count data;
R X L Local polynomial; Penalty;

and making inferences of the components in the GGAM. In the first stage, the univariate components Polynomial splines;

apd t.he geogrgphlcal ‘component in the_model are gpproxmated via univariate polynomlelxl splines a_nd Triangulation. '

bivariate penalized splines over triangulation, respectively. In the second stage, local polynomial smoothing

is applied to the cleaned univariate data to average out the variation of the first-stage estimators. We

investigate the consistency of the proposed estimators and the asymptotic normality of the univariate

components. We also establish the simultaneous confidence band for each of the univariate components.

The performance of the proposed method is evaluated by two simulation studies. We apply the proposed

method to analyze the crash counts data in the Tampa-St. Petersburg urbanized area in Florida. Supplemen-

tary materials for this article are available online.

1. Introduction and living conditions for the population survey. Rural areas
were excluded from this study, as their population densities
often drop to nearly zero, thus, it is not meaningful to analyze
their crash data. The frequency of crashes off the state highway
system within each census block group in the year of 2014
were collected from the Florida Department of Transportation;
see Figure 1(b). In addition, explanatory variables, including
vehicle miles traveled, demographic and commuting variables,
were collected from the Florida Department of Transportation
and U.S. Census Bureau, and many of them exhibit pronounced
nonlinear relationships with the response variable.

To analyze such kind of data, researchers face at least three

Regression methods are commonly used in statistics to examine
associations between the response and the set of explanatory
variables. When the relationship between the variables is com-
plex and cannot be easily modeled by specific linear or nonlin-
ear functions, a generalized additive model (GAM) provides a
flexible regression relationship. GAMs were first introduced by
Hastie and Tibshirani (1987, 1990), which assume that the mean
of the discrete response variable depends on an additive set of
predictors through a link function. Since then GAMs have been
widely used in many areas. The focus of this work is on GAM for

spatial data randomly distributed over a particular geographical
region. main challenges. First of all, traditional regression methods

To motivate the study, consider the analysis of road traffic often assume the data are distributed on a regular sampling grid
crashes, which have been one of the major sources of fatalities ~ OVeT @ rectangular domain, however, in this study and many
and injuries in the United States. Count data models are often other similar cases in spatial studies, observations are dense
used to identify factors significant to crash frequencies, where ~at some locations while sparse at others, and the shape of the
the influence of demographical and socioeconomic conditions ~domains is complicated or even shows gaps and holes (see Ram-
on the crash occurrence and spatial patterns of crashes can ~say 2002; Wood, Bravington, and Hedley 2008). Conventional
assist decision-makers in implementing appropriate road safety ~ smoothing tools suffer from the problem of “leakage” across the
management actions (Miaou, Song, and Mallick 2003; Liu and complex domains, which refers to the poor estimation over diffi-
Sharma 2017, 2018). Figure 1(a) shows the Tampa-St. Peters-  cult regions by smoothing inappropriately across boundary fea-
burg urbanized area in Florida, which is consisted of 1761 tures, such as peninsulas. The second challenge is how to adjust
census block groups. A census block group is a geographical unit ~ for the spatial effect and provide measures of the nonlinear effect
with homogeneous population characteristics, economic status, ~ of covariates and assess the impact of uncertainty. In general,
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(a) Tampa-St. Petersburg urbanized area

Figure 1. Tampa-St. Petersburg urbanized area and its census block groups.

inference for GAM for spatial data is underdeveloped and often
made based on ad hoc methods with little understanding of
the statistical properties. Last but not least, the computational
issue usually is a big challenge for spatial data analysis, as the
sample size tends to be large due to the development of remote
sensing technology and automated sensor networks. Thus, there
is a great need of methodology that is practical, computationally
efficient and theoretically reliable.

To address the above-mentioned challenges, in this article we
introduce a class of generalized geoadditive models (GGAMs),
a synthesis of geostatistics and GAMs, for spatial data ran-
domly distributed over irregular domains. We aim at developing
the corresponding estimation and inference procedure for the
GGAMs. In the literature, there are two main streams of spatial
regression modeling approaches to include spatial information
into the model. The first approach adds spatial weights or spatial
correlation into a regression modeling, for example, the spa-
tial autoregressive (SAR) model or conditional autoregressive
(CAR) model (Lee 2004; Zhu, Huang, and Reyes 2010). The
second approach is based on some smoothing techniques, for
example, kernel, wavelet, or spline smoothing, Ramsay (2002)
use a deterministic smooth surface function to describe the
variations and connections among values at different locations.
Kammann and Wand (2003) combine the kriging method with
the penalized spline regression, and suggest a mixed model
representation for model fitting. In our paper, we take the second
approach, where the effect of explanatory variables are modeled
with additive univariate functions and the spatial effect is mod-
eled via a bivariate function.

In the proposed GGAM, when the spatial component is
ignored, the model becomes the traditional GAM since all the
components left in the model are univariate functions. There
have been a number of proposals for fitting the GAMs, for
instance, the spline method of Stone (1986), Xue and Liang
(2010), and Wang et al. (2011); the kernel method of Yu, Park,
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(b) Crashes within individual census block group

and Mammen (2008), Yang, Sperlich, and Hérdle (2003), and
Liang et al. (2008); and the two-stage methods of Horowitz and
Mammen (2004), Wang and Yang (2007), and Liu, Yang, and
Hirdle (2013). For estimating bivariate functions defined over
rectangular domains, there are several popular smoothing tools:
kernel, wavelet, bivariate P-splines (Marx and Eilers 2005) and
thin plate splines (Wood 2003). In the past three decades, there
hasbeen a great interest in developing the smoothing techniques
which can handle irregular domains with complex boundaries
(see, e.g., Ramsay 2002; Wang and Ranalli 2007; Wood, Braving-
ton, and Hedley 2008; Sangalli, Ramsay, and Ramsay 2013; Lai
and Wang 2013; Miller and Wood 2014; Wang et al. 2019). In
this paper, we approximate the bivariate function of the spatial
effect using the bivariate splines (smooth piecewise polynomial
functions over a triangulation of the domain of interest) over
triangulations in Lai and Schumaker (2007). We prefer the
bivariate penalized splines (BPS) due to their (i) convenient
representations with flexible degrees and various smoothness,
(ii) computational efficiency, and (iii) great ability of handling
the sparse designs.

