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Abstract: Motivated by recent analyses of data in biomedical imaging studies, we
consider a class of image-on-scalar regression models for imaging responses and
scalar predictors. We propose using flexible multivariate splines over triangulations
to handle the irregular domain of the objects of interest on the images, as well as
other characteristics of images. The proposed estimators of the coefficient functions
are proved to be root-n consistent and asymptotically normal under some regularity
conditions. We also provide a consistent and computationally efficient estimator of
the covariance function. Asymptotic pointwise confidence intervals and data-driven
simultaneous confidence corridors for the coefficient functions are constructed. Our
method can simultaneously estimate and make inferences on the coefficient func-
tions, while incorporating spatial heterogeneity and spatial correlation. A highly
efficient and scalable estimation algorithm is developed. Monte Carlo simulation
studies are conducted to examine the finite-sample performance of the proposed
method, which is then applied to the spatially normalized positron emission tomog-
raphy data of the Alzheimer’s Disease Neuroimaging Initiative.

Key words and phrases: Coefficient maps, confidence corridors, image analysis,
multivariate splines, triangulation.

1. Introduction

Medical and public health studies collect massive amount of imaging data
using methods such as functional magnetic resonance imaging (fMRI), positron
emission tomography (PET) imaging, computed tomography (CT), and ultra-
sonic imaging. Much of these data can be characterized as functional data.
Compared with traditional one-dimensional (1D) functional data, these imag-
ing data are complex, high-dimensional, and structured, which poses challenges
to traditional statistical methods.

We propose a unifying approach to characterize the varying associations be-
tween imaging responses and a set of explanatory variables. Three types of sta-
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tistical methods are widely used to investigate such associations. The first cate-
gory includes the univariate approaches and pixel-/voxel-based methods (Worsley
et al. (2004); Stein et al. (2010); Hibar et al. (2015)), which take each pixel/voxel
as a basic analytic unit. Because all pixels/voxels are treated as independent, a
major drawback of these methods is that they ignore correlation between the pix-
els/voxels. The second category is the tensor regression. This approach considers
an image as a multi-dimensional array (Zhou, Li and Zhu (2013); Li and Zhang
(2017)), which is then changed to a vector to perform the regression. However,
doing so naively yields an ultra-high dimensionality and requires a novel dimen-
sion-reduction technique and highly scalable algorithms (Li and Zhang (2017)).
The third category is the functional data analysis (FDA) approach, in which an
image is viewed as the realization of a function defined on a given domain (Zhu,
Li and Kong (2012); Zhu, Fan and Kong (2014); Reiss et al. (2017)). Using an
FDA, we are able to combine information both across and within functions.

We adopt the FDA approach in this study. Functional linear models (FLMs)
are widely used to model the regression relationship between a response and
some set of predictors from multiple subjects. In the literature (Ramsay and Sil-
verman (2005); Miiller (2005); Morris (2015); Wang, Chiou and Muller (2016)),
FLMs are often categorized based on whether the outcome, the predictor, or
both are functional: (i) functional predictor regression (scalar-on-function) (Car-
dot, Ferraty and Sarda (1999, 2003); Hall and Horowitz (2007)); (ii) functional
response regression (function-on-scalar) (Morris and Carroll (2006); Reiss, Huang
and Mennes (2010); Staicu, Crainiceanu and Carroll (2010); Zhu, Fan and Kong
(2014); Zhang and Wang (2015); Chen, Delicado and Miiller (2017)); and (iii)
function-on-function regression (Ramsay and Dalzell (1991); Yao, Miiller and
Wang (2005); Sentiirk and Miiller (2010); Wu and Miiller (2011)).

Motivated by the structure of brain imaging data, we propose a novel image-
on-scalar regression model with spatially varying coefficients that captures the
varying associations between imaging phenotypes and a set of explanatory vari-
ables. Figure 1 shows a schematic diagram of the proposed modeling approach.
Specifically, let 2 be a two-dimensional bounded domain, and let z = (21, 22) be
the location point on Q. For the ith subject, i = 1,...,n, let Y;(2) be the imaging
measurement at location z € €2, and let X4, for £ =0,1,...,p, with X;0 =1, be
scalar predictors, for example, clinic variables (such as age and sex) and genetic
factors. The spatially varying coefficient regression characterizes the associations
between imaging measures and covariates, and is given by the following model:

Yi(z) = X/ 8°(2) + ni(2) + 0(2)ei(2), i=1,...,n, z €,
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Figure 1. A schematic diagram of proposed modeling approach.

where )NCZ = (X0, Xi1, - - ,Xip)T, B° = (68,61, .. .,B;)T is a vector of some un-
known bivariate functions, 7n;(z) characterizes the individual image variations,
ei(z) represents additional measurement errors, and o(z) is a positive determin-
istic function. In the following, we assume that n;(z) and &;(z) are mutually
independent. Moreover, we assume that 7;(z), for i = 1,...,n, are independent
and identically distributed (i.i.d.) copies of an Ly stochastic process with mean
zero and covariance function Gy (z,2’) = cov{n;(2),n:;(2")}. Furthermore, ;(2),
for i = 1,...,n, are i.i.d. copies of a stochastic process with zero mean. and
covariance function G¢(z,2') = cov{eg;(2),e,(2)} = I[(z = /).

For a 1D function-on-scalar regression, Chapter 13 of Ramsay and Silver-
man (2005) provides a common model-fitting strategy, in which the coefficient
functions are expanded using some sets of basis functions, and the basis coeffi-
cients are estimated using the ordinary least squares method. However, it is not
trivial to extend this to an image-on-scalar regression, particularly with biomed-
ical imaging responses. For biomedical images, the objects (e.g., organs) on the
images are usually irregularly shaped (e.g., breast tumors). Another example
is that of brain images, as shown in Figure 1, especially slices from the bottom
and the top of the brain. Even though some images seem to be rectangular, the
true signal comes only from the domain of an object, and the image contains
only noise outside the boundary of the object. Many smoothing methods, such
as, tensor product smoothing (Reiss et al. (2017); Chen, Delicado and Miiller
(2017)), kernel smoothing (Zhu, Fan and Kong (2014)), and wavelet smoothing
(Morris and Carroll (2006)), provide poor estimations over difficult regions be-
cause they smooth inappropriately across boundary features, referred to as the
“leakage” problem in the smoothing literature; see Ramsay (2002) and Sangalli,
Ramsay and Ramsay (2013). Next, for technical reasons, imaging data often
have different visual qualities. The general characteristics of medical images are
determined and limited by the technology for each specific modality. As a result,
there is a great interest in developing a flexible method with varying smoothness
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Figure 2. A schematic diagram of proposed inferential approach.

