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Abstract: In this study, we consider the estimation of partially linear models for spa-
tial data distributed over complex domains. We use bivariate splines over triangu-
lations to represent the nonparametric component on an irregular two-dimensional
domain. The proposed method is formulated as a constrained minimization problem
that does not require constructing finite elements or locally supported basis func-
tions. Thus, it allows an easier implementation of piecewise polynomial represen-
tations of various degrees and various smoothness over an arbitrary triangulation.
Moreover, the constrained minimization problem is converted to an unconstrained
minimization using a QR decomposition of the smoothness constraints, enabling
us to develop a fast and efficient penalized least squares algorithm for fitting the
model. The estimators of the parameters are proved to be asymptotically normal
under some regularity conditions. The estimator of the bivariate function is consis-
tent, and its rate of convergence is also established. The proposed method enables
us to construct confidence intervals and permits inferences for the parameters. The
performance of the estimators is evaluated using two simulation examples and a
real-data analysis.

Key words and phrases: Bivariate splines, penalty, semiparametric regression, spa-
tial data, triangulation.

1. Introduction

In many geospatial studies, spatially distributed covariate information is
available. For example, geographic information systems may contain measure-
ments obtained from satellite images at some locations. These spatially explicit
data can be useful in the construction and estimation of regression models. How-
ever, the domain over which the variables of interest are defined is often compli-
cated, such as stream networks, islands, and mountains. For example, Figure 1
(a) and (b) show the largest estuary in New Hampshire, together with the loca-
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Figure 1. Regional map of estuaries. Dots in (b) represent sample locations.

tion of 97 sites where the mercury in sediment concentrations was surveyed in
2000, 2001, and 2003; see Wang and Ranalli (2007). It is well known that many
conventional smoothing tools with respect to the Euclidean distance between ob-
servations suffer from the problem of “leakage” across complex domains. This
refers to poor estimations over difficult regions as a result of the inappropriate
linking of the parts of the domain separated by physical barriers; for more excel-
lent discussions, see Ramsay (2002) and Wood, Bravington and Hedley (2008).
Here, we propose using bivariate splines (smooth piecewise polynomial functions
over a triangulation of the domain of interest) to model spatially explicit data
sets, enabling us to overcome the “leakage” problem and provide a more accurate
estimation and prediction.

Here, we focus on the partially linear model (Speckman (1988); He and
Shi (1996); Mammen and van de Geer (1997); Liang, Hérdle and Carroll (1999);
Hardle, Liang and Gao (2000); Ma, Chiou and Wang (2006); Liang and Li (2009)),
referred to as the PLM, for data randomly distributed over 2D domains. Specif-
ically, let X; = (X1, X;2)T be the location of the ith point, for i = 1,...,n,
that ranges over a bounded domain Q C R? of arbitrary shape, for example,
the domain of the estuaries in New Hampshire, shown in Figure 1. Let Y; be
the response variable and Z; = (Z;1, ..., Z;p)" be the predictors at location X;.
Suppose that {(Z;,X;,Y;)};; satisfies the following model:
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YV, =ZB+g(X)+e, i=1,...,n, (1.1)
where 3 = (B1,...,53,)" are unknown parameters, g(-) is some unknown but
smooth bivariate function, and ¢;, 2 = 1,...,n, are independent and identically

distributed (i.i.d.) random mnoises with E(e;) = 0 and Var(e;) = o2. Each ¢; is
independent of X; and Z;. In many situations, our main interest is in estimating
and making inferences for the regression parameters 3, which measures the effect
of the covariate Z after adjusting for the location effect of X.

If g() is a univariate function, model (1.1) becomes a typical PLM. In the
past three decades, flexible and parsimonious PLMs have been studied extensively
and used widely in many statistical applications, from biostatistics, econometrics,
engineering to social science; see Chen, Liang and Wang (2011), Huang, Zhang
and Zhou (2007), Liu, Wang and Liang (2011), Wang et al. (2011), Ma, Song and
Wang (2013), Wang et al. (2014), Zhang, Cheng and Liu (2011) as examples of
recent works on PLMs. When g¢(+) is a bivariate function, there are two popular
estimation tools: bivariate P-splines (Marx and Eilers (2005)), and thin plate
splines (Wood (2003)). Later, Xiao, Li and Ruppert (2013) proposed a sandwich
smoother, which has a tensor product structure that simplifies an asymptotic
analysis and can be computed efficiently. However, the application to spatial
data analysis over complex domains has been hampered, owing to the scarcity
of bivariate smoothing tools that are computationally efficient and theoretically
reliable when solving the problem of “leakage” across the domain. Traditional
smoothing methods in practical data analyses, such as kernel smoothing, wavelet-
based smoothing, tensor product splines, and thin plate splines, usually perform
poorly for such data, because they do not consider the shape of the domain and
they smooth across concave boundary regions.