Although the above-mentioned spline smoothing seems to
be incredibly useful, it provides only convergence rates of the
estimators but no asymptotic distributions unless we assume the
errors are iid Gaussian, so it is difficult to assign any measure
of confidence to the estimators. The simultaneous confidence
bands (SCBs) is a powerful tool to evaluate and visualize the
variability of the estimators and to make global inferences (see
Wang and Yang 2009; Krivobokova, Kneib, and Claeskens 2010;
McKeague and Zhao 2006; Wiesenfarth et al. 2012; Zheng et al.
2016 for some related theory and applications of SCBs). To
develop the SCBs for each individual component function of the
explanatory variables in GGAMs, we propose a one-step spline
backfitted local polynomial estimator, referred to as the SBL
estimator. In the first stage, we use spline smoothers to approx-
imate the univariate additive components and the geographical



component. In the second stage, local polynomial smoothing is
then applied to the cleaned univariate data to average out the
variation of the first-stage estimators and obtain SCBs.

Under some regularity conditions, we obtain the asymptoti-
cally normal distribution of the SBL estimators and establish the
SCBs for the functions of the covariates. Our approach merges
the advantages of three smoothing methods (polynomial spline,
bivariate spline, and local polynomial) that balance each other
out. It enables the spline smoothing to act as an efficient pilot,
quickly guiding the fitting toward good solutions. In addition, it
allows us to keep the asymptotically normal distribution of the
local polynomial estimator, without its computational burden.
Furthermore, it properly accounts for all covariate information
and spatially improves the estimation accuracy. The entire fit-
ting and inference procedure can be implemented easily and
efficiently using standard methodology and software.

The rest of the article is structured as follows. In Section 2,
we describe our model, then we give a brief review of univariate
splines and bivariate splines over triangulations and introduce
the penalized quasi-likelihood estimation method. Section 3
provides the SCBs for the functions of the covariates. Section 4
introduces how to implement the proposed procedure in prac-
tice. In Section 5, we conduct simulation studies to evaluate the
finite sample performance of the proposed method. Section 6
illustrates our method using a real dataset. Some concluding
remarks are given in Section 7. The regularity assumptions are
deferred in Appendix A. Proofs and other technical details are
given in the online supplementary materials.

2. Methodology
2.1. Model Setup

In the following, let S; = (Si1, Si2) T be the location of ith point,
i = 1,...,n, which ranges over a bounded domain 2 C R2 of
arbitrary shape, for example, a domain with polygon boundary.
Let Y; be the response variable and X; = (Xj;,. .. ,Xip)T be the
explanatory variables at location §;.

We assume that the conditional density of Y given (X, S) =
(x,5) belongs to the exponential family fyxs(y|xs) =
exp [yE (x,8) — B{& (x,8)} +C (y)], for known functions
B and C, where £ is the so-called natural parameter, and
is related to the unknown mean response by u (x,8) =
E(Y|IX=x,S=s) = B {£(x,s)}. In this article, u (x,s) is
modeled via a link function g in the following additive form

p
gl 9l =Y Brlw) +a(s), (1)
k=1
where B = (B1,... ,ﬂp)T are unknown univariate smooth

functions, and «(-) is an unknown bivariate smooth function.
Ifvar(Y|X=xS=5s) = 02V {u(xs)} for some known
positive function V, then estimation of the mean can be
achieved by replacing the conditional log-likelihood function
log{fyix,s (7| x.s)} with a quasi-likelihood function £ (¢,y),

which satisfies V¢ (ﬁ\)’) = o'g;/?ﬂ)'

is based on a nonparametric quasi-likelihood approach as
described below.

Our estimation method
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2.2. Spline Approximation

In the first stage, we approximate each of the univariate additive
components in the model via univariate polynomial splines.
The geographical component is approximated using bivariate
penalized splines over triangulation, which is proved to be
efficient to deal with data distributed on irregular domains with
complicated boundaries. Below we start with a brief review of
univariate splines and bivariate splines.

2.2.1. Univariate Polynomial Spline Approximation

Suppose that the covariate X} is distributed on a compact
interval [ak, bil, k = 1,...,p. We approximate the univariate
components {Bx (~)}£:1 in (1) by polynomial splines for
their simplicity in computation. For any k = 1,...,p, let
vk be a partition of [ag, bx] with J, interior knots, where
v = {ak = Uk < Ukl < -+ < UkJ, < UJ,+1 = bk}. The
polynomial splines of order ¢ + 1 are polynomial functions with
o-degree (or less) on intervals [vk, j, Ukjr1)j = 0o Ju — 1,
and [Uk,]n,Uk’]n+l], and have ¢ — 1 continuous derivatives
globally. Let U = Z/If([ak,bk],vk) be the space of such
polynomial splines, and U,? = {u € Uy : Eu(Xy) = 0}. This
ensures that the spline functions are centered (see Xue and Yang
2006; Wang and Yang 2007; Wang et al. 2014).

2.2.2. Bivariate Spline Over Triangulation

In this article, the spatial domain €2 is a polygon of arbitrary
shape, which can be partitioned into finitely many triangles.
According to Lai and Schumaker (2007), a collection A =
{t1,..., TN} of N triangles is called a triangulation of Q =
Ufi 1 Ti provided that any nonempty intersection between a pair
of triangles in A is either a shared vertex or a shared edge. Given
atriangle T € A, let R; be the radius of the largest disk contained
in 7, and let |t| be the length of the longest edge. Define the
shape parameter of 7 as the ratio 7; = |7|/R;. Note that when
7, is small, the triangles are relatively uniform in the sense that
all angles of triangles in the triangulation A are relatively the
same. Denote the size of A by |A| := max{|t|,T € A}.

For a triangle with nonzero area T € A and any fixed point
v € RZ, let by, by, and b3 be the barycentric coordinates of v
relative to . The Bernstein basis polynomials of degree d > 1

Tbitbs, i+
j+ k = d. For any integer d > 1 and triangle 7, let P4(7) be
the space of all polynomials of degree less than or equal to d on
7. Then, any polynomial { € P4(t) can be written as {|; =
Zi+j+k:d yi]?kB;}{d, where the coefficients y . = {yi;k, i+j+k=
d} are called B-coefficients of Z.

For any integer r > 0, let C"(2) be the collection of all rth
continuously differentiable functions over 2. Given a triangula-
tion A, we define the spline space of degree d and smoothness
rover AasSi(A) = {¢ € C'(Q) : ¢ € Py(r), T € A}. Let
{Bm}mem be the set of bivariate Bernstein basis polynomials for
S)(A), where M is an index set of [M| = N(d + 1)(d + 2)/2
basis functions. Then we can represent any function ¢ € S/;(A)
using the following basis expansion

relative to triangle t is defined as B;.”j;(d(v) =

£)= Y Bu(S)ym =BTy, )
meM
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where T = (Y, m € M) is the spline coefficient vector. For
smooth join between two polynomials on adjoining triangles,
we need to impose some linear constraints on the spline coeffi-
cients p in (2). To be more specific, we assume that y satisfies
Wy = 0, where W is the matrix that collects the smoothness
conditions across all the shared edges of triangles. An example
of ¥ is given in Section B.2.1 in the supplementary materials.
The above bivariate spline basis can be easily constructed via
the R package BPST (Wang et al. 2019).

