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Abstract: Motivated by recent analyses of data in biomedical imaging studies, we

consider a class of image-on-scalar regression models for imaging responses and

scalar predictors. We propose using flexible multivariate splines over triangulations

to handle the irregular domain of the objects of interest on the images, as well as

other characteristics of images. The proposed estimators of the coefficient functions

are proved to be root-n consistent and asymptotically normal under some regularity

conditions. We also provide a consistent and computationally efficient estimator of

the covariance function. Asymptotic pointwise confidence intervals and data-driven

simultaneous confidence corridors for the coefficient functions are constructed. Our

method can simultaneously estimate and make inferences on the coefficient func-

tions, while incorporating spatial heterogeneity and spatial correlation. A highly

efficient and scalable estimation algorithm is developed. Monte Carlo simulation

studies are conducted to examine the finite-sample performance of the proposed

method, which is then applied to the spatially normalized positron emission tomog-

raphy data of the Alzheimer’s Disease Neuroimaging Initiative.

Key words and phrases: Coefficient maps, confidence corridors, image analysis,

multivariate splines, triangulation.

1. Introduction

Medical and public health studies collect massive amount of imaging data

using methods such as functional magnetic resonance imaging (fMRI), positron

emission tomography (PET) imaging, computed tomography (CT), and ultra-

sonic imaging. Much of these data can be characterized as functional data.

Compared with traditional one-dimensional (1D) functional data, these imag-

ing data are complex, high-dimensional, and structured, which poses challenges

to traditional statistical methods.

We propose a unifying approach to characterize the varying associations be-

tween imaging responses and a set of explanatory variables. Three types of sta-
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tistical methods are widely used to investigate such associations. The first cate-

gory includes the univariate approaches and pixel-/voxel-based methods (Worsley

et al. (2004); Stein et al. (2010); Hibar et al. (2015)), which take each pixel/voxel

as a basic analytic unit. Because all pixels/voxels are treated as independent, a

major drawback of these methods is that they ignore correlation between the pix-

els/voxels. The second category is the tensor regression. This approach considers

an image as a multi-dimensional array (Zhou, Li and Zhu (2013); Li and Zhang

(2017)), which is then changed to a vector to perform the regression. However,

doing so naively yields an ultra-high dimensionality and requires a novel dimen-

sion-reduction technique and highly scalable algorithms (Li and Zhang (2017)).

The third category is the functional data analysis (FDA) approach, in which an

image is viewed as the realization of a function defined on a given domain (Zhu,

Li and Kong (2012); Zhu, Fan and Kong (2014); Reiss et al. (2017)). Using an

FDA, we are able to combine information both across and within functions.

We adopt the FDA approach in this study. Functional linear models (FLMs)

are widely used to model the regression relationship between a response and

some set of predictors from multiple subjects. In the literature (Ramsay and Sil-

verman (2005); Müller (2005); Morris (2015); Wang, Chiou and Muller (2016)),

FLMs are often categorized based on whether the outcome, the predictor, or

both are functional: (i) functional predictor regression (scalar-on-function) (Car-

dot, Ferraty and Sarda (1999, 2003); Hall and Horowitz (2007)); (ii) functional

response regression (function-on-scalar) (Morris and Carroll (2006); Reiss, Huang

and Mennes (2010); Staicu, Crainiceanu and Carroll (2010); Zhu, Fan and Kong

(2014); Zhang and Wang (2015); Chen, Delicado and Müller (2017)); and (iii)

function-on-function regression (Ramsay and Dalzell (1991); Yao, Müller and

Wang (2005); Sentürk and Müller (2010); Wu and Müller (2011)).

Motivated by the structure of brain imaging data, we propose a novel image-

on-scalar regression model with spatially varying coefficients that captures the

varying associations between imaging phenotypes and a set of explanatory vari-

ables. Figure 1 shows a schematic diagram of the proposed modeling approach.

Specifically, let Ω be a two-dimensional bounded domain, and let z = (z1, z2) be

the location point on Ω. For the ith subject, i = 1, . . . , n, let Yi(z) be the imaging

measurement at location z ∈ Ω, and let Xi`, for ` = 0, 1, . . . , p, with Xi0 ≡ 1, be

scalar predictors, for example, clinic variables (such as age and sex) and genetic

factors. The spatially varying coefficient regression characterizes the associations

between imaging measures and covariates, and is given by the following model:

Yi(z) = X̃>i β
o(z) + ηi(z) + σ(z)εi(z), i = 1, . . . , n, z ∈ Ω,
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Figure 1. A schematic diagram of proposed modeling approach.

where X̃i = (Xi0, Xi1, . . . , Xip)
>, βo = (βo0 , β

o
1 , . . . , β

o
p)> is a vector of some un-

known bivariate functions, ηi(z) characterizes the individual image variations,

εi(z) represents additional measurement errors, and σ(z) is a positive determin-

istic function. In the following, we assume that ηi(z) and εi(z) are mutually

independent. Moreover, we assume that ηi(z), for i = 1, . . . , n, are independent

and identically distributed (i.i.d.) copies of an L2 stochastic process with mean

zero and covariance function Gη(z, z
′) = cov{ηi(z), ηi(z

′)}. Furthermore, εi(z),

for i = 1, . . . , n, are i.i.d. copies of a stochastic process with zero mean. and

covariance function Gε(z, z
′) = cov{εi(z), εi(z

′)} = I(z = z′).

For a 1D function-on-scalar regression, Chapter 13 of Ramsay and Silver-

man (2005) provides a common model-fitting strategy, in which the coefficient

functions are expanded using some sets of basis functions, and the basis coeffi-

cients are estimated using the ordinary least squares method. However, it is not

trivial to extend this to an image-on-scalar regression, particularly with biomed-

ical imaging responses. For biomedical images, the objects (e.g., organs) on the

images are usually irregularly shaped (e.g., breast tumors). Another example

is that of brain images, as shown in Figure 1, especially slices from the bottom

and the top of the brain. Even though some images seem to be rectangular, the

true signal comes only from the domain of an object, and the image contains

only noise outside the boundary of the object. Many smoothing methods, such

as, tensor product smoothing (Reiss et al. (2017); Chen, Delicado and Müller

(2017)), kernel smoothing (Zhu, Fan and Kong (2014)), and wavelet smoothing

(Morris and Carroll (2006)), provide poor estimations over difficult regions be-

cause they smooth inappropriately across boundary features, referred to as the

“leakage” problem in the smoothing literature; see Ramsay (2002) and Sangalli,

Ramsay and Ramsay (2013). Next, for technical reasons, imaging data often

have different visual qualities. The general characteristics of medical images are

determined and limited by the technology for each specific modality. As a result,

there is a great interest in developing a flexible method with varying smoothness
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Figure 2. A schematic diagram of proposed inferential approach.

to adaptively smooth biomedical imaging data.

