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Abstract
Motivated by a question of Ghys, we study obstructions to extending group actions
on the boundary ∂ M of a 3-manifold to a C0-action on M . Among other results, we
show that for a 3-manifold M , the S1 × S1 action on the boundary does not extend
to a C0-action of S1 × S1 via homeomorphisms that are isotopic to the identity as a
discrete group on M , except in the trivial case M ∼= D2 × S1.

1 Introduction

This paper concerns the structure of diffeomorphism and homeomorphism groups of
manifolds. Our motivation is the following seemingly simple question of Ghys.

Question 1.1 [14] If M is a manifold with boundary ∂ M, under what conditions is
there a homomorphism Diff0(∂ M) → Diff0(M) that “extends C∞-diffeomorphisms
to the interior”?

Here and in what follows, Diff(M) denotes the group of self-diffeomorphisms of
M , and Diff0(M) its identity component. Put otherwise, Ghys’ question asks for
obstructions to a group-theoretic section of the natural “restriction to boundary” map
r : Diff0(M) → Diff0(∂ M). Restricting the domain of the map to Diff0(M) ensures
that the boundary map is surjective onto Diff0(∂ M), thus any such obstruction will
necessarily be group-theoretic in nature. Ghys’ original work treats the case where M
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is an n-dimensional ball (for general n), a case explored further in [27]. This program
is also reminiscent of Browder’s notion of bordism of diffeomorphisms, as discussed
at the end of this section.

We are interested in a more general problem of obstructions for extending group
actions. Given a discrete group � and a homomorphism ρ : � → Diff0(∂ M), an
extension of ρ to M is a homomorphism φ such that the following diagram commutes.

Diff0(M)

r

�
ρ

φ

Diff0(∂ M)

This is already a challenging and interesting problem when M is a 3-manifold with
sphere or torus boundary. Our focus here is cohomological obstructions to extension:
we interpret Ghys’ question as an invitation to understand the relationship between
the group cohomology of Diff0(M) and Diff0(∂ M).

When ∂ M is diffeomorphic to the torus, the cohomology of the classifying space
of Diff0(∂ M) with its C∞-topology is known (see [9]) to be

H∗(BDiff0(∂ M);Q) ∼= H∗(BHomeo0(∂ M);Q) ∼= Q[x1, x2].

Therefore, there are two potential obstruction classes ρ∗(x1), ρ∗(x2) ∈ H2(B�;Q)

where B� is the classifying space of the group �. Like Ghys, we assume the group
homomorphisms are between groups equipped with the discrete topology.

We prove the following theorem on the restriction map, which allows us to find
obstruction classes for the section problem over various subgroups.

Theorem 1.2 Let M be an orientable three-manifold which is not diffeomorphic to
D2 × S1, and with ∂ M diffeomorphic to T 2. The map

H2(BDiff0(T );Q) → H2(BDiff0(M);Q),

which is induced by the restriction map Diff0(M) → Diff0(T ), has a nontrivial
kernel. The same holds when Diff0 is replaced by Homeo0.

If M is irreducible (and therefore Haken) this is a consequence of Waldhausen’s
theorem [44] on Seifert fibered manifolds and the main theorem of Hatcher [18], see
Proposition 2.2 below. The difficulty in the reducible case lies in understanding the
relationship between the topology of BDiff0(M) and that of the classifying spaces of
the diffeomorphismgroups of the prime factors of M . César de Sá andRourke [4]made
a proposal to describe the homotopy type of Diff(M) in terms of the homotopy type of
diffeomorphisms of the prime factors and an extra factor of the loop space on “the space
of prime decompositions”. Hendriks–Laudenbach [20] and Hendriks–McCullough
[21] found a precise model for this extra factor. Later Hatcher [17] gave a finite
dimensional model for this “space of prime decompositions” and more interestingly,
he proposed that there should be a “wrong-way map” between BDiff(M) and the
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classifying space of diffeomorphisms of prime factors. Unfortunately, his approach
was never completed. Theorem 1.2 is inspired by his wrong-waymap. But our proof of
Theorem 1.2 avoids some of the technical difficulties of Hatcher’s proposed approach
by combining 3-manifold techniques with certain semi-simplicial techniques used in
the parametrized surgery theory in the work of Galatius and Randal-Williams [16].

The case M ∼= D2 × S1 is exceptional: in this case it is shown in [13, Theorem
5.1] that it is a consequence of Hatcher’s theorem [19] that the restrict-to-boundary
map Diff0(M) → Diff0(∂ M) is a weak equivalence. Therefore, the induced map
H2(BDiff0(T );Q) → H2(BDiff0(M);Q) is an isomorphism.

However, we can treat this case by giving a completely independent, dynamical
rather than cohomological argument. While it uses C1 differentiability in an essential
way, the strategy is general enough to apply both to D2 × S1 and to any reducible
3-manifold with torus boundary. This is carried out in Sect. 4. Combining these results,
we obtain the following answer to Ghys’ problem.

Theorem 1.3 (Extending actions on the torus)

• Suppose ρ : � → Diff0(T 2) is an action that extends to a C0 action on an
orientable 3-manifold M with ∂ M ∼= T 2. If the obstruction classes ρ∗(x1) and
ρ∗(x2) are linearly independent in cohomology with rational coefficients, then
M ∼= D2 × S1.

• There is a (explicitly given) finitely generated group � ⊂ Diff0(T 2) such that, for
any manifold with ∂ M ∼= T 2, the inclusion � → Diff0(∂ M) does not extend to
the group of C1-diffeomorphisms Diff10(M).

As a concrete, simple example and special case of the first item in the above result, for
a 3-manifold M with ∂ M ∼= T 2, not homeomorphic to D2 × S1, the S1 × S1 action on
the boundary does not lift to a C0-action on M via homeomorphisms that are isotopic
to the identity (even discontinuously!).

We also treat the case of manifolds with sphere boundary, again using a dynamical
argument.

Theorem 1.4 Let M be an orientable 3-manifold with ∂ M ∼= S2. Then there is no
extension Diff0(∂ M) → Diff10(M).

Note that if M ∼= B3 any group action on S2 can be coned off to an action by
homeomorphisms on the ball, thus the necessity of the differentiability hypothesis.
Moreover, in this case, again by Hatcher’s theorem [19] the restrict-to-boundary map
Diff0(M) → Diff0(∂ M) is a weak equivalence. Therefore, in this case, there is no
cohomological obstruction either.

In the case where the extension is assumed continuous (giving the possibility of
topological rather than purely algebraic obstructions), recent work of [7] gives a neg-
ative answer to Ghys’ original question in the smooth case, and in many settings in the
C0 case. In some cases, continuity of group actions is known to be automatic [23,28],
but even this is not enough to recover Theorems 1.3 and 1.4 above. However, conti-
nuity motivates us to look for cohomological obstructions in the continuous setting.
In Sect. 5 we discuss this problem briefly for Pontyagin classes for manifolds with
sphere boundary.
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Further questions Ghys’ question can be related to the following notion of bordism
of group actions.

Definition 1.5 Let N1 and N2 be oriented n-manifolds, � a discrete group, and ρi :
� → Diff(Ni ) a homomorphism. We say ρ1 and ρ2 are bordant if there is a (n + 1)-
manifold M and a representation φ : � → Diff(M) such that ∂ M = N1 � −N2 and
such that the restriction of φ(γ ) to Ni agrees with ρi (γ ) for each γ ∈ �.