2.3. Penalized Quasi-Likelihood Estimators

In data-sparse regions, penalized splines provide a more con-
venient tool for data fitting than the unpenalized splines. As
discussed in Lai and Wang (2013), the number of triangles for
bivariate penalized smoothing is not essential when the number
is above some minimum depending upon the degree of the
splines. Another advantage is that when we have regions of
sparse data, BPS can be considered as a direct ridge regression
or shrinkage type method which can alleviate multicollinearity
issue. Thus, to reduce complexity in triangulation selection and
enhance the performance of bivariate splines in data fitting, we
exploit the BPS in the quasi-likelihood of the model below.

To define the penalized spline method, for any direction s;,
j=1,21et Vg.f (s) be the gth order derivative in the direction s;
at the point s = (s1,52). Let

Ef) = / (V22 42V Vo + (V2 dsidsy. (3)
Q

To fit the GGAM, we seek a bivariate function «(-) and univari-
ate functions Bi(-), k = 1,...,p, that maximize the following
penalized quasi-likelihood function

n p
izzle |:g_l {Z,Bk(xik) +a (Si)} , Yi:| - %5(00- (4)

k=1

Directly solving this penalized maximization is challenging
since it involves unstructured nonparametric functions which
are subject to the “curse of dimensionality” To overcome
this difficulty, we consider some smoothing method. Under
some suitable smoothness conditions, f¢’s and o can be well
approximated by the univariate spline basis functions and the
Bernstein basis polynomials introduced in Sections 2.2.1 and
2.2.2, respectively.

Let uyj(xk), j € J be the original B-spline basis functions
for the kth covariate, where J is the index set of the basis
functions. Let ugj(xk) = ukj(xx) — %ukl(xk), Ui (i) =

gy (%K)

1. Suppose the nonlinear component can be well approxi-
mated by a spline function so that, for all xx € [ak, bkl,

€ J, then EUj(Xy) = 0 and EU2 Xp) =

Brxe) ~ S 0Uk() = U (xi)Bx, where Ug(xi) =
(Ukl(xk),---xUk,}n+g+1(xk))T and 0y = (le,--u@k,},,+g+1)T
are a vector of coefficients. Let S;,x2 = {(Si1,S2)}}, be
the location design matrix and X;xp, = {(Xi1,...,Xjp)},;
be the collection of all covariates. For i = 1,...,n, let
BIT = {Bu(S;)),m € M)}, and denote B = (By,...,B,)"

the n x | M| evaluation matrix of Bernstein basis polynomials.

Then maximizing the penalized quasi-likelihood function in
(4) is equivalent to minimizing

n p
-> ¢ [g‘l !Z U (Xi) "0 + B(s,-fy} , Y,}
i=1 k=1
1
+ EAyTPy subjectto Wy =0, (5)

where P is the block diagonal penalty matrix satisfying that
y Py = E(By). See Section B.2.2 in the supplementary
materials for the formula used to construct P. It is worth noting
that according to Assumption (A3), the optimization problem
in (5) has a unique solution.
To solve the constrained minimization problem (5), we first
remove the constraint via the following QR decomposition:
T=QR = (Q Q) (ﬁ;), where Q is an orthogonal matrix
and R is an upper triangle matrix, the submatrix Q is the first
r (r is the rank of matrix ¥) columns of Q, and R, is a matrix of
zeros. We reparametrize using y = Quy* for some py*, then it
is guaranteed that Wy = 0. The problem (5) is now converted
to a conventional penalized minimization problem without any
restriction

" (6,y%)
n P
= - Zﬂ [gl {ZUk(Xik)Tok + B(Si)Tsz*} , Y,}
i=1 k=1
A
+ 27T QG PQy". ©6)

For practitioners, the construction of P and Q; can be carried
out via the R package BPST (Wang et al. 2019).

Let § and 7 y* be the minimizer of (6), that is, (0 7Y =
arg min Lr (0,y*), then, the univariate spline estimator of
B (x) and bivariate spline estimator of a(s) are

Br(x) = U(x) 0k, @) =B(®) P = Y Bu(8)Pim;
meM
where the estimated spline coefficients are ¥ = {V,,,m €
MY =

We ﬁrst estabhsh the L, convergence rate of the spline esti-
mators ﬂk (xx) and @(s). For any Lebesgue measurable function
¥ (u) on a domain D, for example, D = [ag, bx] or Q C R?, let
Ivli, = /p ¥*(wduand H = J; .

Theorem 1. Under r Assumptions (A1)-(A6) in Appendix A, the
spline estimators ,Bk (xx) and a(s) satisfy that

p
> 1Bk — Bell, + 1@ — el

k=1

1/2
—oas{(H—1/2+|A|—1><°g ) + Hot!

A
Ad+l IR
+ 14| +n|A|4}

The proof is provided in the supplementary materials.



3. Two-Stage Estimator and Simultaneous Confidence
Band

It is very difficult to derive the asymptotic distribution for the
spline estimators introduced in Section 2, so no measures of
confidence can be assigned to these estimators. To represent the
uncertainty in the estimate of the nonlinear effect of the covari-
ates, we propose the SCB for Bi’s via the backfitting method
using spline estimators obtained in Section 2 as pilot followed
by local polynomial estimators.

The basic idea is that for every k = 1,. .., p, we estimate the
kth additive function Bk () in model (1) nonparametrically by
assuming that other nonparametric components {8y (-) : k' #
k} are known. The problem turns into a univariate function
estimation problem. Denote K a continuous kernel function,
and let Kj, (1) = K(u/h)/hbe a rescaling of K, where h is usually
called the bandwidth. This leads to an “oracle” smoother //3\,‘(’ of
Bk, where

(B (), BY (1))

= arg max Z l |:g1 {ao + a1 (Xik — xk) + a(S))

p
+ 3 B ) {5 Yi | Kiy (X — x5
K £k

Asymptotic properties of smoothers of ,B\;{’(xk) can be easily
established based on these assumptions. We say x € xx =
[ak, bk] is a boundary point if and only if x = ay + chi or
x = by — chy for some 0 < ¢ < 1 and an interior point
otherwise. Let xj, be the interior of the support . Let v, =
f u?K (u) du and f; be the probability density function of Xj.
Forj = 1,2, let pj(x) = {dg‘l(x)/dx}]/ {UZV(g_l(x))} =
[{g’(g*l(x))}jcer(gfl(x))]_1 . For the quasi-likelihood func-
tion £{g™" (0, ) let q1(x,y) = F:{g™" (1), y} and g2(x,y) =

2

%E{g_l(x),y}. It is clear that q1(x,y) = {y — g_l(x)},ol(x)
and 2(x,y) = {y — g '(®)}p{(x) — p2(x) hold. Let C(K) =
[ K'(w*du/ [ K(u)*du, a, = /—2log(h), and for any o €
(0, 1), denote the quantile

Qu(a) =ay + a;l[log{\/ C(K)/2m} — log{—log /1 — a}].