In this study, we tackle the above challenges using bivariate splines on tri-

angulations (Lai and Wang (2013)) to effectively model the spatially nonstation-

ary relationship and preserve the important features (shape, smoothness) of the

imaging data. A triangulation can represent any two-dimensional (2D) geometric

domain effectively because any polygon can be decomposed into triangles. We

study the asymptotic properties of the bivariate spline estimators of the coeffi-

cient functions, and show that our spline estimators are root-n consistent and

asymptotically normal. The asymptotic results are used as a guideline to con-

struct pointwise confidence intervals (PCIs) and simultaneous confidence corri-

dors (SCCs; also referred to as “simultaneous confidence bands/regions”) for the

true coefficient functions. Figure 2 shows the proposed inferential approach. Our

method is statistically more efficient than the tensor regression (Li and Zhang

(2017)) and the three-stage estimation (Zhu, Fan and Kong (2014)), because it is

able to accommodate complex domains of arbitrary shape and adjust the individ-

ual smoothing needs of different coefficient functions using multiple smoothing

parameters. In addition, our method does not rely on estimating the spatial sim-

ilarity and adaptive weights repeatedly, as in Zhu, Fan and Kong (2014); thus, it

is much simpler.

The remainder of the paper is structured as follows. Section 2 describes

the spline estimators for the coefficient functions, and establishes their asymp-

totic properties. Section 3 describes the bootstrap method used to construct the

SCC and how to estimate the unknown variance functions involved in the SCC.

Section 4 presents the implementation of the proposed estimation and inference.

Section 5 reports our findings from two simulation studies. In Section 6, we illus-

trate the proposed method using PET data provided by the Alzheimer’s Disease

Neuroimaging Initiative (ADNI). Section 7 concludes the paper. All technical

proofs of the theoretical results and additional numerical results are deferred to

the online Supplementary Material.
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2. Models and Estimation Method

2.1. Image-on-scalar regression model

Let zj ∈ Ω be the center point of the jth pixel in the domain Ω, and let Yij
be the imaging response of subject i at location j. The actual data set consists

of {(Yij , X̃i, zj), i = 1, . . . , n, j = 1, . . . , N}, which can be modeled as follows:

Yij =

p∑
`=0

Xi`β
o
` (zj) + ηi(zj) + σ(zj)εij . (2.1)

Denote the eigenvalues and eigenfunctions of the covariance operator Gη(z, z
′)

as {λk}∞k=1 and {ψk(z)}∞k=1, respectively, where λ1 ≥ λ2 ≥ · · · ≥ 0,
∑∞

k=1 λk <

∞, and {ψk}∞k=1 forms an orthonormal basis of L2 (Ω). It follows from spectral

theory that Gη(z, z
′) =

∑∞
k=1 λkψk(z)ψk(z

′). The ith trajectory {ηi(z), z ∈ Ω}
allows the Karhunen–Loéve L2 representation (Li and Hsing (2010); Sang and

Huang (2012)): ηi(z) =
∑∞

k=1 λ
1/2
k ξikψk(z), λ

1/2
k ξik =

∫
z∈Ω ηi(z)ψk(z)dz, where

the random coefficients ξik are uncorrelated random variables with mean zero

and E(ξikξik′) = I(k = k′), referred to as the kth functional principal component

score (FPCA) of the ith subject. Thus, the response measurements in (2.1) can

be represented as follows:

Yij =

p∑
`=0

βo` (zj)Xi` +

∞∑
k=1

λ
1/2
k ξikψk(zj) + σ(zj)εij . (2.2)

2.2. Spline approximation over triangulations and penalized regression

Note that the objects of interest on many biomedical images are often dis-

tributed over an irregular domain Ω. Triangulation is an effective strategy to

handle such data. For example, the spatial smoothing problem over difficult re-

gions in Ramsay (2002) and Sangalli, Ramsay and Ramsay (2013) was solved

using the finite element method (FEM) on triangulations, which was developed

primarily to solve partial differential equations. Here, we approximate each coef-

ficient function in (2.2) using bivariate splines over triangulations (Lai and Schu-

maker (2007)). The idea is to approximate each function β`(·) using Bernstein

basis polynomials that are piecewise polynomial functions over a 2D triangulated

domain. Compared with the FEM, the proposed approach is appealing in the

sense that its spline functions are more flexible and it uses various smoothness

settings to better approximate the coefficient functions. In this section, we briefly

introduce the triangulation technique and describe the bivariate penalized spline
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smoothing (BPST) method used to approximate the spatial data.

Triangulation is an effective tool to deal with data distributed over difficult

regions with complex boundaries and/or interior holes. In the following, we use

T to denote a triangle that is a convex hull of three points not located on one

line. A collection 4 = {T1, . . . , TH} of H triangles is called a triangulation of

Ω = ∪Hh=1Th, provided that any nonempty intersection between a pair of triangles

in 4 is either a shared vertex or a shared edge. Given a triangle T ∈ 4, let |T |
be its longest edge length and %T be the radius of the largest disk inscribed in T .

Define the shape parameter of T as the ratio πT = |T |/%T . When πT is small,

the triangles are relatively uniform in the sense that all angles of the triangles

in 4 are relatively the same. Denote the size of 4 by |4| = max{|T |, T ∈ 4},
that is, the length of the longest edge of 4. For an integer r ≥ 0, let Cr(Ω) be

the collection of all rth continuously differentiable functions over Ω. Given 4,

let Srd(4) = {s ∈ Cr(Ω) : s|T ∈ Pd(T ), T ∈ 4} be a spline space of degree d and

smoothness r over 4, where s|T is the polynomial piece of spline s restricted on

triangle T , and Pd is the space of all polynomials of degree less than or equal to d.

Note that the major difference between the FEM and the BPST is the flexibility

of the smoothness, r, and the degree of the polynomials, d. Specifically, the FEM

in Sangalli, Ramsay and Ramsay (2013) requires that r = 0 and d = 1 or 2,

whereas the BPST allows smoothness r ≥ 0 and various degrees of polynomials.

We use Bernstein basis polynomials to represent the bivariate splines. For

any ` = 0, 1, . . . , p, denote by 4` the triangulation of the `th component. Define

G(p+1) ≡ G(p+1)(40× · · ·×4p) =
{
g = (g0, . . . , gp)

>, g` ∈ Srd(4`), ` = 0, . . . , p
}
,

and let {B`m}m∈M`
be the set of degree-d bivariate Bernstein basis polynomials

for Srd(4`), where M` is an index set of Bernstein basis polynomials. Denote

by B` the evaluation matrix of the Bernstein basis polynomials for the `th com-

ponent, and let the jth row of B` is given by B>` (zj) = {B`m(zj),m ∈ M`}.
We approximate each β`(·) using β`(zj) ≈ B>` (zj)γ`, for ` = 0, 1, . . . , p, where

γ>` = (γ`m,m ∈M`) is the spline coefficient vector.