For fixed � and n, this notion of bordism gives an equivalence relation (standard
techniques can be used to smooth a gluing of two actions that agree on a glued bound-
ary), and bordism classes of group actions form a group �(n, �) under disjoint union.
This group is considered to be trivial if it reduces to the ordinary (oriented) bordism
group �n . This setting generalizes both our extension problem (by not requiring dif-
feomorphisms to be isotopic to the identity) andBrowder’s notion of the bordismgroup
�n of diffeomorphisms of n-manifolds introduced in [3]. In our notation, �(n,Z) is
Browders �n . Similar definitions have appeared elsewhere in the literature, see for
example [45] for the case where � is a compact Lie group.

The groups �(n,Z) have been computed for all n by the combined work of Kreck
et al. [1,11,26,30]. To the best of our knowledge, this is the only case of a finitely
generated, infinite group whose bordism groups are known, and known not to be
trivial. It seems to the authors that computing�(n, �) is beyond the techniques of this
paper. We instead propose two particularly interesting next cases for study.

Problem 1.6 Find nontrivial elements in �(1,Z × Z).

Problem 1.7 For the group � defined in Proposition 4.1, find nontrivial elements in
�(2, �).

Both the extension and the bordism problem are already quite challenging in dimen-
sion 2. We address the case of groups acting on tori and spheres focusing on Diff0(M)

here. The extension problem for group actions on higher genus surfaces seems more
difficult. For instance, our dynamical approach in the torus case uses torsion elements,
and Diff0(S) is torsion free provided S has genus at least 2 (see [39] for a proof of
this fact which is originally due to Hurwitz). Furthermore, by Earle–Eells [10], the
group Diff0(S) is contractible, so there can be no cohomological obstructions to a
continuous section (i.e obstruction classes in BDiff0(S)). However, it is possible that
the cohomology of Diff0(S)δ , which is known to be nontrivial, could be used to give
an obstruction class for the extension problem. As a concrete instance, for any ori-
entable surface S there is a surjection of H3(Diffδ0(S);Q) to R2 [2] (see also [35]),
the two (continuously varying) classes come from integrating Godbillon–Vey classes
of foliations on flat bundles.

Problem 1.8 For which, if any,3-manifolds with surface boundary do these “Godbillon-
Vey” classes provide obstructions to extending group actions on the boundary?

We also pose the following general problem.

Problem 1.9 Does there exist an example of a finitely generated group � ⊂ Diff0(
g),
g ≥ 2 so that the embedding of � into Diff0(
g) is not nullbordant?
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2 Obstruction classes and a proof whenM is irreducible

All manifolds, for the remainder of the paper, will be assumed smooth and orientable.
We assume basic familiarity with classifying spaces for topological groups, the reader
may refer to [33] for a very brief introduction in the context of related section problems
for diffeomorphism groups, or [32] for more detailed background.

2.1 Obstruction classes

Let M be a manifold with boundary. An extension φ of an action ρ : � → Diff0(∂ M)

gives rise to a commutative diagram on the cohomology of the classifying spaces

H∗(BDiff0(M))

φ∗

H∗(B�) H∗(BDiff0(∂ M))
ρ∗

r∗

We define an obstruction class for ρ to be any nonzero element of ρ∗(ker(r∗)) ⊂
H∗(B�). It is immediate from the diagram above that if an extension φ of ρ exists,
then all obstruction classes vanish.

To apply this in the setting of Theorem 1.2, we wish to find group homomorphisms
ρ : � → Diff0(T ) so that the induced map ρ∗ : H∗(BDiff0(T );Q) → H∗(B�;Q)

is non-trivial on the generators of H2(BDiff0(T );Q). (We have used Q coefficients
here because it will be helpful much later in the proof; however, for the moment the
reader may just as well work integrally.)

It is a theorem of Earle–Eells [10] that the inclusion of SO(2) × SO(2) into
Diff0(S1 × S1) is a homotopy equivalence. Thus, BDiff0(T 2) 
 CP∞ × CP∞
with cohomology generated by two classes in degree 2, corresponding to the Euler
classes of each factor.

Let � = π1(
g) be the fundamental group of a surface of genus g ≥ 2. For the
standard embedding of � as a lattice in PSL(2,R) ⊂ Diff0(S1) (equivalently, the
holonomy representation of the unit tangent bundle of 
g equipped with a hyper-
bolic metric), the induced map on cohomology H∗(BDiff0(S1);Q) → H∗(B�;Q)

is not the zero map; indeed, as is well known, the pullback of a generator of
H∗(BDiff0(S1);Z) (thought of under the standard inclusion into H∗(BDiff0(S1);Q))
evaluated on the fundamental class of H∗(B�;Q) ∼= H∗(
g;Q) gives the Euler char-
acteristic of
g . Thus, these representations� → Diff0(S1)×Diff0(S1) → Diff0(T 2)

via inclusion of � into either Diff0(S1) factor give candidates for obstruction classes
for extensions whenever ∂ M ∼= T 2. The proof of Theorem 1.2 in the case M is not
diffeomorphic to D2 × S1 now simply consists in showing that, for any such manifold
M with ∂ M ∼= T 2, there is an obstruction class in H2(BDiff0(T 2);Q).

It is a well known fact in dimension 2, and in dimension 3 a theorem of Cerf [5]
based on Smale’s conjecture whichwas later proved byHatcher [19], that the inclusion
Diff(M) ↪→ Homeo(M) is a weak homotopy equivalence. Therefore, Theorem 1.2
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also implies that the map

H2(BHomeo0(T );Q) → H2(BHomeo0(M);Q),

sends one of the generators of H2(BHomeo0(T );Q) to zero, giving an obstruction to
an extension by homeomorphisms.

2.2 On the irreducible case

As a warm-up and first case, we discuss the case where M is irreducible, using the
following result of Hatcher.

Theorem 2.1 (Hatcher [18]) If M is an orientable, Haken 3-manifold which is not a
closed Seifert manifold, then the group of diffeomorphisms that restrict to the identity
on the boundary of M has contractible components.

We prove the following.

Proposition 2.2 Let P be an irreducible 3-manifold with ∂ P ∼= T 2, and assume that
P is not diffeomorphic to D2 × S1. Then the map induced by the restriction to the
boundary map

H2(BDiff0(T );Q) → H2(BDiff0(P);Q),

has a nontrivial kernel.

Proof Dually, it is enough to show that the boundary restriction map

H2(BDiff0(P);Q) → H2(BDiff0(T );Q),

does not surject onto H2(BDiff0(T );Q). Note that BDiff0(P) and BDiff0(T ) are
simply connected. Hence, by the Hurewicz theorem

H2(BDiff0(P);Z) ∼= π2(BDiff0(P)) = π1(Diff0(P)),

H2(BDiff0(T );Z) ∼= π2(BDiff0(T )) = π1(Diff0(T )) ∼= Z2.