Theorem 2 shows the pointwise and uniform asymptotically
normality of the “oracle” estimator 8] (xx).

Theorem 2. Suppose Assumptions (Al)-(A4) and (A7) in
Appendix A hold. Then, for any k = 1,...,p,xx € xp,, if
nhi = 0O(1), we have, as n — o0,

By (xk)

oo () [E;f (xk) — Br(xk) —

and if Assumptions (A1)-(A4), (A7), and (A8)(ii) are satisfied,
then

lim P {
n—oo

where 02, (xi) = n 'l E[pa{Xh_, BXp) + a(S)} Xk =
xk]ilfk(xk)_1 [ K?(u)du.

vzhi:| — N(0,1),

sup Ogﬁ(xk)lﬁ;f(xk) — Br(xp)| < Qhk(a)} =1—a,

XK€ Xy

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 765

Since the true functions B¢’s and « are unknown, we replace
those with the pilot estimators Bx and @ obtained in Section 2
and apply the above backfitting idea to obtain the spline-
backfitted local polynomial (SBL) estimator

(B (), B (xp))

= arg max Z L |:g_1 {ao + a1 Xig — xx) +(S))

P
+ ) Be(Xip) 5 Vi | Ki (Xik — x5).
K #k

Theorem 3. Under Assumptions (A1)-(A5), (A6'), (A7), and
(A8)(i) in Appendix A, the SBL estimator satisfies

sup 1B (xk) — BY (k)| = O (n™ 2 log ),
xk":')(hk

sup Iyl BEEY (xp) — BY (xi)] = O (™2 log ).
XKE Xy,

The proofs of Theorems 2 and 3 are given in the supplemen-
tary materials. Theorem 3 implies that the difference between
the SBL estimator and the “oracle” estimator is negligible
compared to the difference between the “oracle” estimator
E‘(’(xk) and the true function B (xx), that is, the SBL estimator
B\,?BL(xk) is oracle-efficient. Consequently, the SBL estimator
inherits the same asymptotic normality (both pointwise and
uniform asymptotically normality) from the “oracle” estimator,
as stated in Corollary 1 below, which follows directly from
Theorems 2 and 3, thus, the proof is omitted.

Corollary 1. Under Assumptions (A1)-(A5), (A6'), (A7), and
(A8)(i) in Appendix A, for any xi € xp,, we have, as n — o0,

ot (o) { B (k) — Brlk) — B (i) vah/2} — N(O, 1),

If Assumptions (A1)-(A5), (A6'), (A7), and (A8)(ii) are satis-
fied, then, forany o € (0,1) andk=1,...,p,

lim P: sup o, L (o) 1BEEY (k) — Br(xi)| < Quy (@)
n— 0o xkEth >
=1-—aq.

Corollary 1 yields the following 100(1 — or)% SCB for B (xx)
B (xk) = 0 (x1) Qi (@), Xk € Xy (7)
4. Implementation

4.1. First Stage

LetY = (Y1,...,Y,)" be the vector of n observations of the
response variable. Denote U; = {Ul(Xil)T, e ,Up(Xip)T}T
and U = (Ul,...,Un)T. We use the following iteratively

reweighted least square (IRLS) to minimize the objective func-
tion in (6), which leads to enormous reductions in computa-

tional complexity. Let G, V0, and pgk) be diagonal matrices

(k)), V(/Lgk)), and ,oz(,ufk)), respectively. At

1

with elements g’ (u



766 (&) S.YUETAL.

the (k + 1)th iteration, we consider the following objective
function

- 2 A
RED = (VO 12y - p@. )|+ Sr T QTP

where u (6, y*) = g~ ! (UT0 +BTQ,y*), and it can be approx-
imated by its first-order Taylor expansion around (8, y*®)

(k)
p@,y*) ~p® - {(i) - (0*(k))}
Y Y

with g® = p@®,y*®) = ), and J® =
(GP}~1(U BQ,) being the “Jacobian” matrix. Therefore,

R(k+1) ~

A
+ 57" QG PQy.
Then, we have

RE+D A H (vR 121Gk -1 [G(k)(Y — w0y 4y

2

-U'e —BTQZ}'*] ~y* Q) PQyy*

= [ o2 - (8)
A *T T *

+§}’ Q, PQuy”, )
where y® = (n(k) ...,77,1))—r with n}k) = UlTﬂ(k) +

< k k 1 Sk k
B Qy 0,0 = %, 9T with Y® = g/ (u®)(v; -

y,l(k)) + ngk). By minimizing (9) with respect to (6,y*), we
obtain 9%+, y**+D) Notice that to start the iteration, we
only need p(® and 1@, not 0@, p*©), which simplifies the
procedure of choosing initial value. In the Poisson case, we set
0 ©
() —y1+001andn( ) —g(ul ))

4.1.1. Knots Selection

For univariate spline smoothing, we suggest placing knots on
a grid of evenly spaced sample quantiles. Assumption (A6) in
Appendix A suggests that the number of knots J, needs to
satisfy: n!/20+2) (log n) 1/ e+2) « J, « n*/>, where o > 11is
the degree of the polynomial spline basis functions. The widely
used quadratic/cubic splines both satisfy this condition. In prac-
tice we suggest taking the following rule-of-thumb number of
interior knots: J, = min{|c;n'/?0*? |, |n/(4p)]} + 1, where ¢
is a tuning parameter (typically, ¢; € [1,5]), and the term n/(4p)
is to guarantee that there are at least four observations in each
subinterval between two adjacent knots to avoid getting (near)
singular design matrices in smoothing.

