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ABSTRACT. In this paper, we study solutions to the linearized vacuum
Einstein equations centered at higher-dimensional Schwarzschild met-
rics. We employ Hodge decomposition to split solutions into scalar,
co-vector, and two-tensor pieces; the first two portions respectively cor-
respond to the closed and co-closed, or polar and axial, solutions in the
case of four spacetime dimensions, while the two-tensor portion is a new
feature in the higher-dimensional setting. Rephrasing earlier work of
Kodama-Ishibashi-Seto in the language of our Hodge decomposition, we
produce decoupled gauge-invariant master quantities satisfying Regge-
Wheeler type wave equations in each of the three portions. The scalar
and co-vector quantities respectively generalize the Moncrief-Zerilli and
Regge-Wheeler quantities found in the setting of four spacetime dimen-
sions; beyond these quantities, we discover a higher-dimensional analog
of the Cunningham-Moncrief-Price quantity in the co-vector portion. In
addition, our work provides the first verification that the scalar master
quantity satisfies its putative Regge-Wheeler equation. In the analy-
sis of the master quantities, we strengthen the mode stability result of
Kodama-Ishibashi to a uniform boundedness estimate in all dimensions;
further, we prove decay estimates in the case of six or fewer spacetime
dimensions. In the case of more than six spacetime dimensions, we dis-
cover an obstruction to Morawetz type estimates arising from negative
potential terms growing quadratically in spacetime dimension. Finally,
we provide a rigorous argument that linearized solutions of low angular
frequency are decomposable as a sum of pure gauge solution and lin-
earized Myers-Perry solution, the latter solutions generalizing the lin-
earized Kerr solutions in four spacetime dimensions.

1. INTRODUCTION

The Schwarzschild-Tangherlini black holes are higher-dimensional gener-
alizations of the Schwarzschild spacetimes, comprising a static, spherically
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symmetric family of black hole solutions to higher-dimensional vacuum grav-
ity:
Ric(g) = 0. (1)

Non-linear stability of the Schwarzschild-Tangherlini black holes as so-
lutions of (1) is a matter of considerable mathematical interest, owing to
the developments in geometric analysis necessary in the problem’s resolu-
tion. Such work would add to non-linear stability results in four space-
time dimensions, in particular that of Christodoulou-Klainerman [7] for the
Minkowski spacetime, in addition to the more recent non-linear stability re-
sults of Hintz-Vasy [14] for the slowly rotating Kerr-de Sitter spacetimes and
Klainerman-Szeftel [20] for the Schwarzschild spacetime subject to polarized
axisymmetric perturbations.

In this paper, we consider the simpler matter of linear stability of the
Schwarzschild-Tangherlini solutions, concerning solutions dg of the lineariza-
tion of the vacuum Einstein equations about a member of the Schwarzschild-
Tangherlini family (M, gpr), with mass M > 0:

dRicg,,(6g) = 0. (2)

Owing to diffeomorphism-invariance of the Einstein equation, infinitesimal
deformations of the background spacetime via smooth co-vector fields X

x = Lxgm, (3)

referred to as pure gauge solutions, are solutions to the linearized equation
(2). Moreover, the Schwarzschild-Tangherlini family is contained within the
larger family of Myers-Perry solutions, yielding solutions to (2) correspond-
ing to infinitesimal changes in mass and angular velocity. To demonstrate
linear stability it suffices to show that, with a choice of well-posed pure
gauge solution 7y, the normalized solution

dg =g — 7x

decays through a suitable foliation to a Myers-Perry perturbation under
appropriate initial conditions.

In both the physics and mathematics literature, the identification and
analysis of gauge-invariant quantities satisfying decoupled wave equations
forms the basis of linear stability. Building upon our earlier work [16] in
four spacetime dimensions, we utilize the spherical symmetry of the back-
ground Schwarzschild-Tangherlini spacetimes to split linearized solutions
into scalar, co-vector, and two-tensor portions in a spacetime Hodge de-
composition. Identification of gauge-invariant master quantities satisfying
decoupled Regge-Wheeler type wave equations for each of the three portions
appears in the work of Kodama-Ishibashi-Seto [22] and Kodama-Ishibashi
[21], with the scalar and co-vector quantities respectively generalizing the
Moncrief-Zerilli [26, 32] and Regge-Wheeler [29] quantities in four space-
time dimensions. Beyond recasting the quantities of Kodama-Ishibashi-Seto,
we identify a higher-dimensional analog of the Cunningham-Moncrief-Price



STABILITY OF HIGHER DIMENSIONAL SCHWARZSCHILD 3

quantity [8] in the co-vector portion. In addition, we verify that the scalar
quantity is indeed a solution of its putative Regge-Wheeler equation, such
an argument being absent in [21]. Our work is the first of numerous recent
results on linear stability [16, 9, 24, 2, 18, 15] to consider higher-dimensional
gravity. We remark that a generalization of the four dimensional approach
of Dafermos-Holzegel-Rodnianski [9], involving decoupled Weyl curvature
components satisfying the Bardeen-Press equation [3], could provide another
avenue towards higher-dimensional linear stability.