There are several challenges when going from rectangular domains to irregu-
lar domains with complex boundaries or holes. Recently, studies have examined
smoothing over irregular domains, and significant progress has been made. To
deal with irregular domains, Wang and Ranalli (2007) proposed replacing the
Fuclidean distance with the geodesic distance in the low-rank thin-plate spline
smoothing method. To calculate the geodesic distances, a graph is constructed
where each vertex is the location of an observation and is connected only to its
k nearest neighbors. Floyd’s algorithm is then used to find the shortest path
through the graph. This algorithm has a computing complexity of O(n?), with-
out considering the selection of the optimal &k, which makes the approach costly
for large data sets. In addition, their method involves computing the square
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roots of matrices that are not guaranteed to be positive semi-definite. Ramsay
(2002) suggested a penalized least squares approach with a Laplacian penalty,
and transformed the problem to one of solving a system of partial differential
equations (PDEs). Recently, Sangalli, Ramsay and Ramsay (2013) extended the
method in Ramsay (2002) to PLMs, which allows for spatially distributed covari-
ate information to be included in the models. The data smoothing problem in
Sangalli, Ramsay and Ramsay (2013) is solved using the finite element method
(FEM), a method mainly developed and used to solve PDEs. Although their
method is useful in many practical applications, they did not investigate the the-
oretical properties of the estimation. In addition, our case study in Section 5 and
simulation study in the Supplementary Material reveal that the FEM is not suf-
ficiently flexible to estimate the functional part of the model well. Furthermore,
Wood, Bravington and Hedley (2008) pointed out that the FEM method requires
a very fine triangulation in order to reach a certain approximation power when
the underlying function is complicated.

In this study, we tackle the estimation problem using the bivariate splines
defined on triangulations (Awanou, Lai and Wenston (2005); Lai and Schumaker
(2007)). Our approach is superior to the finite element method (Sangalli, Ram-
say and Ramsay (2013)) in that we use spline functions with a more flexible
degree and smoothness, enabling us to better approximate the bivariate function
g(+). Another important feature of this approach is that it does not require the
construction of locally supported splines or finite elements with degree greater
than one.

To the best of our knowledge, the statistical aspects of smoothing for PLMs
using bivariate splines have not been discussed in the literature. This study
presents the first attempt at investigating the asymptotic properties of PLMs for
data distributed on complex regions. We study the asymptotic properties of the
least squares estimators of 3 and ¢(-) using bivariate splines defined on triangu-
lations with a penalty term. We show that our estimator of 3 is root-n consistent
and asymptotically normal, although the convergence rate of the estimator of the
nonparametric component g(-) is slower than root n. A standard error formula
for the estimated coefficients is provided and tested to be accurate for practical
scenarios. Hence, the proposed method enables us to construct confidence inter-
vals for the regression parameters. We also obtain the convergence rate for the
estimator of g(-).

The rest of the paper is organized as follows. In Section 2, we give a brief
review of the triangulations and propose our estimation method based on penal-
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ized bivariate splines. We also discuss how to choose the penalty parameters.
Section 3 presents our the asymptotic analysis of the proposed estimators. Sec-
tion 4 provides a detailed numerical study that compares several methods in two
different scenarios and explores the estimation and prediction accuracy. In Sec-
tion 5, we apply the proposed method to the mercury concentration study, where
the variables of interest are defined over the estuary in New Hampshire depicted
in Figure 1. Concluding remarks are provided in Section 6. All technical details
are provided in the Supplementary Material.

2. Triangulations and Penalized Spline Estimators

Our estimation method is based on penalized bivariate splines on triangula-
tions. The idea is to approximate the function g(-) using bivariate splines that
are piecewise polynomial functions over a 2D triangulated domain, enabling us
to fit g(-) more flexibly. We use this approximation to construct least squares
estimators of the linear and nonlinear components of the model with a penal-
ization term. In the remainder of this section, we describe the background of
triangulations and B-form bivariate splines, and introduce the penalized spline
estimators.

2.1. Triangulations

Triangulation is an effective strategy to handle data distributed over irreg-
ular regions with complex boundaries and/or interior holes, and has recently
attracted substantial attention in many applied areas, such as geospatial studies,
numerical solutions of PDEs, image enhancements, and computer aided geomet-
ric design. Many triangulation software packages are available. Section S1 of the
Supplementary Material explains how to choose a triangulation for a given data
set.

We use 7 to denote a triangle that is a convex hull of three points that are
not located in one line. A collection A = {r,..., 7y} of N triangles is called a
triangulation of Q) = Ui]iln, provided that if a pair of triangles in A\ intersect,
then their intersection is either a common vertex or a common edge. Although
any kind of polygon shapes can be used for the partition of €0, we use triangu-
lations because any polygonal domain of arbitrary shape can be partitioned into
finitely many triangles to form a triangulation A. Given a triangle 7 € A, let |7|
be its longest edge length, and denote the size of A by |A| = max{|7|,7 € A}, ,
that is, the length of the longest edge of A.
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2.2. B-form bivariate splines

