Reconsidering the Duchenne Smile: Indicator of
Positive Emotion or Artifact of Smile Intensity?
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Abstract—The Duchenne smile hypothesis is that smiles that
include eye constriction (AU6) are the product of genuine positive
emotion, whereas smiles that do not are either falsified or related
to negative emotion. This hypothesis has become very influential
and is often used in scientific and applied settings to justify
the inference that a smile is either true or false. However,
empirical support for this hypothesis has been equivocal and
some researchers have proposed that, rather than being a reliable
indicator of positive emotion, AU6 may just be an artifact
produced by intense smiles. Initial support for this proposal
has been found when comparing smiles related to genuine and
feigned positive emotion; however, it has not yet been examined
when comparing smiles related to genuine positive and negative
emotion. The current study addressed this gap in the literature by
examining spontaneous smiles from 136 participants during the
elicitation of amusement, embarrassment, fear, and pain (from
the BP4D+ dataset). Bayesian multilevel regression models were
used to quantify the associations between AU6 and self-reported
amusement while controlling for smile intensity. Models were
estimated to infer amusement from AU6 and to explain the
intensity of AU6 using amusement. In both cases, controlling for
smile intensity substantially reduced the hypothesized association,
whereas the effect of smile intensity itself was quite large and
reliable. These results provide further evidence that the Duchenne
smile is likely an artifact of smile intensity rather than a reliable
and unique indicator of genuine positive emotion.

Index Terms—Duchenne smile, facial expression, nonverbal
behavior, emotion, FACS, Bayesian data analysis

I. INTRODUCTION

Ekman and colleagues [1]-[4] famously hypothesized that
genuine positive emotion (e.g., amusement) is revealed by the
Duchenne smile, a facial expression involving “smiling eyes”
as well as a smiling mouth. In the language of the Facial
Action Coding System (FACS) [5], which is often used to

This material is based upon work partially supported by the National
Science Foundation (1629716, 1629898, 1722822, 1734868) and National
Institutes of Health (MH096951). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of National Science Foundation or National
Institutes of Health, and no official endorsement should be inferred.

Gayatri Shandar
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA
gshandar@cs.cmu.edu

Department of Computer Science
Binghamton University

lijun @cs.binghamton.edu

Zhun Liu
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA
zhunl@cs.cmu.edu

Louis-Philippe Morency
Language Technologies Institute
Carnegie Mellon University
Pittsburgh, PA
morency @cs.cmu.edu

study facial expressions, the Duchenne smile is composed of
the lip corner puller action unit (AU12) and the cheek raiser
action unit (AU6). All smiles involve AU12, which pulls the
lip corners toward the ears, but Duchenne smiles also involve
AUBS6, which lifts the cheeks, narrows the eyes, and wrinkles the
outer eye corners (hence the “smiling eyes”). Smiles without
AU6 are called non-Duchenne smiles and are hypothesized
to be disconnected from genuine positive emotion (e.g., false,
miserable, or masking negative emotion [1]).

The Duchenne smile hypothesis has been very influential
and is still commonly adopted in the social/medical sciences
[6], [7] and in affective computing [8], [9]. It is often used to
classify smiles as “real” or “fake” and to infer participants’
level of positive emotion from their face. It is also central to
discrete emotion theory [10], which considers the Duchenne
smile to be the universally recognized and produced facial
expression (i.e., prototype) of positive emotion.

However, empirical support for the hypothesis has been
mixed [11]. Some studies have supported it, finding that
Duchenne smiles were more common in response to pleasant
stimuli [2], [12], [13] and more associated with self-reported
positive emotion [4], [14], [15] than non-Duchenne smiles.
But others have cast doubt on it, finding that Duchenne smiles
occur at high rates when participants feel negative emotion [2],
[14], [16]-[22] or feign positive emotion [11], [23]-[27].

