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Ocean reanalyses combine ocean models, atmospheric forcing fluxes, and observations

using data assimilation to give a four-dimensional description of the ocean. Metrics

assessing their reliability have improved over time, allowing reanalyses to become an

important tool in climate services that provide a more complete picture of the changing

ocean to end users. Besides climate monitoring and research, ocean reanalyses are

used to initialize sub-seasonal to multi-annual predictions, to support observational

network monitoring, and to evaluate climate model simulations. These applications

demand robust uncertainty estimates and fit-for-purpose assessments, achievable

through sustained advances in data assimilation and coordinated inter-comparison

activities. Ocean reanalyses face specific challenges: (i) dealing with intermittent or

discontinued observing networks, (ii) reproducing inter-annual variability and trends of

integrated diagnostics for climate monitoring, (iii) accounting for drift and bias due, e.g.,

to air-sea flux or ocean mixing errors, and (iv) optimizing initialization and improving

performances during periods and in regions with sparse data. Other challenges such as

multi-scale data assimilation to reconcile mesoscale and large-scale variability and flow-

dependent error characterization for rapidly evolving processes, are amplified in long-

term reanalyses. The demand to extend reanalyses backward in time requires tackling

all these challenges, especially in the emerging context of earth system reanalyses and

coupled data assimilation. This mini-review aims at documenting recent advances from

the ocean reanalysis community, discussing unsolved challenges that require sustained

activities for maximizing the utility of ocean observations, supporting data rescue and

advancing specific research and development requirements for reanalyses.
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INTRODUCTION: THE USEFULNESS OF
REANALYSES

Ocean and sea-ice reanalyses (ORAs, or ocean syntheses) are
reconstructions of the ocean and sea-ice states using an ocean
model integration constrained by atmospheric surface forcing,
and ocean observations via a data assimilation method (e.g.,
Storto and Masina, 2016). Over the last decade, performance of
ocean reanalyses has improved thanks to (a) increased model
resolution (e.g., Zuo et al., 2018); (b) improved physics (e.g.,
Breivik et al., 2015); (c) better forcing from new atmospheric
reanalyses (e.g., Dee et al., 2011); (d) more and improved
quality-controlled observation data sets (e.g., Legeais et al., 2018);
and (e) advances in data assimilation methods (e.g., Sakov
et al., 2012; Storto et al., 2018b). This is exemplified by several
works showing the increase of verification skill scores between
successive versions of reanalyses (e.g., Lellouche et al., 2013, 2018;
Storto et al., 2016; Zuo et al., 2017). Balmaseda et al. (2015) gave a
detailed overview of the recent development of ocean reanalyses,
with focus on the uncertainty level of climate signals. Ocean
reanalyses have thus become an established tool for a variety of
climate services and science-driven studies.

For instance, on-line tools examining multiple ocean
reanalyses (e.g., the CREATE1 initiative, Potter et al., 2018)
enable immediate evaluation of model simulations such
as the Coupled Model Inter-comparison Project (CMIP5).
Visualization tools for near real-time reanalyses permit the
monitoring of climate-key diagnostics, such as heat and salinity
budgets in the Tropics (Xue et al., 2017)2.

Reanalyses are superior to objective analyses since, by
construction, they provide increased andmulti-variate dynamical
consistency (e.g., Forget, 2010; Forget et al., 2015a; Evans
et al., 2017; Fukumori et al., 2018) as compared to objective
analyses (i.e., statistical processing of observations without model
constraints, e.g., Johnson G.C. et al., 2018). One major advantage
of reanalyses is their potential usefulness as a tool for studying
important climate diagnostics that are only partly or indirectly
observed. Examples include deep ocean variability (Balmaseda
et al., 2013b), ocean transports (Duan et al., 2016), Atlantic
Meridional Overturning Circulation (AMOC, e.g., Jackson et al.,
2018), sea-ice thickness and drift (Massonnet et al., 2013), deep
convection, and many more.