Therefore, it is enough to show that the map π1(Diff0(P)) → π1(Diff0(T )) is not
surjective after tensoring with Q. Here we have two cases:

Case 1: For a fixed point x ∈ T , suppose π1(P, x) has nontrivial center. Since P is a
primemanifold with torus boundary, it is Haken, and by a theorem ofWaldhausen [44]
it is therefore Seifert fibered. By the theorem of Hatcher (see [17]) the group Diff0(P)

has the homotopy type of the circle, unless P is diffeomorphic to D2 × S1, which
is excluded by the hypothesis. Therefore, π1(Diff0(P)) ⊗ Q → π1(Diff0(T )) ⊗ Q

cannot be surjective.
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Case 2: Suppose π1(P, x) has trivial center. By considering the long exact sequence
for the homotopy groups of the fibration Diff(P, ∂) → Diff(P) → Diff(T ), it is
enough to show that the map

π1(Diff(T )) → π0(Diff(P, ∂)),

sends at least one of the generators to a non-torsion mapping class.
To show that a Dehn twist around the boundary is non-trivial, we look at its action

on π1(P, x). This action is given by the conjugation of the loops on the boundary
torus. If π1(P, x) has no center, then these Dehn twists are non-trivial in the mapping
class group. To show that the nontrivial mapping class induced by the Dehn twist
around a generator of the boundary is non-torsion, we show that its conjugation action
on π1(P, x) is non-torsion. To do so, it is enough to show that the map

π1(T , x) → π1(P, x),

is in fact injective. If there is a non-trivial kernel, the loop theorem [37] implies that
there is a simple closed curve on T that bounds a properly embedded disk D in P . But
now the union of D and T gives an embedded sphere in P and since P is irreducible,
this sphere has to bound a ball. Therefore P would be diffeomorphic to D2× S1 which
contradicts the hypothesis. ��

With this argument for the irreducible case in hand, one can obtain Theorem 1.3 for
extensions to Diff1(M) with a short dynamical argument. The dynamical argument is
given in Sect. 4, and can be read independently from Sect. 3. However, for the moment
we continue with the cohomological approach, building towards a proof of Theorem
1.2.

3 Proof of Theorem 1.2

The broad strategy of this proof is to use semi-simplicial spaces that parametrize
different ways of cutting M along separating spheres, motivated by the desire to
reduce the situation to the irreducible case above. If S is an embedded sphere in M
that separates P , then the pointwise stabilizer Stab(S) ⊂ Diff0(M) consisting of
diffeomorphisms that are the identity on S, sits in a zig–zag

Diff0(P\int(D3))
res←− Stab(S) ↪→ Diff0(M),

where the left map is the restriction map. In fact, for any separating sphere S, we have
the map

BStab(S) → BDiff0(T ),

induced by the restriction to the boundary. We first use Proposition 2.2 to prove that

H2(BDiff0(T );Q) → H2(BStab(S);Q),
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has a nontrivial kernel. Using the semi-simplicial techniques and a spectral sequence
argument, we then prove that for a non-irreducible M , the map

H2(BDiff0(T );Q) → H2(BDiff0(M);Q),

also has a nontrivial kernel.

3.1 Semi-simplicial resolution for BDiff0(M)

We want to make an inductive argument by cutting M into factors with fewer prime
factors. To do so, we first define an auxiliary simplicial complex of sphere systems
from which we construct a semi-simplicial space on which Diff0(M) acts. As these
play a key role in the proof, the reader unfamiliar with semisimplicial spaces may wish
to consult [12] for an introduction.

Definition 3.1 For a 3-manifold M , a sphere system s consists of a finite collection of
disjoint parametrized essential (i.e. not bounding a ball) spheres in M such that as we
cut M along the spheres in s, the connected components are either prime manifolds
with disjoint balls removed or S3 with disjoint balls removed. A sphere system is
allowed to have parallel spheres or spheres that are isotopic to the sphere boundary
components of M .

Definition 3.2 The sphere complex S(M) is the simplicial complex whose vertices
are sphere systems in M and a p-simplex is given by p + 1 disjoint sphere systems.

We shall define a semisimplicial space using S(M) as follows.

Definition 3.3 Let X•(M) be a semisimplicial space whose space of 0-simplices
X0(M) has the same underlying set as the set of vertices of S(M). We topologize
X0(M) as the subspace of configuration space of spheres in M

∐

n

Emb(S2, M)n/
n,

where Emb(S2, M) is the space of smooth embeddings with C∞-topology and 
n

is the permutation group on n letters that permutes the spheres. The space of p-
simplices X p(M) is the subspace of X0(M)p+1 given by (p + 1)-tuples of disjoint
sphere systems. The i-th face maps are given by omitting the i-th sphere system.

Our goal in this section is to prove thatwhen M is not prime, the realization |X•(M)|
is weakly contractible. We first show that S(M) is a contractible simplicial complex
whenever it is nonempty.

Lemma 3.4 Let M be a 3-manifold which is not prime, then the simplicial complex
S(M) is contractible.
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Proof We want to show that for all k, any continuous map f : Sk → S(M) is nullho-
motopic. Without loss of generality, we can assume that for a triangulation K of Sk ,
the map f is piecewise linear. To find a nullhomotopy for the map f , it is enough to
homotope it so that its image lies in the star of a vertex in S(M).

Recall that each vertex in f (K ) is a sphere system, with higher-dimensional sim-
plices given by disjoint sphere systems. By the transversality theorem, we can slightly
perturb f so that sphere systems represented by the vertices of f (K ) are pairwise
transverse. Let w ∈ S(M) be a sphere system that is transverse to each of the sphere
systems represented by the set of vertices in f (K ). We will show how to produce a
homotopy of f which decreases the (finite) number of circles in the intersection of w

and the spheres in f (K ). Applying this procedure iteratively gives a homotopy of f
to a map with image in Star(w).

The intersections of spheres in w with the vertices of f (K ) give a collection of
circles on the spheres of w. From this collection, choose a maximal family of disjoint
circles, and let C be an innermost circle in this family. Then C is given by the intersec-
tion of a sphere S(v) in a vertex v = f (x) ∈ f (K ) and a sphere S(w) in the system
w, and innermost means that C bounds a disk D on S(w) whose interior is disjoint
from all spheres in the maximal collection.

We can cut S(v) along the circle C and glue two copies of this 2-disk to obtain two
disjoint embedded spheres S′(v) and S′′(v) (see Fig. 1). We parametrize these spheres
arbitrarily. By considering nearby parallel copies, we can assume that S(v), S′(v) and
S′′(v) are disjoint. Note that at least one of the spheres S′(v) and S′′(v) is essential (i.e.
does not bound a ball). Now replace S(v) by the two spheres S′(v) and S′′(v) if both
S′(v) and S′′(v) are separating, and if just one of them is separating we replace S(v)

with that one. In this way, we obtain a new vertex v′ ∈ S(M). By choosing nearby
parallel copies of the spheres, we can assume that the vertex v′ is adjacent to v i.e.
their corresponding sphere systems are disjoint.

If we choose S′(v) and S′′(v) sufficiently close to the 2-disk in S(v) that bounds C ,
then any sphere S in the sphere systems in the star of v which intersected S′(v) or S′′(v)

would also intersect this 2-disk. However, this cannot happen: since S ∩ S(w) = ∅,
andC was chosen to be an innermost circle among amaximal family of disjoint circles

Fig. 1 Surgery on spheres in one dimension lower
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given by intersections with S(w), no disjoint sphere S in the sphere systems in the star
of v can intersect the 2-disk bounded by C . Thus, no vertex in the star of v intersects
S′(v) and S′′(v), so our modified sphere system v′ remains disjoint from all the sphere
systems that v is disjoint from. In other words, v′ is adjacent to all vertices in the star
of v. Therefore, we have a simplicial homotopy F : K × [0, 1] → S(M) such that
F(−, 1) is the same as F(−, 0) on all vertices but x and F(x, 1) = v′. Note that the
vertices in the image F(−, 1) : K → S(M) have fewer circles in their intersection
with S(w). By repeating this process for all spheres in the sphere system w, we could
homotope the map f to a map whose image lies in the star of w. Therefore, f is
nullhomotopic. ��
Remark 3.5 Note that the same argument implies that the linkLkσS(M)of a p-simplex
σ in S(M) is also contractible. Because as we cut along the sphere systems in σ we
obtain union of 3-manifoldswith sphere boundaries. Hence the sphere complex of each
piece is contractible. Therefore, LkσS(M) which is the join of the sphere complex of
pieces is also contractible.