In attempting to explain these mixed results, Krumhuber and
Manstead [11] proposed that AU6 may just be an artifact (i.e.,
side-effect) of high AUI12 intensity. That is, intense smiles
may be more likely to include AU6 regardless of what the
smiling person is feeling. If this hypothesis is correct, then
previously observed associations between AU6 and positive
emotion may have actually been caused by an unmeasured
association between AU12 intensity and positive emotion [28].
Later research supported the plausibility of this hypothesis.
Gosselin et al. [29] instructed participants to activate AUs
one-at-a-time and found that many of them added AU6 while



trying to activate AU12. Moreover, the likelihood of adding
AUG6 increased with the intensity of AU12. This phenomenon
also operated in reverse: many participants added AU12 while
trying to activate AU6. These results suggest that there is a
dependency between these AUs that encourages them to occur
together, especially when the intensity of AU12 is high (and
even in the absence of felt positive emotion).

The most direct test of the artifact hypothesis examined
the facial behavior of 32 participants during two conditions:
viewing amusing stimuli and trying to feign amusement [11].
Contrary to the Duchenne smile hypothesis, rates of Duchenne
and non-Duchenne smiles were very similar in both conditions.
So, AU6 did not discriminate between felt and false smiles.
Howeyver, it did discriminate between weak and intense smiles;
across both conditions, Duchenne smiles were much higher in
AUI12 intensity than non-Duchenne smiles. Thus, as predicted
by the artifact hypothesis, the occurrence of AU6 was related
to AUI12 intensity but not to genuine positive emotion.

Several important questions still remain, however. First, this
work only compared smiles during expressed amusement and
feigned amusement; it did not compare smiles during positive
and negative emotions. Thus, it is currently unknown whether
Krumhuber and Manstead’s [11] finding will generalize to
other contexts that the Duchenne smile hypothesis makes pre-
dictions about (e.g., negative emotions). Second, this work did
not directly compare predictors in the same model (i.e., it did
not statistically control for AU12 intensity). Thus, the relative
importance of these variables and the exact extent to which
AUI12 intensity confounds these relationships is currently
unknown. Finally, nearly all previous work dichotomized
smiles as Duchenne or non-Duchenne without considering the
intensity of AU6. However, Messinger et al. [30] argued that
the intensity of AU6 contains important information about felt
emotion. Thus, it is possible the relationship between AU6
and positive emotion would be strengthened by increasing the
granularity with which AU6 is measured.

The current study addressed these gaps in the literature and
made several novel contributions. First, we examined smiles
during four different emotional contexts (i.e., amusement, em-
barrassment, fear, and pain), which allowed us to test whether
the artifact hypothesis can generalize beyond feigned positive
emotion to negative emotion. Including multiple emotions also
allowed us to better assess the generalizability of our find-
ings. Second, we directly compared predictors in two related
models (i.e., predicting AU6 and amusement) by statistically
controlling for AU12 intensity. We also did so using a much
larger sample than previous research (N = 136) and a more
sophisticated modeling approach (i.e., Bayesian multilevel
regression with interactions). Finally, we represented AU6 as
a continuum rather than a dichotomy, which allowed us to
leverage the full extent of this variable’s predictive power [31].

We explored two related research questions. First, does
AU6 predict how amused a smiling participant feels, even
when controlling for AU12 intensity? If the Duchenne smile
hypothesis is correct, then the answer should be yes. However,
if the artifact hypothesis is correct, then the answer should

be no (or at least the predictive power of AU6 should be
largely reduced by controlling for AU12 intensity). Second,
does self-reported amusement predict whether a smile contains
AU6 (and to what degree), even when controlling for AU12
intensity? If the Duchenne smile hypothesis is correct, then
amusement should be uniquely predictive of AU6. However,
if the artifact hypothesis is correct, then AU12 intensity should
be very related to AU6 and amusement should not be.