4.1.2. Triangulation Selection

An optimal triangulation is a partition of the domain which
is best according to some criterion that measures the shape,
size, or number of triangles. For example, a “good” triangulation
usually refers to those with well-shaped triangles, no small
angles or/and no obtuse angles. Other criteria include the den-
sity control (adaptivity) and optimal size (number of triangles),

2
(v [Y - —g® {( 0*) - (9(2)) H H
y y

etc. For a fixed number of triangles, Lai and Schumaker (2007)
and Lindgren, Rue, and Lindstrém (2011) recommend selecting
the triangulation according to “max-min” criterion which max-
imizes the minimum angle of all the angles of the triangles in
the triangulation. Monte Carlo experiments in our simulation
studies show that there must be enough triangles to capture
the features of the surface, but once this minimum necessary
number of triangles has been reached, further increasing the
number of triangles usually has little effect on the fitting process.
Therefore, one needs to make certain that the triangulation is
sufficiently fine to capture the feature in the dataset and not
so large that computational burden is unnecessarily heavy. In
practice, if the boundary of the spatial domain is not too compli-
cated, we suggest taking the number of triangles as the following:
N, = min{ chnl/(dH)J ,n/4} + 1, for some tuning parameter c,
(typically, ¢, € [1,20]). However, when the spatial domain does
look complicated, N, can be set (much) larger than 7 so that the
domain can be very well approximated by the triangulation, and
the penalty automatically and gracefully handles the situation.
Once N, is chosen, one can build the triangulated meshes using
typical triangulation construction methods such as Delaunay
triangulation.

4.1.3. Roughness Penalty Selection

The roughness penalty parameter A can be selected using data-
driven approaches, for example, the generalized cross-validation
(GCV; Craven and Wahba 1979; Wahba 1990) is such a criterion
and is widely used for choosing the penalty parameter. Let p, be
the diagonal matrix with elements p,(iZ;), and

U'p,U Up,BQ
O = . lT’z . PbQ
Q;B"5,U Q, (B'5,B+1P)Q,
Denote the smoothing or hat matrix as S(A) = (U BQy)
co~ U BQZ)T LetY = (Yy,...,Y,)T with Vi =

g (@) (Yi — &) + 7. We minimize the following

nllpy (Y — SG)TY2
{n — tr(S(L))2

over a grid of values to select A.

GCV(L) =

4.2. Second Stage

The performance of the SBL estimator is also dependent upon
the bandwidth selection and other estimators of the parameters.

4.2.1. Bandwidth Selection

Note that Assumption (A8) in Appendix A requires that the
bandwidths in the backfitting are of order around n~'/>. Thus,
the bandwidth selection can be done using a standard routine
in the literature, see discussions in Fan, Heckman, and Wand
(1995) and Fan and Gijbels (1996). By minimizing the asymp-
totic mean integrated squared errors (AMISE), we can obtain
the optimal bandwidth

| P2 (i) dxic } /3
[ BY o) fixdxg |

hg aMISE = 1 1/5C1/5 |:



where pox(v) = E [ p2( 20, Br(Xe) + o (9)) X = x¢ . The
optimal bandwidth could be approximated by

- ~ = 1/5
sl | (Par X}y LX)
‘ Y By X ’

whereﬁ is estimated by kernel density estimation, B\IZ is obtained
from the spline estimator Ek and 0 x(Xjx) is an estimator
of pok(Xi)- Let 62 = 130 (i — g7 '@/ Vg~ @),
Paka) = 7 YL (@@ @BV () Kn(Xi—
x;) with a rule-of-the-thumb bandwidth h. To construct
pointwise confidence intervals or SCBs of the univariate
functions, we suggest taking hy = hy amsg (log 1) 1/ to satisfy
the requirement of Assumption (A8).

4.2.2. Estimating on k(Xk)
For any k = 1,...,p, we obtain the estimator of o, x(xx) by

Guk(re) = n 21 2 Caofi ) [ K2 () d.

5. Simulation

In this section, we conduct two simulation studies to evaluate
the finite sample performance of the proposed method.

5.1. Example 1

We consider a modified horseshoe domain in Sangalli, Ramsay,
and Ramsay (2013) and randomly sample n = 1000 and 2000
locations on the domain. The response variable Y; is generated
from Poisson distribution and negative binomial distribution
with log link functions as described in the following two cases.

Case I Poisson distribution. Y; Poisson(;), where
log(iui) = Yoy Br(Xi) +a(Sp), i =1,...,n.

Case II: Negative binomial distribution. Y; ~ NB(0, ui/(0 +
Wi)), where 0 = 5and log(u;) is the same as Case I and E(Y;) =
piand var(Y;) = i + pu?/6.

We conduct 1000 Monte Carlo replications. In each replica-
tion, Xj1, Xi», and Xj3 are uniformly generated from [0, 1], and S;
is uniformly generated from the horseshoe domain, and X1, Xi»,
and Xj3 and S; are independent of each other. The true univariate

~
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functions Bi1(x), B2(x), B3(x) are illustrated in Figure 2(a)-
(c), respectively, where Bi(x) = 1/2sin(2nx) — cos(mwx) —
E{1/2sin(27 X;) — cos(mX})}, B2 (x) = 4(x —0.5)> — E{4(X; —
0.5)%}, and B3(x) = x — E(X3). Figure 5(a) shows the contour
map of the true bivariate function «(-), which is modified based
on a similar function given in Wood, Bravington, and Hedley
(2008) and Sangalli, Ramsay, and Ramsay (2013).

To implement the proposed procedure, one needs to select
the knots for a univariate spline, the triangulation for a bivariate
spline, the bandwidth for the local linear method, as well as the
smoothness penalty parameter. We have conducted extensive
simulations to examine whether and how sensitive the choice
of knots, triangulation, and bandwidth on the performance of
the proposed method. For all the univariate splines, we use
cubic B-splines with the number of interior knots J,, = 2,4,6,8
equally spaced on the sample quantiles. For the bivariate spline
smoothing, we consider d = 2, r 1 with three different
triangulations shown in Figure 3(a)-(c). There are 109 triangles
(95 vertices), 163 triangles (124 vertices), and 237 triangles (165
vertices) in Ay, Ay, and Az, respectively.

We compare our method with the thin plate spline method
(TPS) and the soap film smoother (SOAP), which are commonly
used for fitting GAMs. The TPS and the SOAP estimators are
obtained from the mgcv package in R (Wood 2017). For all
three methods, GCV is used to choose the values of the penalty
parameter. In Case II, the estimator of 6 is chosen to ensure that
the Pearson estimate of the scale parameter is as close as possible
to 1.

To evaluate the accuracy of the estimators, we calculate the
mean integrated squared error (MISE) for each of the compo-
nents based on 1000 Monte Carlo samples. Also, to illustrate the
prediction capability, we conduct the 10-fold cross-validation
for each Monte Carlo sample and compare the cross-validated
mean squared prediction error (MSPE). Table 1 presents the
MISE of B1, B2, B3, o and the 10-fold cross-validated MSPE,
where the SBL results are based on using four interior knots for
univariate splines and A; for bivariate splines. Table 1 shows
that the performance of our method and the TPS method. All
three methods are similar in terms of the estimation of Bx(-)’s,
however, our method significantly outperforms the TPS and
SOAP when estimating the bivariate function « (-), which results
in a big improvement of the cross-validated MSPE.

o
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0 | <
o S g o
o 1 o
S o 7l
o
© S ] |
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! 7 <
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- o
| I | | | | | | I [ [ [ [ | | | | | | |
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(@) 3

Figure 2. The true univariate component functions in Example 1.
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Figure 3. Triangulations on the horseshoe domain.