L

to adaptively smooth biomedical imaging data.

In this study, we tackle the above challenges using bivariate splines on tri-
angulations (Lai and Wang (2013)) to effectively model the spatially nonstation-
ary relationship and preserve the important features (shape, smoothness) of the
imaging data. A triangulation can represent any two-dimensional (2D) geometric
domain effectively because any polygon can be decomposed into triangles. We
study the asymptotic properties of the bivariate spline estimators of the coeffi-
cient functions, and show that our spline estimators are root-n consistent and
asymptotically normal. The asymptotic results are used as a guideline to con-
struct pointwise confidence intervals (PClIs) and simultaneous confidence corri-
dors (SCCs; also referred to as “simultaneous confidence bands/regions”) for the
true coefficient functions. Figure 2 shows the proposed inferential approach. Our
method is statistically more efficient than the tensor regression (Li and Zhang
(2017)) and the three-stage estimation (Zhu, Fan and Kong (2014)), because it is
able to accommodate complex domains of arbitrary shape and adjust the individ-
ual smoothing needs of different coefficient functions using multiple smoothing
parameters. In addition, our method does not rely on estimating the spatial sim-
ilarity and adaptive weights repeatedly, as in Zhu, Fan and Kong (2014); thus, it
is much simpler.

The remainder of the paper is structured as follows. Section 2 describes
the spline estimators for the coefficient functions, and establishes their asymp-
totic properties. Section 3 describes the bootstrap method used to construct the
SCC and how to estimate the unknown variance functions involved in the SCC.
Section 4 presents the implementation of the proposed estimation and inference.
Section 5 reports our findings from two simulation studies. In Section 6, we illus-
trate the proposed method using PET data provided by the Alzheimer’s Disease
Neuroimaging Initiative (ADNI). Section 7 concludes the paper. All technical
proofs of the theoretical results and additional numerical results are deferred to
the online Supplementary Material.
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2. Models and Estimation Method
2.1. Image-on-scalar regression model

Let z; € Q be the center point of the jth pixel in the domain 2, and let Y;;
be the imaging response of subject ¢ at location j. The actual data set consists
of {(Yij,Xi,25),i=1,...,n,j =1,..., N}, which can be modeled as follows:

p
Z ZKBZ Zj +n2(zj) + O-(Zj)glj (2.1)
=0

Denote the eigenvalues and eigenfunctions of the covariance operator G, (z, 2’)
as {\r}rey and {¢r(2)}ee, respectively, where Ay > Ao > -+ >0, > 72 A <
oo, and {1y }7o, forms an orthonormal basis of L? (). It follows from spectral
theory that Gy(z,2") = > 12 Mtk (z)¥k(2). The ith trajectory {n;(z),z € Q}
allows the Karhunen—Loéve L? representation (Li and Hsing (2010); Sang and
Huang (2012)): ni(z) = Y rey )\llc/zél-kwk(z), )\llc/zfik = [Leqni(2)¥r(2)dz, where
the random coefficients &;; are uncorrelated random variables with mean zero
and E(&r&ix) = I(k = k'), referred to as the kth functional principal component
score (FPCA) of the ith subject. Thus, the response measurements in (2.1) can
be represented as follows:

P
Z B () Xie + Z A fzkl/}k(zj) + o(zj)ei;- (2.2)
£=0 k=1

2.2. Spline approximation over triangulations and penalized regression

Note that the objects of interest on many biomedical images are often dis-
tributed over an irregular domain 2. Triangulation is an effective strategy to
handle such data. For example, the spatial smoothing problem over difficult re-
gions in Ramsay (2002) and Sangalli, Ramsay and Ramsay (2013) was solved
using the finite element method (FEM) on triangulations, which was developed
primarily to solve partial differential equations. Here, we approximate each coef-
ficient function in (2.2) using bivariate splines over triangulations (Lai and Schu-
maker (2007)). The idea is to approximate each function [(-) using Bernstein
basis polynomials that are piecewise polynomial functions over a 2D triangulated
domain. Compared with the FEM, the proposed approach is appealing in the
sense that its spline functions are more flexible and it uses various smoothness
settings to better approximate the coefficient functions. In this section, we briefly
introduce the triangulation technique and describe the bivariate penalized spline
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smoothing (BPST) method used to approximate the spatial data.

Triangulation is an effective tool to deal with data distributed over difficult
regions with complex boundaries and/or interior holes. In the following, we use
T to denote a triangle that is a convex hull of three points not located on one
line. A collection A = {T1,...,Ty} of H triangles is called a triangulation of
Q= UthlTh, provided that any nonempty intersection between a pair of triangles
in A is either a shared vertex or a shared edge. Given a triangle T' € A, let |T|
be its longest edge length and o7 be the radius of the largest disk inscribed in 7T'.
Define the shape parameter of T' as the ratio mp = |T'|/or. When 7 is small,
the triangles are relatively uniform in the sense that all angles of the triangles
in A are relatively the same. Denote the size of A by |A| = max{|T|,T € A},
that is, the length of the longest edge of A. For an integer r > 0, let C"(2) be
the collection of all rth continuously differentiable functions over Q2. Given A,
let SH(A) ={s €C"(Q) : s|7 € Pg(T), T € A} be a spline space of degree d and
smoothness r over A, where s|p is the polynomial piece of spline s restricted on
triangle T', and P, is the space of all polynomials of degree less than or equal to d.
Note that the major difference between the FEM and the BPST is the flexibility
of the smoothness, r, and the degree of the polynomials, d. Specifically, the FEM
in Sangalli, Ramsay and Ramsay (2013) requires that » = 0 and d = 1 or 2,
whereas the BPST allows smoothness r > 0 and various degrees of polynomials.

