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Abstract— A new optimal control based representation for
stationary action trajectories is constructed by exploiting con-
nections between semiconvexity, semiconcavity, and stationarity.
This new representation is used to verify a known two-point
boundary value problem characterization of stationary action.

I. INTRODUCTION

The principle of stationary action, or action principle, is a

fundamental variational postulate that underpins conservation

laws in modern physics [5], [6], [8], [10]. A corollary of

this principle states that any trajectory of a conservative

system must render the corresponding action stationary in

the calculus of variation sense, in which the action is the

time integral of the corresponding Lagrangian.

When dynamical evolution is restricted to sufficiently short

time horizons, the action involved is typically a convex

function of the generalized velocity trajectory, at least where

the generalized position space is finite dimensional, see for

example [10], [4]. Consequently, on such short time horizons,

stationary action is achieved as least action, and the trajecto-

ries involved can be characterized using tools from classical

optimal control. In particular, for a specific conservation law,

an optimal control problem can be formulated with respect

to a cost function defined as the sum of the integrated

Lagrangian and a terminal cost, with the latter used to

capture terminal data. Dynamic programming may then be

applied to characterize optimal trajectories, which necessarily

correspond to trajectories of the underlying conservative

system, subject to the imposed boundary conditions.

Recent efforts by the authors have successfully exploited

this connection between least action and optimal control on

short time horizons to develop a variety of fundamental solu-

tions for conservative systems, including for the gravitational

N -body problem [10]. However, on longer time horizons, or

for systems evolving in infinite dimensions, this connection

breaks down, typically due to a loss of convexity of the

action. Indeed, the value functions associated with optimal

control problems posed on these longer time horizons are

typically afflicted by finite escape phenomena. As a mini-

mum cannot be achieved in these cases, stationarity must

explicitly be considered [3], [4], [11], [9].
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In this paper, connections between stationarity and sta-

tionary control [10], [4], [11], [12], [16] are summarized and

further explored, with a view to expanding the applicability

of generalized optimal control tools to the evolution of

conservative systems over longer time horizons. In Section II,

the aforementioned connections between least action and op-

timal control are reviewed and formalized, and the indicated

short horizon constraint elucidated. Subsequently, Section III

briefly summarizes the relaxation of optimal control to sta-

tionary control that is required to deal with longer horizons,

and provides the expected two-point boundary value problem

(TPBVP) characterization of the stationary trajectory (i.e.

along which the action is stationary). Finally, Section IV

exploits connections between semiconvexity, semiconcavity,

and stationarity in order to formulate two auxiliary optimal

control problems that can be used to characterize the staticiz-

ing velocity input that yields upon integration the aforemen-

tioned stationary trajectory. The obtained characterization is

used to verify the TPBVP formulation of Section III.

Throughout, R, Z, N denote the real, integer, and natural

numbers respectively, with extended reals defined as R
.

“
R Y t˘8u. The space of continuous mappings between

Banach spaces X and Y is denoted by CpX ;Y q. The

set of bounded linear operators between the same spaces

is denoted by LpX ;Y q, or LpX q if X and Y coin-

cide. A function f P CpX ;Y q is Fréchet differentiable

at x P X , with derivative Dfpxq P LpX ;Y q, if 0 “
lim}h}X Ñ0 }dfxphq}Y , with dfx : X Ñ X defined by

dfxphq
.

“

#
0, }h}X “ 0,

fpx`hq´fpxq´Dfpxq h
}h}X

, }h}X ą 0.

By definition, the map h ÞÑ dfxphq is continuous at 0.

II. LEAST ACTION AND OPTIMAL CONTROL

For a conservative system with generalized position evolv-

ing in a real Hilbert space X , the action is formalized

as a function defined with respect to a coercive inertia

operator M P LpX q, a potential field V : X Ñ R, and

a convex terminal cost Ψ : X Ñ R that is included to

encode terminal data [10], [4]. Given t, T P R, t ă T ,

and U rt, T s
.

“ L2prt, T s;X q, it is explicitly defined by

JtrΨs : X ˆ U rt, T s Ñ R, with

JtrΨspx, uq
.

“

ż T

t

1

2
xus,Musy ´ V pξsq ds` ΨpξT q, (1)

for all x P X , u P U rt, T s, in which s ÞÑ ξs is the

generalized position trajectory

ξs
.
“ x`

ż s

t

uσ dσ, s P rt, T s, (2)
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defined with respect to a corresponding generalized velocity

trajectory s ÞÑ us for s P rt, T s. For convenience, in

addition to coercivity of M, it is assumed throughout that

V , Ψ are three times continuously Fréchet differentiable with

uniformly bounded Hessian as per [3], i.e.