The analysis of the Regge-Wheeler type equations (129, 144, 148, 169) sat-
isfied by the master quantities is informed by the study of the scalar wave
equation, regarding as a “poor man’s” linearization of the vacuum Einstein
equations. We draw upon the pioneering efforts and later refinements of
many authors in four spacetime dimensions for the Schwarzschild and Kerr
spacetimes [19, 4, 10, 11, 23, 25, 13, 31, 1, 12], in addition to the higher-
dimensional generalization of Schlue [30], utilizing the red-shift, Morawetz,
and rP estimates described in these works. The equations we consider differ
from the scalar case owing to their tensorial nature, the associated solutions
being symmetric traceless two-tensors on the unit n-sphere, and owing to
the presence of potentials. Roughly speaking, we benefit from the tensorial
nature of the equations, as we are able to borrow from angular derivatives
to control base terms upon integrating over orbit spheres, with the benefi-
cial terms scaling linearly in the spacetime dimension. On the other hand,
all but one of the potentials we consider contains negative terms scaling
quadratically with spacetime dimension. Taken together, the equations we
consider are more challenging to analyze than the standard wave equation.
We overcome the difficulties presented by the potentials with respect to uni-
form boundedness, using Hardy estimates in the spirit of Kodama-Ishibashi
[17] to strengthen their mode stability result to a uniform boundedness es-
timate in all dimensions. Turning to uniform decay, we find an obstruction
in proving Morawetz estimates as spacetime dimension grows large. See the
end of subsection 9.3.2 for details. For the lower spacetime dimensions, six
or fewer, we succeed in establishing uniform decay estimates.

Spherical symmetry of the background Schwarzschild-Tangherlini space-
time allows for an additional decomposition of the metric perturbation into
tensor spherical harmonics. In particular, we decompose a linearized solu-
tion into portions of lower and higher angular frequency:

59 = 69"<% + 64", (4)

per Proposition 6. The master quantities discussed above are central to
controlling the higher angular frequency portion §¢g‘=2, but have no control
over the lower angular frequency portion 6g*<?. Generalizing the situation
in four spacetime dimensions, we prove that d¢g‘<? splits as the sum of a
pure gauge solution and a linearized Myers-Perry solution. We provide the
first rigorous treatment of these lower angular modes in higher dimensions,
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formalizing the same claim in Kodama-Ishibashi [21], which the authors base
upon an enumeration of degrees of freedom.

We summarize our results in the two main theorems below. First, we
have the analysis of the lower angular frequency portion §g‘<2:

Theorem 1. Let dg be a smooth, symmetric two-tensor on a Schwarzschild-
Tangherlini spacetime, satisfying the linearized Einstein equation (2). For
the lower frequency portion 6g°<2 of 8g, there exists a smooth co-vector X <2
on the Schwarzschild-Tangherlini background, unique modulo Killing fields,
and constants ¢, d,, such that

%n(n—&—l)
09" =myics + K+ > dmE, (5)
m=1

where K, K, are the basis solutions of the linearized Myers-Perry family in
Definition 8.

Next, we have the analysis of the gauge-invariant master quantities for
the higher angular frequency portion 6¢‘=2:

Theorem 2. Making the same assumption on g as in Theorem 1, there
exist gauge-invariant master quantities satisfying decoupled Regge- Wheeler
type equations (129, 144, 148, 169) for the scalar, co-vector, and two-tensor
portions of 6g*=2. With further specification of an initial data slice Yo which
extends to null infinity and a decay foliation X := ¢-(Xg) formed by flow-
ing along the static Killing vector field, a symmetric traceless two-tensor W
solving any one of the equations (129, 144, 148, 169) satisfies the uniform
boundedness estimate

and, in spacetime dimension six and below, the uniform decay estimate

I\IJ(EO) 7 (7)

2
-
with By and Iy(Xg) representing Sobolev data for U on members of the
decay foliation ¥, and C(n, M) being a universal constant depending upon
the orbit sphere dimension n and the background mass M.

Fy(Z,) < C(n,M)

We remark that further pointwise uniform boundedness and uniform de-
cay estimates can be derived from those above by means of commutation
with the angular Killing fields and application of Sobolev estimates on the
orbit spheres.

It is expected that, after estimating the master quantities and making a
suitable choice of linearized gauge, the remaining linearized metric compo-
nents can be controlled by the gauge-invariant master quantities to ensure
their uniform boundedness and decay, yielding a complete proof of linear
stability. We do not treat this matter in the current paper, deferring it
to later work. We remark that such efforts have borne fruit in the case of
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four spacetime dimensions. In particular, our earlier work [16] controls the
linearized metric via a rather irregular combination of the Regge-Wheeler
and Chandrasekhar gauges, while Johnson [18] controls the linearized met-
ric uniformly in the Regge-Wheeler gauge, after an intermediate passage
through the wave-coordinate gauge. Inasmuch as these results depend upon
corresponding gauge choices, each approach has drawbacks in extending to
the non-linear regime. In this direction, there is also work of the first au-
thor [15], wherein control of the odd portion of the linearized metric in the
wave-map gauge is accomplished.

The paper is organized as follows. In Section 2, we present the Schwarzschild-
Tangherlini black holes. In Section 3, we discuss the more general class of
spherically symmetric spacetimes; in particular, we present Hodge decompo-
sition and tensor spherical harmonic decomposition. In Section 4 we discuss
gravitational perturbations of spherically symmetric spacetimes, identify-
ing pure gauge solutions and linearized Myers-Perry solutions in Section 5.
We prove Theorem 1, decomposing 6¢°<? as a sum of a pure gauge and
linearized Myers-Perry solution, in Section 6. In Section 7, we discuss gen-
eral estimates for Regge-Wheeler type equations sufficient to prove uniform
boundedness and uniform decay. In Section 8, we identify and analyze the
master quantity for the two-tensor portion, proving uniform boundedness
and decay in all spacetime dimensions. Similar analyses for the co-vector
and scalar portions are carried out in Sections 9 and 10, respectively; in
each case, we prove uniform boundedness estimates in all spacetime dimen-
sions and uniform decay estimates in spacetime dimension six and fewer.
We summarize our results on the master quantities of 5g*Z2 in Section 11,
wherein we prove Theorem 2.