We use Bernstein basis polynomials to represent the bivariate splines. For
any £ =0,1,...,p, denote by A, the triangulation of the £th component. Define

g(p+1) = g(p+1)(A0 X X AP) = {g = (903--- 7gp)Tvg€ S SQ(AZ)7€ = O"‘ . ’p}’

and let { By, bmem, be the set of degree-d bivariate Bernstein basis polynomials
for Sj(A¢), where M, is an index set of Bernstein basis polynomials. Denote
by By the evaluation matrix of the Bernstein basis polynomials for the ¢th com-
ponent, and let the jth row of By is given by B/ (z;) = {Bun(2j),m € My}.
We approximate each () using f(z;) ~ BZ(Zj)'Yg, for £ = 0,1,...,p, where
'Yz:r = (Yem, m € My) is the spline coefficient vector.

Penalized spline smoothing has gained in popularity over the last two decades;
see Hall and Opsomer (2005); Claeskens, Krivobokova and Opsomer (2009);
Schwarz and Krivobokova (2016). To define the penalized spline method, for
any direction z4, ¢ = 1,2, let Vfgqs(z) denote the vth—order derivative in the
direction z, at the point z. We consider the following penalized least squares
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problem:

2 p
oo 5m1n Gt < Z Z {Ym — ZXlgﬁg zj } + Z P € (Be),

=0

where E(s) = Y pen Jr 2 it 2( J(VE, V1, 5)2dz1dz; is the roughness penalty,
and p, ¢ is the penalty parameter for the Eth function.

To satisfy the smoothness condition of the splines, we need to impose some
linear constraints on the spline coefficients ~,: Hyy, = 0, for £ = 0,1,...,p.
Thus, we have to minimize the following constrained least squares:

2 p
Z Z { ij EXZEBE Z])")’g} + an,€7;P€7€a SUbjeCt to HZ7€ =0,
¢=0

i=1 j=1 =0

where Py is the block diagonal penalty matrix satisfying v, Py = E(B/] ~¢).

We first remove the constraint using a QR decomposition of the transpose
of the constraint matrix Hy. Applying a QR decomposition on H;, we have
Hg = QR = (Qr1 Qo 2)( ) where Qy is an orthogonal matrix and Ry is an
upper triangular matrix. The submatrlx Q1 represents the first » columns of Qy,
where 7 is the rank of matrix Hy, and Ry is a matrix of zeros. We reparametrize
this using v, = Qg,260y, for some 6,. Then, it is guaranteed that Hyv, = 0. Thus,
the minimization problem is converted to the following conventional penalized
regression problem, without restrictions:

p
Z Z {Ym - Z XiB/ (2))Qe 26’2} + an,ﬂZDﬂe, (2.3)

i=1 j=1 =0

where Dg = QZ}P@Q&Q.
Let Y; = (Yi1, Yo, ..., Yin) ", Be(2) = {Bum(z),m € Mg}, Y = (Y],
Y;Lr) N and U = (Uu, U12, N ,UnN)T, where

U;; = {XioBo(z) " Qoz2, XitB1(2) " Q2. .., XipBp(25) ' Qpa} ' (2.4)

Let @ = (6],67],... ,OJ)T and D(ppo,...,pnp) = diag{pnoDo,-..,pnpDp}.
Minimizing (2.3) is then equivalent to minimizing ||Y — U8||* + 8 ' D(ppo,. . .,
pn,p)0. Hence,

0=(8].6],....0))" ={UTU+D(pno,...,pnp)} "UTY.
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Thus, the estimators of «, and [34(-) are
Yo = Quabe, Bi(z) = Bu(2) A (2.5)

2.3. Asymptotic properties of the BPST estimators

This section examines the asymptotics of the proposed estimators. Given ran-
dom variables U, for n > 1, we write U, = Op(by,) if lim._, o limsup,, P(|U,| >
cby) = 0. Similarly, we write U, = op(by) if lim,, P(|U,| > cb,) = 0, for any
constant ¢ > 0. Next, to facilitate discussion, we introduce some notation of
norms. For any function g over the closure of domain §2, denote || gH%Q(Q) =
Jq 9%(2)dz as the regular Ly norm of g, and [|gfleco = Sup,eqlg(2)| as the
supremum norm of g. Further denote ||gllv,00,0 = maxo<i<p |g¢|v,00,0, Where
19]v,00,0 = Max;4j—y |V, \% 9|00, is the maximum norm of all vth-order deriva-
tives of g over . Let W% (Q) = {g : |g|r.c00 < 00,0 < k < d} be the standard
Sobolev space. Next, we introduce some technical conditions.

(A1) For any £=0,...,p, B9(-) € WitL>(Q), for an integer d > 1.

(A2) For any i = 1,...,n, j = 1,..., N, g;’s are independent with mean zero
and variance one, and for any k > 1, & are uncorrelated random variables
with mean zero and variance one.

(A3) Forany /¢ =0,1,...,p, there exists a positive constant Cy, such that E|X,|® <
Cy. The eigenvalues of By = F(XX ") are bounded away from zero and
infinity.

(A4) The function o(2) € CV(Q), with 0 < ¢, < 0(z) < Cy < 00, for any z € Q;
for any k, ¥x(z) € C1(Q) and 0 < cg < Gy(2,2) < Cg < oo, for any
z €

(A5) Let |A| = ming<i<p|A¢| and [A] = maxo<s<p|A¢|. The triangulations
Ay satisify that limsup, (|A|/|A]) < co. The triangulations are m-quasi-
uniform; that is, there exists a positive constant 7, such that maxo<s<,{

(minren, or) MO} < T

(A6) As N — oo, n — o0, for some 0 < k < 1, N~Int/(@+0)+s o pl/2 A4
0, N*/2|A| = oo, and the smoothing parameters satisfy that n=/2N~1A|~3
pn — 0, where p, = maxo<i<p pn -