In this section, we briefly introduce bivariate splines. A more in-depth de-
scription can be found in Lai and Schumaker (2007), Lai (2008), and Zhou and
Pan (2014); the details of the implementation are provided in Awanou, Lai and
Wenston (2005). Let 7 = (v, va, v3) be a nondegenerate (i.e., with nonzero area)
triangle with vertices vi, vo, and v3. Then, for any point v € R?, there is a unique
representation of the form v = byvy +bovo +b3gvs, with by + by + b3 = 1, where by,
ba, and b3 are the barycentric coordinates of the point v relative to the triangle
7. The Bernstein polynomials of degree d relative to triangle 7 are defined as
BZJYZ(V) = (d!/i!j!k:!)b’ibgbk, for i+ j 4+ k = d. Then, for any 7 € A, we can write
the polynomial piece of spline s restricted on 7 € A as s[r =, ;4 ’lejsz.T]?g,
where v = {];;,,i 4+ j + k = d} are called B-coefficients of s.

For a nonnegative integer r, let C"(€2) be the collection of all rth continuously
differentiable functions over Q. Given a triangulation A, let Sj(A) = {s €
C"(Q) : s|; € Pyg(1), 7 € A} be a spline space of degree d and smoothness r over
triangulation A, where P; is the space of all polynomials of degree less than or
equal to d. Let S = S5 ,(A) for a fixed smoothness > 1. We know that
such a spline space has the optimal approximation order (rate of convergence)
for noise-free data sets; see Lai and Schumaker (1998) and Lai and Schumaker
(2007).

For notational simplicity, let {B¢}ecx be the set of degree-d bivariate Bern-
stein basis polynomials for S, where X denotes an index set of all Bernstein basis
polynomials. Then, we can represent any function s € S using the following basis
expansion: s(x) = Y Be(x)ye = B(x)™, (2.1)

ek
where ¥ = (v¢, € € K) is the spline coefficient vector. To meet the smoothness
requirement of the splines, we need to impose linear constraints on the spline
coefficients v in (2.1). We require that -« satisfies Hy = 0 with H being the ma-
trix for all smoothness conditions across the shared edges of the triangles, which
depends on the smoothness parameter r and the structure of the triangulation.
See Zhou and Pan (2014) for examples of H.

2.3. Penalized spline estimators

To define the penalized spline method, for any direction z;, 7 = 1,2, let
Di f(x) denote the gth-order derivative in the direction z; at the point x =
(x1,x2). Let
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n=x [ ¥

TEA i+j=v

be the energy functional for a fixed integer, v > 1 (Lai (2008)). Although all
partial derivatives up to the chosen order v can be included in (2.2), for simplicity,

( ) (D%, D f)*dards (2.2)

in the remaining part of the paper, we use v = 2. A similar problem can be
studied for the more general case of v > 2. When v = 2,

/ {(D2,f)? + 2(Da, Da, f)? + (D3, f)?} daydas, (2.3)

which is similar to the thin-plate spline penalty (Green and Silverman (1994)),
except that the latter is integrated over the entire plane R?. Sangalli, Ram-
say and Ramsay (2013) used a different roughness penalty to that in (2.3).
Specifically, they use the integral of the square of the Laplacian of f, that is,
Jo(D2, f + D2, f)?*dzidxs. Both forms of penalties are invariant with respect
to the Euclidean transformations of the spatial coordinates, thus, the bivariate
smoothing does not depend on the choice of the coordinate system.

Given A > 0 and the data set {(Z;, X;,Y;)}~,, we consider the following

minimization problem:
n
. 2
Hgn min ;:1 {Y; —Z7B— s (X))} + Au(s), (2.4)

where S is a spline space over the triangulation A of Q.

Let Y = (Y1,...,Y,)T be a vector of n observations of the response variable,
Xnx2 = {(Xi1, Xi2)}; be a location design matrix, and Z,x, = {(Zi,...,
Zip) }1_1 be a collection of all covariates. Denote by B the nx K evaluation matrix
of Bernstein basis polynomials, with the ith row given by Bl = {B¢(X;),{ €
K}. Then, according to (2.1), {s(X;)}?; can be written by B~. Thus, the
minimization in (2.4) reduces to

IginL(,B,'y):rgin {IIY = ZB — By|?*+ \y"P~} subject to Hy =0, (2.5)
77 7‘Y

where P is the block diagonal penalty matrix satisfying vTP~v = &,(B~).

To solve the constrained minimization problem (2.5), we first remove the
constraint using a QR decomposition of the transpose of the constraint matrix
H. Specifically,

=QR=(Q1 Q2) (I({)l> = QiRy, (2.6)

where Q is an orthogonal matrix, R; is an upper triangle matrix, and the sub-
matrix Q) is the first r columns of Q, where r is the rank of matrix H. The
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proof of the following lemma is provided in the Supplementary Material.

Lemma 1. Let Qq, Qg2 be submatrices, as in (2.6). Let v = Q20 for a vector 0
of appropriate size. Then, Hy = 0. On the other hand, if Hy = 0, then there
exists a vector 8, such that v = Q20.