A complex which is not only contractible but has the property that the link of each
simplex is also contractible is called weakly Cohen-Macaulay of dimension infinity.
Now we use the generalized coloring lemma ( [16, Theorem 2.4]) for such complexes
to prove the following.

Proposition 3.6 The realization |X•(M)| is weakly contractible.

Proof Let X δ•(M) be the underlying semisimplicial set of the semisimplicial space
X•(M). Using the powerful “discretization” technique from [16, Theorem 5.6], the
contractibility of the realization |X δ•(M)| implies the weak contractibility of |X•(M)|.

The simplices in S(M) do not have a natural ordering on their vertices. For each
ordering of vertices of a simplex in S(M), there is a corresponding simplex in the
�-complex |X δ•(M)|. But sinceS(M) is aweaklyCohen-Macaulay complex of dimen-
sion infinity by Remark 3.5, the proofs of [24, Proposition 2.10] and also [34, Theorem
3.9] apply and show that the contractibility of |X δ•(M)| follows from contractibility
of S(M) using the generalized coloring lemma ( [16, Theorem 2.4]). ��

The next step in the proof is to use the action of Diff0(M) on the semisimplicial
space X•(M) to find a semisimplicial resolution for BDiff0(M). But given that two
different sphere systems are not necessarily isotopic, the action ofDiff0(M) on X•(M)

is not transitive and in fact it is not clear how to describe the set of the orbits of this
action. This creates a technical issue for us, as understanding the orbits will be useful
in analyzing the spectral sequence for semisimplicial resolutions. To get around this,
we first define a larger group SDiff(M) generated by the slide diffeomorphisms that
contains Diff0(M). As we shall see, the spectral sequence for the action of this group
is easier to study and it will be sufficient to prove Theorem 3.10.

3.1.1 Slide diffeomorphisms

McCullough in [29, Sect. 3] showed that the mapping class group of a compact ori-
entable 3-manifold M is generated by four types of mapping classes. Let S = ∐

Si

be a special sphere system as follows.
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Definition 3.7 Let S be a collection of disjoint smooth embeddings φ : S2 ↪→ M of
separating spheres. Let M0, M1, …, Mk , Mk+1,…, Mk+g be the components of the
manifold obtained from M by cutting it along S where Mk+i is diffeomorphic to
S2 × [0, 1] for all i > 0. Let M̂i be the manifold obtained from Mi by gluing a ball to
every sphere boundary component. We say S is a special sphere system if

• M̂i is an irredicible manifold for all i ≤ k.
• M̂0 is diffeomorphic to S3.
• For 1 ≤ i ≤ k, the manifold M̂i is not diffeomorphic to S3 and Mi has exactly
one sphere boundary component.

Let Mi (S) be the components obtained from M by cutting along S. Following
McCullough, every diffeomorphism of M is isotopic to the composition of diffeomor-
phisms of the following types

(1) Diffeomorphisms of the factors. This is the subgroup of diffeomorphisms that
restricts to the identity on M0(S); it is isomorphic to the product over all i of
Diff(Mi (S), ∂ Mi (S)).

(2) Permuting diffeomorphic factors. If two factors Mi (S) and M j (S) are diffeomor-
phic, we have elements in Diff(M) that leave M0(S) invariant, interchange Mi (S)

and M j (S) and restrict to the identity on the other factors.
(3) Spinning factors that are diffeomorphic to S2 × [0, 1]. For the factors Mk+i (S)

that are diffeomorphic to S2 × [0, 1], we have an element of Diff(M) that leaves
M0(S) invariant, interchanges the boundaries of Mk+i (S), restricts to an orien-
tation preserving diffeomorphism of Mk+i (S) and restricts to the identity on the
other factors.

(4) Slide diffeomorphisms. These diffeomorphisms slide a factor Mi (S) for i ≤ k
around an arc α in M that intersects Mi (S) only at its endpoints. To be more
precise, let M̂ be the manifold obtained by gluing a ball B to M\int(Mi (S)) and
let α be an arc in M\int(Mi (S)) that intersects ∂ Mi (S) at its end points. There
is a disk pushing isotopy ht of M̂ where h0 = id and h1|B = id so that ht

moves B along the arc α. A slide diffeomorphism that slides Mi (S) along α is a
diffeomorphism f ∈ Diff(M) so that f |Mi (S) = id and on M\int(Mi (S)), the
diffeomorphism f is equal to h1.

Definition 3.8 Let SDiff(M) be subgroup of Diff(M) that is generated by slide dif-
feomorphisms.

Note that the “restrict to boundary” map from SDiff(M) also has image equal to
Diff0(T ). Therefore, we have the homotopy commutative diagram

BDiff0(M)

BDiff0(T ).

BSDiff(M)

rsr
(3.9)

Hence, to prove Theorem 1.2, it is enough to prove the following theorem.
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Theorem 3.10 Let M be an orientable three-manifold, not diffeomorphic to D2 × S1,
with ∂ M = T 2. Then the induced map

r∗
s : H2(BDiff0(T );Q) → H2(BSDiff(M);Q),

has a nontrivial kernel.

To prove this theorem, we use the homotopy quotient 1 of the action of SDiff(M) on
X•(M) to define a semisimplicial resolution for BSDiff(M). Let the map α be given
by

α : X•(M)//SDiff(M) −→ BSDiff(M). (3.11)

Since X•(M) is a subspace of a product of embedding spaces, it is compactly
generated weak Hausdorff space. Therefore, by [40, Lemma 2.1], the map α is a
locally trivial fiber bundle with fibers homeomorphic to the geometric realization
|X•(M)|. Given that |X•(M)| is contractible by Proposition 3.6, the map |α| between
|X•(M)//SDiff(M)| and BSDiff(M) is a weak equivalence.

3.2 Proof of Theorem 3.10

We have a homotopy commutative diagram

X•(M)//SDiff(M)

BDiff0(T ).

BSDiff(M)

rsβ•
(3.12)

Recall that our goal is to show that there exists a generator x ∈ H2(BDiff0(T );Q)

so that r∗
s (x) = 0. As a first step, we show that for all p, the class β∗

p(x) vanishes in
H2(X p(M)//SDiff(M);Q).

Lemma 3.13 Let M be a 3-manifold that bounds a torus and is not diffeomorphic to
D2 × S1. There exists a generator x ∈ H2(BDiff0(T );Q) such that for each p, the
class x is in the kernel of the map induced by βp

H2(BDiff0(T );Q) → H2(X p(M)//SDiff(M);Q).

Proof First, we shall describe the homotopy type of X p(M)//SDiff(M) in terms of
stabilizers of the action of SDiff(M) on X p(M). For a p-simplex σp ∈ X p(M), let

1 For a topological group G acting on a topological space X , the homotopy quotient is denoted by X//G and
is given by X ×G EG where EG is a contractible space on which G acts freely and properly discontinuously.
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Stab(σp) be the stabilizer of σp under the action of SDiff(M). The isotopy extension
theorem implies that we have a fibration

Stab(σp) → SDiff(M) → X p(M),

where the last map is the evaluation map on σp. In fact the local triviality (see [36,
Remark page 307]) of the evaluation map implies that X p(M) is homeomorphic to
SDiff(M)/Stab(σp). Therefore, the natural map

f : BStab(σp) → X p(M)//SDiff(M), (3.14)

is a weak equivalence. Thus it is enough to show that there exists a generator x ∈
H2(BDiff0(T );Q) that lies in the kernel of the map

H2(BDiff0(T );Q)
f ∗

−→ H2(BStab(σp);Q).