Dynamical ocean reanalysis have shown better capabilities
than their statistical counterparts to assess observables where
short timescale variability, or a changing or irregular observing
network have large influences. Toyoda et al. (2017) showed
that an ensemble of ocean reanalysis could outperform monthly
mean statistical gridded products when validating monthly
means of (shallow, especially summer time) mixed layer depths
derived directly from original profile data, likely due to the
reanalysis ability to more accurately simulate the short temporal
timescale fluctuations the profilesmeasured (Figure 1, top panel).
Similarly, Storto et al. (2017) showed the enhanced capabilities of

1Available at: https://esgf.nccs.nasa.gov/search/create-ip/
2Real-Time Ocean Reanalysis Inter-comparison Project (RT ORA-IP), available at:
https://www.cpc.ncep.noaa.gov/products/GODAS/multiora93_body.html

ocean reanalyses over gridded statistical products to capture the
inter-annual variability of extra-tropical steric sea level changes,
particularly in the southern ocean, where a sparse observational
network combined with small temporal and spatial scale eddy
activity would have a heavy influence (Figure 1, bottom panel).

Appropriateness of using reanalyses for ocean transport
investigations is particularly relevant to understand large to
regional scale climate changes (Zuo et al., 2011; Vidar et al.,
2016). Transports are mostly unobserved, unavailable from
objective analyses and poorly reproduced by free-model running
simulations. Reanalyses have been shown to reproduce the
AMOC variability seen in the RAPID data at 26◦N (Jackson et al.,
2016, 2018; Masina et al., 2017), although these data are not
assimilated. Reanalyses extending back prior to the deployment
of the RAPID array may indicate longer term variability,
although the changing observational coverage from distinct
periods may affect results. Heat and volume transports through
the Indonesian Throughflow, which are not continuously
observed and are relevant to ENSO monitoring, are another
excellent example where ocean reanalyses successfully reproduce
anomalous events (Mayer et al., 2018). Monitoring multi-
annual heat, mass and freshwater transports at key Arctic ocean
gateways by means of reanalyses has also successfully emerged
in several recent studies (Bricaud et al., 2018; Garric et al., 2018;
Uotila et al., 2018).

FIGURE 1 | Examples of reanalyses outperforming objective analyses. Top

panel, timeseries of mixed layer depth (in meters, using 0.125 Kg m-3 density

criterion) from profile data (MILA-GPV), the ensemble of reanalyses (REAENS)

and two statistical objective analyses (EN3v2a, ARMOR3D) in the western

Pacific warm pool region. Source: Toyoda et al. (2017). Bottom panel, map of

the difference of steric sea level correlation (with respect to independent

verifying data) between reanalysis and objective analysis ensemble means.

Source: Storto et al. (2017). Image reproduced with permission of the rights

holder.
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Reanalyses are also consistent integrators of the ocean
dynamics, and there exist several studies that indicate the
superiority of reanalyses with respect to model simulations and
observation-only products, e.g., improving Mean Kinetic Energy
at depth (1000 m) at low- and mid-latitudes (Storto et al., 2016);
improving the near-surface Eddy Kinetic Energy (Masina et al.,
2017), improving the statistics of the eddy population (Cipollone
et al., 2017), and improving the dynamics of poorly observed
regions (Koenig et al., 2017a).

Reanalyses that enforce strict budget closures such as ECCO
(Estimating the Circulation and Climate of the Ocean) can be
very informative for balance studies even though sometimes they
may also underfit data (Forget and Ponte, 2015; Forget et al.,
2015a). Reanalyses also avoid spurious high-frequency variability
in global energy budgets, which is typically found in objective
analyses (Trenberth et al., 2016).

In the cryosphere, sea-ice volume from the PIOMAS
reanalysis fits well with independent validating data (Schweiger
et al., 2011) although the PIOMAS data assimilation only
ingests sea-ice concentration and sea surface temperature data.
Melia et al. (2015) used the PIOMAS reanalysis to bias-
correct climate model scenario predictions using both mean and
interannual variability from the reanalysis, demonstrating a new
use for such products.

One long-term application of ocean reanalyses has been for
the initialization of ocean and sea ice components of seasonal
(e.g., at Met Office, ECMWF, NCAR, GFDL, CMCC, Meteo-
France, etc.; e.g., Johnson S.J. et al., 2018), and more recently
decadal, retrospective forecasts (e.g., Bellucci et al., 2011). The
importance of the role of the ocean (e.g., Alessandri et al.,
2010; Doblas-Reyes et al., 2013) and sea ice (e.g., Guemas et al.,
2016) in initialization is indeed widely accepted. Despite the
growing community interest, ocean reanalyses, and the ocean
component of coupled reforecasts, are underutilized, largely
due to the existing terrestrial emphasis of most of the derived
products of these systems. Efforts are being made, for instance by
the Copernicus Climate Change Service (C3S3) and Copernicus
Marine Environment Monitoring Service (CMEMS4), to release
the ocean reanalysis component in a more timely manner, and
to incorporate their information into climate monitoring reports
(i.e., the Ocean State Report, von Schuckmann et al., 2018a,b, or
the State of the Climate, Hartfield et al., 2018). A particular benefit
of having the reanalysis of these systems readily available, is that
this now leads to the ability to access error growth in the forecast
components, leading tomuch better assessment of model forecast
error and ultimately to bias correction and model improvement
(e.g., Mulholland et al., 2016).