(b) Triangulation A,

(c) Triangulation A3

Table 1. MISE of the functional component estimators and 10-fold cross-validated MSPE.

Family n Method MISE MSPE
B1 B2 B3 o

SBL 0.0051 0.0037 0.0035 0.8057 1.6186

1000 TPS 0.0059 0.0045 0.0030 4.1705 2.1645

. SOAP 0.0057 0.0042 0.0034 1.0398 2.0512
Poisson

SBL 0.0027 0.0019 0.0016 0.4465 1.4832

2000 TPS 0.0031 0.0023 0.0017 3.6656 2.0955

SOAP 0.0029 0.0022 0.0017 0.6361 1.9065

SBL 0.0079 0.0063 0.0064 0.8490 3.1769

1000 TPS 0.0079 0.0050 0.0025 1.6768 3.8489

R SOAP 0.0074 0.0046 0.0023 0.8542 3.5008

Negative binomial

SBL 0.0040 0.0034 0.0033 0.4662 2.9303

2000 TPS 0.0034 0.0030 0.0013 1.4669 3.7571

SOAP 0.0033 0.0026 0.0012 0.6580 3.3372

Figure 4 depicts the true univariate function By (dotted
curve). It also shows the corresponding estimator EEBL (solid
curve) and the 95% SCB for By (gray bands) from a typical run
generated from Case I or Case II with sample size n = 2000,
where the estimation and SCB construction are based on
four interior quantile knots for the univariate splines and
triangulation A for the bivariate splines. Figure 5(b)-(g) shows
the contour maps of the estimated bivariate functions @ over a
grid of 500 x 200 points using our method, TPS and SOAP.

We evaluate the coverage of the proposed SCBs over 20
equally spaced points on [0, 1] and test whether the true func-
tions are covered by the SCBs at these points. Table 2 summa-
rizes the empirical coverage rate of the 95% SCBs from 1000
Monte Carlo experiments. The results clearly show a very good
coverage rate of the SCBs.

Figures B.2 and B.3 in the supplementary materials present
the MISEs of the estimators based on different combinations of
knots and triangulations for Case I and Case II. For the univari-
ate components, one sees that the MISEs are very similar regard-
less to the choice of knots and triangulations. For the bivariate
function «, we have found in our simulation studies that there
is a minimum adequate value of the number of triangles in the
fitting. Fits using fewer than this minimum number of triangles
have low statistical accuracy. We have also found that, when
this minimum number of triangles is reached, further refining
the triangulation will have little effect on the fitting process, but
make the computational burden unnecessarily heavy.

Finally, our proposed method is very user-friendly and com-
putationally efficient. Take the case of fitting GGAMs with the

Poisson distribution as an example. Remarkably, it takes only
3.1 sec to estimate all the components in the GGAM with 2000
observations on a standard PC with processor Core i5 @2.7GHz
CPU and 8.00GB RAM. This is extremely fast considering that
the entire nonparametric regression is done without WARPing.

5.2. Example 2

We conduct another simulation study using the covariates and
domain of the crash data analyzed in Section 6. We consider the

following negative binomial setting: Y; ~ NB (9, ﬁ)’ where

0 = 2.7, log(s) = Y42, BeXip) + a(Si), i = 1,...,1761,
and Xj, k = 1,...,12, are the same covariates as in the
crash dataset described in Section 6. The significant univariate
functions and bivariate function are set to be the same as the
estimates obtained in the crash data analysis, and insignificant
univariate functions are set as zero.

The average MISE of each functional component from 1000
Monte Carlo experiments is reported in Table 3. From Table 3,
one sees that the MISE are all very small which indicates our
method performs very well. We also examine the behavior of
the proposed SCBs for the univariate functions. The “coverage”
rows in Table 3 summarize the empirical coverage rate of the
95% SCBs from 1000 Monte Carlo experiments, and the results
seem to be very reasonable. See Figures B.4 and B.5 in the
supplementary materials for the estimators and the SCBs from
a typical simulation trial.
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Figure 4. Plots of Bk (xx) (dotted curve), the SBL estimator (solid curve), and the 95% SCBs (gray bands), k = 1, 2, 3, based on n = 2000 observations.
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Figure 5. Contour maps for the true bivariate function and its estimators.
Table 2. The coverage rate of the 95% SCBs for univariate functions. 6. Application to Crash Data
n Poisson Negative binomial 6.1. Domain of Interest
B1 B2 B3 B1 B2 B3
1000 0945 0949 0967 0949 0967 0.960 Traffic crashes have been one of the major sources of fatalities

2000 0.947 0.965 0979 0.980 0.980 0970  and injuries in the United States. Crash frequency analysis
is critical for developing and implementing effective safety
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Table 3. The MISE of the estimators of the component functions and the coverage
rate of the 95% SCB for the univariate functions.

Measurement Component

B B2 B3 Ba Bs Be
MISE 0.0025 0.0017 0.0015 0.0019 0.0033 0.0017
Coverage 0.786  0.959 0.958 0954 0.890 0.964

B7 Bs Bo B1o B B2 o
MISE 0.0021 0.0018 0.0016 0.0028 0.0030 0.0032 0.0318
Coverage 0.962 0.963 0.967 0.973 0.965 0.991 -

improvement programs. In this study, we are interested in
identifying the spatial pattern of crashes and investigating
how demographic, economic, and commuting factors influence
crash frequency after the spatial effect is adjusted.

This study focuses on the Tampa-St. Petersburg urbanized
area, including Tampa, Clearwater, and St. Petersburg, is a major
populated area surrounding Tampa Bay on the west coast of
Florida, United States. The area consists of 1761 census block
groups, as shown in Figure 1(a) and (b). A census block group
is a geographical unit designed by the U.S. Census Bureau to
be “relatively homogeneous units with respect to population
characteristics, economic status, and living conditions” (Song
et al. 2006). Rural areas were excluded from this study as their
population densities are often too small to have meaningful
crash frequency data. The Tampa Bay and Wilderness Preserve
in the north-east are also excluded since they have no traffic.
Crash frequency data occurred on a roadway owned or operated
by a nonstate entity for each census tract in the year of 2014 were
collected from the Florida Department of Transportation.

In addition, 12 covariates involving in demography, econ-
omy, and transportation characteristics were collected from the
Florida Department of Transportation and U.S. Census Bureau,
respectively. See Table 4 for details. Note that the covariates
with “x” are transformed from the original value by f(x) =
log(x + 0.01). For example, VMT* = log(VMT + 0.01). The
whole dataset contains 1761 observations with 12 covariates.