V,Ψ P C3pX ;Rq, m
.

“ inf
hPX

 
xh, Mhy{}h}2

(
ą 0, (3)

κ
.
“ 2 sup

xPX

max
 

}∇2V pxq}LpX q, }∇2Ψpxq}LpX q

(
ă 8.

For sufficiently short time horizons T ´ t ą 0, and in the

company of (3), the action JtrΨspx, ¨q : U rt, T s Ñ R, x P
X , can be shown to be strictly convex and coercive for

finite dimensional X [10], [4], see Theorem 2.1 below. In

that case, an optimal control problem can be formulated to

describe stationary action as least action. The value function

involved is defined by W t : X Ñ R, with

W tpxq
.

“ inf
uPU rt,T s

JtrΨspx, uq (4)

for all x P X . The Hamiltonian H : X ˆX Ñ R involved

is subsequently defined by

Hpx, pq
.
“ 1

2
xp, M´1 py ` V pxq (5)

“ sup
uPX

t´xp, uy ´ 1

2
xu, Muyu ` V pxq

for all x, p P X , in which the (second) equality follows by

completion of squares.

The following is a consequence of [3, Theorem 3.6,

Assertion 2] and Pontryagin’s minimum principle [15], [1].

Theorem 2.1: Given m,κ as per (3) and t0 P RăT

satisfying maxpT ´ t0, 1q pT ´ t0q ă m
κ

, the following

properties concerning the optimal control problem (4) hold:

(i) Given any t P rt0, T q, x P X , the action (cost)

JtrΨspx, ¨q : U rt, T s Ñ R is strictly convex and

coercive, and there exists a unique optimal input ū˚ P
U rt, T s such that W tpxq “ Jtpx, ū

˚q P R;

(ii) There exists a classical solution of the two-point bound-

ary value problem (TPBVP)
#

9̄xs “ ´∇pHpx̄s, p̄sq “ ´M
´1 p̄s, x̄t “ x,

9̄ps “ ∇xHpx̄s, p̄sq “ ∇V px̄sq, p̄T “ ∇Ψpx̄T q,

(6)

for all s P rt, T s, in which ∇xH and ∇pH denote

Riesz representations of the Fréchet derivatives of the

Hamiltonian (5), and ū˚ of (i) satisfies

ū˚
s “ ´M

´1 p̄s, s P rt, T s. (7)

Remark 2.2: Classical solutions for the characteristic sys-

tem (6) in the statement of Theorem 2.1 (ii) can be asserted

via a global Lipschitz property that follows from (3).

Remark 2.3: As any solution of TPBVP (6) is a classical

solution, differentiating the first equation in (6) yields

:̄xs “ ´M
´1 9̄ps “ ´M

´1
∇V px̄sq, s P pt, T q,

which is a generalized form of Newton’s second law. More-

over, applying (5), (6), and the chain rule,

d
ds
Hpx̄s, p̄sq “ x∇xHpx̄s, p̄sq, 9̄xsy ` x∇pHpx̄s, p̄sq, 9̄psy

“ x∇V px̄sq,´M
´1 p̄sy ` xM´1 p̄s,∇V px̄sqy “ 0,

for all s P pt, T q. Consequently, the Hamiltonian is the

conserved quantity, along the characteristic flow, as expected

by the minimum principle underlying (7). ˝

Theorem 2.1 demonstrates that solutions of the TPBVP (6)

describe those trajectories that render the action stationary in

the statement of the action principle. As expected, it is also

possible to characterize these trajectories via a verification

theorem involving a solution of the corresponding HJB PDE
$
&
%
0 “ ´

BWt

Bt
pxq `Hpx,∇xWtpxqq,

WT pxq “ Ψpxq,
(8)

for all t P rt0, T s, x P X . The proof of the following is

standard [1].