II. METHODS
A. Data

1) BP4D+ Database: To find examples of spontaneous
facial behavior, we accessed the BP4D+ database [32], which
includes video recordings and metadata from 140 participants
during tasks meant to elicit different positive and negative
emotions. In the amusement task, the participant was told a
joke; in the embarrassment task, the participant was told to
improvise a rhyming song and sing it loudly; in the fear task,
darts were thrown at a dartboard located near the participant’s
head; and in the pain task, the participant submerged their
hand into ice water for as long as possible.

After each task, the participant rated how intensely they had
felt 14 different emotions [32]; each emotion was rated on a
six-point scale ranging from O (not at all) to 5 (extremely). In
this study, we focused on participants’ ratings of amusement,
which were their responses to the question, “How much did
you feel happy, joyful, or amused?”

Facial actions in each task video were annotated by one
of five expert coders who had passed the official FACS final
test [5]. A period of around 15s was selected from each task
video to be annotated; this period corresponded to when the
emotion elicitation was strongest (e.g., the period leading up to
when the participant removed their hand from the ice water).
The coders annotated each video frame during this period (at
25 fps) for the intensity of AU6 and AUI12. Intensity was
annotated using a six-point scale where 0 corresponded the
absence of the AU and 1 through 5 corresponded to the official
FACS intensity levels (i.e., “trace” through “maximum”).

A subset of task videos was coded by two or more coders to
assess the reliability of the codes [32]. Inter-coder agreement
was calculated using the ordinal-weighted S score (also called
the kg p coefficient) [33], which adjusts for chance agreement
and can accommodate scales with ordinal/ordered categories.
Scores above (.60 are often interpreted as “good” and scores
above 0.80 are often interpreted as “very good” [33]. Inter-
coder agreement was good for AU6 intensity (S = 0.70) and
very good for AU12 intensity (S = 0.84).

2) Smile Events: We used the BP4D+ FACS codes to
identify all smile events, i.e., sequences of consecutive frames
during which AU 12 was coded as having an intensity greater
than zero. We excluded events from one participant who was
an outlier in terms of age (i.e., 66 years old) but retained all
other events, resulting in a sample of 751 smile events from
136 participants. The number of smile events per participant
ranged from 3 to 11 (M = 5.5, SD = 2.0), and the duration of
each event ranged from 0.1s to 20.1s (M = 6.0, SD = 5.3).
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Fig. 1. Path diagram of Model 1. Squares are observed variables, circles
are random effects, triangles are intercepts, and arrows are regression paths.
Level 1 includes the AU intensity variables as well as the amusement/positive
emotion rating (PE) for smile ¢ from participant 7. Level 2 includes the sex
(SEX) and random effects (3) for participant 1.
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Fig. 2. Path diagram of Model 2. Squares are observed variables, circles
are random effects, triangles are intercepts, and arrows are regression paths.
Level 1 includes the AU intensity variables as well as the amusement/positive
emotion rating (PE) for smile ¢ from participant 7. Level 2 includes the sex
(SEX) and random effects (3) for participant i.

The sample was 60 % Female, 46 % White, 34 % Asian,
10 % Latino/Hispanic, and 7% Black. Ages ranged from 18
to 30 years (M = 20.2, SD = 2.5). All participants were
currently living in the USA and most had lived in the USA
for many years (M = 15.3, SD = 7.1).

Consistent with previous research [11], we calculated each
AU’s intensity level as its peak (i.e., maximum) value in
each smile event. In order to facilitate interpretation and
comparisons between predictors, the AU intensity variables
and the amusement ratings were standardized to have zero
mean and unit variance prior to analysis and visualization.

B. Statistical Modeling

1) Model Building: To explore our research questions, we
estimated two linear regression models. Model 1 regressed
self-reported amusement on AU6 intensity, AU12 intensity,
and the interaction of the two. This model allowed us to
quantify how well amusement can be inferred from these

variables and what the nature (i.e., magnitude and direction)
of these relationships was. Model 2 regressed AU6 intensity
on self-reported amusement and AU12 intensity; it allowed us
to quantify how important each variable was in explaining the
presence and intensity of AU6 in a smile. Both models also
controlled for participant sex.