The problem in (2.5), now becomes a conventional penalized regression prob-
lem without any constraints:

min {[[Y - 28 — BQuO|* + A(Q26)"P(Q20)}

For a fixed penalty parameter A, we have

B\ YAV 7Z"BQ, 0 gty
6) ~1\QiB'z QIB™BQ./ |\ AQIPQ, QIBTY )"

Letting
Vi1 Vie YAY/ 7Z"BQ,
V= = TRT T(RT ’ (2.7)
Va1 Voo Q;B'Z Q;(B'B+)\P)Q2
we have N
T
Pl vy % 1[ .
6 QIBTY
Next, we write
- -1
V-leU~— Un Ui _ Uy | U1 V12V, 7 (2.8)
Uz Uy —U22Vay Vi Uy
where

U = Vi1 — V12V5,)' Vo = ZT [T - BQ2{Q3 (B"B + A\P)Q2} ' Q3 B"] Z,
Uy = Voo = Vo V' Vis = Q3 [BT {1 - Z(Z"Z) 'Z"} B+ AP| Qo.  (2.9)
Then, the minimizers of (2.7) can be given precisely, as follows:
B=UuZ" (I1-BQ:V,QIBT)Y
=UnZ" {I-BQ:{Q;(B"B +\P)Q:} 'Q;B"} Y,
6 = Uy Q;B™ (I - zv;llzT) Y =UnQ;B" {1-Z(Z"2)'Z"} Y.
Therefore, we obtain the following estimators for v and g(-), respectively:
5= Q20 = QUpQIBT {1 - Z(2"2)7'Z"} Y,

§(x) = B(x)"™y =Y Be(x)3. (2.10)
ek

The fitted values at the n data points are Y = ZB + B~ = S(\)Y, where the
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hat matrix is

S(\) =ZU;1Z" (I-BQyV,5, Q3;B”) + BQ Uk Q3B” (I-ZV'Z").

In a nonparametric regression, the trace of the smoothing matrix, tr(S(A)),
is often referred to as the degrees of freedom of the model fit (Green and Silver-
man (1993)). The trace can be roughly interpreted as the equivalent number of
parameters, and can be thought as a generalization of the definition in a linear
regression. Finally, we estimate the variance of the error term, o2 by

o IY =Y

= RGBT (2.11)

2.4. Penalty parameter selection

Selecting a suitable value for the smoothing parameter A is critical to the
model fitting. A large value of A enforces a smoother fitted function, with po-
tentially larger fitting errors. A small value yields a rougher fitted function and
potentially smaller fitting errors, with sufficiently many data locations. Because
the in-sample fitting errors cannot be used to gauge the prediction property of
the fitted function, one should target a criterion function that mimics the out-of-
sample performance of the fitted model. The generalized cross-validation (GCV)
is such a criterion, and is widely used for choosing the penalty parameter. We
choose the smoothing parameter A\ by minimizing the following GCV criterion:

ceviy - MY “SOYIE,
{n —tx(S(N)}?

over a grid of values of A\. We use a 10-point grid, where the values of log;(\)

are equally spaced between —6 and 7 in our numerical experiments.

3. Asymptotic Results

This section studies the asymptotic properties for the proposed estimators.
To discuss these properties, we first introduce some notation. For any function
f over the closure of domain €2, denote || f|loc = supyeq |f(x)| as the supremum
norm of function f, and |f|yco = Max;j—y HDilD%Zf(X)HOO as the maximum
norms of all vth-order derivatives of f over 2. Let

Wh(Q) = {f on Q: [flpeo < 00,0 <k < £} (3.1)

be the standard Sobolev space. For any j = 1,...,p, let z; be the coordinate
mapping that maps z to its jth component such that z;(Z;) = Z;;, and let

hy = argmingcpa |z — b = argmingc 2 B{(Zy — h(X)%}  (3.2)
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be the orthogonal projection of z; onto L?.
Before we state the results, we make the following assumptions:

(A1) The random variables Z;; are bounded, uniformly in i = 1,...,n, j =
1,...,p.

(A2) The eigenvalues of E {(1 Z])"(1 Z})|X;} are bounded away from zero.
(A3) The noise e satisfies that lim, . E [e*I(e > n)] = 0.

Assumptions (A1)—(A3) are typical in the semi-parametric smoothing liter-
ature; for instance, see Huang, Zhang and Zhou (2007) and Wang et al. (2011).
The purpose of Assumption (A2) is to ensure that the vector (1,Z}) is not mul-
ticolinear.

We next introduce some assumptions on the properties of the true bivariate
function in model (1.1) and the data locations related to the triangulation A.

(C1) The bivariate functions h;(-), for j = 1,...,p, and the true function in
model (1.1) g(-) € W12°(Q) in (3.1) for an integer £ > 1.

(C2) For every s € S and every 7 € /\, there exists a positive constant F7,
independent of s and 7, such that
1/2
Fi]|8loo,r < Z s (X;)? , forall 7€ A, (3.3)
X, €T, i=1,....,n

where |||/, denotes the supremum norm of s on triangle 7.