Theorem 2.4: Under the conditions of Theorem 2.1, sup-

pose there exists pt, xq ÞÑ Wtpxq P C1ppt0, T q ˆ X ;Rq
such that (8) holds, with p B

BtWtpxq,∇Wtpxqq P R ˆ X

denoting its Fréchet derivative at pt, xq P pt0, T qˆX . Then,

Wtpxq ď JtrΨspx, uq for all u P U rt, T s. Furthermore, if

there exists a solution s ÞÑ x̄˚
s , s P pt, T q, of (2) satisfying

x̄˚
s “ x`

ż s

t

ū˚
σ dσ, ū˚

σ “ ´M
´1

∇Wσpx̄˚
σq, (9)

such that x̄˚
s P X for all s P pt, T q, then Wtpxq “

JtrΨspx, ū˚
t q “ W tpxq for all x P X .

III. STATIONARY ACTION AND STATIONARY CONTROL

Theorem 2.1 guarantees that stationarity of the action (1)

is achieved at a minimum, provided that the maximal time

horizon T ´ t0 is sufficiently short. For longer horizons,

Theorem 2.1 is no longer applicable, typically due to a loss of

convexity of (1). This is manifested in the optimal control

problem (4) as finite escape phenomena exhibited by the

value function t ÞÑ Wt as T ´ t ą 0 increases.

As the connection between stationary (least) action and

optimal control breaks down for longer time horizons, sta-

tionarity of the action is instead formalized by replacing

the inf operation in (4) with a stat operation [11], [12].

This stat operation, along with the corresponding argstat

operation, can be defined for Fréchet differentiable functions

F P C1pW ;Rq on any real Hilbert space W by

stat
wPW

F pwq
.

“

"
F pwq

ˇ̌
ˇ̌w P arg stat

wPW

F pwq

*
,

arg stat
wPW

F pwq
.

“ tw P W |∇F pwq “ 0u ,
(10)

in which ∇F : W Ñ LpW ;Rq denotes the Riesz representa-

tion of the derivative. As the action JtrΨspx, ¨q : U rt, T s Ñ
R is continuously Fréchet differentiable, see [3, Theorem

3.6], and U rt, T s is a real Hilbert space, it is possible to

select W
.
“ U rt, T s and F

.
“ JtrΨspx, ¨q in (10).

The ensuing stationary control problem is defined for any

time horizon T ´ t ą 0, t, T P R, by a (possibly set-valued)

stat value function ĂWt : X Ñ R, with

ĂWtpxq
.
“ stat

uPU rt,T s
JtrΨspx, uq, (11)
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for all x P X . Given a specific x P X , trajectories that

render the action JtrΨspx, ¨q stationary as per the action

principle can be characterized as follows [3, Theorem 3.9].

Theorem 3.1: Suppose (3) holds. Given t, T P R, t ď T ,

x P X , an input ū P U rt, T s is staticizing, i.e.

ū P arg stat
uPU rt,T s

JtrΨspx, uq (12)

if and only if there exists a classical solution of the TPBVP
#

9̄xs “ ´M
´1 p̄s, x̄t “ x,

9̄ps “ ∇V px̄sq, p̄T “ ∇Ψpx̄T q,
(13)

for all s P rt, T s. Furthermore, ū P U rt, T s satisfies

ūs “ ´M
´1 p̄s, s P rt, T s. (14)

Proof: [Sketch] The argument used is a minor gener-

alization of [3, Theorem 3.9], involving the replacement of

a scalar inertia with the coercive operator M P LpX q.

By inspection, TPBVPs (6), (13) are identical except for

the time horizon on which solutions are sought. For short

time horizons, as required in (4), (6), the input ū P U rt, T s
defined by (7) is a minimizer for the action (1). Theorems

2.1 and 2.4 provide a means for synthesizing this via solution

of HJB PDE (8) and the application of Theorem 2.4.

For longer horizons, as allowed in (11), (13), the input

ū P U rt, T s defined by (12) need only render the action

(1) stationary. As Theorems 2.1 and 2.4 are unavailable on

these longer horizons, it is not possible to construct ū via

HJB PDE (8). However, verification of the stationary control

is possible using an alternative approach that again appeals

to a pair of optimal control and corresponding HJB PDEs,

via semiconvex and semiconcave duality.

IV. VERIFICATION OF THE STATICIZING CONTROL

The aim is to develop a verification argument for the stati-

cizing input (12), applicable to longer time horizons. Crucial

to this development is a new characterization of the argstat

operation (10) using semiconvex and semiconcave duality.

This characterization is applicable for any real Hilbert space

W , although its application here will be restricted to the

case W
.

“ U rt, T s, given t, T P R, t ă T . Unlike [11],

this development will make use of a pair of optimal control

problems, rather than a single stationary control problem.