The regression models were estimated using a Bayesian
multilevel modeling framework [34], [35]. Multilevel models
were necessary to account for the hierarchical structure of
the data (i.e., there were multiple observations/events from
each participant). Using a single-level model could lead to
incorrect conclusions because observations from the same
participant are more similar than observations from different
participants. As a result, the standard error estimates (which
assume observations are independent) would be biased [36].

The models are depicted in Figures 1 and 2 using multilevel
path diagrams [37]. Both models had the same two-level struc-
ture with observations (Level 1) clustered within participants
(Level 2). The only difference between them was that AU6
was predicting amusement in Model 1 and amusement was
predicting AU6 in Model 2. On Level 1, relationships between
AU intensities and self-reported amusement were captured
using regression pathways. In addition to direct pathways
for each predictor, we also included the interaction of both
predictors to allow for conditional effects (i.e., the effect of
one predictor depending on the value of the other). On Level 2,
intercepts were regressed on participant sex to control for
sex differences in average levels of amusement and AUG.
Additionally, random (i.e., participant-varying) effects were
estimated to allow participants to have different average levels
(i.e., intercepts) and different relationships between variables
(i.e., slopes). Multilevel models that include random effects
are more complex than models that do not, but are also more
accurate and generalizable [38]. The regression coefficients
that make up the primary results of these models capture the
central tendency and variability in the random effects.

Bayesian methods were used to estimate the models because
they offer many practical and interpretive advantages such as
the ability to incorporate prior knowledge about parameters
into the model and to estimate the probability of different pa-
rameter values [34], [35]. In brief, Bayesian methods combine
existing knowledge about the probability of different model
parameters (in the form of prior distributions) with observed
data to generate updated knowledge about the parameters (in
the form of posterior distributions). Statistical inferences can
then be made using this updated knowledge. We estimated our
models using the brms package [39] as an interface to the Stan
platform [40]. Complete model details, including syntax, are
provided in the supplemental materials.

2) Model Interpretation: In interpreting our model results,
we had two primary goals: to estimate the magnitude (i.e., size
and sign) of each important effect, and to quantify the amount
of precision (i.e., certainty) in these estimates. To accomplish
these goals within a Bayesian framework, we followed recent
guidelines from Kruschke [41], [42]. For each effect (i.e.,
regression coefficient), we represented its magnitude using a



TABLE I
STANDARDIZED REGRESSION COEFFICIENTS FROM MODEL 1

Parameter Estimate 95 % HDI ROPE
Intercept —0.07 [ —0.20, 0.06 ] .386
Sex (Male) 0.07 [ —0.12, 0.26 ] .320
AUG6 Intensity 0.08 [ —0.02, 0.17 ] .285
AUI2 Intensity 0.25 [ 0.15,0.33 ] .000
Interaction Effect 0.07 [ 0.01,0.14 ] .235

Note. The outcome variable in this model was amusement.

point estimate and its precision using an interval estimate.

Each point estimate is the single most credible value for the
effect’s magnitude given the data and our model. For example,
if our point estimate of the AU 6 intensity effect in Model 1
was 0.2, then this would mean that each one standard deviation
increase in AU 6 intensity would be associated with a 0.2
standard deviation increase in self-reported amusement. The
median of each effect’s posterior distribution was used as its
point estimate (the median minimizes the posterior risk for the
absolute-value loss function [43]).

Each interval estimate is the range of the most credible
values for the effect’s magnitude given the data, our model, the
amount of variability in the random effect, and the amount of
sampling error. The more uncertainty there is in the magnitude
of an effect, the wider its interval estimate will be. For
example, if our interval estimate for the same effect described
earlier was from 0.1 to 0.3, we could be more certain in its
size and sign than if its interval estimate was instead from
—0.2 to 0.6. The 95 % highest density interval (HDI) of each
effect’s posterior distribution was used as its interval estimate
(the 95 % HDI is the narrowest interval that contains 95 % of
the posterior probability density [42]).