2. HIGHER DIMENSIONAL SCHWARZSCHILD SPACETIMES

The higher dimensional Schwarzschild-Tangherlini black holes (M?*7 g,)
generalize the well-known four-dimensional spacetimes, with the (2 + n)-
dimensional family comprised of static, spherically-symmetric (i.e., SO(n +
1)-invariant) members, parametrized by mass M > 0. Each such member is
a solution of vacuum gravity; i.e., each metric gy; satisfies Ric(gas) = 0.

In standard Schwarzschild coordinates (t,r,z%), x® coordinates on S™,
the Schwarzschild metric takes the form

g = —(1— p)dt® + (1 — p) " tdr® + 126, 5dz®da’, (8)
with
2M
. 9
pim 24 )
and
&agdwadxﬂ (10)

understood to be the standard round metric of the unit n-sphere.
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Defining the Regge-Wheeler coordinate via

r oM\
7‘*:/ (1_8n1> ds, (11)

gy = —(1 = p)dt? + (1 — p)dr? + r2GopdzdaP. (12)
Using the Regge-Wheeler coordinates, we specify the Eddington-Finkelstein
double-null coordinates by

we find

1
U = §(t - T*)a
2 (13)
v = §(t + T*)a
such that
g = —4(1 — p)dudv + r*Gopde™daP. (14)

We remark that r, is defined up to normalization. All three of the coor-
dinate systems cover the exterior region of the spacetime and degenerate at
the event horizon.

We also make use of the ingoing Eddington-Finkelstein coordinate system

V=141,
R=r (15)
with
gy = —(1 — p)dv® + 2dodR + R*GopdadaP. (16)
Finally, a variant of the Regge-Wheeler coordinates takes
te =t — 1+ 1y, (17)
such that

gv = —(1 = p)dt? + 2udt.dr + (14 p)dr? + r2&a5dx“d$ﬁ. (18)

These two coordinate systems remain regular up to and on the future event
horizon.
The event horizon appears in this coordinate system as the null hyper-
surface
r=ry = (2M)Y =D, (19)
Along the event horizon, the Schwarzschild-Tangherlini solution has positive

surface gravity
(n—1)

= 20
Fon 2 (20)

in addition to simple trapping at the timelike hypersurface
r=rp:=((n+1)M)Y"=D, (21)

This hypersurface is referred to as the photon sphere. With it, we normalize
the Regge-Wheeler coordinate by

T*(TP) =0. (22)
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For a detailed discussion of these and other issues related to the geometry
of higher dimensional Schwarzschild spacetimes, we refer the reader to Schlue
[30].

3. SPHERICALLY SYMMETRIC SPACETIMES

3.1. General Considerations. Let (Q, §) be a two-dimensional Lorentzian
manifold with local coordinates 4, A = 0,1, and let (S™, &) be the unit n-
sphere with the standard round metric in local coordinates x%, a = 2,...,n+
1. Each point on Q represents an orbit sphere, with r a positive function
which represents the areal radius of each orbit sphere. We consider a general

spherically symmetric spacetime in local coordinates z°, z', 22, ... 2"t

Gapdz®dz® = Gapda?da® + rQ&agdxadatﬁ. (23)
The index notations above are adopted throughout the paper: A, B,C,--- =
0,1 for quotient indices, a, 8,7, -+ =2,...,n+ 1 for spherical indices, and
a,b,c,---=0,1,2,...,n+ 1 for spacetime indices.

The Chrlstoffel symbols I'¢, of a spherically symmetric spacetime are

Ii5 =45,
r’ of = Faﬁ,
FgA = r71aar(6P),
Paﬂ = —T@Dr(&ag),
where Fg p and I‘g 5 are the Christoffel symbols of g4z and 6,4, respectively.
Using the Christoffel symbols, it is possible to calculate the curvature of
the quotient Q and the n-sphere S™ directly. On the other hand, as Q is a
two-manifold, we have immediately
Rapep = K (Gacdsp — §apdsc) .
Rap = Kjas, (24)
R =2K,
relating the Riemannian curvature tensor, the Ricci tensor, and the scalar
curvature of the quotient to its sectional curvature K. Likewise, as the
n-sphere is a space form with constant sectional curvature K = 1, we find
Rapgyy = (Gay0py — &an&ﬁﬁ )
R.p = (n— 1)5'0457 (25)
R=n(n—1).
With respect to the 2+n decomposition into quotient and spherical parts,

we consider two types of differential operators, V4 and Va. When applied
to functions, V4 and V, are just differentiation with respect to coordinate



8 PEI-KEN HUNG, JORDAN KELLER, AND MU-TAO WANG

variables 4, A = 0,1 and 2%, o = 2,...,n + 1, respectively. For co-vectors,
we define
Vade® = -T5.da®,
Vadz® =0,
. B (26)
Vadx” =0,