The above assumptions are mild conditions that are satisfied in many practi-
cal situations. Assumption (A1) describes the usual requirement on the coefficient
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functions described in the literature on nonparametric estimation. Assumption
(A1) can be relaxed to Assumption (A1l’) in Section 2.4, which only requires
pi() € C9(Q) when dealing with imaging data with sharp edges; see Section
2.4. Assumptions (Al) and (A2) are similar to Assumptions (Al) and (A2) in
Gu et al. (2014) and Assumptions (A1)—(A3) in Huang, Wu and Zhou (2004).
Assumption (A3) is analogous to Assumption (A5) in Gu et al. (2014), ensuring
that X, is not multicollinear. Assumption (A5) requires that Ay be of similar
size, and suggests the use of more uniform triangulations with smaller shape pa-
rameters. Assumption (A6) implies that the number of pixels for each image N
diverges to infinity and the sample size n grows as N — oo, a well-developed
asymptotic scenario for dense functional data (Li and Hsing (2010)). Assump-
tion (A6) also describes the requirement of the growth rate of the dimension of
the spline spaces relative to the sample size and the image resolution. This as-
sumption is easily satisfied because images measured using current technology
are usually of sufficiently high resolution.

The following theorem provides the Lo convergence rate of Bg(-), for ¢ =
0,1,...,p. A detailed proofis given in Appendix 1 in the Supplementary Material.

Theorem 1. Suppose Assumptions (A1)—(A5) hold and N2 Al — 0o as N —
oo. Then, for any £ = 0,1,...,p, the BPST estimator ,@g(-) is consistent and
satisfies ||e — B (o) = OpLpn/ (ANIAP)IB .0 + (1 + puf (nN|AJP)) B[+
18°llat1.00 + 172}

Theorem 2 states the asymptotic normality of Bg at any given point z € ,
for £ =0,1,...,p. See Appendix 1 in the Supplementary Material for a detailed
proof. Denote

_ _ - 1 n N - _
E.(2)=B(2)"E rn;n2N22 > ULULGy(2), 20T, ¢ B(z),  (2.6)

i=1j,57'=1

where U;; and T', , are given in (2.4) and (S1.17), respectively, in Appendix 1,
B(z) = diag{Bo(2),...,B,(2)}, and By(z) = Q;EBg(Z) for {=0,...,p.

Theorem 2. Suppose Assumptions (A1)—(A6) hold. If for any ¢ = 0,1,...,p,
_ ~ o c

| Xie| < Cp < o0, then By, (2){B(2)~B°(2)} =5 N (0,1 41)x(ps1) a5 N — o0

and n — oo, where E,(z) is given in (2.6). Furthermore, there exist positive

constants ¢y < Cy < 400, such that cyn™ (14 p,/(nN|A|*) 72 < Var{Bi(z)} <

Cyn=t, for any £ =0,1,...,p.
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2.4. Piecewise constant spline over triangulation smoothing

Many imaging data can be regarded as a noisy version of a piecewise-smooth
function of z € Q with sharp edges, which often reflect the functional or structural
changes. The penalized bivariate spline smoothing method introduced, in Section
2.2, assumes some degree of smoothness over the entire image. To relax this
assumption while preserving the features of sharp edges, we make the following
less stringent assumption on the smoothness of the coefficient functions:

(A1’) For any £ =0,...,p, the bivariate function g§(-) € CcO(Q).

For the estimation, we consider the piecewise constant spline over triangu-
lation (PCST) method. For any ¢ = 1,...,p, denote by PC(A,) the space of
piecewise constant functions over each T,,, for m € M,. The bivariate spline
basis functions of PC(Ay) are denoted as { By, (z) }mem,, which are simply in-
dicator functions over triangle T,,,, Ben(z) = I(z € Tp,,), m € My. Assumption
(A1’) controls the bias of the piecewise constant spline estimator for 37 and leads
to the estimation consistency.

When using the constant bivariate spline basis functions, we have £(s) = 0
for all s € PC(A), and for any z € Q, By(2)By(z)" = diag{B?,,(z),m € M,}.
Then, '/7\’m = (:Y\OTTH '/Y\Ima cee v'/V\pm)T :{}%1 {(nN)_l Z?:l Z;V:1 Bﬁm(zj)XiZYij }j_ ,
where -

P

N n n N
v 1 2 > T 1 9
Vm = N ZBZm(Zj) EEXlXZ = —nN E E Bem(zj)Xiinf' . (27)
1=

j=1 =1 j=1 2,0'=0

By simple linear algebra, for any £ = 0,...,p, the PCST estimator is given by
Bi(2) =" FomBem(2). (2.8)
meM,

For any z € Q, define the index of the triangle containing z as m(z); that is,
m(z) = m if z € T,y Then, By(2) = Fpm(z) and B°(2z) = (B§(2),...,B5(2))" =
(Yom(z)s - - - ﬁpm(z))T = Am(z)- For any z € Q, denote

2.(2) =012 Gy (2, 2). (2.9)

Theorem 3 shows the asymptotic normality of the piecewise constant esti-
mators 3(z). See the Supplementary Material for detailed proofs. To obtain the

asymptotic variance-covariance function, we also need the following assumption:

(C1) The variables &, and ¢;; are independent and satisfy £ ]&k\“‘;l < +oo for
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some 01 > 0, and E || < oo for some do > 0.

Theorem 3. Under Assumptions (A1), (A2)—(A5), and (C1), as N — oo and
n — oo, if for some 0 < k < 1, N™Ipl*® — 0, N7V2 <« |A] < [A] <
nYANTY2 and || 30, A,lc/zz/)kHoo < 00, then for any z € 9, 271/2( ){BC( ) —
B(2)} 55 N (0.1 1yupen))s where By(z) is (2.9); pr{(o% )" (2)|Be(2)
B9(z)| < Zi_apo} = 1 —a, for any o € (0,1), as N — oo, n — oo, where
0y, (%) is the square root of the (£,€)th entry of the matriz ¥,(2), and Zy_o/9
is the 100 (1 — «/2)th percentile of the standard normal distribution.