Penalized spline smoothing has gained in popularity over the last two decades;

see Hall and Opsomer (2005); Claeskens, Krivobokova and Opsomer (2009);

Schwarz and Krivobokova (2016). To define the penalized spline method, for

any direction zq, q = 1, 2, let ∇vzqs(z) denote the vth–order derivative in the

direction zq at the point z. We consider the following penalized least squares
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problem:

min
(β0,...,βp)>∈G(p+1)

n∑
i=1

N∑
j=1

{
Yij −

p∑
`=0

Xi`β`(zj)

}2

+

p∑
`=0

ρn,`E(β`),

where E(s) =
∑

T∈4
∫
T

∑
i+j=2

(
2
i

)
(∇iz1∇

j
z2s)

2dz1dz2 is the roughness penalty,

and ρn,` is the penalty parameter for the `th function.

To satisfy the smoothness condition of the splines, we need to impose some

linear constraints on the spline coefficients γ`: H`γ` = 0, for ` = 0, 1, . . . , p.

Thus, we have to minimize the following constrained least squares:

n∑
i=1

N∑
j=1

{
Yij −

p∑
`=0

Xi`B
>
` (zj)γ`

}2

+

p∑
`=0

ρn,`γ
>
` P`γ`, subject to H`γ` = 0,

where P` is the block diagonal penalty matrix satisfying γ>` P`γ` = E(B>` γ`).

We first remove the constraint using a QR decomposition of the transpose

of the constraint matrix H`. Applying a QR decomposition on H>` , we have

H>` = Q`R` = (Q`,1 Q`,2)
(R`,1

R`,2

)
, where Q` is an orthogonal matrix and R` is an

upper triangular matrix. The submatrix Q`,1 represents the first r columns of Q`,

where r is the rank of matrix H`, and R`,2 is a matrix of zeros. We reparametrize

this using γ` = Q`,2θ`, for some θ`. Then, it is guaranteed that H`γ` = 0. Thus,

the minimization problem is converted to the following conventional penalized

regression problem, without restrictions:

n∑
i=1

N∑
j=1

{
Yij −

p∑
`=0

Xi`B
>
` (zj)Q`,2θ`

}2

+

p∑
`=0

ρn,`θ
>
` D`θ`, (2.3)

where D` = Q>`,2P`Q`,2.

Let Ỹi = (Yi1, Yi2, . . . , YiN )>, B`(z) = {B`m(z),m ∈ M`}>, Y = (Ỹ>1 , . . . ,

Ỹ>n )>, and U = (U11,U12, . . . ,UnN )>, where

Uij = {Xi0B0(zj)
>Q0,2, Xi1B1(zj)

>Q1,2, . . . , XipBp(zj)
>Qp,2}>. (2.4)

Let θ = (θ>0 ,θ
>
1 , . . . , θ

>
p )> and D(ρn,0, . . . , ρn,p) = diag{ρn,0D0, . . . , ρn,pDp}.

Minimizing (2.3) is then equivalent to minimizing ‖Y− Uθ‖2 + θ>D(ρn,0, . . . ,

ρn,p)θ. Hence,

θ̂ = (θ̂>0 , θ̂
>
1 , . . . , θ̂

>
p )> = {U>U + D(ρn,0, . . . , ρn,p)}−1U>Y.
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Thus, the estimators of γ` and β`(·) are

γ̂` = Q`,2θ̂`, β̂`(z) = B`(z)>γ̂`. (2.5)

2.3. Asymptotic properties of the BPST estimators

This section examines the asymptotics of the proposed estimators. Given ran-

dom variables Un for n ≥ 1, we write Un = OP (bn) if limc→∞ lim supn P (|Un| ≥
cbn) = 0. Similarly, we write Un = oP (bn) if limn P (|Un| ≥ cbn) = 0, for any

constant c > 0. Next, to facilitate discussion, we introduce some notation of

norms. For any function g over the closure of domain Ω, denote ‖g‖2L2(Ω) =∫
Ω g

2(z)dz as the regular L2 norm of g, and ‖g‖∞,Ω = supz∈Ω |g(z)| as the

supremum norm of g. Further denote ‖g‖υ,∞,Ω = max0≤`≤p |g`|υ,∞,Ω, where

|g|υ,∞,Ω = maxi+j=υ ‖∇iz1∇
j
z2g‖∞,Ω is the maximum norm of all υth–order deriva-

tives of g over Ω. Let Wd,∞(Ω) = {g : |g|k,∞,Ω <∞, 0 ≤ k ≤ d} be the standard

Sobolev space. Next, we introduce some technical conditions.

(A1) For any ` = 0, . . . , p, βo` (·) ∈ Wd+1,∞(Ω), for an integer d ≥ 1.

(A2) For any i = 1, . . . , n, j = 1, . . . , N , εij ’s are independent with mean zero

and variance one, and for any k ≥ 1, ξik are uncorrelated random variables

with mean zero and variance one.

(A3) For any ` = 0, 1, . . . , p, there exists a positive constant C`, such that E|X`|8 ≤
C`. The eigenvalues of ΣX = E(XX>) are bounded away from zero and

infinity.

(A4) The function σ(z) ∈ C(1)(Ω), with 0 < cσ ≤ σ(z) ≤ Cσ ≤ ∞, for any z ∈ Ω;

for any k, ψk(z) ∈ C(1)(Ω) and 0 < cG ≤ Gη(z, z) ≤ CG ≤ ∞, for any

z ∈ Ω.

(A5) Let |4| = min0≤`≤p |4`| and |4| = max0≤`≤p |4`|. The triangulations

4` satisify that lim supn(|4|/|4|) < ∞. The triangulations are π-quasi-

uniform; that is, there exists a positive constant π, such that max0≤`≤p{
(minT∈4` %T )−1|4`|} ≤ π.

(A6) As N →∞, n→∞, for some 0 < κ < 1, N−1n1/(d+1)+κ → 0, n1/2|4|d+1 →
0, N1/2|4| → ∞, and the smoothing parameters satisfy that n−1/2N−1|4|−3

ρn → 0, where ρn = max0≤`≤p ρn,`.

The above assumptions are mild conditions that are satisfied in many practi-

cal situations. Assumption (A1) describes the usual requirement on the coefficient
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functions described in the literature on nonparametric estimation. Assumption

(A1) can be relaxed to Assumption (A1′) in Section 2.4, which only requires

βo` (·) ∈ C(0)(Ω) when dealing with imaging data with sharp edges; see Section

2.4. Assumptions (A1) and (A2) are similar to Assumptions (A1) and (A2) in

Gu et al. (2014) and Assumptions (A1)–(A3) in Huang, Wu and Zhou (2004).