(C3) Let Fy be the largest number of observations in triangles 7 € A. That is,
Fy > 0 is a constant
1/2
Z 5(X;)? < F||s]joo,r, forall 7€ A. (3.4)
X, €T, i=1,...,n

We further assume that Fy and F in (3.3) and (3.4) satisfy Fy/F; = O(1).

(C4) The number of triangles N and the sample size n satisfy that N = Cn?, for
some constant C' >0 and 1/({+1) <~ <1/3.

(C5) The penalized parameter X satisfies A = o(n'/2N~1).

(C6) Let 0o = max,ea |T|/pr, where p; is the radius of the largest circle inscribed
in 7. The triangulation A is §-quasi-uniform; that is, there exists a positive
constant ¢ such that the triangulation A satisfies 6o < 9.
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Condition (C1) describes the requirement for the true bivariate function usu-
ally used in the literature on nonparametric or semiparametric estimations. Con-
dition (C2) ensures the existence of a discrete least squares spline (von Golitschek
and Schumaker (2002)), that is, an unpenalized spline with A = 0. Although we
can obtain a decent penalized least squares spline fitting without this condition,
we need (C2) to study the convergence of the bivariate penalized least squares
splines. Heuristically, if a triangle 7 € A near the boundary of A does not
contain sufficient observations, the penalized least square spline will not fit the
function well over the triangle 7. Condition (C3) suggests that we should not
put too many observations in one triangle. Similar conditions to (C2) and (C3)
are used in von Golitschek and Schumaker (2002) and Huang (2003). Condition
(C4) requires that the number of triangles is above some minimum, depending
upon the degree of the spline, which is similar to the requirement of Li and Rup-
pert (2008) in the univariate case. It also ensures the asymptotic equivalence of
the theoretical and empirical inner products/norms defined at the beginning of
Section 3. Condition (C5) is required to reduce the bias of the spline approxi-
mation through “under smoothing” and “choosing smaller \”. The study of Lai
and Schumaker (2007) shows that the approximation of a bivariate spline space
over A is dependent on da, that is, the larger the da is, the worse the spline
approximation is. Condition (C6) suggests using triangulations that are more
uniform with a reasonably small 5. By choosing a set of appropriate vertices,
we have a desired triangulation where d is sufficiently small, say da < 10.

To avoid confusion, we let By and gg be the true parameter value and func-
tion, respectlvely, in model (1. 1) The following theorem states that the rate
convergence of [5’ is root-n and ,@ is asymptotically normal.

Theorem 1. Suppose Assumptions (A1l)—(A3) and (C1)-(C6) hold. Then the
estimator B is asymptotically normal; that is, (nE)l/Q(ﬁ Bo) — N(0,1I), where
I is a p x p identity matrix,

Y =0 *E{(Z; — Zi)(Zi — Z:)"}, (3.5)

with Z; = {h1(X3), ..., hp(X)}T, for hj(-) defined in (3.2), j = 1,...,p. In
addition, 3 can be consistently estimated by

1 S 1 s
Sn=— 2(22 ~2:)(Zi —Z))" = —(2-2)"(2 - Z), (3.6)
1=

where Z; is the ith column of Z* = Z"BQy V5, QFBT and 52 is given by (2.11).

The results in Theorem 1 enable us to construct confidence intervals for the
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parameters. The next theorem provides the global convergence of the nonpara-
metric estimator g(-).

Theorem 2. Suppose Assumptions (A1)—(A3) and (C1)—(C6) hold. Then the
bivariate penalized estimator g(-) in (2.10) is consistent with the true function
go, and satisfies that

A

. A Fooow
— gollpz = Op [ —2— 14— ) 22 a0
Hg gUHL P <n|A|3|90|2,oo + ( + 7”L|A|5> Fl‘ ‘ |90

1

+ .
i wm)

The proofs of the above two theorems are given in the Supplemental Mate-
rial. Note that the rate of convergence given in Theorem 2 is the same as those

for nonparametric spline regression, without including the covariate information
obtained in Lai and Wang (2013).

4. Simulation

In this section, we carry out a numerical study to assess the performance
of the proposed estimators using bivariate penalized splines over triangulations
(BPST) over a horseshoe domain. We compare the BPST with filtered krig-
ing (KRIG), thin-plate splines (TPS), the linear finite-elements method (FEM)
of Sangalli, Ramsay and Ramsay (2013), and the geodesic low-rank thin-plate
splines (GLTPS) of Wang and Ranalli (2007). Additional simulation studies can
be found in the Supplementary Material.

For 50 x 20 grid points on the domain, we simulate data as follows. The
response variable Y is generated from the following PLM:

Y =121 + B2Z2 + g(X1,X2) + €.