3. Variance Function Estimation and Simultaneous Confidence Corri-
dors

3.1. Estimation of the variance function

R Define the estimated residual Eij =Y — Z?:o Xng(zj) or Yj; — Z?:o X
Bi(z;), forany i =1,...,n,j=1,...,N. We apply the bivariate spline smooth-
ing method to {(R;j, zj)}év:l. Specifically, we define

2
ni(z) = argmln Z{ —9i(2; } ,i=1,...,n, (3.1)

as the spline estimator of 1;(z), where the triangulation A, may differ from that
introduced in Section 2 when estimating 87(z). Next, let €; = R;; — 7:(25).
Define the estimators of G, (2, z’) and o?(z;) as

Gn(z,2) =n"1 ) Hi(2)ii(2) and 6%(2)) =n~ ' > &85, (32)

respectively. In general, for spline estimators (d > 0), denote Z,(z) = {2 oo
2)} y_o, where

[

n(z) = n2N2 Z{ > LU, UGy (25,2007, )

J.3'=1
+ ZUijUgaQ(zj)}E(z). (3.3)
j=1

Note that the estimation can be much simplified if PCST smoothing is applied.
In this case, the variance-covariance matrix 3,,(z) can be simply estimated using
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n -1 -~
—~ ~c 2 P 1 -1 > T ~ 0-2(2)
Zn(#) =@ g = 5 (7T XX ) Onlm2) + g g
i—1 mlz

where A, (,) is the area of triangle T;,,,) divided by the area of the domain. The
following conditions (C2)—(C3) are required for the bivariate spline approximation
in the covariance estimation and to establish the estimation consistency. The
proofs of the results in this section are provided in the Supplementary Material.

(C2) For any k > 1, ¢y(z) € WL for an integer s > 0, and for a sequence
{K,}22, of increasing positive integers with lim, K,, — oo, |A,[*T! Zfz"l
A2 [kllss1,00 — 0 as N — 00, 1 — oo

C3) As N — 00, n — 00, for some 0 < k < 1, N~ 1pt/(d+tD)+s 0/ N|A, 12 — oo,
n
and n|A,|?/(logn)/? — co.

Assumption (C2) concerns the bounded smoothness of the principal compo-
nents that bound the bias terms in the spline covariance estimator.

~

Theorem 4. Under Assumptions (A1)-(A6) and (C1)-(C3), Gy(z, 2") uniformly
converges to Gy (z,2") in probability; that is, sup, ,necqe |an(z, Z)—Gy(z,2)| =
op(1).

Corollary 1. Under Assumptions (A1)-(A6), (C1)—(C3), the estimator of f)n(z)
uniformly converges to to 3,,(z) in probability; that is, sup,cq |Xn(z) — X, (2)| =
op(1).

Denote

. _1 ~ 1/2
~c 12 | oT [ ST XXT & 7%(2) 4
) =n 2 ol (0 XKD ) ez Eopl 3
i=1 miz

From Corollary 1, o7, ,,(2) is a consistent estimator of o}, ,,(2) in (2.9).

3.2. Bootstrap simultaneous confidence corridors (SCCs)

From Theorems 2 and 3 and Slutzky’s Theorem, we have the following asymp-
totic PCls.

Corollary 2.

(a) For the BPST estimators, under Assumptions (Al)—(A6), for any ¢ =
0,....,p, a € (0,1), as N — oo, n — o0, an asymptotic 100(1 — )%
PCI for 3(z), is Be(z) £ 0nee(2) Z1—as2, for any z € Q, where 02 ,(2) is
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the (£, €)th entry of the matriz E;l/Q(z), and Zy_qy2 is the 100 (1 — a/2)th
percentile of the standard normal distribution.

(b) For the PCST estimators, under Assumptions (A1") and (A2)-(A6), if for
some 0 < k <1, N~Inl*t® — 0, an asymptotic 100(1 — a)% PCI for 32(z)
is By(z) £ oy (2)Z1_ay2, for any z € Q, where o}, ,,(2) is the standard

deviation function of B;(z) in Theorem 3.

Next, we introduce a simple bootstrap approach to extend the PCIs to the
SCCs. Our approach is based on the nonparametric bootstrap method used in
Hall and Horowitz (2013). We triangulate the domain 2 using quasi-uniform
triangles, obtaining a set of approximate 100(1 — «)% PClIs. In the following,
«g denotes the nominal confidence level of the desired SCCs. We recalibrate the
PCIs using the following bootstrap method.

Step 1. Based on {(X; )};V? ,—1, obtain the coeflicient functions £7(z) using
the BPST estimators 3;(2) in (2.5) or the PCST estimators ﬂg( z) in (2.8),
for £ =0,...,p. Let fi(z) = S0_ XieBe(z) or S0, Xef5(2).

Step 2. Obtain 7;(z) and &;; presented in (3.1)—(3.2), and estimate G,(z,z),
0?(z), and aflﬂ(z) using G(z, z) and 0%(z) in (3.2) and 52 (%) in (3.3)
or (3.4), respectively.

Step 3. Obtain an adjusted nominal confidence level ay(«p).

(i) Generate an independent random sample 5l(b) and 5 ®) from {-1,1} with

probability 0.5 each, and define Y = n(z;) + 5 m(zj) + 51(])5”
(ii) Based on {(XZ,YZ]( ))}J 1i=1> obtain Bz(b)(z) using (2.5) or (2.8), and

calculate En% using (3.3) or (3.4).
(iii) Construct SCCs for the resampled data {(X;, ”(b))}jv iy i=1° By
1,....B,
By () ={(z,y) 1 z € Q,
BV - 502 21 aps <y < BV(2) + 5,0 21y}

(Oé), b=

(iv) Estimate the coverage rate 7(z;, a) = P{(z;, Bg(zj)) € B*(a)|X} using
Fuzi ) = (1/B) S0, I{(25, Bul)) € By (o)}

(v) Find the root of the equation 74(z;,a0) = 1 — ag, for j = 1,..., N,
and denote it as {ay(z;, ao)} . The root can be found using the grid
method by repeating the last two steps for different values of «.
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vi) Take the minimum of {ay(z;, ag)}Y_, and denote it as &y = ay(ag).
J 7j=1

Step 4. Construct the final SCCs: B(ay) = {(z,y) : z € Q, Eg(z)—&\n’a(z)Zl_az/Q
<y < Be(z) + Onee(z)Z1-a,/2}-

4. Implementation

The proposed procedure can be implemented using our R package “FDAim-
age” (Yu, Wang and Wang (2019)), in which the bivariate spline basis is generated
using the R package “BPST” (Wang, Wang and Lai (2019)). When the response
imaging seems to be a realization from some smooth function, we suggest using
the smoothing parameter r = 1 and degree d > 5, which achieves full estimation
power asymptotically (Lai and Schumaker (2007)). In contrast, if there are sharp
edges on the images, we suggest considering the PCST presented in Section 2.4.