Assumption (A3) is analogous to Assumption (A5) in Gu et al. (2014), ensuring

that Xi` is not multicollinear. Assumption (A5) requires that 4` be of similar

size, and suggests the use of more uniform triangulations with smaller shape pa-

rameters. Assumption (A6) implies that the number of pixels for each image N

diverges to infinity and the sample size n grows as N → ∞, a well-developed

asymptotic scenario for dense functional data (Li and Hsing (2010)). Assump-

tion (A6) also describes the requirement of the growth rate of the dimension of

the spline spaces relative to the sample size and the image resolution. This as-

sumption is easily satisfied because images measured using current technology

are usually of sufficiently high resolution.

The following theorem provides the L2 convergence rate of β̂`(·), for ` =

0, 1, . . . , p. A detailed proof is given in Appendix 1 in the Supplementary Material.

Theorem 1. Suppose Assumptions (A1)–(A5) hold and N1/2|4| → ∞ as N →
∞. Then, for any ` = 0, 1, . . . , p, the BPST estimator β̂`(·) is consistent and

satisfies ‖β̂` − βo` ‖L2(Ω) = OP {ρn/(nN |4|3)‖βo‖2,∞ + (1 + ρn/(nN |4|5))|4|d+1

‖βo‖d+1,∞ + n−1/2}.

Theorem 2 states the asymptotic normality of β̂` at any given point z ∈ Ω,

for ` = 0, 1, . . . , p. See Appendix 1 in the Supplementary Material for a detailed

proof. Denote

Ξn(z) = B̃(z)>E

Γ−1
n,ρ

1

n2N2

n∑
i=1

N∑
j,j′=1

UijU
>
ij′Gη(zj , zj′)Γ

−1
n,ρ

 B̃(z), (2.6)

where Uij and Γn,ρ are given in (2.4) and (S1.17), respectively, in Appendix 1,

B̃(z) = diag{B̃0(z), . . . , B̃p(z)}, and B̃`(z) = Q>2,`B`(z) for ` = 0, . . . , p.

Theorem 2. Suppose Assumptions (A1)–(A6) hold. If for any ` = 0, 1, . . . , p,

|Xi`| ≤ C` <∞, then Ξ
−1/2
n (z){β̂(z)−βo(z)} L−→ N

(
0, I(p+1)×(p+1)

)
as N →∞

and n → ∞, where Ξn(z) is given in (2.6). Furthermore, there exist positive

constants cV < CV < +∞, such that cV n
−1(1+ρn/(nN |4|4))−2 ≤ Var{β̂`(z)} ≤

CV n
−1, for any ` = 0, 1, . . . , p.
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2.4. Piecewise constant spline over triangulation smoothing

Many imaging data can be regarded as a noisy version of a piecewise-smooth

function of z ∈ Ω with sharp edges, which often reflect the functional or structural

changes. The penalized bivariate spline smoothing method introduced, in Section

2.2, assumes some degree of smoothness over the entire image. To relax this

assumption while preserving the features of sharp edges, we make the following

less stringent assumption on the smoothness of the coefficient functions:

(A1′) For any ` = 0, . . . , p, the bivariate function βo` (·) ∈ C(0)(Ω).

For the estimation, we consider the piecewise constant spline over triangu-

lation (PCST) method. For any ` = 1, . . . , p, denote by PC(4`) the space of

piecewise constant functions over each Tm, for m ∈ M`. The bivariate spline

basis functions of PC(4`) are denoted as {B`m(z)}m∈M`
, which are simply in-

dicator functions over triangle Tm, B`m(z) = I(z ∈ Tm), m ∈ M`. Assumption

(A1′) controls the bias of the piecewise constant spline estimator for βo` and leads

to the estimation consistency.

When using the constant bivariate spline basis functions, we have E(s) = 0

for all s ∈ PC(4), and for any z ∈ Ω, B`(z)B`(z)> = diag{B2
`m(z),m ∈ M`}.

Then, γ̂m=(γ̂0m, γ̂1m, . . . , γ̂pm)>=V̂−1
m

{
(nN)−1

∑n
i=1

∑N
j=1B`m(zj)Xi`Yij

}p
`=0

,

where

V̂m =
1

nN

N∑
j=1

B2
`m(zj)

n∑
i=1

X̃iX̃
>
i =

 1

nN

n∑
i=1

N∑
j=1

B2
`m(zj)Xi`Xi`′


p

`,`′=0

. (2.7)

By simple linear algebra, for any ` = 0, . . . , p, the PCST estimator is given by

β̂c
` (z) =

∑
m∈M`

γ̂`mB`m(z). (2.8)

For any z ∈ Ω, define the index of the triangle containing z as m(z); that is,

m(z) = m if z ∈ Tm. Then, β̂`(z) = γ̂`m(z) and β̂c(z) = (β̂c
0(z), . . . , β̂c

p(z))> =

(γ̂0m(z), . . . , γ̂pm(z))
> = γ̂m(z). For any z ∈ Ω, denote

Σn(z) = n−1Σ−1
X Gη (z, z) . (2.9)

Theorem 3 shows the asymptotic normality of the piecewise constant esti-

mators β̂(z). See the Supplementary Material for detailed proofs. To obtain the

asymptotic variance-covariance function, we also need the following assumption:

(C1) The variables ξik and εij are independent and satisfy E |ξik|4+δ1 < +∞ for
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some δ1 > 0, and E |εij |4+δ2 <∞ for some δ2 > 0.

Theorem 3. Under Assumptions (A1′), (A2)–(A5), and (C1), as N → ∞ and

n → ∞, if for some 0 < κ < 1, N−1n1+κ → 0, N−1/2 � |4| ≤ |4| �
n1/4N−1/2, and ‖

∑∞
k=1 λ

1/2
k ψk‖∞ < ∞, then for any z ∈ Ω, Σ

−1/2
n (z){β̂c(z) −

βo(z)} L−→ N
(
0, I(p+1)×(p+1)

)
, where Σn(z) is (2.9); pr{(σc

n,``)
−1(z)

∣∣β̂`(z) −
βo` (z)

∣∣ ≤ Z1−α/2} → 1 − α, for any α ∈ (0, 1), as N → ∞, n → ∞, where

σc
n,``(z) is the square root of the (`, `)th entry of the matrix Σn(z), and Z1−α/2

is the 100 (1− α/2)th percentile of the standard normal distribution.