Figure 2 (a) shows the surface of the true function g(-), as used in Wood, Braving-
ton and Hedley (2008) and Sangalli, Ramsay and Ramsay (2013). The random
error, €, is generated from an N(0,02) distribution with o, = 0.5. In addi-
tion, we set the parameters as ;1 = —1 and 2 = 1. For the design of the
explanatory variables, Z7 and Zs, two scenarios are considered, based on the
relationship between the location variables (X7, X2) and the covariates (Z1, Z3).
Under both scenarios, Z; ~ uniform[—1,1]. On the other hand, the variable
Zy = cos[dm(p(X2+ X32)+(1—p)U)], where U ~ uniform[—1,1] and is indepen-
dent of (X7, X2) and Z;. We consider both an independent design p = 0.0 and
a dependent design p = 0.7 in this example. Under both scenarios, 100 Monte
Carlo replicates are generated. Figure 2 (b) demonstrates the sampled location
points of replicate 1. For each replication, we randomly sample n = 200 locations
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Figure 3. Three triangulations on the horseshoe domain.

uniformly from the grid points inside the horseshoe domain.

Figure 3 (a)—(c) illustrate three different triangulations used in the BPST
method. In the first triangulation (A;), we use 89 triangles (73 vertices). There
are 158 triangles (114 vertices) and 286 triangles (186 vertices) in Ay and Ag,
respectively. To implement the TPS and KRIG methods, we use the R pack-
age fields under the standard implementation setting of (Furrer, Nychka and
Sainand (2011)). For KRIG, we try different covariance structures, and choose
the Matérn covariance with smoothness parameter v = 1, which gives the best
prediction. For the GLTPS, following Wang and Ranalli (2007), we use 40 knots
with locations selected using the “cover.design” method in the package fields.
For all methods requiring a smoothing or roughness parameter, the GCV is used
to choose the values of the parameter.

To assess the accuracy of the estimators, we compute the root mean squared
error (RMSE) for each of the components based on 100 Monte Carlo sam-
ples. Table 1 shows the RMSEs of the estimates of the parameters 31, B2, and
0e. The RMSE for the nonlinear function g(-) is computed as the average of
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Table 1. Root mean squared errors of the estimates.

RMSE CV-RMSPE
p  Method 7 7 = 70 v
KRIG 0.0582 0.0433 0.0455 0.3972 0.6728
TPS 0.0543 0.0426 0.0365 0.3013 0.6037
GLTPS 0.0625 0.0544 0.0233 0.1565 0.5326
0.0 FEM 0.0560 0.0480 0.0348 0.1558 0.5333

BPST (A;) 0.0526 0.0498 0.0209 0.1473 0.5299
BPST (A2) 0.0483 0.0489 0.0220 0.1483 0.5210
BPST (4A3) 0.0544 0.0544 0.0222 0.1458 0.5248

KRIG 0.0586 0.0440 0.0460 0.3973 0.6728
TPS 0.0547 0.0402 0.0363 0.3010 0.6038
GLTPS 0.0612 0.0411 0.0220 0.1553 0.5326
0.7 FEM 0.0562 0.0597 0.0352 0.1567 0.5336

BPST (A;) 0.0521 0.0563 0.0209 0.1473 0.5294
BPST (A2) 0.0481 0.0502 0.0222 0.1479 0.5209
BPST (A3) 0.0543 0.0479 0.0220 0.1457 0.5251

[1,000~1 ZZIZO{JO{Z]\(XZ) — g9(X;)}?]'/2, based on 1,000 = 50 x 20 grid points over
the 100 Monte Carlo replications. Table 1 shows that BPST produces the best
estimation of the nonlinear function g(-), followed by the GLTPS and FEM.
The RMSE is nearly constant for all three triangulations, which shows that A
might be sufficiently fine to capture the feature in the data set. It also sug-
gests that, when this minimum number of triangles is reached, further refining
of the triangulation will have little effect on the fitting process, but will make
the computational burden unnecessarily heavy. Table 1 also provides the 10-
fold cross-validation root mean squared prediction error (CV-RMSPE) for the
leﬁ(ﬁ — Y;)?}Y/2 over 100 Monte
Carlo replications, where k1,..., k19 comprise a random partition of the data
set into 10 disjoint subsets of equal size. The CV-RMSPE also shows the su-
perior performance of the BPST method, because it provides the most accurate

response variable, defined as {n~! 2717?:1

predictions.

Figure 4 shows the estimated functions over a grid of 500 x 200 points using
different methods for replicate 1 for p = 0.0. Because such a high-resolution
prediction is computationally too expensive for the GLTPS, the prediction map
for the GLTPS is based on 100 x 40 grid points. The plots show that the BPST
and GLTPS estimates look visually better than the other four estimates do. In
addition, there is a “leakage effect” in the KRIG and TPS estimates. This poor
performance is because KRIG and TPS do not take the complex boundary into
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() FEM (f) BPST (A1) (2) BPST (As)  (h) BPST (L)

Figure 4. Contour maps for the true function and its estimators (p = 0.0).