Selecting suitable values for the smoothing parameters is important to good
model fitting. To select p,y, for £ = 0,...,p, we used K-fold cross-validation
(CV). The individuals are randomly partitioned into K groups, where one group
is retained as a test set, and the remaining K — 1 groups are used as training
sets. The CV process is repeated K times (the folds), with each of the K groups
used exactly once as the validation data. Then, the K-fold CV score is

K N
V(o) = K SN S0 3 vy - KT Bz}
k=1

i€V j=1

where Vy is the kth testing set for k = 1,..., K, and B_k is the corresponding
estimator after removing the kth testing set. We use K = 5 in our numerical
examples.

To determine an optimal triangulation, the criterion usually considers the
shape, size, or number of triangles. In terms of shape, a “good” triangulation
usually refers to one with well-shaped triangles without small angles and/or ob-
tuse angles. Therefore, for a given number of triangles, Lai and Schumaker (2007)
and Lindgren, Rue and Lindstrém (2011) recommended selecting the triangula-
tion according to “max-min” criterion, which maximizes the minimum angle of
all the angles of the triangles in the triangulation. With respect to the number of
triangles, our numerical studies show that a lower limit of the number of triangles
is necessary to capture the features of the images. However, once this minimum
number has been reached, refining the triangulation further usually has little ef-
fect on the fitting process. In practice, when using higher-order BPST smoothing,
we suggest taking the number of triangles as H,, = min{|c;n'/ 24+ N1/2| N/10},
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where ¢; is a tuning parameter. We find that ¢; € [0.3,2.0] works well in our
numerical studies. When using the PCST, we suggest taking the number of tri-
angles as H,, = min{|con /4N |, N/2}, with co € [0.3,2.0]. Once H,, is chosen,
we can build the triangulation using typical triangulation construction methods,
such as Delaunay triangulation and DistMesh (Persson and Strang (2004)).

5. Simulation Studies

In this section, we conduct two Monte Carlo simulation studies using our R
package “FDAimage” (Yu, Wang and Wang (2019)) to examine the finite-sample
performance of the proposed methodology. The triangulations used here can be
found in the data set in the “FDAimage” package. To illustrate the performance
of our estimation method, we compare the proposed spline method with the kernel
method proposed by Zhu, Fan and Kong (2014) (Kernel) and the tensor regression
method of Li and Zhang (2017) (Tensor). To implement the kernel method,
we use the R Package SVCM, which is publicly available at https://github.
com/BIG-S2/SVCM. For the tensor method, the accompanying MATLAB code
at https://ani.stat.fsu.edu/~henry/TensorEnvelopes_html.html is used.
We compare the proposed method with the tensor regression approach in Li and
Zhang (2017) and the three-stage FDA approach in Zhu, Fan and Kong (2014).

5.1. Example 1

To illustrate the advantage of the proposed method over a complex domain,
we study the horseshoe domain in Sangalli, Ramsay and Ramsay (2013). The re-
sponse images are generated from the following model: Y;; = §(z;)+ X587 (2;) +
ni(z;) + ogij, for i = 1,...,n, j =1,...,N, and z; € Q. To understand the
advantages and disadvantages of different methods, we consider two types of co-
efficient functions in the above image-on-scalar regression model: (I) functions
with jumps; and (II) smooth functions. The true coefficient functions are shown
in Figure 3.

For each image, we set the resolution as 100 x 50 (pixels). The true signal falls
only within the horseshoe domain (3,182 pixels); outside the domain is pure noise.
We generate the scalar covariate X; ~ N (0, 1), and then truncate it by [—3, +3].
We set 7;(z) = 32_, A/ *€itb(2), where (A1, Ag) = (0.1,0.02) or (0.2,0.05) and
&1 and &a ~ N(0,1), ¥1(z) = c1sin(2mz1), and ¥o(z) = cacos(2mza). Let
c1 = 0.56 and co = 0.61, such that 1 and v, are orthonormal functions on 2. The

measurement error €;; is independently generated from N(0,1) and o = 1.0, 2.0.
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Case I (jump functions) Case II (smooth functions)

BY By

Figure 3. The true coefficient functions in Simulation Example 1.

Table 1. Estimation errors of the coefficient estimators, o = 2.0.

Function A1 = 0.03, Ay = 0.006 A1 =0.2, A =0.05
Type " Method =g B B B
BPST  0.0139 0.0182 0.0145 0.0189
50 PCST  0.0088 0.0090 0.0094 0.0097
Kernel 0.0801 0.0819 0.0807 0.0826
Jump Tensor  0.0799 0.0248 0.0799 0.0254
BPST  0.0090 0.0118 0.0093 0.0122
100 PCST  0.0044 0.0044 0.0047 0.0047
Kernel  0.0400 0.0405 0.0403 0.0409
Tensor  0.0395 0.0166 0.0399 0.0171
BPST  0.0026 0.0032 0.0032 0.0041
50 PCST  0.0088 0.0090 0.0119 0.0139
Kernel 0.0801 0.0819 0.0807 0.0826
Smooth Tensor  0.0799 0.0256 0.0806 0.0271
BPST  0.0016 0.0019 0.0019 0.0022
100 PCST  0.0070 0.0086 0.0073 0.0090
Kernel  0.0400 0.0405 0.0403 0.0409
Tensor  0.0399 0.0168 0.0402 0.0179

To fit the model, we consider the BPST and PCST methods presented in Sec-
tion 2. To obtain the BPST estimators, we set d = 5 and r = 0 when generating
the bivariate spline basis functions. Figure S2.1 in the Supplementary Material
illustrates the triangulations used for the BPST and PCST. The triangulation
used for the BPST (A7) contains 90 triangles (73 vertices), and the triangulation
used for the PCST (A3) contains 346 triangles (226 vertices).