Let Mi (σp) denote the components of the manifold obtained from M by cutting along
sphere systems in σp. Note that if a slide diffeomorphism f fixes Mi (σp) setwise,
it will lie in Diff0(Mi (σp)) (i.e. its restriction to Mi (σp) is isotopic to the identity
in the group Diff(Mi (σp)) of diffeomorphisms that preserve, but do not necessarily
pointwise fix the boundary). Let P\int(D3) be the connected component containing
the torus boundary when we cut M along the embedded spheres in the p-simplex σp.
We have a homotopy commutative diagram

BStab(σp)

BDiff0(T ).

BDiff0(P\int(D3))
res

gf

Thus, it is enough to show that g∗(x) = 0 for a generator x . We consider two different
cases depending on whether P is diffeomorphic to D2 × S1.
Case 1: Suppose P is diffeomorphic to D2 × S1. Dually, it suffices to show that the
map

H2(BDiff0(P\int(D3));Q) → H2(BDiff0(T );Q),

is not surjective. By the Hurewicz theorem, it is enough to prove that the map
π1(Diff0(P\int(D3))) → π1(Diff0(T )) does not hit both generators of Z2.

Let Diff0(P\int(D3), ∂SO(3)) be the subgroup of Diff0(P\int(D3)) consisting of
those diffeomorphisms that restrict to a rotation on the parametrized sphere boundary.
Because Diff0(S2) 
 SO(3), the inclusion

Diff0(P\int(D3), ∂SO(3))

−→ Diff0(P\int(D3)),
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is a weak equivalence.
Moreover, the group Diff(P\int(D3), ∂SO(3)) sits in a fiber sequence

Diff(P\int(D3), ∂SO(3)) → Diff(P) → Embfr(D3, P),

where Embfr(D3, P) is the space of framed embeddings of a 3-ball into P . It is
homotopy equivalent to P ∼= D2×S1. Thus, from the long exact sequence of homotopy
groups, we obtain

0 → π1(Diff0(P\int(D3)))
θ−→ π1(Diff(D2 × S1))

α−→ π1(D2 × S1).

Note that π1(Diff(D2 × S1)) ∼= Z2 and π1(D2 × S1) ∼= Z and the map α is the
projection to the second factor. Therefore, the map θ does not hit both generators.

Case 2: Suppose P is not diffeomorhic to D2 × S1. Since rotations on the sphere S2

can be extended to diffeomorphisms of the 3-ball, the group Diff0(P\int(D3), ∂SO(3))

embeds into Diff0(P). Therefore from the zig-zag of maps

Diff0(P) ←↩ Diff0(P\int(D3), ∂SO(3))

−→ Diff0(P\int(D3)),

we obtain the commutative diagram

H2(BStab(σp);Q)

H2(BDiff0(T );Q).

H2(BDiff0(P);Q)

f ∗

Proposition 2.2 now implies that f ∗(x) = 0. ��
Remark 3.15 Note that the proof of Lemma 3.13 also implies that the generator x only
depends on the prime factor P that contains the torus boundary component.

To conclude the proof of Theorem 3.10, we use a spectral sequence argument. Recall
that for any semi-simplcial spaceY•, there is a spectral sequence induced by the skeletal
filtration on |Y•|

E1
p,q(Y•) = Hq(Yp;Q) H p+q(|Y•|;Q), (3.16)

and the first differential d1 : E1
p,q(Y•) → E1

p+1,q(Y•) is given by the alternating sum
of maps induced by the face maps (see [12,41]).

Since X•(M)//SDiff(M) is a semi-simplicial resolution forBSDiff(M), the spectral
sequence (see Fig. 2) computing the cohomology of |X•(M)//SDiff(M)| takes the
form
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Fig. 2 The first page of the homology spectral sequence calculating H∗(|X•(M)//SDiff(M)|;Q)

E1
p,q(X•(M)//SDiff(M)) = Hq(X p(M)//SDiff(M);Q) H p+q(BSDiff(M);Q).

(3.17)
Recall that we want to prove that r∗(x) = 0 ∈ H2(BSDiff(M);Q) in the diagram

3.12. Denote the filtration on H2(BSDiff(M);Q) in the above spectral sequence by

0 ⊆ F2H2(BSDiff(M)) ⊆ F1H2(BSDiff(M)) ⊆ F0H2(BSDiff(M)) = H2(BSDiff(M);Q).

A priori r∗(x) ∈ F0H2(BSDiff(M)), but since by Lemma 3.13, we know β∗
0 (x) = 0

(in fact β∗
p(x) = 0 for all p), the class r∗(x) lives in the kernel of the natural map

H2(BSDiff(M);Q) → H2(X0(M)//SDiff(M);Q).

Hence r∗(x) ∈ F1H2(BSDiff(M)).Nowweshall prove that thefirst row in the spectral
sequence 3.17 vanishes. Therefore, in fact we have r∗(x) ∈ F2H2(BSDiff(M)).

Lemma 3.18 The first row of the spectral sequence 3.17 vanishes, i.e. for all p we
have H1(X p(M)//SDiff(M);Q) = 0.

Proof Using the weak equivalence 3.14 and the universal coefficient theorem, it is
enough to show that for any simplex σ , we have

H1(BStab(σ );Q) = π1(BStab(σ ))ab ⊗ Q = 0.

Since π1(BStab(σ )) = π0(Stab(σ )), we shall prove that π0(Stab(σ )) is in fact a
torsion group.

To do so, we shall freely pass to its finite index subgroups. Similar to [22, Section
3], let R(M) be the subgroup of π0(Diff(M)) generated by the Dehn twists around
embedded 2-spheres in M . By [22, Lemma 3.2], the group R(M) is a finite normal
subgroup. Let π0(Diff(M)) denote the quotient

π0(Diff(M))/R(M).
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For a simplex σ , let Mi (σ ) denote the components of the manifold obtained from M
by cutting along sphere systems in σ . By [22, Lemma 3.4], we know that

∏

i

π0(Diff(Mi (σ ), ∂)) → π0(Diff(M)),

is injective (this can also be seen using [25, Proposition 2.1]). Hence, π0(Stab(σ )) is
a subgroup of

∏
i π0(Diff(Mi (σ ), ∂)). On the other hand, using the definition of slide

diffeomorphisms, one can see that if we restrict a slide diffeomorphism in Stab(σ )

to Mi (σ ), its image in π0(Diff(Mi (σ ), ∂)) is trivial. Therefore, π0(Stab(σ )) is trivial
which implies that π0(Stab(σ )) is a finite group. ��

Since the first row of the spectral sequence is zero, we have

r∗(x) ∈ F2H2(BSDiff(M)) = E2,0∞ (X•(M)//SDiff(M)) = E2,0
2 (X•(M)//SDiff(M)).

Hence to show r∗(x) = 0 it is enough to prove that

F2H2(BSDiff(M);Q) = 0.

To do so, in fact we prove a stronger result that the 0-row of this spectral sequence
vanishes at E2-page. In other words, the 0-th row of the E1-page is acyclic.

Lemma 3.19 The cochain complex (E∗,0
1 (X•(M)//SDiff(M)), d1) is acyclic.

Before proving this lemma, we shall describe how to think of the set of the orbits of
the action of SDiff(M) on X•(M).

3.3 On the orbits of the action of SDiff(M) on X•(M)

We shall prove using a construction essentially due to Scharlemann (see [1, Appendix
A, Lemma A.1]), that each orbit has a representative inside a submanifold of M that
is diffeomorphic to S3 with disjoint balls removed.

Let us fix S = ∐
Si to be a special sphere system as is defined in Definition. We

denote the corresponding components of the manifold obtained from M by cutting it
along S by Mi (S). Then we have the following lemma (see [22, Lemma 2.1]).

Lemma 3.20 (Hatcher–McCullough) Let S′ be any sphere system. Then there exists
an element f of SDiff(M) such that f (S′) ⊂ M0(S).