To provide information about the practical importance of
each effect, we also used the region of practical equivalence
(ROPE) technique [42]. We defined magnitudes within the
range of —0.05 to 0.05 to be practically equivalent to zero'
(i.e., too small to be meaningful in practice). We then calcu-
lated the proportion of each HDI that fell within this range.
The smaller this proportion is, the more confident we can be
that the effect is large enough to be practically important. If
desired, we can also use the HDI+ROPE decision rule to make
discrete interpretations of the results [42]. The rule is simple:
If the entire HDI falls within the ROPE (1.0), accept the null
hypothesis and consider the effect to be practically equivalent
to zero. If the entire HDI falls outside the ROPE (0.0), reject
the null hypothesis and consider the effect large enough to be
practically important. Otherwise, withhold a decision.

III. RESULTS

The AU intensity variables were highly correlated with one
another (r = 0.64), and self-reported amusement was weakly
correlated with both AUG6 intensity (r = 0.21) and AUI2
intensity (r = 0.28). The results of Model 1 are summarized

IThis range is conventionally used for standardized regression coefficients
like ours because it corresponds to half of a “small” effect size [42, p. 277].

TABLE II
STANDARDIZED REGRESSION COEFFICIENTS FROM MODEL 2

Parameter Estimate 95 % HDI ROPE
Intercept 0.04 [ —0.06, 0.13 ] 557
Sex (Male) —0.07 [ —0.23, 0.07 ] .342
Amusement 0.05 [ —0.02, 0.11 ] .536
AU12 Intensity 0.63 [ 0.57,0.70 ] .000
Interaction Effect —0.01 [ —0.08, 0.05 ] 901

Note. The outcome variable in this model was AUG6 intensity.

in Table I and depicted in Figure 3. The results of Model 2 are
summarized in Table II and depicted in Figure 4. Complete
results details are provided in the supplementary materials.
Model 1 found that, when holding either AU’s intensity
constant, the other AU’s intensity was positively related to
amusement. However, the effect of AU12 intensity was more
than three times larger in magnitude than the effect of AU6
intensity. There was also some evidence of an interaction
between the AU intensity variables. When AU12 intensity
was low, the intensity of AU6 did not matter; but when
AU12 intensity was high, higher AU6 intensity predicted more
amusement. No reliable sex difference in amusement was ap-
parent. When adopting the HDI+ROPE decision rule, only the
AU12 intensity effect resulted in rejecting the null hypothesis.
This model explained a little less than one-third of the variance
in self-reported amusement, R?> = 0.30 [0.24,0.35], which
indicates that the intensities of AU6 and AU12 (as well as
participant sex) constitute only a fraction of the information
needed to successfully infer a participant’s level of amusement.
Model 2 found that, when holding AU12 intensity constant,
there was almost no relationship between amusement and
AUG intensity. In contrast, when holding amusement constant,
AU12 intensity was strongly related to AU6 intensity. Indeed,
the latter effect was over twelve times larger in magnitude than
the former. No reliable interaction between amusement and
AUI2 intensity was apparent, and no reliable sex difference
in AU6 was apparent. When adopting the HDI+ROPE decision
rule, only the AU12 intensity effect resulted in rejecting the
null hypothesis. This model explained around half of the
variance in AU6 intensity, R = 0.51 [0.46, 0.55]. Two pieces
of information can be gleaned from this. First, it was easier to
predict AUG intensity using the study variables than it was
to infer amusement. And second, because it was the only
meaningful predictor in the model, this means that AUI12
intensity explained around half the variance in AU6 intensity.
To see what the effects of AU6 and amusement would
have been without controlling for AUI2 intensity, we re-
ran both models without it. (The syntax and results for
these models are provided in the supplemental materials.)
When ignoring AUI2 intensity, the effect of AU6 intensity
in predicting amusement was 0.22 [0.15, 0.29], ROPE = .000.
This means that controlling for AU12 intensity reduced this
effect by 64 % and changed the HDI+ROPE decision from
reject to withhold. Similarly, when ignoring AU12 intensity,
the effect of amusement in predicting AU6 intensity was 0.24
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Fig. 3. Marginal Effects Plot from Model 1 with 95% HDI. This model predicted the amount of self-reported amusement associated with each smile.
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Fig. 4. Marginal Effects Plot from Model 2 with 95% HDI. This model predicted the intensity level of AU6 (the cheek raiser) in each smile.