Table 2. Standard error estimates of the coefficients via BPST (Aj).

p  Parameter SEn. SEpean SEmedian  SEmad
0.0 51 0.0479  0.0651 0.0654  0.0031
) 5o 0.0446  0.0532 0.0530  0.0028
0.7 51 0.0477  0.0651 0.0653  0.0029
' 5o 0.0420 0.0518 0.0522  0.0024

account and smooth across the gap inappropriately. Finally, the BPST estimators
based on the three triangulations are very similar, supporting our findings for
penalized splines that the number of triangles is not critical to the fitting, as
long as it is sufficiently large to capture the pattern and features of the data.
Similar estimation results are obtained for the case of p = 0.7. Sample estimated
functions are presented in Figure 1 in the Supplementary Material to save space.

Next, we test the accuracy of the standard error (SE) formula in (3.6) for £
and Bg; the results are listed in Table 2. The standard deviations of the estimated
parameters are computed based on 100 replications, which can be regarded as
the true standard errors (column labeled “SE.,.”) and compared with the mean
and median of the 100 estimated standard errors calculated using (3.6) (columns
labeled “SEpean” and “SEnedian”, respectively). The column labeled “SEy.q” is
the interquartile range of the 100 estimated standard errors, divided by 1.349,
which is a robust estimate of the standard deviation. Table 2 shows that the
averages or medians of the SEs calculated using the formula are very close to
the true standard deviations, which confirms the accuracy of the proposed SE
formula.
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In terms of the computational complexity, because the GLTPS technique
is largely based on Floyd’s algorithm, it has cubic time complexity (Miller and
Wood (2014)), as does ordinary kriging. In contrast, the TPS, FEM, and BPST
can be formulated as a single least squares problem, making them fast and easy
to compute. Taking the prediction as an example, we find that as the prediction
size increases (sample size is fixed), the computation time for GLTPS and KRIG
increases dramatically, whereas BPST provides an almost linear complexity of the
prediction size. On a standard PC with a Core i5 @2.9GHz CPU and 16.00GB
RAM, the BPST(A) prediction over 2,500 x 1,000 grid points needs only 10 sec-
onds of computing. Then, BPST(Az) and BPST(A3), with finer triangulations,
take just a few seconds longer than BPST(A;). However, the GLTPS usually
takes hours to complete one estimation and prediction at the 100 x 40 resolu-
tion level. In addition, in our numerical study, KRIG requires a large amount
of memory. When the prediction resolution becomes finer than 2,500 x 1,000,
KRIG will crash on a standard PC owing to lack of memory.

5. Application to Mercury Concentration Studies

In this section, we apply the proposed method to map the mercury in the
sediment concentration over the estuary in New Hampshire; see Figure 1 (a) for
a regional map of the estuary. Mercury contamination is a significant public
health and environmental problem. When released into the environment, mer-
cury accumulates in water-laid sediments, is ingested by fish, and passed along
the food chain to humans. Several rivers flowing into the Great Bay are contam-
inated with mercury, according to the new Environment New Hampshire report.
Estuaries such as Great Bay are ideal locations for the accumulation of contami-
nants such as mercury that settle from the surrounding watershed (Brown et al.
(2015)). The coastal monitoring program, National Coastal Assessment, run by
the US Environmental Protection Agency (EPA) and the New Hampshire De-
partment of Environmental Services has developed surveys that can reveal useful
information on the status and trends of contaminants.

The spatial data set in our study consists of the mercury concentrations
surveyed in 2000/2001 and 2003 at 97 locations in the largest estuary in New
Hampshire; see Figure 1 (b) for the measurements of mercury concentrations at
different sampled locations. To assist decision-makers to develop effective envi-
ronmental protection strategies, it is critical to provide measurements of mercury
at spatial scales much finer than those at which the mercury was monitored.
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Figure 5. Domain triangulation for estuaries in New Hampshire.

This data set has been studied by Wang and Ranalli (2007) using the GLTPS.
Following Wang and Ranalli (2007), we consider a PLM with a linear term for
the year effect (Year = 0 if the survey was conducted in 2000/2001; and Year
= 1 if the survey was conducted in 2003):

Mercury Concentration = SYear + g(Latitude, Longitude). (5.1)

To fit model (5.1), we use five methods: KRIG, TPS, GLTPS, FEM, and BPST.
For KRIG, we choose the Matérn covariance structure to fit the model. The
GLTPS is calculated using the setting k& = 5, as in Wang and Ranalli (2007).
For BPST and FEM, the smoothing or roughness parameter is selected using the
GCV. Figure 5 shows the triangulation adopted by the BPST. Table 3 summa-
rizes the coefficient estimation results based on the various methods.

The Great Bay estuary is a tidally dominated system and is the drainage
confluence of the Lamprey River and Squamscott River. Four additional rivers
that flow into the system are the Cocheco, Salmon Falls, Bellamy, and Oyster
Rivers. Mercury deposited in the estuaries in New Hampshire is both emitted
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Table 3. Estimated coefficients with standard errors (SE).