Global reanalyses also provide lateral boundary conditions for
regional high-resolution simulations/reanalyses, which are found
to significantly improve the local circulation compared to the use
of, e.g., climatology (Barth et al., 2008). Additionally, reanalyses
are extensively used to monitor the impact of past and present
observing networks, thus helping the optimal maintenance and

3See product catalog at: https://climate.copernicus.eu/; https://cds.climate.
copernicus.eu
4See product catalog at: http://marine.copernicus.eu/

the future design of the global ocean observation system (e.g.,
Fujii et al., 2019; Gasparin et al., 2019).

A relatively new application of reanalyses is the investigation
of climate variability over centennial timescales by extending
back throughout the 20th century and even further. Such
historical ocean reanalyses (Giese et al., 2016; de Boisséson et al.,
2017; Yang et al., 2017) can particularly provide initial conditions
for more extensive decadal predictions. However, caution must
be used with “20th century” ocean reanalyses because of
the spurious variability resulting from the inhomogeneous
observations, especially for ocean transport diagnostics (Yang
et al., 2017). Historical ocean reanalyses rely on historical
atmospheric reanalyses also extending back to the 19th century
(e.g., 20CR, Compo et al., 2011), making the emerging field
of historical coupled reanalyses (Laloyaux et al., 2018) doubly
attractive to make use of the sparse observations.

ASSESSING THE UNCERTAINTY OF
OCEAN REANALYSES

The quality of ocean reanalysis relies upon the accuracy of
ocean models, forcing products, and observational data accuracy,
namely both data and model errors contribute to the reanalysis
uncertainty, as in any other data assimilation context. Model and
forcing errors are reduced through assimilation of satellite and
in situ data, and the availability of accurate observations, with
reliable uncertainty estimates associated, is therefore crucial.

Unfortunately, the first satellite missions sensing the ocean
surface (sea surface temperature and sea-ice concentration)
are available only after 1979; high-precision altimetry missions
sampling the sea surface height only began in 1992; in situ surface
observations only increased when the Global Drifter Program
became efficient, after the 1990s, and subsurface profile data from
the Argo program achieved near-global coverage only around
2007 (Roemmich et al., 2019). This implies that ocean reanalyses
are increasingly less reliable going further back in time. So, it is
crucial to carefully assess their performance, particularly in light
of the problems noted in the section “Introduction.”

Estimating ocean reanalysis skill and uncertainty can be
performed in several ways. First, validating the reanalyses against
independent (non-assimilated) datasets, typically available from
special campaigns at regional scale (e.g., Koenig et al., 2017b, for
the Arctic Ocean), delayed time reprocessed data (e.g., drifter-
derived currents or cross-calibrated tide-gaugemeasurements) or
by using multi-source data to evaluate complex frontal dynamics
(Artana et al., 2018) and adopting popular skill score metrics
(bias, root mean square error, etc.).

Second, probabilistic reanalyses based on ensemble data
assimilation possibly maintained through perturbed forcing and
physics, provide probability distribution functions of the ocean
state. These also require that the dispersion of the limited-size
ensemble also requires validation based on objective methods
(Desroziers et al., 2005; Candille et al., 2015; Yan et al., 2015;
Rodwell et al., 2016; Storto et al., 2018a).

Third, inter-comparison activities that assess reanalyses
through evaluation of inter-system consistency provide valuable
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information. The spread of different reanalyses inform on the
relative accuracy of the reanalyses for different ocean parameters.
This approach has been performed by the CLIVAR/GSOP and
GODAE communities, in particular during the recent ORA-
IP project (Balmaseda et al., 2015; and the Climate Dynamics
Special Issue5), followed by regional reanalysis inter-comparison
assessments (e.g., the POLAR ORA-IP, Uotila et al., 2018).