A. Duality based characterization of argstat

Some preliminary definitions are required. A function ψ :

W Ñ R is convex if its epigraph tpw,αq P W ˆR |ψpwq ď
αu is convex [13]. It is lower closed if ψ “ cl´ ψ, in which

cl´ ψ is the lower closure of ψ, defined with respect to the

corresponding lower semicontinuous envelope lscψ by

cl´ψpwq
.
“

#
lscψpwq, lscψpwq ą ´8 @ w P W ,

´8 otherwise,

for all w P W . A function ψ is concave if ´ψ is convex,

and upper closed if ´ψ is lower closed, see [13, pp.15-17].

Recall that a proper lsc function is convex if and only if it is

the pointwise supremum of its affine support functions, see

for example [14, Theorem 8.13, p.309].

Semiconvexity and semiconcavity, and subsequent relaxed

notions of duality, are defined with respect to a bivariate

quadratic support or basis function ϕ : W ˆ W Ñ R that

has a fixed coercive Hessian C P LpW q. Explicitly,

ϕpv, wq
.
“ ´ 1

2
xv ´ w, C pv ´ wqy (15)

for all v, w P W . Using (15), the spaces S `
ϕ and S ´

ϕ

of (uniformly) semiconvex and semiconcave functions are

defined respectively by

S
`
ϕ

.
“

"
ψ : W Ñ R

ˇ̌
ˇ̌ v ÞÑ ψpvq ´ ϕpv, 0q

convex, lower closed

*
,

S
´
ϕ

.
“
 
φ : W Ñ R

ˇ̌
´φ P S `

ϕ

(
. (16)

These spaces are in duality, via either the semiconvex trans-

form D`
ϕ , see for example [7], [2], or the analogously defined

semiconcave transform D´
ϕ , i.e.

S
`
ϕ

D
`

ϕ
” rD´

ϕ
s´1

ÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝáâÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝÝ
D

´
ϕ ” rD`

ϕ s´1

S
´
ϕ

The semiconvex transform and its inverse are given by

pD`
ϕ ψqpwq

.
“ ´ sup

vPW

tϕpv, wq ´ ψpvqu, ψ P S
`
ϕ ,

prD`
ϕ s´1 φqpvq “ sup

wPW

tϕpv, wq ` φpwqu, φ P S
´
ϕ ,

(17)

for all v, w P W , while for the semiconcave transform,

D
´
ϕ φ

.
“ ´D

`
ϕ r´φs “ rD`

ϕ s´1φ, φ P S
´
ϕ ,

rD´
ϕ s´1 ψ “ ´rD`

ϕ s´1 r´ψs “ D
`
ϕ ψ, ψ P S

`
ϕ ,

(18)

in which the symmetry of ϕ with respect to its arguments is

used to obtain the right-hand equivalences in (18).

A new characterization of the argstat operation (10), using

the spaces of semiconvex and semiconcave functions (16)

and their respective transforms (17), (18), is as follows.

Theorem 4.1: Suppose F P S `
ϕ X S ´

ϕ . Then,

pD`
ϕF qpwq ď F pwq ď pD´

ϕF qpwq (19)

for all w P W , and

w P arg stat
wPW

F pwq ðñ pD`
ϕF qpwq “ pD´

ϕF qpwq. (20)

Proof: Fix F P S `
ϕ X S ´

ϕ . With w P W , recalling

(17), (18), and noting the symmetry of ϕ of (15), define

apwq
.

“ pD`
ϕF qpwq “ inf

vPW

tF pvq ´ ϕpv, wqu,

bpwq
.

“ pD´
ϕF qpwq “ sup

vPW

tF pvq ` ϕpv, wqu.
(21)

As w P W is suboptimal in both right-hand sides in (21),

and ϕpw,wq “ 0, by inspection,

apwq ď F pwq ď bpwq. (22)

That is, (19) holds.
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[Necessity]. Suppose the right-hand statement in (20)

holds. That is, recalling (21), there exists w P W such that

apwq “ bpwq. (23)

Together, (22), (23), yield

apwq “ F pwq “ bpwq. (24)

Fix any h P W . As w ` h P W is also suboptimal in the

definitions of a and b, (21), (24) imply that

F pwq “ apwq ď F pw ` hq ´ ϕpw ` h,wq,

F pwq “ bpwq ě F pw ` hq ` ϕpw ` h,wq.