Vedz? = —fgvdx"’,

with an obvious extension of the operators to more elaborate tensor bundles.
We use the notation [J and A for the quotient d’Alembertian and the
spherical Laplacian operators. Furthermore, we denote the volume form for
the quotient space by e€4p.
Later in the work, we will make use of the commutation identities

d
vavbvc - vbvavc = Rabc Ud,

(27)
vavbvcd - vbvavcd = Rabceved + Rabdev(267
which apply to either the quotient or the orbit spheres.
Specializing to the Schwarzschild spacetime, we note the formulae
- M(n—1)_ n—1) _
VaVpr = ¥9AB = )MQAB,
T 2r
VaVpt=—(1- u)_l (Dr) t(ATB)
oM (28)

1_1_#7

-
nn—1)M n(n—1)
ol g2 M

vy = |VrP =1
r

K=

3.2. Tensors on S". Specializing to the n-sphere, with the curvature cal-
culations and commutation relations above taken into account, we find

VaVgu, — VgV, = GaqUg — 08yVas (20)
VaV5UW§ - ngav,y(; = oo'a,yvg(; - Oo'g,yvag + 5a5v75 — 5’/351}70[.

3.2.1. Tensor Spherical Harmonics. In this subsection we outline tensor
spherical harmonics on S, following closely the discussion in Chodos-Myers
[6].

The scalar spherical harmonics Y/™s(% form an L?(S?) basis of eigen-
functions of the spherical Laplacian, satisfying

Ay msmd = —p(¢ 4 n — 1)y tms0) (30)
with indices £ > 0 and ms(n,?) € {1,...,ds(n,¥)}, where

dy(n, 0) = (”—ﬂ) - <n Zf; 2). (31)
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Note that the formula gives
ds(n,0) =1

ds(n,1) =n+1 (32)

1
ds(n,2) = 5(71 +2)(n+1)—1.
Using the scalar spherical harmonics, we obtain L?(S5?) bases of eigensec-

tions for the sub-bundles of co-vectors and symmetric traceless two-tensors
given by scalar potentials. Namely, we have eigensections

Yofms(n,Z) — ﬁayfms(n,f)’ (33)
satisfying
Ayofms(n,f) _ ((n . 1) B [(ﬁ +n— 1)) YofmS(n’Z)’ (34)
and eigensections
ms(n 1 S A
Yl Vgm0 gwﬂgthW@, (35)
such that )

with £ > 2. For a detailed derivation of these spectra, see Chodos—Myers [6].

In addition, the spherical Laplacian acts as an endomorphism on the sub-
bundles of divergence-free co-vectors and divergence-free symmetric traceless
two-tensors. Regarding such co-vectors, we have an L?(S?) basis of eigen-

sections X fmo(n,f) satisfying
AXImoml) — (1 — (04 n — 1)) Xm0, (37)
for £> 1 and my(n,l) € {1,...,dy(n, )}, where
dy(n,0) = (n+ 1)ds(n, ) —ds(n, 0+ 1) —ds(n, ¢ — 1)

n+4¢ n+f—2
=een (7)) - ("0 )) -
_ n+/f+1 n n+/f—3
(+1 (-3 )
Note that the formula above together with (32) gives
1
dy(n,1) = in(n +1). (39)

Again, we refer the reader to Chodos-Myers [6] for further discussion of this
spectrum.

For those symmetric traceless two-tensors given by divergence-free co-
vector potentials, we have an L?(S?) basis of eigensections

Xﬁrgv(n ) v Xémv (n,0) + v Xémv(n @) (40)
with
AXT ) = (nr 2 — 00+ — 1)) X250 (41)
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for ¢ > 2, per Chodos-Myers [6].
On the sub-bundle of divergence-free symmetric traceless two-tensors, we

find

for eigensections Uffgt(n’e) forming an L?(S?) basis, with £ > 2 and my(n, £) €
{1,...,d¢(n,?)}, where
1
di(n,0) = 5(71 + 1)(n + 2)ds(n, ) — (dy(n, £+ 1) + dy(n, £ — 1))
—ds(n, 0+ 2) — 2ds(n, 0) — ds(n, £ — 2)

:;(n+1)(n+2)<<”‘;£>_<”‘£f;2)> (43)

e () (),

per Chodos-Myers [6].
We remark that the ¢ = 1 scalar co-vectors correspond to conformal
Killing vectors,

60[}/617)15(%1) + %BYO}mS(n,l) _ 7zylms(n,1)oo_a6, (44)
and the ¢ = 1 divergence-free co-vectors correspond to Killing vectors
Vo XD 4 v xLme el = g, (45)

Concretely, the conformal Killing vector fields can be realized by consid-
ering a Cartesian coordinate system (X!,..., X"*1) on R"*!. Denoting the
restriction of the coordinate functions to the unit sphere S™ by X4, 4 =
1---n + 1, the set of Killing vector fields {Xolzmv(ml)}mv(ml):l,_,,,dv(n,l) is
given by

KAV, XE _ KBV, %A, (46)
where 1 < A < B < n+ 1, and the set of conformal Killing vector fields
{YO}mS(nJ)}ms(n,l)zl,...,ds(n,l) is given by

VaX4, (47)
with 1 < A<n+1.

3.2.2. Tensor Decomposition. The following decomposition lemmae, gener-
alizing the situation for the two-sphere, are fundamental to the remainder
of the work.

Lemma 3. Given any co-vector v, on S™, there exist a scalar function V
and a divergence-free co-vector ¥y, (i.e. V*0q = 0) such that

Vo = VoV + .

The decomposition is unique modulo the £ = 0 mode of V.
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Proof. Let V be a solution of Poisson’s equation
AV = Vu,. (48)
The difference 6 := vy — VoV is manifestly divergence-free, and we have
Vo = @aV + V.