An example is provided in Figure 2, which compiles findings
from the ORA-IP project, showing the ensemble mean and
spread of the reanalyses and reporting the Signal-to-Noise
Ratio (SNR, see the figure caption for details) for several
inter-compared parameters. The figure highlights how the net
surface heat flux, the halosteric (hence salinity content) sea level,
the thermosteric sea level below 700 m (hence heat content),
and the sea-ice volume are much less constrained than sea
surface temperature, 0–700 m thermosteric sea level and sea-
ice concentration as indicated by the SNR values. CMEMS also
provides multi-reanalysis assessments (e.g., Storto et al., 2018a)
and a reanalysis ensemble mean product to end users, following
a first attempt by Masina et al. (2017).

Inter-comparison exercises also provide detailed information
on the deficiency of the current ocean observing network.
For instance, Mignac et al. (2018) showed that the AMOC
in the South Atlantic among several ocean reanalyses strongly
disagree with each other, due to the discrepancies in the flow
strength in the upper and deep western boundary currents.
However, the interior gyre circulations showed much greater
consistency between products. This shows the effectiveness
of data assimilation in the basin interior but also highlights
the difficulty of constraining the western boundary currents
with the present observations of Argo and altimetry, and
illustrates the requirement for a sustained coastal observing
system (De Mey-Frémaux et al., 2019).

CHALLENGES

A number of specific challenges concern ocean reanalyses that
are not necessarily shared with operational systems (Masina and
Storto, 2017; Moore et al., 2019), because one of the fundamental
goals of reanalyses is the reproduction of low-frequency (e.g.,
inter-annual) variability and trends. This is conceptually linked
with the fact that most reanalyses implement sequential data
assimilation tools that correct the state of the ocean at high
frequencies (typically daily), thus introducing an intrinsic jump
of spatial and temporal scales (Tardif et al., 2015).

Additionally, discontinuous observing networks often lead to
inhomogeneous reanalysis time-series. The sampling of in situ
profiles is always intrinsically irregular in space and time, but
this is particularly so during periods of expansion of observing
networks such as XBTs (1970s) and Argo floats (2000s). This is
still true today with the inhomogeneous vertical sampling that
can lead to large and unrealistic drift in unobserved layers below
2000 m depth (Lellouche et al., 2018).

5Climate Dynamics Special Issue on “Ocean estimation from an ensemble of
global ocean reanalysis,” Volume 49, Issue 3, August 2017, available at: https:
//link.springer.com/journal/382/49/3/page/1

At the surface new observation types are set to provide
more complete global coverage, for instance Surface Water and
Ocean Topography (SWOT) altimetry will provide sea level
measurements reaching the sub-mesoscale, extended HF-radar
systems can provide high-resolution surface current observations
in the coastal areas, and a strengthened constellation of ocean-
sensing satellites (e.g., from the Copernicus program) should
increase dramatically in the next decades. Reanalyses will need
to adapt their capabilities (i.e., resolution, data assimilation
schemes) to the new observation sampling and types in order to
still provide consistent climatic metrics.

Accounting for drift and bias due, e.g., to air-sea flux errors,
inadequate model resolution and parameterizations is another
non-trivial problem (Zuo et al., 2017). Model bias correction
through observation-based (Balmaseda et al., 2007b; Storto et al.,
2016), analysis increments-based (Dee, 2005; Canter et al., 2016),
ensemble (Zuo et al., 2018), or adaptive (Lea et al., 2008) bias
estimates, assimilation of additional climatological observations
(Lellouche et al., 2018), on-line correction of atmospheric forcing
and mixing terms (Stammer et al., 2004; Forget and Ponte,
2015; Forget et al., 2015a), assimilating anomalies instead of
full-field observations (Weber et al., 2015; Counillon et al.,
2016), are all bias mitigation methods which have been used in
the last decade.

In data-sparse periods, the initialization of ocean reanalyses
remains challenging, due to our intrinsic lack of knowledge
about the ocean state at earlier times, and is acute in ocean
reanalyses before the 1980s (see, e.g., de Boisséson et al.,
2017). Inclusion of stochastic initialization (Zuo et al.,
2018), point-wise linear regression from objective analyses
(Lellouche et al., 2018), or adjoint methods resolving the
entire reanalysis period at once (Wunsch and Heimbach,
2007; Forget et al., 2015a) are all possible solution methods
that generally require additional computational costs.
Other problems such as spurious vertical velocity fields
caused by dynamical imbalance after data assimilation, are
particularly detrimental to downstream applications such as
biogeochemical reanalyses, where these imbalances propagate
onto unrealistic distributions of nutrients (Forget et al.,
2015b; Park et al., 2018), revealing consistency problems
otherwise neglected.