Proof sketch Bonahon in [1, Appendix A, Lemma A.1] showed that the slide diffeo-
morphisms act transitively on the set of special sphere systems. Therefore, it is enough
to show that there is a special sphere system whose M0 contains S′. By slightly per-
turbing S, we can assume that the sphere systems S and S′ are transverse. From the
collection of circles in their intersection, we choose a maximal family of disjoint cir-
cles and let C be an innermost circle in the intersection of Si and S′. Let D be a disk
on S′ that bounds C and let D1 and D2 be the two disks on Si that bound C . Since
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Fig. 3 Scharlemann’s surgery on sphere systems

Mi (S) is irreducible for i > 0, if D lies in Mi (S) there will be an isotopy pushing D
into M0(S) to remove the intersection C and possibly others. We eliminate all such
intersections. Now suppose D lies in M0(S). We use Scharlemann’s construction to
do surgery on Si using D to obtain an embedded sphere S∗

i so that

• (S\Si ) ∪ S∗
i is a special sphere system.

• The number of components of ((S\Si ) ∪ S∗
i ) ∩ S′ is less than the number of

components of S ∩ S′.

We first do surgery on Si along D to obtain two disjoint spheres 
1 and 
2 that are
nearby parallel copies of D ∪ D1 and D ∪ D2. We shall connect sum these two spheres
by a tube around an arc α in M so that α does not intersect S′ and α intersects S only
at its end points. To choose α, note that the components S′ ∩ Mi are not disks. In a
component of S′ ∩ Mi that is adjacent to D, we choose an arc from ∂ D to another
component S ∩ S′ and we choose α to be a nearby parallel copy this arc.

Let S∗
i be a parametrized embedding of the sphere obtained by connecting sum

of 
1 and 
2 along a tube around α. Then one checks that (S\Si ) ∪ S∗
i is a sphere

system whose intersection with S′ has fewer connected components. See Fig. 3 for a
schematic. By repeating this process, we obtain a special sphere system S′′ that has no
intersection with S′. Therefore, the spheres in S′ are either in M0(S′′) or are parallel
to sphere boundaries of M0(S′′) which by another isotopy can be moved into M0(S′′).

��
Nowwe are ready to prove that the 0-th row of the E1-page of the spectral sequence

3.17 is acyclic.

Proof of Lemma 3.19 Recall from 3.16 that

E∗,0
1 (X•(M)//SDiff(M)) = H0(X•(M)//SDiff(M);Q).

Since we work with rational coefficients, it is enough to prove the dual statement that
the chain complex

(H0(X•(M)//SDiff(M);Q), d1), (3.21)

is acyclic. But note that the set of connected components π0(X•(M)//SDiff(M)) is
isomorphic to the set of orbits of the action of π0(SDiff(M)) on π0(X•(M)). Let us
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denote the semisimplicial set π0(X•(M)//SDiff(M)) by K•(M). Then we have

(H0(X•(M)//SDiff(M);Q), d1) ∼= (Q[K•(M)], d1),

where d1 is induced by the alternate sum of face maps of K•(M). But this chain
complex calculates the homology of the realization |K•(M)|. Hence, it is enough to
show that the realization of the semisimplicial set K•(M) is contractible. Since K•(M)

is a set, the realization |K•(M)| has a �-complex structure (see [15, Remark 6.3]). So
any map f : Sn → |K•(M)| can be homotoped to be simplicial for a triangulation
of Sn . Hence, this map hits finitely many vertices v1, v2, . . . , vk in K0(M). So if we
show that for any such finitely many vertices, there exists a vertex v in K0(M) that is
adjacent to all vi then we can extend f to the join

f ∗ {v} : Sn ∗ {v} → |K•(M)|,

which implies that f is nullhomotopic. Since the union of spheres in the sphere systems
of a p-simplex for all p constitute a sphere system again, by Lemma 3.20, each orbit
has a representative of parametrized spheres in M0(S). We choose representatives of
sphere systems vi inside M0(S). Note that these representatives are disjoint from the
sphere system S. Let v be the sphere system by adding parallel spheres to the sphere
system S so that it lies in a different orbit than that of vi ’s. We can choose the parallel
spheres so that the spheres in v are still disjoint from the representative sphere systems
of vi ’s. Hence, v is adjacent to vi ’s in |K•(M)|. Therefore, f is nullhomotopic. ��

4 Dynamical obstructions to extending diffeomorphisms

This section gives an alternative approach to extension problems, using the dynamics
of group actions (specifically, fixed sets of finite order elements) to obstruct extensions,
with arguments in the style of [14]. We treat the torus boundary case, followed by the
proof for sphere boundary.

Proposition 2.2 shows that when M is irreducible and not equal to D2× S1, there is
a finitely generated subgroup of Diff0(S1) × {id} ⊂ Diff0(S1 × S1) that does not lift
to Diff10(M). In the next proposition, we show that this is true for all other manifolds
with ∂ M ∼= T 2, using a dynamical rather than cohomological approach. This gives
the following.

Proposition 4.1 Let M be a 3-manifold with ∂ M ∼= T 2. There is a finitely generated
subgroup � ⊂ Diff0(∂ M) that does not lift to Diff10(M). In fact, we may find such a
finitely generated group contained in the subgroupDiff0(S1)×{id} ⊂ Diff0(S1×S1).

Proof As remarked above, we need only treat the case where M is reducible or where
M = D2×S1. Assume first that M is reducible. Following [14], wemay find elements
f and g in Diff0(S1) satisfying the following relations:

[ f , g]6 = id, [[ f , g]2, f ] = [[ f , g]2, g] = id,
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by writing an order 2 rotation of S1 as a commutator of two elements f̄ and ḡ in
PSL(2,R) ⊂ Diff0(S1)), and then choosing f and g to be any lifts of f̄ and ḡ,
respectively, to diffeomorphisms of a 3-fold cover of the circle. Note that this ensures
that the commutator [ f , g] has order 6.

Identify f and g with diffeomorphisms of Diff0(S1 × S1) acting trivially on the
second S1 factor. Let G denote the group generated by f and g. We will now show
that G admits no extension to Diff0(M). Suppose for contradiction that φ : G →
Diff0(M) were an extension. Let r denote the commutator [ f , g], so φ(r) is an order
6 diffeomorphism of M .We showfirst that the set of points fixed byφ(r)2 is nonempty.
Note that φ(r)2 is finite order and orientation preserving, so its fixed set is either 0 or
1-dimensional.

By the equivariant sphere theorem [8], there exists a reducing system of spheres that
is setwise preserved by the finite order diffeomorphism φ(r), with φ(r) permuting the
spheres in the system. Since φ(�) preserves the boundary torus, it preserves the sphere
bounding the irreducible component with boundary torus. Since φ(r)2 has order 3, its
action on this invariant sphere is conjugate to a rotation (this is true even for actions on
spheres by homeomorphisms, due to a result of Kerekjarto [6]) and so it fixes exactly
two points on this sphere. Since φ(r)2 also preserves the tangent plane to these two
points, we conclude that Fix(φ(r)2) is 1-dimensional, hence a union of finitely many
disjoint circles in M . Finally, since φ( f ) and φ(g) commute with φ(r)2, they preserve
its fixed set.