These inequalities and (15) together yield

|F pw ` hq ´ F pwq| ď ´ϕpw ` h,wq “ 1

2
xh, C hy

ď }C}LpW q |h|2.

As h P W is arbitrary, it follows that F is Fréchet differen-

tiable at w, with derivative and its Riesz representation given

by DF pwq “ 0 P LpW q and ∇F pwq “ 0 P W respectively.

Hence, recalling (10), w P arg statwPW F pwq, as required.

[Sufficiency]. Suppose the left-hand statement in (20)

holds, i.e. there exists a w P arg statwPW F pwq. By

definition (10), ∇F pwq “ 0. Note further by (15) that

∇vϕpv, wq|v“w “ 0, so that

∇vrF pvq ´ ϕpv, wqs|v“w “ 0. (25)

Recall that v ÞÑ F pvq ´ ϕpv, 0q is convex, as F P S `
ϕ . As

ϕpv, 0q ´ ϕpv, wq is affine, the map v ÞÑ F pvq ´ ϕpv, wq
must also be convex, while simultaneously satisfying (25).

Hence, it has a global minimum at v “ w, so that

apwq “ inf
vPW

tF pvq ´ ϕpv, wqu “ F pwq ´ ϕpw,wq “ F pwq,

by (21). Similarly, as F P S ´
ϕ , the map v ÞÑ F pvq`ϕpv, wq

is concave, simultaneously satisfying (25). Hence, it has a

global maximum at v “ w, so that

bpwq “ sup
vPW

tF pvq ` ϕpv, wqu “ F pwq ` ϕpw,wq “ F pwq,

by (21). Hence, combining these two conclusions yields

pD`
ϕF qpwq “ apwq “ F pwq “ bpwq “ pD´

ϕF qpwq,

which completes the proof.

The following lemma is useful in the subsequent applica-

tion of Theorem 4.1.

Lemma 4.2: With F P C2pW ;Rq, suppose that the first

Fréchet derivative of the Riesz representation of its first

Fréchet derivative D∇F : W Ñ LpW q is uniformly

bounded, i.e. c̄
.

“ supwPW }D∇F pwq}LpW q ă 8. Then, for

any C P LpW q, ǫ ě 0, satisfying xh, C hy ě pc̄ ` ǫq |h|2 for

all h P W , the support ϕ defined by (15) is such that (i) w ÞÑ
F pwq´ϕpw, 0q is (strictly) convex and w ÞÑ F pwq`ϕpw, 0q
is (strictly) concave for (ǫ ą 0) ǫ ě 0; and (ii) for any ǫ ě 0,

F P S
`
ϕ X S

´
ϕ . (26)

Proof: Fix F P C2pW ;Rq and c̄ ă 8 as per the lemma

statement. Fix ǫ P Rě0. Select any coercive C P LpW q such

that xh, C hy ě pc̄ ` ǫq |h|2 for all h P W , e,g, C
.

“ c I,

c ě c̄` ǫ. Using this C, define ϕ as per (15).

(i) Fix any w, h P W . As F P C2pW ;Rq, its first Fréchet

derivative at w satisfies DF pwqh “ x∇F pwq, hy, in which

∇F pwq P W is the corresponding Riesz representation.

Moreover,

D∇F pwq P LpW q, D2F pwqhh “ xh, D∇F pwqhy,

see for example [3, Appendix]. Hence, for µ
.

“ ˘1,

D2rµF pwq ´ ϕpw, 0qshh “ µ xh, D∇F pwqhy ` xh, C hy

ě ´c̄ |h|2 ` xh, C hy ě ǫ |h|2.

As w, h P W are arbitrary, it follows that w ÞÑ ˘F pwq ´
ϕpw, 0q is (strictly) convex, as (ǫ ą 0) ǫ ě 0.

(ii) The maps w ÞÑ ˘F pwq ´ ϕpw, 0q are continuous by

definition, and hence lower closed. Hence, applying (i) and

(16), F P S `
ϕ X S ´

ϕ .

B. Application to stationary control

Given fixed t0, T P R with t0 ă T via (3), the intention

is to apply Theorem 4.1 to the stationary control problem

(11), (12) for any t P rt0, T q, with W
.

“ U rt, T s and F
.