Assuming that v, has such a decomposition, it must be that the scalar
function satisfies Poisson’s equation above, so that V is determined up to
its constant ¢ = 0 mode and 9, is uniquely determined. O

Lemma 4. Given any symmetric traceless (0,2)-tensor tog on S™, there
exists a co-vector v, and a divergence-free symmetric traceless (0,2)-tensor
fa/g such that
. . 2 . .
tag = Vavg + Vv, — ﬁJa/gV'yU,Y + tag-
Combined with the previous lemma, we have
tog = <vav5v = nAV%g) + (Vabp + Viia) +las. (49)
The decomposition is unique modulo the £ < 2 modes of V and the { =1
mode of Vg,
Proof. The divergence of t,3 has co-vector decomposition
@ataﬁ =:1dg = 6/31) + dg,
per the previous lemma. Note that dg is supported in £ > 2, as

) VoY = /S

S
/ V%apX™ = — / tAVEXE = — / PV (X =0,
STL Sn n

using the conformal Killing and Killing equations (44, 45) and the symmetry
and tracelessness of t,3.
We solve for V and 9, such that

n—1;.

A (A + n> V = AD = VoA,

tIVeYm = 2/ tapd® =0
n Sn

n
(A + (n - 1)) @g = CZg.

Each of the elliptic operators in the left-hand side is self-adjoint, with kernels

being the ¢ < 2 scalar modes and the £ = 1 co-vector modes, respectively.

Owing to support of dg and its constituents in ¢ > 2, we have orthogonality

of the right-hand side and the kernel, from which existence of solutions to

the equations follows.
The quantity

~ o o 1o o o
fup = tap — <vavﬂv = nAV&a5> ~ (Vads + Vgia)
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satisfies the divergence-free property owing to the choices of V' and 9,, and
we have

o o 1 o o ° ~

by definition.

Given such a decomposition, the constituents V' and 9, necessarily satisfy
the equations above; hence they are uniquely determined up to the ¢ < 2
modes of V' and the £ = 1 mode of 7. O

In the first lemma, the divergence-free co-vector 0, generalizes the co-
closed potentials in our earlier work [16].

As outlined in the second lemma, the situation for symmetric traceless
two-tensors is more interesting. Subtracting off the piece involving the scalar
potential V| the remainder of the tensor satisfies the double-divergence free
property, analogous to the co-closed potential in our earlier work. However,
this remainder admits a further decomposition, amounting to the term faﬁ
with the stronger divergence-free property. The term fag is a novel feature
in this higher dimensional setting.

3.3. The Projected Covariant Derivative. In what follows, we consider
quantities which are scalars, co-vectors, or symmetric traceless two-tensors
on the spheres of symmetry. The associated sphere bundles, respectively
referred to as £(0),£(—1), and £(—2), come equipped with projected co-
variant derivative operators Y, defined for scalars by ordinary differentiation
and for co-vectors by

Y, dx® = —Ig,dz", fora=0,1,2,--- ;n+1,

extending to symmetric traceless two-tensors via the product rule. We de-
note the associated d’Alembertian operators by

mﬁ(fs) = Wavaﬁ (50)

with s = 0,1, 2 and the appropriate covariant derivative operator. Note that
¥ £(0) = U is the standard d’Alembertian operator on M.

The projected connection, as well as the associated d’Alembertian and
Laplacian operators, are related to the quotient and spherical operators of
the first subsection in a straightforward fashion. We illustrate the procedure
on the bundle £(—2):

Y atas = Oatap — Thotys — Dhgtas
= ﬁAtaﬁ — 27’717’Ataﬂ7
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VY atas = 05 (V atap) — TgaVctas
—ThaV tag — T3, Vatys — TV atay
= @B (WAta,B) —2r~lrp (WAtag)
= @B6Ata5 — 27“717“/1@315045 — 2T717‘B@Ata5

+ 6T72TATBta5 — 27'71 <@A63T> taﬁa
W'ytaﬁ = ﬁvtaﬁa

VaVtas = Or (Vatas) — T3, Vstag
— T8,V tss — T35V tas — T4, Yatas
= @,\@Wtag + rrA&,W (Y atap)
= ﬁ,\ﬁvto{g + TTA&M (@Atag — 27’*17'Ata5) .

Contracting the above, we deduce the relation

mﬁ(—Q)taﬁ = ljtalg + (n — 4)7"_17‘1461425&5 + T‘_2Ata5

- 51
+ (6 — 2n)r_2rArAta5 —or! (DT) tas- (51
Likewise, we calculate
Izlﬁ(_l)va =, + (n— Q)T‘_IT‘A@AUQ + T_QA’UQ (52)
+(2- n)r_QrArAva — 7t (|j7’) Ve,
DoV =0V =0V +nr AV aV + 7 2AV. (53)

4. GRAVITATIONAL PERTURBATIONS

4.1. Decomposition of the Linearized Metric. As a (0, 2)-tensor on the
background, a linear perturbation h,, = 0g4, admits the (24+n)-decomposition

69 = hapdr’dz® 4 2h gqdzdz® + hopdz®da”, (54)

with each component of hap, haa, hap depending upon all spacetime vari-
ables.

Applying the above lemmae, we have:

Proposition 5. Any symmetric two-tensor dg of the form (54) can be de-
composed as 6g = hi + ho + hg, with

hy = hapdeAdz® + 2(VoHa)da®de? + Héopdzda®

. 1. . o s (55)
+ | VaVgHy — *O'QBAHQ dxdx”,
n
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hy = 2hpada®daz + (Vahg + ¥V ghe)dzdz?, (56)

h3 = hagdz®da”, (57)

where the following equations are satisfied:
Vehaa = 0,Vhy = 0,Vhap = 0.