3. Variance Function Estimation and Simultaneous Confidence Corri-

dors

3.1. Estimation of the variance function

Define the estimated residual R̂ij = Yij −
∑p

`=0Xi`β̂`(zj) or Yij −
∑p

`=0Xi`

β̂c
` (zj), for any i = 1, . . . , n, j = 1, . . . , N . We apply the bivariate spline smooth-

ing method to {(R̂ij , zj)}Nj=1. Specifically, we define

η̂i(z) = argmin
gi∈Srd(4η)

N∑
j=1

{
R̂ij − gi(zj)

}2
, i = 1, . . . , n, (3.1)

as the spline estimator of ηi(z), where the triangulation 4η may differ from that

introduced in Section 2 when estimating βo` (z). Next, let ε̂ij = R̂ij − η̂i(zj).

Define the estimators of Gη(z, z
′) and σ2(zj) as

Ĝη(z, z
′) = n−1

n∑
i=1

η̂i(z)η̂i(z
′) and σ̂2(zj) = n−1

n∑
i=1

ε̂ij ε̂ij , (3.2)

respectively. In general, for spline estimators (d ≥ 0), denote Ξ̂n(z) = {σ̂2
n,``′(

z)}p`,`′=0, where

Ξ̂n(z) =
1

n2N2
B̃(z)>

n∑
i=1

{
N∑

j,j′=1

Γ−1
n,ρUijU

>
ij′Ĝη(zj , zj′)Γ

−1
n,ρ

+

N∑
j=1

UijU
>
ij σ̂

2(zj)

}
B̃(z). (3.3)

Note that the estimation can be much simplified if PCST smoothing is applied.

In this case, the variance-covariance matrix Σn(z) can be simply estimated using
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Σ̂n(z) =
{

(σ̂c
n,``′)

2(z)
}p
`,`′=0

=
1

n

(
n−1

n∑
i=1

X̃iX̃
>
i

)−1{
Ĝη(z, z) +

σ̂2(z)

NAm(z)

}
,

where Am(z) is the area of triangle Tm(z) divided by the area of the domain. The

following conditions (C2)–(C3) are required for the bivariate spline approximation

in the covariance estimation and to establish the estimation consistency. The

proofs of the results in this section are provided in the Supplementary Material.

(C2) For any k ≥ 1, ψk(z) ∈ Ws+1,∞ for an integer s ≥ 0, and for a sequence

{Kn}∞n=1 of increasing positive integers with limnKn → ∞, |4η|s+1
∑Kn

k=1

λ
1/2
k ‖ψk‖s+1,∞ → 0 as N →∞, n→∞.

(C3) As N →∞, n→∞, for some 0 < κ < 1, N−1n1/(d+1)+κ → 0, N |4η|2 →∞,

and n|4η|2/(log n)1/2 →∞.

Assumption (C2) concerns the bounded smoothness of the principal compo-

nents that bound the bias terms in the spline covariance estimator.

Theorem 4. Under Assumptions (A1)–(A6) and (C1)–(C3), Ĝη(z, z
′) uniformly

converges to Gη(z, z
′) in probability; that is, sup(z,z′)∈Ω2 |Ĝη(z, z′)−Gη(z, z′)| =

oP (1).

Corollary 1. Under Assumptions (A1)–(A6), (C1)–(C3), the estimator of Σ̂n(z)

uniformly converges to to Σn(z) in probability; that is, supz∈Ω |Σ̂n(z)−Σn(z)| =
oP (1).

Denote

σ̂c
n,``(z) = n−1/2

e>`

(
n−1

n∑
i=1

X̃iX̃
>
i

)−1

e`

{
Ĝη(z, z) +

σ̂2(z)

NAm(z)

}1/2

. (3.4)

From Corollary 1, σ̂c
n,``(z) is a consistent estimator of σc

n,``(z) in (2.9).

3.2. Bootstrap simultaneous confidence corridors (SCCs)

From Theorems 2 and 3 and Slutzky’s Theorem, we have the following asymp-

totic PCIs.

Corollary 2.

(a) For the BPST estimators, under Assumptions (A1)–(A6), for any ` =

0, . . . , p, α ∈ (0, 1), as N → ∞, n → ∞, an asymptotic 100(1 − α)%

PCI for βo` (z), is β̂`(z) ± σn,``(z)Z1−α/2, for any z ∈ Ω, where σ2
n,``(z) is
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the (`, `)th entry of the matrix Ξ
−1/2
n (z), and Z1−α/2 is the 100 (1− α/2)th

percentile of the standard normal distribution.

(b) For the PCST estimators, under Assumptions (A1′) and (A2)–(A6), if for

some 0 < κ < 1, N−1n1+κ → 0, an asymptotic 100(1− α)% PCI for βo` (z)

is β̂c
` (z) ± σc

n,``(z)Z1−α/2, for any z ∈ Ω, where σcn,``(z) is the standard

deviation function of β̂c
` (z) in Theorem 3.

Next, we introduce a simple bootstrap approach to extend the PCIs to the

SCCs. Our approach is based on the nonparametric bootstrap method used in

Hall and Horowitz (2013). We triangulate the domain Ω using quasi-uniform

triangles, obtaining a set of approximate 100(1 − α)% PCIs. In the following,

α0 denotes the nominal confidence level of the desired SCCs. We recalibrate the

PCIs using the following bootstrap method.

Step 1. Based on {(X̃i, Yij)}N,nj=1,i=1, obtain the coefficient functions βo` (z) using

the BPST estimators β̂`(z) in (2.5) or the PCST estimators β̂c
` (z) in (2.8),

for ` = 0, . . . , p. Let µ̂(z) =
∑p

`=0Xi`β̂`(z) or
∑p

`=0Xi`β̂
c
` (z).

Step 2. Obtain η̂i(z) and ε̂ij presented in (3.1)–(3.2), and estimate Gη(z, z),

σ2(z), and σ2
n,``(z) using Ĝη(z, z) and σ̂2(z) in (3.2) and σ̂2

n,``(z) in (3.3)

or (3.4), respectively.

Step 3. Obtain an adjusted nominal confidence level α̂`(α0).

(i) Generate an independent random sample δ
(b)
i and δ

(b)
ij from {−1, 1} with

probability 0.5 each, and define Y
∗(b)
ij = µ̂(zj) + δ

(b)
i η̂i(zj) + δ

(b)
ij ε̂ij .

(ii) Based on {(X̃i, Y
∗(b)
ij )}N,nj=1,i=1, obtain β̂

∗(b)
` (z) using (2.5) or (2.8), and

calculate σ̂
∗(b)
n,`` using (3.3) or (3.4).

(iii) Construct SCCs for the resampled data {(X̃i, Y
∗(b)
ij )}N,nj=1,i=1: B∗(b)(α), b =

1, . . . , B,

B∗(b)(α) = {(z, y) : z ∈ Ω,

β̂
∗(b)
` (z)− σ̂∗(b)n,``(z)Z1−α/2 ≤ y ≤ β̂

∗(b)
` (z) + σ̂

∗(b)
n,``(z)Z1−α/2}.