“
JtrΨspx, ¨q. In order to explicitly define the quadratic support

function ϕ : U rt, T s ˆ U rt, T s Ñ R as per (15), let

C
.
“ c I P

ď

tPrt0,T q

LpU rt, T sq, c P R, c ě ct0 , (27)

ct0
.
“ 1 ` }M}LpX q ` κ maxpT ´ t0, 1q pT ´ t0q ă 8.

Lemma 4.3: Suppose (3) holds. Given any t P rt0, T q, x P
X , and support ϕ as per (15), (27), the following properties

concerning the action (1) hold: (i) u ÞÑ JtrΨspx, uq´ϕpu, 0q
is strictly convex and u ÞÑ JtrΨspx, uq ` ϕpu, 0q is strictly

concave; and (ii) JtrΨspx, ¨q is simultaneously semiconvex

and semiconcave, i.e.

JtrΨspx, ¨q P S
`
ϕ X S

´
ϕ . (28)

Proof: Fix any t P rt0, T q, x P X , and

u, h, h̃ P U rt, T s. Recall by [3, Theorem 3.6] that the

action (1) is three times continuously Fréchet differen-

tiable, i.e. JtrΨspx, ¨q P C3pU rt, T s;Rq. (i) From (1), the

Fréchet derivative of the Riesz representation of the first

Fréchet derivative of JtrΨspx, ¨q, i.e. Du∇uJtrΨspx, uq P
LpU rt, T sq, satisfies

xh̃, Du∇uJtrΨspx, uqhy ď }M}LpX q |h̃| |h|

` κ maxpT ´ t, 1q

ż T

t

|h̃r| dr

ż T

t

|hρ| dρ

ď
“
}M}LpX q ` κ maxpT ´ t, 1q pT ´ tq

‰
|h̃| |h|.

As h, h̃ P U rt, T s are arbitrary, it follows immediately by

definition (27) of ct0 that ct0 ě c̄t0 ` ǫ, with ǫ
.
“ 1 and

c̄t0
.
“ }Du∇uJtrΨspx, uq}LpU rt,T sq.

Hence, by definitions (15), (27) of ϕ, C, Lemma 4.2 (i)

implies that assertion (i) holds. Assertion (ii), i.e. (28), is

subsequently immediate by Lemma 4.2 (ii)
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Lemma 4.4: Suppose (3) holds. Given any t P rt0, T q,

x P X , and u P U rt, T s,

pD`
ϕ JtrΨspx, ¨qqpuq ď pD´

ϕ JtrΨspx, ¨qqpuq. (29)

Moreover, the argstat condition (12) holds, i.e. ū P
arg statuPU rt,T s JtrΨspx, uq, if and only if

pD`
ϕ JtrΨspx, ¨qqpūq “ pD´

ϕ JtrΨspx, ¨qqpūq, (30)

in which D˘
ϕ and ϕ are as per (18) and (15), (27).

Proof: Fix any t P rt0, T q, x P X , and u P U rt, T s.
Observe by Lemma 4.3 that (28) holds. Hence, applying

Theorem 4.1 with W
.

“ U rt, T s, F
.

“ JtrΨspx, ¨q, and ϕ

defined via (15), (27), yields inequality (29) via (19), and

the stated equivalence between (12) and (30) via (20).

C. Auxiliary optimal control problems

In order to apply (30), it is useful to first rewrite both sides

in a more familiar form. In particular, given t P rt0, T q and

x P X , and recalling the definitions (18) and (1) of D˘
ϕ and

JtrΨspx, ¨q, observe that

pD`
ϕ JtrΨspx, ¨qqpūq “ inf

uPU rt,T s
tJtrΨspx, uq ´ ϕpu, ūqu,

pD´
ϕ JtrΨspx, ¨qqpūq “ sup

uPU rt,T s

tJtrΨspx, uq ` ϕpu, ūqu.
(31)

That is, the two sides of (30) define a pair of auxiliary

optimal control problems, parameterized by ū P U rt, T s.
In view of (31), given any v P U rt0, T s, explicitly define

the auxiliary cost functions

Jv
t rΨs, pJv

t rΨs : X ˆ U rt, T s Ñ R

via (1) and (15), (27) by

Jv
t rΨspx, uq

.
“ JtrΨspx, uq ´ ϕpu, vq

“

ż T

t

1

2
xus, E usy ´ xus, C vsy ` 1

2
xvs, C vsy ´ V pξsq ds

` ΨpξT q, (32)

pJv
t rΨspx, uq

.
“ JtrΨspx, uq ` ϕpu, vq

“

ż T

t

´ 1

2
xus, pE usy ` xus, C vsy ´ 1

2
xvs, C vsy ´ V pξsq ds

` ΨpξT q, (33)

for all t P rt0, T s, x P X , and u P U rt, T s, in which

E , pE P LpX q, E
.