Choose local coordinates on M that identify a tubular neighborhood of Fix(φ(r)2)

with a disjoint union of copies of D2×S1 on which φ(r)2 acts by an order 3 rotation of
each disk D2 × {x} about 0. In particular, in these coordinates the derivative of φ(r)2

at each fixed point is the linear map represented by the block matrix
(

A 0
0 1

)
where A

is a nontrivial order 3 element of SO(2). Since f = r2 f r−2, the derivative of φ( f )

at a point in Fix(φ(r)2) commutes with Dφ(r)2 = (
A 0
0 1

)
. But the centralizer of this

matrix consists of matrices of the form
(

B 0
0 t

)
, where B ∈ O(2) and t ∈ R; an abelian

subgroup of GL(3,R). The same is true for g, so we have Dφ([ f , g]) = I at any
point x ∈ Fix(φ(r)2) contradicting the fact that Dφ([ f , g])2 = (

A 0
0 1

)
.

The proof is similar in the case where M = D2 × S1. Take f and g exactly as
above, let r = [ f , g] and suppose again for contradiction that φ were an extension of
the action to Diff0(D2 × S1). Then φ(r) is an order 6 diffeomorphism of D2 × S1

preserving (setwise) each circle of the form S1×{x}.We claim thatφ(r) has nonempty
fixed set, with Fix(φ(r)) a topological circle. One way to see this is to lift the action
of φ(r) to an order 6 diffeomorphism of the universal cover D2 × R rotating each
circle ∂ D2×{x}, which we may extend to a diffeomorphism ofR3 acting as a rotation
about the z-axis outside of D2 × R. Averaging a metric so that φ(r) and its iterates
act by isometries, it must preserve and act as an order 6 rotation on each sphere about
0, hence has two fixed points on the sphere. The union of these fixed points forms the
axis of φ(r).

We can then follow the argument from the previous case above verbatim, trivializing
the unit tangent bundle in a neighborhood of Fix(φ(r)), and thus derive a contradiction.

��
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We now prove the second item from Theorem 1.3. Recall this was the statement
that there is a finitely generated group which acts on T 2 by isotopically trivial diffeo-
morphisms such that the action admits no extension to Diff0(M) for any 3-manifold
M bounded by T 2.

Proof Let � be the group defined above, and let �′ = � × � be the direct product
of � with itself. Recall that � acted on S1 × S1 with a trivial action on one of the
factors (that is to say, it was naturally a group of homeomorphisms of S1) so �′ has
an obvious product action on S1 × S1. We will show that this action of �′ does not
extend to any 3-manifold M with ∂ M ∼= T 2. Proposition 4.1 shows this when M is
reducible or the solid torus; in that case the subgroup � × {1} does not even extend.

In the case where M is irreducible, we will appeal to Theorem 1.2. Using this,
it suffices to show that the pullbacks of the two Euler classes in Diff0(S1 × S1) to
�′ are linearly independent in H∗(�′;Q). To see this, let �6 := 〈a1, b1, . . . a6, b6 |∏

i [ai , bi ]〉 be the fundamental group of a genus 6 surface with its standard presenta-
tion. There is a homomorphism ρ from �6 to the group � ⊂ Diff0(S1) by sending ai

to the homomorphism f , for each i , and bi to g. If f and g are chosen so that [ f , g] is
a standard rotation by 2π/3, then it is easily verified (for example, this follows from
the computation of [31]) that the pullback of the Euler class under ρ pairs with the
fundamental class in H2(
6;Z) ∼= H2(�6;Z) to give 1, so in particular the Euler
class from Diff0(S1) pulls back nontrivially to �. Since �′ is a product action of �

on each factor, one may embedd �6 into � × {1} ⊂ �′ as above, or into {1} × �.
Considering the pullback of the Euler classes under each embedding shows that the
Euler classes pull back to linearly independent elements in H∗(� ×�;Q), which was
what we needed. ��

We now treat the case of manifolds with sphere boundary.

Proposition 4.2 Let M be a 3-manifold with ∂ M ∼= S2. Then there is no extension
Diff0(S2) → Diff1(M3).

The proof here is inspired by and adapted from Ghys’ proof for M ∼= B3.

Proof For concreteness, parametrize S2 as the unit sphere in R3. Identify SO(2) with
the subgroup of Diff(S2) consisting of rotations about the z-axis. Let n, s be the
fixed points of these rotations. For r ∈ SO(2), denote by Gr the centralizer of r in
Diffc(S2 − {n, s}).

Let f and g in SO(2) be the rotations of order 2 and 3 respectively. The first tool
is a lemma proved by Ghys. ��
Lemma 4.3 [14], Lemma 4.4 Diffc(S2 − {n, s}) is generated by G f ∪ Gg.

Nowsuppose that M is a 3-manifoldwith ∂ M = S2. Suppose thatwehave an extension
φ : Diff0(S2) → Diff0(M3). We will ultimately derive a contradiction by finding a
finite order element h ∈ Diff(S2) such thatφ(h) has a fixed point atwhich its derivative
is the identity, contradicting that φ(h) must be nontrivial and finite order.

First we study the fixed set of φ( f ). This is a one dimensional manifold with bound-
ary embedded as a submanifold of M . As G f commutes with f , φ(G f ) preserves
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Fix(φ( f )), so there is a homomorphism G f → Homeo(Fix(φ( f ))). Since G f is iso-
morphic to the group of compactly supported homeomorphisms of an open annulus,
by [27], this homomorphism must be trivial. Moreover, at each point x ∈ Fix(φ( f ))

we have a homomorphism of G f to GL(3,R) by taking derivatives. Since G f is a
simple group (this is a deep result following from [43]), this homomorphism is trivial.
The same reasoning applies to show that φ(Gg) acts trivially on Fix(φ(g)), with trivial
derivatives.

Since Fix(φ( f )) is an embedded 1-manifold with boundary in M , and Fix(φ( f ))∩
∂ M = {n, s}, there is a unique connected component of Fix(φ( f )) that is diffeomor-
phic to a closed interval. Let I denote this interval; its endpoints are n and s. The same
reasoning applies to φ(g), and since g and f commute, φ(g) preserves I so I must
be equal to the interval component of Fix(φ(g)) as well. Thus, our reasoning above,
combined with Lemma 4.3 implies that for every point x ∈ I , φ(Diffc(S2 − {n, s})
fixes x and has trivial derivatives.

Let h be an order 2 diffeomorphism that is a rigid rotation commuting with f
but rotating about the orthogonal y-axis. Let e and w be the fixed points of h. Since
φ(h) preserves Fix(φ( f )) and exchanges n and s, it follows that φ(h) acts on I as
an orientation reversing diffeomorphism, with a unique fixed point. Let x0 denote this
fixed point. Extending the use of our previous notation, let Gh denote the centralizer
of h in Diffc(S2 − {e, w}). Then by our argument above, Gh fixes x0 and has trivial
derivatives there.

Finally, let s1 ∈ Gh agree with h on the annulus {(x, y, z) ∈ S2 | y ∈ [−1/2, 1/2]}
and act as a rotation on each circle y = c, smoothly interpolating between the order 2
rotation on y ∈ [−1/2, 1/2] and the identity on neighborhoods of y = −1 and y = 1.
Then s−1

1 h ∈ Diffc(S2 − {n, s}). Thus, φ(h) = φ(s1) ◦ φ(s−1
1 h) fixes x0 with trivial

derivative, giving the desired contradiction. ��
This proof, much like Ghys’ proof for M = D3, uses simplicity of the group

of compactly supported diffeomorphisms of an open disk. This is not known for
many other natural groups of diffeomorphisms, for instance the group of real analytic
diffeomorphisms. It would be interesting to know whether this group similarly fails
to admit an extension. Restricting to smaller (e.g. finitely generated) subgroups, as in
the following problem, makes the section problem even more challenging.

Problem 4.4 Find a finitely generated group � ⊂ Diff0(S2) with no extension to D3.
More generally, does there exist a finitely generated group � ⊂ Diff0(S2) such that
its action on S2 is not nullbordant, in the sense of Definition 1.5?