(iv) Estimate the coverage rate τ`(zj , α) = P{(zj , β̂`(zj)) ∈ B∗(α)|X} using

τ̂`(zj , α) = (1/B)
∑B

b=1 I{(zj , β̂`(zj)) ∈ B∗(b)(α)}.
(v) Find the root of the equation τ̂`(zj , α) = 1 − α0, for j = 1, . . . , N ,

and denote it as {α̂`(zj , α0)}Nj=1. The root can be found using the grid

method by repeating the last two steps for different values of α.
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(vi) Take the minimum of {α̂`(zj , α0)}Nj=1 and denote it as α̂` ≡ α̂`(α0).

Step 4. Construct the final SCCs: B(α̂`) = {(z, y) : z ∈ Ω, β̂`(z)−σ̂n,``(z)Z1−α̂`/2
≤ y ≤ β̂`(z) + σ̂n,``(z)Z1−α̂`/2}.

4. Implementation

The proposed procedure can be implemented using our R package “FDAim-

age” (Yu, Wang and Wang (2019)), in which the bivariate spline basis is generated

using the R package “BPST” (Wang, Wang and Lai (2019)). When the response

imaging seems to be a realization from some smooth function, we suggest using

the smoothing parameter r = 1 and degree d ≥ 5, which achieves full estimation

power asymptotically (Lai and Schumaker (2007)). In contrast, if there are sharp

edges on the images, we suggest considering the PCST presented in Section 2.4.

Selecting suitable values for the smoothing parameters is important to good

model fitting. To select ρn,`, for ` = 0, . . . , p, we used K-fold cross-validation

(CV). The individuals are randomly partitioned into K groups, where one group

is retained as a test set, and the remaining K − 1 groups are used as training

sets. The CV process is repeated K times (the folds), with each of the K groups

used exactly once as the validation data. Then, the K-fold CV score is

CV(ρn,0, . . . , ρn,p) = K−1
K∑
k=1

(|Vk|N)−1
∑
i∈Vk

N∑
j=1

{
Yij − X̃>i β̂−k(zj)

}2
,

where Vk is the kth testing set for k = 1, . . . ,K, and β̂−k is the corresponding

estimator after removing the kth testing set. We use K = 5 in our numerical

examples.

To determine an optimal triangulation, the criterion usually considers the

shape, size, or number of triangles. In terms of shape, a “good” triangulation

usually refers to one with well-shaped triangles without small angles and/or ob-

tuse angles. Therefore, for a given number of triangles, Lai and Schumaker (2007)

and Lindgren, Rue and Lindström (2011) recommended selecting the triangula-

tion according to “max-min” criterion, which maximizes the minimum angle of

all the angles of the triangles in the triangulation. With respect to the number of

triangles, our numerical studies show that a lower limit of the number of triangles

is necessary to capture the features of the images. However, once this minimum

number has been reached, refining the triangulation further usually has little ef-

fect on the fitting process. In practice, when using higher-order BPST smoothing,

we suggest taking the number of triangles as Hn = min{bc1n
1/(2d+2)N1/2c, N/10},
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where c1 is a tuning parameter. We find that c1 ∈ [0.3, 2.0] works well in our

numerical studies. When using the PCST, we suggest taking the number of tri-

angles as Hn = min{bc2n
−1/4Nc, N/2},with c2 ∈ [0.3, 2.0]. Once Hn is chosen,

we can build the triangulation using typical triangulation construction methods,

such as Delaunay triangulation and DistMesh (Persson and Strang (2004)).

5. Simulation Studies

In this section, we conduct two Monte Carlo simulation studies using our R

package “FDAimage” (Yu, Wang and Wang (2019)) to examine the finite-sample

performance of the proposed methodology. The triangulations used here can be

found in the data set in the “FDAimage” package. To illustrate the performance

of our estimation method, we compare the proposed spline method with the kernel

method proposed by Zhu, Fan and Kong (2014) (Kernel) and the tensor regression

method of Li and Zhang (2017) (Tensor). To implement the kernel method,

we use the R Package SVCM, which is publicly available at https://github.

com/BIG-S2/SVCM. For the tensor method, the accompanying MATLAB code

at https://ani.stat.fsu.edu/~henry/TensorEnvelopes_html.html is used.

We compare the proposed method with the tensor regression approach in Li and

Zhang (2017) and the three-stage FDA approach in Zhu, Fan and Kong (2014).

5.1. Example 1

To illustrate the advantage of the proposed method over a complex domain,

we study the horseshoe domain in Sangalli, Ramsay and Ramsay (2013). The re-

sponse images are generated from the following model: Yij = βo0(zj)+Xiβ
o
1(zj)+

ηi(zj) + σεij , for i = 1, . . . , n, j = 1, . . . , N , and zj ∈ Ω. To understand the

advantages and disadvantages of different methods, we consider two types of co-

efficient functions in the above image-on-scalar regression model: (I) functions

with jumps; and (II) smooth functions. The true coefficient functions are shown

in Figure 3.

For each image, we set the resolution as 100×50 (pixels). The true signal falls

only within the horseshoe domain (3,182 pixels); outside the domain is pure noise.

We generate the scalar covariate Xi ∼ N (0, 1), and then truncate it by [−3,+3].

We set ηi(z) =
∑2

k=1 λ
1/2
k ξikψk(z), where (λ1, λ2) = (0.1, 0.02) or (0.2, 0.05) and

ξi1 and ξi2 ∼ N(0, 1), ψ1(z) = c1 sin(2πz1), and ψ2(z) = c2 cos(2πz2). Let

c1 = 0.56 and c2 = 0.61, such that ψ1 and ψ2 are orthonormal functions on Ω. The

measurement error εij is independently generated from N(0, 1) and σ = 1.0, 2.0.

https://github.com/BIG-S2/SVCM
https://github.com/BIG-S2/SVCM
https://ani.stat.fsu.edu/~henry/TensorEnvelopes_html.html
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Case I (jump functions) Case II (smooth functions)

βo
0 βo

1 βo
0 βo

1

Figure 3. The true coefficient functions in Simulation Example 1.

Table 1. Estimation errors of the coefficient estimators, σ = 2.0.