“ C ` M, pE .
“ C ´ M, (34)

are coercive by (27). The aforementioned auxiliary optimal

control problems are defined via their respective value func-

tions W v
t ,

xW v
t : X ˆ U rt, T s Ñ R, with

W v
t pxq

.
“ inf

uPU rt,T s
Jv
t rΨspx, uq, (35)

xW v
t pxq

.
“ sup

uPU rt,T s

pJv
t rΨspx, uq, (36)

for all x P X , v P U rt, T s. Analogously to the short horizon

case of (4), (8), and Theorem 2.1, the relevant Hamiltonians

are defined with respect to (5) by

Hvpt, x, pq
.

“ Hpx, pq ´ 1

2
xp` M vt, Gpp` M vtqy, (37)

pHvpt, x, pq
.

“ Hpx, pq ´ 1

2
xp` M vt, pGpp` M vtqy, (38)

for all v P U rt, T s, t P rt0, T s, x, p P X , in which

G, pG P LpX q, G
.

“ M
´1 ´ E

´1, pG .
“ M

´1 ` pE´1, (39)

are coercive, by coercivity of E , pE of (34). By (5), (39), the

maps p ÞÑ Hvpt, x, pq and p ÞÑ pHvpt, x, pq are respectively

convex and concave. Properties of these auxiliary optimal

control problems follow analogously to Theorem 2.1, while

being applicable to longer time horizons.

Theorem 4.5: Suppose (3) holds. Given arbitrary v P
Cprt0, T s;X q, the following properties of (35) hold:

(i) Given t P rt0, T s, x P X , there exists a unique optimal

input u˚
v P U rt, T s such that W v

t pxq “ Jv
t rΨspx, u˚

v q P
R; and

(ii) There exists a classical solution of the TPBVP
#

9xs “ vs ´ E
´1pM vs ` psq, xt “ x,

9ps “ ∇V pxsq, pT “ ∇ΨpxT q,
(40)

for all s P rt, T s, such that u˚
v of (i) satisfies

ru˚
v ss “ vs ´ E

´1pM vs ` psq, s P rt, T s. (41)

Proof: (i): Fix t0, T P R with t0 ă T via (3), and

let C P LpX q be as per (27). Fix t P rt0, T s. Observe

by Lemma 4.3 that Jv
t rΨspx, ¨q : U rt, T s Ñ R is strictly

convex and coercive. Hence, there exists a unique optimal

control u˚
v P U rt, T s that is the minimizer of Jv

t rΨspx, ¨q,

i.e. W v
t pxq “ Jv

t rΨspx, u˚
v q P R. (ii): The characteristic

system (40) follows by inspection of (37). Existence of a

solution to (40) follows by Pontryagin’s minimum principle

and (i).

Theorem 4.6: Suppose (3) holds. Given arbitrary v P
Cprt0, T s;X q, the following properties concerning the value

function (36) hold:

(i) Given t P rt0, T s, x P X , there exists a unique optimal

input û˚
v P U rt, T s such that xW v

t pxq “ pJv
t rΨspx, û˚

v q P
R; and

(ii) There exists a classical solution of the TPBVP
#

9̂xs “ vs ` pE´1pM vs ` p̂sq, x̂t “ x,

9̂ps “ ∇V px̂sq, p̂T “ ∇Ψpx̂T q,
(42)

for all s P rt, T s, such that û˚
v of (i) satisfies

rû˚
v ss “ vs ` pE´1pM vs ` p̂sq, s P rt, T s. (43)

Proof: (i): Fix t0, T P R with t0 ă T via (3), and

let C P LpX q be as per (27). Fix t P rt0, T s. Observe by

Lemma 4.3 that ´ pJv
t rΨspx, ¨q : U rt, T s Ñ R is strictly

convex and coercive. Hence, there exists a unique optimal

control û˚
v P U rt, T s that is the maximizer of pJv

t rΨspx, ¨q,

i.e. xW v
t pxq “ Jv

t rΨspx, û˚
v q P R. The remaining assertion

(ii) follows analogously as per Theorem 4.5.
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Verification theorems analogous to Theorem 2.4 follow,

with the HJB PDEs corresponding to (35), (36) given by
$
&
%
0 “ ´

BWt

Bt
pxq ` H

vpt, x,∇xWtpxqq,

WT pxq “ Ψpxq,
(44)

for all t P rt0, T s, x P X , in which Hv P tHv, pHvu, and

Hv , pHv are as per (37), (38). Their proofs are standard [1].