In the context of high-resolution ocean reanalyses that
approach eddying scales, additional challenging topics, derived
by the increase of ocean model resolution, include among
others (i) the coupling with tides and waves; (ii) dealing
with mesoscale eddies and sharp gradients in properties;
(iii) two-way nested analysis schemes (e.g., Barth et al.,
2007); (iv) discontinuities at choke points or in key coastal
areas; (v) downscaling of atmospheric forcing, and (vi)
accuracy of bathymetry. All these aspects call for a close
collaboration between the ocean modeling and the reanalysis
communities. Furthermore the increasing demand for temporal
and spatial resolution by end-users, for instance for ocean
downscaling applications, translate into a big data challenge for
high-resolution reanalyses, making the dissemination of full-
resolution datasets prohibitively expensive with the current data
infrastructure paradigms.
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FIGURE 2 | Timeseries of global ocean sea surface temperature, net surface heat flux, thermo, and halo steric sea level (0–700 and 700–1500 m), September Arctic

sea-ice extent and volume, from the ORA-IP inter-comparison project. Each plot shows the ensemble mean and standard deviation and the individual ocean

reanalyses. Reference datasets are shown in blue for selected parameters. Each plot reports also the Signal-to-noise ratio (SNR), defined here for simplicity as the

ratio between the temporal standard deviation of the ensemble mean divided by the temporal mean of the ensemble standard deviation. Numbers in parentheses

refer to the SNR ratio computed from anomalies rather than full field data, except for thermo and halo steric sea level data that are already anomalies by

construction. Adapted from Chevallier et al. (2017), Storto et al. (2017), and Valdivieso et al. (2017). Image reproduced with permission of the rights holder.
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OBSERVATIONAL REQUIREMENTS

The need for sustained, long-term global observations to
support climate monitoring and forecast activities has long been
recognized (Karl et al., 2010), as well as the complementary
need for reliable and sophisticated pre-processing procedures
(bias-correction, redundancy checks, quality control, etc.). The
impact of different observing networks on the quality of ocean
reanalyses and forecast systems has been assessed in several
studies. Observational networks like Argo and altimetry satellite
data are crucial to correctly resolve the vertical structure of the
water column and the mesoscale ocean circulation, respectively
(e.g., Oke et al., 2015; Shao et al., 2015; Zhang et al., 2017).
Their availability therefore has a direct impact in the quality
of ocean reanalyses (Balmaseda et al., 2007a, 2013). Tropical
observing systems, like the TAO/TRITON, RAMA and PIRATA
arrays, provide important information for the accuracy of ocean
forecast systems (see Oke et al., 2015 and references therein).
The recent degradation in the TAO/TRITON arrays had a
significant detrimental impact on forecast skill in the tropical
Pacific (Fujii et al., 2015), showing that it is critical to quickly
address such degradations.

Although the number of oceanic observations has
increased in recent decades, high-quality observations
remain scarce in places, especially around and underneath
the sea ice (Pellichero et al., 2017). While remotely sensed
ice concentration has had good spatial coverage since 1979,
the amount of in situ measurements of sea ice thickness
(SIT) is very limited (Worby et al., 2008), and long-term
and large-scale data sets do yet not exist. Nevertheless,
improved SIT estimates are crucial to improve Arctic
seasonal forecasts (Blockley and Peterson, 2018) and to
reduce climate-model uncertainties (Lisæter et al., 2007;
Mathiot et al., 2012; Melia et al., 2015). To improve model
confidence in predicting polar sea ice conditions, satellite
missions aiming at retrieving information on SIT (such as
CryoSat2 and SMOS, and their combination, see Ricker
et al., 2017) have been found to improve the performance of
reanalyses in polar regions (Allard et al., 2018; Mu et al., 2018;
Xie et al., 2018).

For global estimates of key climate parameters such as
ocean heat content, the depths below 2000 m are currently
unobserved, leading to obvious deficiencies of reanalyses in
the representation of deep water characteristics and variability
(Storto et al., 2017). Repeated observational transects such as
GO-SHIP (Talley et al., 2016), as a follow-up to the WOCE
sections (Macdonald, 1998), are fundamental for multi-decadal
climate monitoring, but may be inadequate to constrain the deep
ocean. For example, when numerous upper ocean observations
are available, the use of unreliable vertical covariances in data
assimilation may induce the wrong response at depth. There is
hope that the developing deep Argo program (Zilberman, 2017)
will gradually fill the gaps between the upper and deep ocean
observing networks.