When n = 2, both ha, and h, have potentials (H, and H,) and hag
must vanish, recovering the Hodge type decomposition in our earlier work
[16].

To summarize, in general dimension, we have a splitting of d¢g into three
pieces, scalar, co-vector, and two-tensor, as objects on the orbit spheres.

It is also possible to subdivide the linearized metric with respect to the
spherical harmonic decomposition outlined in the previous section. Namely,
we split the linearized metric as

39 = 69" + 59", (58)
according to the following proposition.

Proposition 6. Any symmetric two-tensor 6g on a spherically symmetric
spacetime can be split into 6g = 6g°<? 4+ 622, in which the components of
8¢g*22, further decomposed according to Proposition 5, satisfy

/ hABYZmS(n,é) =0
S2 ’

Hyfms (n,0) _ 0
S? 7

n,L)

with respect to the scalar harmonics Y™ (™0 having £ < 2, and

HAYlmS (’n,l) =0

)

S2
- Tme(n,1) o
/SQ hAaX,Bm o )Uaﬂ = 01

with respect to the { = 1 scalar harmonics Y=Y and the ¢ =1 co-vector
. 1my(n,1)

harmonics Xg . R X

We remark the components Ha, ha, and hag are necessarily supported in

{>2.

4.2. Decomposition of the Linearized Ricci Tensor. We recall that a
perturbation of the Ricci curvature d Ryg satisfies

20Rps = g*°(VoVahey + VaVihea — VaVihea — VaVehpa). (59)

Perturbing about a spherically symmetric spacetime, with radial function
r, we record the calculations in Appendix B of Kodama-Ishibashi-Seto [22].
We remark that verification of these expressions amounts to relating the
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spacetime covariant derivative in (59) with those on the quotient space and
unit n-sphere; in this direction, we refer the reader to the connection and
curvature calculations presented in Subsection 3.1.

20Rap = —Ohap — VaVp (¢“Phep) + VaVhep + VeVhea
+ RShep + RGhea — 2RacsphS? — 1 2Ahap
+nr ¢ (ﬁBhCA +Vahep — @ChAB> 6
b2 (TAV g + Tu¥Na) o
— nr_grB@AH — nr_?’rA@BH

+ dnr~4rargH — H@A@B (r72H) ,

20Ra0 = VaVPhag + (n—2)r BV ahap —rVaVa (r g% hpe)
—r0 (r_lhAa) — m“_er@BhAa — 7‘_251114&
+ [(n+1)r2rPrg + (n—1)r 2 (L= 7Prg) — ™ (Or)] haa
—raVEB (r_lhBa) +(n+ 1)7“_17“B?Ah3a + 1 2r4rPhp,
+ 1V, VE (r_lhBa) + REhBa (61)
+(n4+1)rVa (T‘_QTB) hpa — (n 4 2)r! (@A@Br) hBa
+ r*2¢a@ﬁh/w +7V4 (T*S@’gha@ + T*STA@ﬁhag
— nrigrAﬁaH — m’%a@A (7”73H) ,

20Rq5 = [27"7“A@Bh143 +2(n — 1)rA7"BhAB + 2r (@A@Br) hAB] Oap
— %a%g (hABgAB) — TTA@A (hgchD) Oap
+ T‘@A (Tfl (60511/1,3 + %,Btha>)
+ (n— 1)7“_17“A (@ahfw + VghAa> + 21"_11"A¢7h,4«,&a/3
— rzﬂ(r_zhag) — m‘_er@Ahag — T_QAhag
e (S + 95 )
+2[(n—1)r 2+ 2 2pApy — 7t (Or)] hagp
— 27’*2(1 — rATA) (nHcag — hag) — 2nr*2rArAHc°7a5
— nrfzﬁa@BH — nrriV 4 (T*ZH) Tag-

In the remainder of the subsection, we rewrite the above expressions, with
the dual aims of expanding in the scalar, co-vector, and two-tensor metric
perturbation components of Proposition 5 and of writing the linearized Ricci

(62)
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tensor in such a form, with scalar, co-vector, and two-tensor portions. As
we shall see, the scalar, co-vector, and two-tensor portions of the linearized
Ricci tensor are determined entirely by their respective metric portions.
This correspondence first appeared in the work of Regge-Wheeler [29] in
four spacetime dimensions and was later generalized to higher dimensions
by Kodama-Ishibashi-Seto [22].

4.2.1. Pure Quotient Term. The pure quotient portion (60) needs little mod-
ification. Expanding, we find

26Rap = —Uhap — VaVp (6“Phep) + VaVChep + VeVhea
+ RShop + RGhoa — 2Racpph®? — r~2Ahag
+nr ¢ (?thA + Vahep — @chAB>
+772 (VaAHp + VpAH,)
— m‘f?’rB@AH — m“iBTA@BH
+4nr~4rargH — nVAVp (T*ZH) ,

involving only the scalar piece of dg.