K
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Table 4. Covariates used in the crash dataset and their corresponding p-value.

Variable Description p-value
VMT* Vehicle miles traveled <0.01
Population* Total population <0.01
Rmale Proportion of males 0.03
Rhispanic Proportion of Hispanics in population <0.01
Rold Proportion of people age 65 and older <0.01
Runemployed Unemployed rate <0.01
Income* Median household income 0.19
Rcover Health insurance cover rate 0.08
MTravelTime Mean travel time that people take to go to work 0.13
Rwalking* Proportion of commuting by public 0.57
transportation
RpublicTrans* Proportion of commuting by walking 0.82
Rother* Proportion of commuting by bicycle, motorcycle, 0.38

and other means

6.2. Analysis and Findings

We analyze the crash frequency data using the following GGAM:

Y; ~ NB (9 , where

L
> O+
log(pi) = B1(VMT;}) + B2(Population]) + fB3(Rmale;)

+ B4(Rhispanic;) 4+ Bs(Rold;)

+ Bs(Runemployed,) + B7(Income]) + Bs(Rcover;)
+ Bo(MTravelTime;) + Bio( Rwalking})

+ B11(RpublicTrans) + Biz(Rother}) + «(S)),

where Bj(-)’s are unknown univariate functions, a(-) is an
unknown bivariate function used to control for the effect of
the spatial structure of the observations. For both TPS and our
method, the roughness parameter is selected by the GCV. Unlike
other traditional methods, the BPS smoother does not smooth
over the Tampa Bay area and the Wilderness Preserve, which
makes more sense as there are no traffic across these uninhabited
areas and our estimate does not link data points on either side
of these areas. Figure 6(a) shows the triangulation adopted by
our method, which contains 1869 triangles with 1098 vertices.
Figure 6(b) shows the estimate of the spatial component, «(+), in

Wilderness 3
Preserve

Figure 6. (a) Triangulation of Tampa-St. Petersburg urbanized area; (b) estimated «(-) with cities labeled.
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Figure 7. Plots of the SBL estimate (solid line), the 95% SCB (gray band) and the zero line (dashed line).

the model using our method. It identifies relatively high crash
frequency in the cities, such as Brandon, St. Petersburg, New
Port Richey, and the college town area.

Next we examine the effect of the predictors and test the
following hypothesis of the individual functions Hy : Bx(-) =
0, k = 1,...,12. In Figure 7, the central black line shows the
SBL fit. The gray bands represent the 95% SCBs constructed
according to (7). The corresponding p-values of the tests are
given in Table 4, which are calculated as the biggest value of «
such that the 100(1 — ) % SCB covers the zero horizontal line.

Clearly, the null hypothesis that g;(VMT¥) B
(Population™) 0, B3(Rmale™) = 0, B4(Rhispanic) 0,
B5(Rold*) = 0 and Bg(Runemployed) = 0 are rejected at
significance level 0.05, since they are not totally covered by
the 95% SCBs. For VMT and population, the fitted spline
curves present a strong deviation from strict linearity. VMT and
population are often considered to have a linear relationship
with crash frequency in most studies, however, recently a
few studies have shown that these relationships might be
heterogeneous or nonlinear (Mannering, Shankar, and Bhat

0,
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Table 5. Estimation and prediction results.

MSE MSPE
SBL TPS SBL TPS

102.79 133.98 140.81 144.32

2016; Anastasopoulos 2016). From Figure 7, one sees clearly
the evidence of threshold effects of the logarithm of VMT
and population on crash frequencies. For example, there is a
constant effect for VMT (population) below —1 and above 10,
while a linear effect of some significance exists in between. Our
findings are reasonable: when VMT or population are either
very small or very big, crash frequency should be constant,
whereas in-between values, crash frequency should increase
with VMT or population.

The proportion of unemployment may have mixed effects on
crash frequency (Leigh and Waldon 1991), as unemployment
increase may lead to less driving, but also more aggressive
driving due to the mental stress of job loss or fear of job loss.
The net effects are found to be negative in Michigan (Wagenaar
1983) and Iowa (Liu and Sharma 2018), but positive in the Tamp
Bay area, which may be attributed to different travel modes and
cultures. The proportion of males shows significantly positive.
It might be attributed to that males travel more than females for
business and work (Collins and Tisdell 2002), and they are also
more likely to drive aggressively than female (Shinar and Comp-
ton 2004). The proportion of Hispanics is positively significant,
which implies that Hispanics tend to have more crashes. Sev-
eral studies have found that Hispanic drivers have higher rates
of safety belt nonuse, speeding, invalid licensure, and alcohol
involvement in Colorado (Harper et al. 2000), and Hispanics
have more pedestrian crashes in New York City (Ukkusuri,
Hasan, and Aziz 2011) and Los Angeles (Loukaitou-Sideris,
Liggett, and Sung 2007) as they walk more due to low income.
Thus, we believe the same situations may also exist in the study
area. The proportion of old people is significant for crash fre-
quency in our study, that is, the region with a higher proportion
of old drivers lead to fewer crashes. One interpretation is that old
people tend to travel less, which could reduce the traffic crashes
within a specific area.

Income is statistically insignificant, which is consistent with
another study (Liu and Sharma 2018), where they found travel
expenses may only occupy small proportions of incomes for
most census tracts, thus, whether the income is lower or higher
does not impact people’s travel decisions. The health insurance
coverage rate is also insignificant. In terms of commuting char-
acteristics, travel time is insignificant at significance level 0.05
and the proportions of travel modes other than driving are also
insignificant.

To compare the SBL and the TPS, we adopt two criteria.
We use mean squared error (MSE) to measure the model fit
and the MSPE based on 10-fold cv to measure the predictive
performance. Table 5 provides the MSE and the 10-fold cv MSPE
of SBL and TPS. Both of them are in favor of the SBL, which not
only gives the best model fit, but also provides the most accurate
out-of-sample prediction results.

Finally, we conduct the spatial autoregression test based on
the deviance residuals. The deviance residuals are calculated as

Frequency
100 200 300 400

0
[

I T T T T 1
-4 -2 0 2 4 6
deviance residuals

Figure 8. Histogram of the deviance residuals

following

d; = sign(y; — ;)

~ 1/2
Yi -~ yi+9>”
x [2qyilog| = ) — i+ 09) log| T—= .
s (7)o 8 (333

Figure 8 shows the histogram of these deviance residuals of
our method. Then we use the Morans I to test the spatial
autoregression. The Moran’s I statistic is calculated as

[ Yoy Yy wii(di — d)(dj — d)
dim1 2;21 wij iy (di — d? -’

where wj; is the spatial weights and we use the basic binary
coding. If ith observation and jth observation are neighborhood,
then wj; = 1, otherwise, wj; = 0. The test statistic is 0.0098, and
the p-value for the Moran’s I test is 0.45. Thus, we cannot reject
the null hypothesis. It is quite possible that the spatial distribu-
tion of feature values is the result of independent random spatial
processes.