Theorem 4.7: Under the conditions of Theorem 4.5, with

v P Cprt, T s;X q fixed, suppose there exists pt, xq ÞÑ
Wtpxq P C1ppt0, T q ˆ X ;Rq such that (44) holds with

Hv .
“ Hv , and p B

BtWtpxq,∇Wtpxqq P R ˆ X denoting the

Fréchet derivative at pt, xq P pt0, T q ˆ X . Then, W v
t pxq ď

Jv
t rΨspx, uq for all u P U rt, T s. Furthermore, if there exists

a mild solution s ÞÑ px˚
v qs, s P pt, T q of (2) satisfying

rx˚
v ss “ x`

ż s

t

ru˚
v sσ dσ,

ru˚
v sσ “ vσ ´ E

´1pM vσ ` ∇W v
t prx˚

v sσq,

(45)

such that rx˚
v ss P X for all s P pt, T q, then W v

t pxq “
Jv
t rΨspx, u˚

v q for all x P X .

Theorem 4.8: Under the conditions of Theorem 4.6, with

v P Cprt, T s;X q fixed, suppose there exists pt, xq ÞÑ
Wtpxq P C1ppt0, T q ˆ X ;Rq such that (44) holds with

Hv .
“ pHv , and p B

BtWtpxq,∇Wtpxqq P R ˆ X denoting the

Fréchet derivative at pt, xq P pt0, T q ˆ X . Then, W v
t pxq ě

pJv
t rΨspx, uq for all u P U rt, T s. Furthermore, if there exists

a mild solution s ÞÑ px˚
v qs, s P pt, T q of (2) satisfying

rx̂˚
v ss “ x`

ż s

t

rû˚
v sσ dσ,

rû˚
v sσ “ vσ ` pE´1pM vσ ` ∇W v

t prx̂˚
v sσq,

(46)

such that rx̂˚
v ss P X for all s P pt, T q, then W v

t pxq “
pJv
t rΨspx, û˚

v q for all x P X .

Theorem 4.9: Suppose (3) holds. Then, W v
t pxq ď xW v

t pxq
for all t P rt0, T q, x P X , v P U rt, T s. Moreover, the argstat

condition (12) holds, i.e. ū P arg statuPU rt,T s JtrΨspx, uq, if

and only if W ū
t pxq “ xW ū

t pxq.

Proof: The hypothesis is a restatement of Lemma 4.4,

via (31), (32), (33), (35), (36). The proof is immediate.

D. Verification of Theorem 3.1 via optimal control

Theorems 4.5, 4.6, and 4.9 may be applied to directly ver-

ify the long time horizon arg stat characterization provided

by Theorem 3.1. In particular, by application of Theorems

4.5 and 4.6, it is evident that given t P rt0, T s, x P X , and

v P U rt, T s defined via the TPBVP
#

9xs “ vs
.
“ ´M

´1 ps, xt “ x,

9ps “ ∇V pxsq, pT “ ∇ΨpxT q

for s P rt, T s, that

Jv
t rΨspx, u˚

v q “ W v
t pxq “ xW v

t pxq “ pJv
t px, û˚

v q,

and u˚
v “ v “ û˚

v . Hence, Theorem 4.9 immediately yields

that v P arg statuPU rt,T s JtrΨspx, uq, as per Theorem 3.1.

V. CONCLUSIONS

The stationary action principle is a fundamental physical

postulate that underpins the temporal evolution of dynamical

systems that obey conservation laws. Where this evolution

involves a finite dimensional generalized position space, and

is over a sufficiently short time horizon, this action principle

can be encapsulated within an optimal control problem,

and tools from classical optimal control can be brought to

bear in the computation of system trajectories. However, on

longer time horizons, this encapsulation is known to break

down, typically due to a loss of convexity of the integrated

Lagrangian. In this paper, a new characterization of the

stationary action principle is developed that exploits connec-

tions between stationarity, semiconvexity, semiconcavity, and

optimal control. In particular, it is shown that the stationary

action principle can be characterized by a pair of related

optimal control problems that are well-defined on arbitrarily

long finite horizons.
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