4.2.2. Cross Term. Writing the cross-term of the linearized Ricci tensor (61)
in terms of a scalar potential and a divergence-free co-vector, we find

20R A0 = Va [@BhAB +(n—=2)r " Bhap +rtra (¢%“hpe) — Va (6% hie)
—OH4 + (2 - n)r_er@BHA + VBV HE — 2771 (@A?B?ﬁ Hp
+2(1 - n)r‘errBHB — 2 Y VBHE + nr BV s Hp
+(1—=n)Va (7‘_2H) +(n—1)Va4 (r_Q <H2 + iAHg)) }
+ [ — Ohay — 7 2Ah gy + (2 — n)r_er@BltLAa
+ (n— 1)7’72@,404 + @B@AEBQ T <@A@Br) izBa
+2(1 - n)r_QrArBfLBa — 2r Y aVPhge + nr BV AhBa
+(n— 1)@14 (r*ZiLa) + @A (7‘725%6) },
(64)

where we have likewise expanded the metric perturbation in terms of the
decomposition of Proposition 5. Note that the scalar potential of R4,
involves only the scalar piece of g, with the co-vector pieces being similarly
related.

We remark that, although the reduction seems quite complex, much of
the work in obtaining (64) from (61) is straightforward. Namely, the only
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terms in (61) which are difficult to rewrite in terms of a scalar potential and
a divergence-free co-vector constitute

—T_zﬁhAa + T’_Qﬁaﬁﬁfmﬂ + T@A (T_gﬁ’ghOﬁ) + T_STAﬁ/Bha/g.

To deal with such terms, we use the angular commutation relations (29); in
particular, we rely upon the identity

AhAa = %QAHA +(n— 1)%QHA + AHAQ,

n—1_. -

Vihay = Vol + =V (A+n) Hy+ (A+ (n—1)) ha

4.2.3. Pure Angular Term. The decomposition of the angular term (62) is
lengthiest of all. We begin by calculating the trace

25Ra5&a5 = n(2rrA@BhAB +2(n — 1)rArBhAB + 2r (@A@BT) haB

— 1V 4 (hpog®c) ) — A(hapg™®)
+4(n—1)r rAAH, +2VAAH,
—nr?0 (r_2H) +2(1 —n)r2AH — 2n*r AV 4 H
—2nr~t (Or) H + 2n(n + Dr=2rAr H
+2(n — 1) (AHQ + ;AAHQ> .
(65)

In calculating the traceless portion, we introduce the notation

hap = hap — Héap,

. 1
20Ras = 20Rag — - (2673567") G

Concretely,

o o 1o N o A
hag = <VQV5H2 - nAHg&ag) + (vahﬁ + Vﬁha> + hag. (67)
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A preliminary calculation yields
2Ry = ~VaVs (hang™?) + - Alhang™)ous
# 29 (VaVata - Lo
+2(n —2)r A <%Q%BHA - iAHA&aB>

+ @A <%ai7u46 + %ﬁﬁAa)

+ (n— 2)7‘_17"‘4 (@Jm/g + 65%106) (68)
— 7”2@ (7“727&0(5) — m‘fer@Aﬁag — 7;2571(16

+2 [(n — 1)1"_2 +2r2pAp — L (|j’l“)] ﬁa/g

; . . 1.
+ 27“_2(1 - T‘A’I”A)haﬁ —nr—? <VQV5H - AH&QB)
n
— ° o o ° 2 o o5 R
+r2 [(vavmw + vﬁvmw) = (vvv h75> aaﬁ] .

It remains to expand the traceless part of the metric perturbation, and
to collect the terms of the linearized Ricci quantity with respect to such a
decomposition. We emphasize that this amounts to expressing the symmet-
ric traceless two-tensor (5Ra5 as the sum of the traceless Hessian of a scalar
function, the symmetrized gradient of a divergence-free co-vector, and a
divergence-free two-tensor. As with the cross-term, there are few trouble-
some terms, not admitting a straightforward expansion and collection. Such
terms constitute

Again, these troublesome terms can be expanded and collected by careful
application of the angular commutation relations (29). In particular, it is
useful to note

Vihay ==V (A4 ) Ho+ (A+ (0= 1) o,

o o . -1 o
VOV gy = "TA (A + n) Ho,
0 o o 1-
A <VQV5H2 — nAHQOO'a5>
S 1. .. . . 1. .
= <VOCV5AH2 — nAAHQUQﬂ) + 2n <VQVBHQ — nAHQO'aﬂ) ,

A (%Ojlg + %5?@) = (60[&?15 + %5&?@) +(n+1) (%aﬁg + %giLa> .
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In the end, we find
. . 1. . -
20R,p = <VaV,B — nA%,3> [(_hABgAB) +2VAH,

+2(n — 2)7"_17“AHA —r2 (T_QHQ) — m“_lTA@AHQ
+2r 29 g Hy — 2771 (ﬂr) Hs +2(n — 1)7"_2H2

—9 .
+ <n - ) r2AHy + (2 — n)r_QH]

+ [605 (@A]A”LAﬂ + (n — Q)T_eriLAﬁ — 20 (7“_2?1/3)
— nr_er@Aﬁﬁ +2(n— 1)7“_2ﬁ/3 + 27“_27“’47“,433

o (69)
2= (Or) hs)

+ 65 (ﬁAﬁAa +(n— 2)7”*17"‘4]3,4& —r20 (7’72%0[)
— AV ghg + 20 — 1)1 2he 4 20 20 g hg,
—ort (|j7") ila):|

+ [ — 20 (r_Qﬁa5> — m"_er@Al}ag — T_QABQQ
+2r—2 (n + rArA — rﬂr) ila5:| .