Function
n Method

λ1 = 0.03, λ2 = 0.006 λ1 = 0.2, λ2 = 0.05
Type β0 β1 β0 β1

Jump

50

BPST 0.0139 0.0182 0.0145 0.0189
PCST 0.0088 0.0090 0.0094 0.0097
Kernel 0.0801 0.0819 0.0807 0.0826
Tensor 0.0799 0.0248 0.0799 0.0254

100

BPST 0.0090 0.0118 0.0093 0.0122
PCST 0.0044 0.0044 0.0047 0.0047
Kernel 0.0400 0.0405 0.0403 0.0409
Tensor 0.0395 0.0166 0.0399 0.0171

Smooth

50

BPST 0.0026 0.0032 0.0032 0.0041
PCST 0.0088 0.0090 0.0119 0.0139
Kernel 0.0801 0.0819 0.0807 0.0826
Tensor 0.0799 0.0256 0.0806 0.0271

100

BPST 0.0016 0.0019 0.0019 0.0022
PCST 0.0070 0.0086 0.0073 0.0090
Kernel 0.0400 0.0405 0.0403 0.0409
Tensor 0.0399 0.0168 0.0402 0.0179

To fit the model, we consider the BPST and PCST methods presented in Sec-

tion 2. To obtain the BPST estimators, we set d = 5 and r = 0 when generating

the bivariate spline basis functions. Figure S2.1 in the Supplementary Material

illustrates the triangulations used for the BPST and PCST. The triangulation

used for the BPST (41) contains 90 triangles (73 vertices), and the triangulation

used for the PCST (42) contains 346 triangles (226 vertices).

We quantify the estimation accuracy of the coefficient functions using the

mean squared error (MSE). Table 1 provides the average MSE (across 500 Monte

Carlo experiments) for two types of coefficient functions. To save space, we

present the results for σ = 2.0 only; the results for σ = 1.0 are presented in Table

S2.1 in the Supplementary Material. As expected, the estimation accuracy of all
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the methods improves as the sample size increases or the noise level decreases.

In both scenarios, the BPST and PCST outperform the other two competitors,

reflecting the advantage of our method over a complex domain. When the true co-

efficient functions are smooth, the BPST provides the best estimation, followed

by the PCST. On the other hand, when the true coefficient function contains

jumps, the PCST provides a better result. For the tensor regression, the esti-

mator of βo1(·) is much more accurate than that of βo0(·), owing to the design of

the coefficient function. Figure 3 shows that, in contrast to the intercept func-

tion of βo0(·), the true slope function of βo1(·) is still smooth across the complex

boundary. Moreover, when the coefficient function is smooth across the bound-

ary, the estimation accuracy is also affected by the domain of the true signal. The

performance of the kernel method is not affected by the design of the coefficient

functions. Instead, it depends heavily on the noise level, owing to the three-stage

structure.

5.2. Example 2

In this example, we simulate the data by considering the domains of the

fifth and 35th slices of the brain images illustrated in Section 6 as the do-

main Ω. We generate response images based on a set of smooth coefficient

functions from the following model: Yij =
∑2

`=0Xi`β
o
` (zj) + ηi(zj) + σεij , for

i = 1, . . . , n, j = 1, . . . , N , and zj ∈ Ω, where βo0(z) = 5{(z1−0.5)2 +(z2−0.5)2},
βo1(z) = −1.5z3

1 + 1.5z3
2 and βo2(z) = 2− 2 exp[−8{(z1− 0.5)2 + (z2− 0.5)2}]. The

true coefficient images are shown in the first columns of Figures S2.5 and S2.6 in

the Supplementary Material for the fifth and 35th slices, respectively. For each

image, we simulate the data at all 79×95 pixels. To mimic real brain images, the

true signals are generated only on the pixels/voxels (3,476 or 5,203 pixels in total)

within the brain domain; outside the boundary of the brain, the image contains

only noise. We set Xi0 = 1 and generate X̃i = (Xi1, Xi2)> ∼ N (0,Σ), with

Σ =
(

1.0 0.5
0.5 1.0

)
and Xi` truncated by [−3,+3]. For the error terms, we set ηi(z) =∑2

k=1 λ
1/2
k ξikψk(z), where ξi1 and ξi2 ∼ N(0, 1), ψ1(z) = 1.488{sin(πz1) − 1.5},

ψ2(z) = 1.939 cos(2πz2), and (λ1, λ2) = (0.1, 0.02) or (0.2, 0.05). The measure-

ment error εij is independently generated from N(0, 1) and σ = 0.5, 1.0. To

conserve space, we show only the results for the domain of the fifth slice for

σ = 1.0 here. The results for σ = 0.5 and those based on the domain of the 35th

slice are shown in Section S2 of the Supplementary Material.

Because the functions in this example are smooth, for the bivariate spline

approach, we consider only the BPST method. To further study the effect of

different triangulations, we consider 43 and 44; see Figure S2.4 in the Supple-
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Table 2. Estimation errors of the coefficient function estimators, σ = 1.0.

n Method
λ1 = 0.1, λ2 = 0.02 λ1 = 0.2, λ2 = 0.05
β0 β1 β2 β0 β3 β2

50

BPST(43) 0.003 0.005 0.005 0.007 0.011 0.010
BPST(44) 0.003 0.005 0.005 0.007 0.010 0.009

Kernel 0.023 0.032 0.032 0.026 0.037 0.037
Tensor 0.023 0.013 0.019 0.026 0.017 0.024

100

BPST(43) 0.002 0.002 0.002 0.003 0.005 0.005
BPST(44) 0.002 0.002 0.002 0.003 0.004 0.004

Kernel 0.011 0.015 0.015 0.013 0.018 0.018
Tensor 0.011 0.007 0.011 0.013 0.009 0.013

mentary Material. Similarly to Section 5.1, we summarize the MSE for different

coefficient functions based on 500 Monte Carlo experiments in Table 2. Columns

2–5 in Figure S2.5 in the Supplementary Material show the estimated coefficient

functions using the kernel, tensor and BPST methods, respectively. Table 2 and

Figure S2.5 in the Supplementary Material show that the estimation accuracy

improves for all methods as the sample size increases or the noise level decreases.

In all settings, the BPST method has the smallest MSE compared with the ker-

nel and tensor methods, reflecting the advantage of our method in estimating

the coefficient functions and, hence, the regression function. Because the kernel

and tensor methods are both designed for a rectangle domain, the estimation

accuracy can be affected by the noise outside the domain. Futhermore, the MSE

is invariable across two triangulations, thus, 43 might be sufficient to capture

the feature in the data set. This also implies that when this minimum number

of triangles is reached, further refining the triangulation has little effect on the

fitting process, but makes the computational burden unnecessarily heavy.

Finally, we illustrate the finite-sample performance of the proposed SCCs

for the coefficient functions described in Section 3. In particular, we report the

empirical coverage probabilities of the nominal 95% SCCs using triangulation 43.