[0.16,0.31], ROPE = .000. This means that controlling for
AUI2 intensity reduced this effect by 79 % and changed the
HDI+ROPE decision from reject to withhold.

IV. DISCUSSION

The Duchenne smile hypothesis [1]-[4] is that AU6 reveals
the emotion underlying a smile and distinguishes felt smiles
from false and negative emotion smiles. This hypothesis has
become very popular in many research areas and is often used
to justify the inference that a person is (or is not) feeling
positive emotion based on the observation of a Duchenne
(or non-Duchenne) smile. However, empirical support for this
hypothesis has been called into question by researchers who
have argued that AU6 may just be an artifact of high AU12
intensity. Thus, previously observed associations between AU6
and felt positive emotion may have been inflated by both
variables’ correlations with AU12 intensity [11], [28].

The current study directly tested this possibility in two
different ways and found strong support for it both times.
When trying to infer positive emotion from the appearance of a
smile, the predictive power of AU6 was reduced considerably
by controlling for AUI2 intensity. Similarly, when trying to
predict whether a smile would include AU6 (and to what
degree), the predictive power of self-reported amusement was
almost completely erased by controlling for AU12 intensity.

There are three main implications of these findings. First,
future research on the Duchenne smile hypothesis should
always measure and consider AU12 intensity. As shown in
our study, failing to do so can seriously distort estimates of
the relationship between AU6 and emotion (e.g., inflating their
magnitude by up to 79 %). Second, researchers should refrain
from inferring the presence or absence of positive emotion on
the basis of Duchenne smiles alone. We found that such an

inference will often be incorrect, especially when the intensity
of AU12 is low. Instead, future work should continue to
explore other smile characteristics that have shown promise in
revealing the meaning of smiles (e.g., symmetry and dynamics
[27], [44], [45]). Given that the intensities of AU6 and AU12
only explained around 30 % of the variance in amusement,
there is a lot of room for other smile characteristics to
make contributions. Finally, researchers evaluating theories
of emotion should consider the possibility that much of the
evidence in favor of the Duchenne smile hypothesis may
have been confounded by the unmeasured intensity of AU12
and therefore inflated [28]. Thus, theories that advance this
hypothesis, such as discrete emotions theory [10], may have
less evidentiary support than previously believed.

The reason for the strong association between AU6 and
AUI12 intensity is not completely understood, but it seems that
an anatomical or psychomotor dependency between the facial
muscles encourages AU6 and AU12 to co-occur [29]. Because
the FACS manual [5] explicitly describes how to determine
whether or not a strong AU12 includes AU6, we believe this
association is real and not just a bias of the FACS coders.

In conclusion, the current study found that associations
between felt positive emotion and Duchenne smiles are re-
duced when AUI12 intensity is controlled for. These results
replicate and extend previous work [11] by showing that this
phenomenon generalizes beyond feigned smiles and applies
to negative emotion smiles as well. We also quantified, for
the first time, the extent of this reduction and found it to be
substantial (i.e., 64 % when predicting amusement and 79 %
when predicting AU6). This suggests that, rather than being
a reliable indicator of positive emotion, AU6 may just be an
artifact of intense smiles.
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Complete syntax and output for all analyses are provided
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