For both coupled and uncoupled reanalyses, observations
of air-sea fluxes, at the moment available from a small number
of dedicated ocean stations (e.g., Curry et al., 2004), appear

crucial for understanding the coupled data assimilation
paradigm and improving air-sea flux formulations. On
top of all these observational requirements, independent
research-quality validation datasets (e.g., research quality
tide-gauge data, Caldwell et al., 2015) must be sustained and
made available in standard format (e.g., ADCP data from
vessel-mounted or fixed location instruments to validate
currents from reanalyses) to ensure reliable estimation of
reanalysis uncertainty. The same applies to the development
of independent remote sensing capabilities, both from existing
and new satellites, such as the use of Gravity Recovery
and Climate Experiment (GRACE) data to verify steric sea
level rise in ocean reanalyses (Storto et al., 2017), or the
use of IceSat sea ice freeboard measurements to validate
sea ice thickness in reanalyses (Chevallier et al., 2017;
Uotila et al., 2018).

Finally, as important as the data availability itself and
data rescue projects such as GODAR6, improvements to
quality-control and bias adjustment procedures for reanalysis
applications need to be maintained and supported. Efforts
are on-going, testified by the recent release of the first
interim version of the IQuOD7 temperature profile dataset
(Domingues and Palmer, 2015)8.

A FUTURE OUTLOOK

Recent years have seen the pioneering production of Earth
system reanalyses that simultaneously produce a dynamically
consistent reconstruction of the atmosphere, ocean, land and sea-
ice, although with varying complexity in the data assimilation
coupling (e.g., Penny et al., 2017). These products are preliminary
but provide promising results (e.g., Feng et al., 2018) and will
likely be developed much further in the coming decade. Earth
system reanalyses can potentially improve the representation
of budgets (Mayer et al., 2017), although propagation and
amplification of coupled biases and errors may occur (Zhang
et al., 2013). The role of (uncoupled) ocean reanalyses is expected
to focus on the added value of eddying resolution (tackling
eddy energetics, including tides at global scale, and improving
the representation and the impact of coastal and shallow water
processes on the global ocean), as well as consolidating its role
as a validation tool for assessing the ocean model component of
Earth system simulations. Emergingmulti-scale data assimilation
schemes (e.g., Miyoshi and Kondo, 2013) may further reconcile
the mesoscale and large-scale circulation variability, whose
simultaneous correction is generally lacking in the current
state-of-the-art reanalyses. The increase in resolution also poses
the challenge of data infrastructures capable of handling these
large datasets; cloud computing services, new format standards,
extraction services, etc., should all be investigated to facilitate
access to high-resolution reanalysis datasets.

6Global Oceanographic Data Archaeology and Rescue (GODAR), Information
available at: https://www.nodc.noaa.gov/about/international_godar.html
7Data available at: https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:
IQuODv0.1
8www.iquod.org
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Flow-dependent error characterization for both rapidly
evolving processes (marine weather) and low frequency processes
(climate modes, changes in observational sampling, etc.) will
likely become an important component of both long- and short-
term ocean reanalyses, inheriting the positive experience from
atmospheric reanalyses (Poli et al., 2013). In particular, the
importance of flow-dependent ensemble based data assimilation
methods, compared to prescribed error implementations, has
recently been demonstrated at global scales by Penny et al.
(2015) and Storto et al. (2018b), and regionally for sub-polar
gyre variability (Counillon et al., 2016), and also for the
assimilation of sea ice (Sakov et al., 2012; Barth et al., 2015;
Kimmritz et al., 2018).

Changes in the observing network expected over the next
decade will offer reanalyses the possibility to integrate a
larger number of heterogeneous observing networks. Deep
Argo, surface salinity, high resolution altimetry, gravimetry,
coastal observing networks, together with conventional profile
data, may all be ingested to improve the representation
of heat, mass and freshwater budgets in uncoupled and
coupled reanalyses.

Finally data rescue programs also increase the appetite
for the backward extension of ocean reanalyses, but
need to be complemented with realistic error estimates
and sophisticated bias- and drift- aware data assimilation
methods that currently lack sufficient robustness. Enhancing
the ocean observing network will also enable better bias
estimates to be developed and used. This appears particularly
relevant in light of new projects aiming at producing
millennial timescale reanalyses from multi-proxy data (e.g.,
PAGES2k Consortium, 2017).
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