We evaluate the coverage of the proposed SCCs over all pixels on the interior of

Ω, and test whether the true functions are entirely covered by the SCCs at these

pixels. Table 3 summarizes the empirical coverage rate (ECR) for 500 Monte

Carlo experiments of the 95% SCCs and the average width of the SCCs. The

results clearly show that the ECRs of the SCCs are well approximated to 95%,

particularly as the sample size increases. Table 3 also reveals that the SCCs tend

to be narrower when the sample size becomes larger or the noise level decreases.
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Table 3. The coverage rate of the 95% SCCs for the coefficient functions.

n λ σ
Coverage Width

β0 β1 β2 β0 β1 β2

50
(0.1,0.02)

0.5 0.976 0.928 0.938 0.332 0.362 0.377
1.0 0.976 0.940 0.952 0.358 0.392 0.413

(0.2,0.05)
0.5 0.962 0.918 0.932 0.445 0.497 0.513
1.0 0.970 0.930 0.940 0.478 0.527 0.544

100
(0.1,0.02)

0.5 0.970 0.956 0.956 0.234 0.250 0.267
1.0 0.978 0.968 0.978 0.262 0.285 0.297

(0.2,0.05)
0.5 0.956 0.958 0.936 0.313 0.348 0.357
1.0 0.966 0.964 0.954 0.344 0.378 0.389

6. ADNI Data Analysis

To illustrate the proposed method, we consider the spatially normalized FDG

(fludeoxyglucose) PET data of the Alzheimer’s Disease Neuroimaging Initiative

(ADNI). As pointed out in Marcus, Mena and Subramaniam (2014), FDG-PET

images have been shown to be a promising modality for detecting functional brain

changes in Alzheimer’s Disease (AD). The data can be obtained from the ADNI

database at http://adni.loni.usc.edu/. The database contains spatially nor-

malized PET images of 447 subjects. Of these 447 subjects, 112 have normal

cognitive functions, considered to be the control group, 213 are diagnosed as

mild cognitive impairment (MCI), and 122 are diagnosed as AD. Table S2.5 in

the Supplementary Material summarizes the distribution of patients by diagnosis

status and sex.

In this study, we examine several patient-level features: (i) demographical

features, such as age (Age) and sex (Sex); (ii) a dummy variable for the abnormal

diagnosis status “MA” (1 = “AD” or “MCI”, zero otherwise); (iii) a dummy

variable for “AD” (1 = “AD,” zero otherwise); and (iv) dummy variables for the

APOE genotype, the strongest genetic risk factor for “AD”; see Corder et al.

(1993). We code APOE1 as a dummy variable for subjects with one epsilon 4

allele, and APOE2 as subjects who have two alleles.

Noting that the PET images are 3D, we select the 5th, 8th, 15th, 35th, 55th,

62nd, and 6fifth horizontal slices (bottom to up) of the brain from a total of 68

slices to illustrate our method. Each slice of the image contains 79×95 pixels,

but the domains of different brain slices are quite different. Specifically, the

domain boundary for the bottom slices and upper slices are much more complex

than the slices in the middle; more examples can be found in Figure S2.7 in the

Supplementary Material. For each slice, we consider the following image-on-scalar

http://adni.loni.usc.edu/
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Table 4. 10-fold CV results for the ADNI dataset. (×10−2)

Method Slice 5 Slice 8 Slice 15 Slice 35 Slice 55 Slice 62 Slice 65
BPST 1.4508 1.4809 1.5013 1.5633 2.0693 2.3020 2.6239
Kernel 1.4533 1.4828 1.5021 1.5638 2.0715 2.3060 2.6303
Tensor 1.5010 1.5260 1.5400 1.5900 2.1000 2.3340 2.6400

regression:

Yi(zj) = β0(zj) + β1(zj)MAi + β2(zj)ADi + β3(zj)Agei + β4(zj)Sexi

+β5(zj)APOE1i + β6(zj)APOE2i + ηi(zj) + σ(zj)εi(zj), i = 1, . . . , n.

We fit the above model using the BPST method for each slice; see Figure S2.7

in the Supplementary Material for the set of triangulations used for the BPST

method. The image maps in Figure 4 and Figures S2.8 and S2.9 in the Sup-

plementary Material present the estimated coefficient functions using the BPST

(d = 5, r = 1) method. To evaluate the predictive performance, Table 4 reports

the 10-fold CV (parts of the images are left out as training sets) MSPE results

for the BPST method, kernel method in Zhu, Fan and Kong (2014), and tensor

regression method in Li and Zhang (2017). The table shows that the MSPEs of

the BPST method are uniformly smaller than those of the kernel method and

tensor regression methods.

Next, we construct the 95% SCCs to check whether the covariates are signif-

icant. The yellow and blue colors on the “significance” map in Figure 4 indicate

the regions in which zero is below the lower SCC or above the upper SCC, re-

spectively. Using these estimated coefficient functions and the 95% SCCs, we can

assess the impact of the covariates on the response images. Taking the fifth slice

as an example, the main impact of “AD” on in the PET images is an increase in

activity in the cerebellum compared with a normal individual. The cerebellum

obtains information from the sensory systems, spinal cord, and other parts of the

brain, and then regulates motor movements, resulting in smooth and balanced

muscular activities. The significance map of “Age” also shows an increase in ac-

tivity in the cerebellum, and “Sex” shows different effects in the male and female

brain images. The significance maps of the covariates for all other slices of the

PET image are shown in Figures S2.10 – S2.11 in the Supplementary Material.

From these figures, we can see that the effect of the covariates on the brain ac-

tivity level varies between slices, depending on the location of the slice; see the

Supplementary Material for further details.
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Figure 4. The BPST estimate and significance map of the coefficient functions for the
fifth slice of the PET images. The yellow and blue colors in the significance map indicate
the regions in which zero is below the lower SCC or above the upper SCC, respectively.

7. Conclusion

We examine a class of image-on-scalar regression models to efficiently explore

the spatial nonstationarity of a regression relationship between imaging responses

and scalar predictors, allowing the regression coefficients to change with the pix-

els. We have proposed an efficient estimation procedure to carry out statistical
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inference. We have developed a fast and accurate method for estimating the co-

efficient images, while consistently estimating their standard deviation images.

Our method provides coefficient maps and significance maps that highlight and

visualize the associations with brain and the potential risk factors, adjusted for

other patient-level features, as well as permitting inference. In addition, it al-

lows an easy implementation of piecewise polynomial representations of various

degrees and smoothness over an arbitrary triangulation, and therefore can han-

dle irregular-shaped 2D objects with different visual qualities. This provides

enormous flexibility, accommodating various types of nonstationarity that are

commonly encountered in imaging data analysis. Our methodology is extend-

able to 3D images to fully realize its potential usefulness in biomedical imaging.

Instead of using bivariate splines over triangulation, the trivariate splines over

tetrahedral partitions introduced in Lai and Schumaker (2007) could be well

suited, because they have many properties in common with the bivariate splines

over triangulation. However, this is a nontrivial task, because the compuation is

much more challenging for high-resolution 3D images than it is for 2D images,

and thus warrants further investigation.

Supplementary Material

In the online Supplementary Material, we provide technical proofs for the

main theorems and additional results from the simulation studies and ADNI

data analysis.
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