KRIG TPS GLTPS FEM BPST
Year 0.096 0.095 0.051  0.076 0.044
SE 0.03 0.03 0.02 0.04 0.04

from in-state sources and carried here from sources upwind. Emissions upwind
of New Hampshire are primarily attributable to coal-fired utilities and municipal
and medical waste incinerators in the Northeast and Midwest (Abbott et al.
(2008)). In general, the spatial distribution in Figure 1 (b) shows higher values
in the Salmon Falls River and Cocheco River, lower values in the Piscataqua
River and the Portsmouth area, and some localized low spots in the Great Bay
estuary.

Prediction maps at the 20 x 20 m resolution level using different methods
are shown in Figure 6. The computation-intensive GLTPS procedure finds it
difficult to make such a high-resolution prediction, so we decrease its resolution
to 150 x 150 m. All methods in Figure 6 identify relatively high mercury contam-
ination in the Salmon Falls River and Cocheco River, which is consistent with
known historical pollution sources (Abbott et al. (2008)). Figure 6 also illustrates
the overspill from the Northern part to the middle area when ordinary spatial
smoothing (e.g., KRIG or TPS) is used, because it smoothes across the Salmon
Falls River and Cocheco River, with high concentration levels in the northern
part. This problem is mitigated for GLTPS and FEM. The BPST smoother does
not show signs of leakage in the Piscataqua River and the Portsmouth area of
the estuaries, as other methods do. Note the way in which the KRIG and TPS
smooth, inappropriately, across the east coast of the Great Bay, so that rela-
tively high mercury concentrations are estimated for the Portsmouth area in the
southeastern part of the estuaries. The poor prediction performance of KRIG
and TPS suggests that we should not assume that densities in geographically
neighboring areas are similar if they are separated by physical barriers.

To evaluate the different methods, we report both the in-sample root mean
squared errors (RMSE): {n™1 3" (V; — }%)2}1/2, and the cross-validation root
mean squared prediction errors (RMSPE) of the mercury concentrations. Be-
cause there are only 97 observations in this data set, we consider the leave-one-out
cross-validation (LOOCV) prediction error instead of the 10-fold cross-validation,
as conducted in the simulation studies. Specifically, for each ¢ = 1,...,97, we
train the model on every point except ¢, and then obtain the prediction error on
the held-out point. Table 4 summarizes the RMSE and the LOOCV-RMSPE us-
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Figure 6. Prediction maps of mercury concentrations over the estuaries in New Hamp-

shire.
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Table 4. In-sample RMSEs and LOOCV-RMSPE of mercury concentrations.

Method KRIG TPS GLTPS FEM BPST
RMSE 0.1397 0.1381 0.1366 0.1263 0.1197
RMSPE 0.1480 0.1473 0.1459  0.1467 0.1402

ing different methods. As expected, when the shape of the boundary is complex,
smoothers that respect the complicated boundary shape appropriately are able
to reduce the prediction errors. The LOOCV-RMSPE favors the model with the
BPST smoother, which not only gives the best model fit, but also provides the
most accurate prediction of the concentration values.

6. Conclusion

In this study, we considered PLMs for modeling spatial data with compli-
cated domain boundaries. We introduce a framework of bivariate penalized
splines defined on triangulations in a semi-parametric estimation. Our BPST
method demonstrates competitive performance compared with existing methods,
while providing a number of possible advantages.

First, the proposed method greatly enhances the application of non/semi-
parametric methods to spatial data analyses. It solves the problem of “leakage”
across complex domains, which many conventional smoothing tools suffer from.
The numerical results from the simulation studies and the application show that
our method is effective to account for complex domain boundaries. Our method
does not require the data to be evenly distributed or on regular-spaced grids,
as in the tensor product-smoothing methods. When we have regions of sparse
data, bivariate penalized splines provide a more convenient tool for fitting the
data than unpenalized splines do, because the roughness penalty helps regularize
the estimation. Relative to the conventional FEM, our method provides a more
flexible way to use piecewise polynomials of various degrees and smoothness over
an arbitrary triangulation for spatial data analyses.

Second, we provide new statistical theories for estimating the PLM for data
distributed on complex spatial domains. We show that our estimates of both the
parametric and the nonparametric parts of the model enjoy excellent asymptotic
properties. In particular, we showed that our estimates of the coefficients in the
parametric part are asymptotically normal, and then derived the convergence rate
of the nonparametric component under regularity conditions. We also provided a
standard error formula for the estimated parameters, and our simulation studies
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show that the standard errors are estimated with good accuracy. The theoretical
results provide measures of the effects of covariates after adjusting for the location
effect. In addition, they give valuable insights into the accuracy of our estimate
of the PLM and permit a joint inference for the parameters.

Finally, the computation of our proposed method is much more efficient than
other approaches, such as kriging and GLTPS. Specifically, for model fitting with
n locations, the computational complexity of the ordinary kriging and GLTPS
is O(n?), whereas the computational complexity of our method is only O(nN?).
Here N is the number of triangles in the triangulation, and is usually much
smaller than n, as suggested in Condition (C4).

Supplementary Material

The online Supplementary Material Wang et al. (2020) explains how to im-
plement the proposed methods, as well as providing additional simulation and
application results and the proofs of Lemma 1 and Theorems 1 and 2.
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