5 Cohomological obstructions for manifolds with sphere boundary

In this section we address the following case of our general program to find cohomo-
logical obstructions to extension.

Problem 5.1 For which 3-manifolds M where ∂ M ∼= S2, is the image of the first
Pontryagin class p1 under the map H4(BSO(3);Q) → H4(BDiff0(M);Q) zero?
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Suppose that M is a 3-manifoldwhoseboundary ∂ M is diffeomorphic to S2. Smale’s
theorem [42], states that Diff0(S2) 
 SO(3). Thus, if we require extensions to be
continuous, we can prove no such extension exists simply by showing that the map

res∗ : H∗(BSO(3);Q) → H∗(BDiff0(M);Q),

that is induced by restriction to the boundary, has a nontrivial kernel.
Requiring continuity was not in the original spirit of Ghys’ question—he asks this

from a purely algebraic perspective—but recent automatic continuity results imply
that, in many cases, all extensions of the action of the full group Diff0(∂ M) are
necessarily continuous. These were used in [7] to give a negative general answer
to the original question as phrased in the introduction, using a completely different
approach to that here. Given this, it would be very interesting to know in which cases
such obstructions to extension are also cohomological in nature, and whether there
are smaller topological subgroups (i.e. proper subgroups of Diff0(∂ M)) which fail to
extend. For a prime 3-manifold M , the homotopy type of Diff0(M) as a topological
group is very well studied. We use this knowledge to find cases that exhibit coho-
mological obstructions for continuous group extenstions and hence by the following
automatic continuity results for all group extensions.

For smooth diffeomorphisms, continuity follows from a result of Hurtado.

Theorem 5.2 (Hurtado [23]) Let M and N be closed smooth manifolds. Then any
homomorphism Diff0(M) → Diff0(N ) is continuous.

To apply this in our situation, let N be the double of M along the boundary,
and note that any extension Diff0(∂ M) → Diff(M) induces a homomorphism
Diff0(∂ M) → Homeo0(N ) by doubling. However, a smoothing trick (see [38]) per-
mits one to conjugate the extension of the action in such a way that the gluing becomes
smooth at the boundary, producing a homomorphism Diff0(∂ M) → Diff0(N ); which
by Hurtado’s theorem must be continuous. It follows that the extension must be con-
tinuous. The situation is similar for homeomorphisms (and one does not even need to
make a gluing argument) due to work of the first author.

Theorem 5.3 [28] Let M be a compact manifold, and G any separable topological
group. Then any homomorphism Homeo0(M) → G is continuous.

Since homeomorphism groups of compact manifolds are separable, this shows any
extension is necessarily continuous. Interestingly, the case of continuity betweenmaps
of Cr diffeomorphisms of manifolds, for 0 < r < ∞, remains open.

We nowgive some sample results whereQuestion 5.1 can be answeredwith existing
machinery. For this, it is easier to work with a marked point instead of the sphere
boundary. To change the map

res∗ : H∗(BSO(3);Q) → H∗(BDiff0(M);Q),

to the derivative map at a marked point, we first recall the following low dimensional
fact.
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Lemma 5.4 For a closed 3-manifold P, the group Diff0(P\D3) has the same homo-
topy type as Diff0(P\int(D3)).

Proof Consider the zig-zag of maps

Diff0(P\D3)

−→ Homeo0(P\D3) ←− Homeo0(P\int(D3))


←− Diff0(P\int(D3)).

Let x be the center of the embedded ball D3 in P . The group Homeo0(P\D3) has the
same homotopy type as Homeo0(P\x) ∼= Homeo0(P, rel x).

On the other hand, from the case 2 in the proof of Lemma 3.13 and Cerf’s theorem,
we know

Homeo0(P\int(D3))

←− Diff0(P\int(D3))


←− Diff0(P\int(D3), ∂SO(3)),

Diff0(P\int(D3), ∂SO(3))

−→ Diff0(P, rel x)


−→ Homeo0(P, rel x).

Therefore, there is a zig-zag of weak homotopy equivalences between Diff0(P\D3)

and Diff0(P\int(D3)), as desired. ��
As observed in the proof of Lemma 5.4, we have Diff0(M) 
 Diff0(N , rel x)

where N is a closed 3-manifold obtained from M by capping of the boundary sphere
with a ball whose center is x . Hence, to show that the action of Diff0(∂ M) does not
extend to Homeo0(M), it is enough to show that the map

H∗(BSO(3);Q) → H∗(BDiff0(N , rel x);Q),

that is induced by taking derivative at x , has a non-trivial kernel.

Sample applicationAs a toy case (given known deep results), and to give an example
of this approach, we give an alternative proof of Theorem 1.4 when M is obtained
from a hyperbolic 3-manifold or a Haken manifold by removing a ball.

Proposition 5.5 Let N be a closed, irreducible, hyperbolic or Haken 3-manifold. Let
x ∈ N be a marked point. Then the image of the first Pontryagin class p1 under the
map

H4(BSO(3);Q) → H4(BDiff0(N , rel x);Q),

induced by taking derivative at x, is zero.

Corollary 5.6 For M that is obtained by removing a ball from N as above, there is no
extension Diff0(∂ M) → Homeo0(M).

Remark 5.7 The corollary follows easily in the case where N is hyperbolic since there
is a bound on the order of a finite order diffeomorphism of a hyperbolic N -manifold,
hence there are finite subgroups of SO(3) that will not extend. In detail, if f is a finite
order element of SO(3) that extends to a diffeomorphism of M , we may extend this
to a finite order diffeomorphism of N acting as a rotation on the ball. Thus, its fixed
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set is 1-dimensional, in which case work of Thurston shows that it is conjugate to an
isometry of N with a hyperbolic metric. Mostow rigidity now gives a bound on the
order of f .

The new content in this case of Proposition 5.5 is the cohomological obstruction to
extension.

Proof of Proposition 5.5 If N is hyperbolic, by Gabai’s theorem [13], we have
Diff0(N ) 
 ∗ and if N is Haken, by Hatcher’s theorem [17], if N is diffeomorphic to
a 3-torus then the natural inclusion N ↪→ Diff0(N ) is a homotopy equivalence, and
otherwise we have Diff0(N ) 
 ∗ or S1.

Case 1: Suppose Diff0(N ) 
 ∗. We have a fibration

N → BDiff0(N , rel x) → BDiff0(N ). (5.8)

Therefore, BDiff0(N , rel x) has the same homotopy type as N . Hence, we have
H4(BDiff0(N , rel x);Q) = 0, in particular, the image of p1 under the derivative
map vanishes.

Case 2: Suppose Diff0(N ) 
 S1. Hence, the fibration 5.8, is the same as the following
fibration up to homotopy

N → N//S1 → BS1.

Because Diff0(N ) 
 S1, the manifold N is a Seifert fibered manifold with a free
S1 action. Therefore, the homotopy quotient N//S1 is homotopy equivalent with the
quotient N/S1 which is a 2-dimensional CW-complex. Hence, again we have

H4(BDiff0(N , rel x);Q) = H4(N//S1;Q) = 0.

So the image of p1 under the derivative map vanishes.

Case 3: Suppose N is diffeomorphic to a 3-torus. Since Diff0(N ) is homotopy equiv-
alent to N , the fibration 5.8 implies that BDiff0(N , rel x) is contractible. Hence, the
image of p1 under the derivative map vanishes. ��
Remark 5.9 We remark that is not hard to show that, when M is a lens space with a 3-
ball removed, the first Pontryagin class does not vanish. It appears to be an interesting
problem to answer problem 5.1 for reducible manifolds.
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