7. Concluding Remarks

In this paper, we couple the ideas of geostatistics with additive
modeling under the framework of penalized quasi-likelihood.
We have developed a two-stage procedure accompanied by effi-
cient computational algorithms to carry out estimation and sta-
tistical inference for GGAMs. Our approach is balanced in terms
of theory, computation, and interpretation. It greatly enhances
the application of GAMs to spatial data analysis. We do not
require the data to be evenly distributed or on a regular-spaced
grid. Our estimation is computationally fast and efficient since
our first stage estimation can be formulated as a penalized
regression problem. The proposed SCBs provide measures of
the effect of covariates after adjusting for the spatial effect, thus,
the users can gain valuable insights into the accuracy of their
estimation of the GGAM.

This study can be further extended to study the following
aspects. First, we have only analyzed the crashes off the state
highway system here, whereas crashes on the state highway
system should also be analyzed in future studies, thus, they
could construct the full picture of traffic safety. When both crash
types are considered, the multivariate models may be considered
(Zhao et al. 2017; Ma and Kockelman 2006). Second, it may



be also interesting to explore the long-term crash trends with
multiple years” data, where spatiotemporal correlations should
be considered in modeling (Miaou, Song, and Mallick 2003; Liu
and Sharma 2017, 2018; Boulieri et al. 2017).

Appendix A: Regularity Assumptions

Without loss of generality, let x; € [ak, bx] = [0,1], fork = 1,...,p,
and the area of Q2 be 1. For the univariate splines, we consider equally
spaced knots in our theoretical derivation, and denote H as the length
of the equally spaced subintervals, then it is clear H < J;; L

For a univariate function v/ (), denote ¥/ (-), ¥” (-), and ¥ ) (-) be
its first, second, and vth order derivative, respectively. For any bivariate
functiong : € — R,denote|gly 00,0 = MaXjtj=y ||VS"1 Vﬁzgg (9 |loo,2-
Let v be a nonnegative integer, and § € (0,1] such that o =
8§+ v > 1. Let H@([0,1]) be the class of functions ¥ on [0, 1]
whose vth derivative exists and satisfies a Lipschitz condition of order
8: v W) — v D) < Cylx — x|, for x, %’ € [0, 1]. Let

DR([0, 1]) = {g : Eg(Xy) = 0, Eg*(Xy) < oo} (A1)
be the functional space defined on [0, 1] and
WHLR(Q) = (¢ 1 Iglkoon < 00,0 <k < d+1} (A2)

be the standard Sobolev space.
For the quasi-likelihood function Z{g_l(x),y}, let gj(x,y) =

%(Z{g‘l (x),y}, j = 1,2. Moreover, letg; = Y;—g ™! {Zizl B Xix)+
a(S;)} be the error term.

The following are the technical assumptions needed to facilitate the
technical details, though they may not be the weakest conditions.

(Al) Fork=1,...,p, B € H©@ N Dg, and o € W‘HI’OO(Q).
(A2) The density function f(x,s) of (X1, - - , X, S) satisfies

inf

X,8) <
(x,8)€[0,117 x Qf( )

sup

0< cf <
(x,8)€[0,1]P x Q2

The marginal densities fi (-) of X have continuous derivatives on
[0, 1] as well as uniform lower bound ¢ and upper bound Cy. The
density function fs(-) of S is bounded away from zero and infinity
on 2.

The function g2(x,y) < 0 for x € R and y in the range of the
response variable. The functions f; ("), 1), V7 (-),and g ()
are continuous functions, and p2(-) > 0. For each (x,s) €
supp(f), var(Y|X = x,S = s) and g’ (u(x,8)) are nonzero.

The errors satisfy E{e;|[(X; = xS = s)} = 0 and
SUP (x.5)€[0,11 x 2 E{l&;>T|(X; = x,8; = s)} < oo for some
L € (3,00); (X}, S, &) are iid.

The triangulation A is 7 -quasi-uniform, that is, (min; ¢ a R)!
|A] < 7 for some positive constant 7.

The number of knots J,, for the univariate splines and the tri-
angulation size |A| satisfy that J, — oo, |[A] — 0, and
|A|72]un" logn — 0; and the smoothness penalty parameter
satisfies that An—1|A| =4 = 0.

(A6’) For some constant C1, C, 0 > landd > 2, n 25 «

H « n~ Y@+ (log )/ 204D y=1/5 A « n~1/Cd+2)

(log m/Qa+2) and n « |A|*n1/2 logl/2 n.
(A7) The kernel function K is a symmetric probability density with
support [—1, 1]. K is a Lipschitz continuous function for constant
C, thatis, |[K(x) — K(x)| < Clx — ¥/|, Vx,x’ € [-1,1].
Foreachk = 1,...,p, the bandwidth h satisfies either (i) nh? =
O(l),andh]:1 = O{n‘s(logn)v},whereé =1/5v>0o0rl/5<
8 < (3t —4) /(10 + 5¢) for ¢ given in Assumption (A4); or (ii)
n_l/S(log nV < K n_l/S(log n)~1/5 for some v > 1/5.

(A3)

(A8)

f(x,8) < Cr < 0.
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The above assumptions are mild conditions that can be satisfied in
many practical situations. Assumption (A1) describes the requirement
on the additive component functions, which are frequently used in the
literature of nonparametric estimation. Assumptions (A1) and (A2) are
similar to Assumptions (A1) and (A3) in Liu, Yang, and Hardle (2013).
Assumption (A3) is analog to Conditions 1-3 in Fan, Heckman, and
Wand (1995), which are common assumptions used under the quasi-
likelihood frame work. Assumption (A4) is the same as the Assump-
tions (A3) and (A5) in Zheng et al. (2016). Assumption (A5) is widely
used in the triangulation based literature (see Lai and Wang 2013; Wang
et al. 2019). Assumptions (A6) and (A6’) show the requirement of
the number of interior knots and the size of triangulation to ensure
the consistency property of spline estimator and to obtain the SCBs,
respectively. Assumptions (A7)-(A8) are regular assumptions in the
local polynomial regression literature (see Fan, Heckman, and Wand
1995).

Supplementary Materials

The online supplementary materials contain technical proofs of the theoret-
ical findings, additional simulation results, as well as a detailed explanation
on how to implement the proposed bivariate spline smoothing over trian-
gulation.
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