We quantify the estimation accuracy of the coefficient functions using the
mean squared error (MSE). Table 1 provides the average MSE (across 500 Monte
Carlo experiments) for two types of coefficient functions. To save space, we
present the results for ¢ = 2.0 only; the results for o = 1.0 are presented in Table
S2.1 in the Supplementary Material. As expected, the estimation accuracy of all
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the methods improves as the sample size increases or the noise level decreases.
In both scenarios, the BPST and PCST outperform the other two competitors,
reflecting the advantage of our method over a complex domain. When the true co-
efficient functions are smooth, the BPST provides the best estimation, followed
by the PCST. On the other hand, when the true coefficient function contains
jumps, the PCST provides a better result. For the tensor regression, the esti-
mator of 5{(-) is much more accurate than that of 5§(-), owing to the design of
the coefficient function. Figure 3 shows that, in contrast to the intercept func-
tion of 5§(-), the true slope function of B7(-) is still smooth across the complex
boundary. Moreover, when the coefficient function is smooth across the bound-
ary, the estimation accuracy is also affected by the domain of the true signal. The
performance of the kernel method is not affected by the design of the coefficient
functions. Instead, it depends heavily on the noise level, owing to the three-stage
structure.

5.2. Example 2

In this example, we simulate the data by considering the domains of the
fifth and 35th slices of the brain images illustrated in Section 6 as the do-
main (2. We generate response images based on a set of smooth coefficient
functions from the following model: Yi; = "2_, X;09(2;) + ni(z;) + oey, for
i=1,...,n,j=1,...,N, and z; € Q, where 83(z) = 5{(21 —0.5)% 4 (22— 0.5)},
B9(z) = —1.523 + 1.523 and B9(z) = 2 — 2exp[—8{ (21 — 0.5)® + (22 — 0.5)?}]. The
true coefficient images are shown in the first columns of Figures S2.5 and S2.6 in
the Supplementary Material for the fifth and 35th slices, respectively. For each
image, we simulate the data at all 79 x 95 pixels. To mimic real brain images, the
true signals are generated only on the pixels/voxels (3,476 or 5,203 pixels in total)
within the brain domain; outside the boundary of the brain, the image contains
only noise. We set X;0 = 1 and generate 5{1 = (X1, X52)" ~ N(0,%), with

Y= (é:g ?:g) and X, truncated by [—3, +3]. For the error terms, we set n;(z) =

2 A ee(z), where & and &g ~ N(0,1), ¢ (2) = 1.488{sin(mz) — 1.5},
9(z) = 1.939 cos(2mz2), and (A1, A2) = (0.1,0.02) or (0.2,0.05). The measure-
ment error ¢;; is independently generated from N(0,1) and ¢ = 0.5, 1.0. To
conserve space, we show only the results for the domain of the fifth slice for
o = 1.0 here. The results for o = 0.5 and those based on the domain of the 35th
slice are shown in Section S2 of the Supplementary Material.

Because the functions in this example are smooth, for the bivariate spline
approach, we consider only the BPST method. To further study the effect of
different triangulations, we consider A3 and Ay4; see Figure S2.4 in the Supple-
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Table 2. Estimation errors of the coefficient function estimators, o = 1.0.

A1 =0.1, Ay =0.02 A1 =0.2, A =0.05
Method

" evno Bo B1 B2 Bo B3 B2

BPST(A3) 0.003 0.005 0.005 0.007 0.011 0.010

BPST(A4) 0.003 0.005 0.005 0.007 0.010 0.009

5 Kernel 0.023 0.032 0.032 0.026 0.037 0.037
Tensor 0.023 0.013 0.019 0.026 0.017 0.024
BPST(As3) 0.002 0.002 0.002 0.003 0.005 0.005

100 BPST(A4) 0.002 0.002 0.002 0.003 0.004 0.004

Kernel 0.011 0.015 0.015 0.013 0.018 0.018
Tensor 0.011 0.007 0.011 0.013 0.009 0.013

mentary Material. Similarly to Section 5.1, we summarize the MSE for different
coefficient functions based on 500 Monte Carlo experiments in Table 2. Columns
2-5 in Figure S2.5 in the Supplementary Material show the estimated coefficient
functions using the kernel, tensor and BPST methods, respectively. Table 2 and
Figure S2.5 in the Supplementary Material show that the estimation accuracy
improves for all methods as the sample size increases or the noise level decreases.
In all settings, the BPST method has the smallest MSE compared with the ker-
nel and tensor methods, reflecting the advantage of our method in estimating
the coefficient functions and, hence, the regression function. Because the kernel
and tensor methods are both designed for a rectangle domain, the estimation
accuracy can be affected by the noise outside the domain. Futhermore, the MSE
is invariable across two triangulations, thus, A3 might be sufficient to capture
the feature in the data set. This also implies that when this minimum number
of triangles is reached, further refining the triangulation has little effect on the
fitting process, but makes the computational burden unnecessarily heavy.
Finally, we illustrate the finite-sample performance of the proposed SCCs
for the coefficient functions described in Section 3. In particular, we report the
empirical coverage probabilities of the nominal 95% SCCs using triangulation Asj.
We evaluate the coverage of the proposed SCCs over all pixels on the interior of
), and test whether the true functions are entirely covered by the SCCs at these
pixels. Table 3 summarizes the empirical coverage rate (ECR) for 500 Monte
Carlo experiments of the 95% SCCs and the average width of the SCCs. The
results clearly show that the ECRs of the SCCs are well approximated to 95%,
particularly as the sample size increases. Table 3 also reveals that the SCCs tend

to be narrower when the sample size becomes larger or the noise level decreases.
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Table 3. The coverage rate of the 95% SCCs for the coefficient functions.

n A\ - Coverage Width
Bo b1 B2 Bo b1 B2
(0.1,0.02) 0.5 0976 0.928 0.938 0.332 0.362 0.377
50 1.0 0.976 0.940 0.952 0.358 0.392 0.413
(0.2,0.05) 0.5 0.962 0918 0.932 0.445 0.497 0.513
’ 1.0 0.970 0.930 0.940 0.478 0.527 0.544
(0.1,0.02) 0.5 0970 0.956 0.956 0.234 0.250 0.267
100 ’ 1.0 0.978 0.968 0.978 0.262 0.285 0.297
(0.2,0.05) 0.5 0.956 0.958 0.936 0.313 0.348 0.357
’ 1.0 0.966 0.964 0.954 0.344 0.378 0.389

6. ADNI Data Analysis

To illustrate the proposed method, we consider the spatially normalized FDG
(fludeoxyglucose) PET data of the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). As pointed out in Marcus, Mena and Subramaniam (2014), FDG-PET
images have been shown to be a promising modality for detecting functional brain
changes in Alzheimer’s Disease (AD). The data can be obtained from the ADNI
database at http://adni.loni.usc.edu/. The database contains spatially nor-
malized PET images of 447 subjects. Of these 447 subjects, 112 have normal
cognitive functions, considered to be the control group, 213 are diagnosed as
mild cognitive impairment (MCI), and 122 are diagnosed as AD. Table S2.5 in
the Supplementary Material summarizes the distribution of patients by diagnosis
status and sex.

In this study, we examine several patient-level features: (i) demographical
features, such as age (Age) and sex (Sex); (ii) a dummy variable for the abnormal
diagnosis status “MA” (1 = “AD” or “MCI”, zero otherwise); (iii) a dummy
variable for “AD” (1 = “AD,” zero otherwise); and (iv) dummy variables for the
APOE genotype, the strongest genetic risk factor for “AD”; see Corder et al.
(1993). We code APOE; as a dummy variable for subjects with one epsilon 4
allele, and APOEs as subjects who have two alleles.

Noting that the PET images are 3D, we select the 5th, 8th, 15th, 35th, 55th,
62nd, and 6fifth horizontal slices (bottom to up) of the brain from a total of 68
slices to illustrate our method. Each slice of the image contains 79x95 pixels,
but the domains of different brain slices are quite different. Specifically, the
domain boundary for the bottom slices and upper slices are much more complex
than the slices in the middle; more examples can be found in Figure S2.7 in the
Supplementary Material. For each slice, we consider the following image-on-scalar
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Table 4. 10-fold CV results for the ADNI dataset. (x1072)

Method Slice 5 Slice 8 Slice 15 Slice 35 Slice 55 Slice 62  Slice 65
BPST  1.4508 1.4809 1.5013 1.5633 2.0693 2.3020 2.6239
Kernel 1.4533 1.4828 1.5021 1.5638 2.0715 2.3060 2.6303
Tensor  1.5010 1.5260  1.5400 1.5900 2.1000 2.3340 2.6400

regression:

Yi(zj) = Bo(2j) + B1(2;)MA; + Ba(25)AD; + Bs(2;) Age; + Ba(zj)Sex;
+B5(Zj)APOE1i + ,BG(Zj)APOEQi + T],‘(Zj) + U(zj)si(zj), 1=1,...,n.

We fit the above model using the BPST method for each slice; see Figure S2.7
in the Supplementary Material for the set of triangulations used for the BPST
method. The image maps in Figure 4 and Figures S2.8 and S2.9 in the Sup-
plementary Material present the estimated coefficient functions using the BPST
(d =5, r = 1) method. To evaluate the predictive performance, Table 4 reports
the 10-fold CV (parts of the images are left out as training sets) MSPE results
for the BPST method, kernel method in Zhu, Fan and Kong (2014), and tensor
regression method in Li and Zhang (2017). The table shows that the MSPEs of
the BPST method are uniformly smaller than those of the kernel method and
tensor regression methods.

Next, we construct the 95% SCCs to check whether the covariates are signif-
icant. The yellow and blue colors on the “significance” map in Figure 4 indicate
the regions in which zero is below the lower SCC or above the upper SCC, re-
spectively. Using these estimated coefficient functions and the 95% SCCs, we can
assess the impact of the covariates on the response images. Taking the fifth slice
as an example, the main impact of “AD” on in the PET images is an increase in
activity in the cerebellum compared with a normal individual. The cerebellum
obtains information from the sensory systems, spinal cord, and other parts of the
brain, and then regulates motor movements, resulting in smooth and balanced
muscular activities. The significance map of “Age” also shows an increase in ac-

)

tivity in the cerebellum, and “Sex” shows different effects in the male and female
brain images. The significance maps of the covariates for all other slices of the
PET image are shown in Figures S2.10 — S2.11 in the Supplementary Material.
From these figures, we can see that the effect of the covariates on the brain ac-
tivity level varies between slices, depending on the location of the slice; see the

Supplementary Material for further details.
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Figure 4. The BPST estimate and significance map of the coefficient functions for the
fifth slice of the PET images. The yellow and blue colors in the significance map indicate
the regions in which zero is below the lower SCC or above the upper SCC, respectively.

7. Conclusion

We examine a class of image-on-scalar regression models to efficiently explore
the spatial nonstationarity of a regression relationship between imaging responses
and scalar predictors, allowing the regression coefficients to change with the pix-
els. We have proposed an efficient estimation procedure to carry out statistical
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inference. We have developed a fast and accurate method for estimating the co-
efficient images, while consistently estimating their standard deviation images.
Our method provides coefficient maps and significance maps that highlight and
visualize the associations with brain and the potential risk factors, adjusted for
other patient-level features, as well as permitting inference. In addition, it al-
lows an easy implementation of piecewise polynomial representations of various
degrees and smoothness over an arbitrary triangulation, and therefore can han-
dle irregular-shaped 2D objects with different visual qualities. This provides
enormous flexibility, accommodating various types of nonstationarity that are
commonly encountered in imaging data analysis. Our methodology is extend-
able to 3D images to fully realize its potential usefulness in biomedical imaging.
Instead of using bivariate splines over triangulation, the trivariate splines over
tetrahedral partitions introduced in Lai and Schumaker (2007) could be well
suited, because they have many properties in common with the bivariate splines
over triangulation. However, this is a nontrivial task, because the compuation is
much more challenging for high-resolution 3D images than it is for 2D images,
and thus warrants further investigation.

Supplementary Material

In the online Supplementary Material, we provide technical proofs for the
main theorems and additional results from the simulation studies and ADNI
data analysis.
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