As mentioned prior to its decomposition, the scalar, co-vector, and two-
tensor portions of the linearized Ricci tensor are determined by the corre-
sponding portions of the metric perturbation. Assuming the linearized vac-
uum FEinstein equations are satisfied, so that each of the scalar, co-vector,
and two-tensor portions of the linearized Ricci tensor vanish, we obtain sep-
arate linear subsystems for the scalar, co-vector, and two-tensor portions of
the linearized metric. This simplification allows us to study these portions
of the linearized metric separately in the remainder of our work.

5. SPECIAL SOLUTIONS OF LINEARIZED GRAVITY

5.1. Pure Gauge Solutions. Diffeomorphism invariance of the Einstein
equations reduces in the linear theory to invariance under infinitesimal defor-
mations of the underlying spacetime metric. That is, with X a co-vector and
dg a metric perturbation, satisfying the linearized vacuum Einstein equa-
tions, the concatenation dg + Lx g yields a new solution of the same. In this
subsection, we record how these gauge transformations affect the various
components of dg with respect to the decomposition outlined in the first
subsection. Such solutions feature in the analysis of the lower angular mode
solution §¢*<? in the next section and in the definition of gauge-invariant
quantities, used to control the higher angular mode solution §¢*=2.
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We decompose X as
X = Xodz® = Xado + Xoda® = X adz? + (%QXZ) dz® + Xodz®, (70)

with X a divergence-free co-vector on the orbit spheres.
Calculating the deformation tensor mx, and splitting according to the
decomposition of Proposition 5, we have mx = m + mo with

T = [@ AXp+ @BXA} daeda®

+ 2V, [XA +VaXs — 2r—1rAX2] dxdz®

1. 71
+2 |:T"FAXA + AX2:| &a[gdxadwﬁ (71)
n
o o 1.
+2 [VQVLng — AXQ&QB] dzdz”,
n
T = 2 [@AXQ — QT_ITAXQ} dz? dz®
(72)

+ [604)25 + @5)2&] dxo‘dxﬁ.
Gauge-invariant quantities are defined in terms of pure-gauge solutions
as follows:

Definition 7. A quantity P[h], which depends linearly on a symmetric
two-tensor h is gauge-invariant if P[rx] = 0 for any co-vector X.

In particular, we observe the divergence-free portion izag in the decompo-

sition of Proposition 5 remains unchanged; that is, h,g is a gauge-invariant
quantity.

5.2. Linearized Myers-Perry Solutions. We briefly describe the stan-
dard presentation of the Myers-Perry solutions, generalizing the Kerr solu-
tion to higher dimensions, following [28]. These solutions likewise feature in
the analysis of the lower angular mode solution §¢“<? in the next section.
Assuming an odd number of spacetime dimensions d = 2¢+1, the Minkowski
metric can be written as

q
g=—dt’+ (da? +dy})
=1

q
= —dt’ + dr® + 1Y (dp? + pide?) .
i=1
Here, we have expressed the even number of spatial coordinates as paired
Cartesian coordinates (z;,y;) for ¢ mutually orthogonal planes. Rewritten
in generalized polar coordinates, we have the relations
T = T COS &5,

Yi = T Sin ¢y, (73)
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with the constraint
q
=1
i

With even spacetime dimension d = 2g+2, there is an extra unpaired spatial
coordinate, also regarded as an azimuthal polar coordinate,

zZ =ra,

with a € [—1, 1], such that the Minkowski metric has the polar form

g = —dt® + dr? —1—7“22 dp? + p2de?) + r’da?,
=1

with the constraint
q
duitat=1.
i

Likewise, the Myers-Perry solutions have Boyer-Lindquist type coordi-
nates featuring the generalized polar coordinates above. Defining

= g22
e— 7 3
F._l_ZTQ—Fa?’

in even spacetime dimension d = 2q + 2 the metric takes the form

2
2M7” IIF
IMa; = — dt2 (dt + Z Q; g d(;SZ) + md'rQ

q

+ Y+ al)(dpf + pidg]) + rda?,
=1

whereas in odd spacetime dimension d = 2q + 1,

2
2Mr IF
_ 2 2
IMa; = — dt (dt + E aipt; d@) + T 2r 2M7“dr

q

+ ) (P + ad)(dpf + pidey).

=1

Note that both metrics are parametrized by the mass M > 0 and the ¢
angular velocity parameters a;, with parameter increases occurring only in
odd dimension.
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In each case, the metric can be rewritten in a manner suggestive of our
perturbative framework:

2M oM \ Q
IMa; =~ <1 - rn_1> dt® + (1 — 7m—1> dr? + r*645da”da’

¢ ans (1)
2 2
+ Z T THi a;dtdo; + O(a;)”,
i=1

where n = 2¢q in even dimension and n = 2¢ — 1 in odd dimension as given
above. Note that we have rewritten the top-order polar terms using our

earlier concise notation for the round metric on the unit sphere.
We treat separately the linearized change in mass and change in angular

velocity arising from (74) below.

5.3. Linearized Change in Mass. Linearized mass solutions are gener-
ated by constant multiples of

1 9 rn-t 9

rn_ldt + 1= 200)e 2M)2dr . (75)
By direct calculation, one can verify that (75) satisfies the linearized vacuum
FEinstein equations. With respect to the aforementioned Hodge and spherical

harmonic decompositions, such solutions are scalar with support at ¢ = 0.

hapdz®dx® =

5.4. Linearized Change in Angular Velocity. Each pair (z;,y;) in the
construction of the Myers-Perry solution gives a rotation Killing vector field
ﬂd (%) _ &d (ﬂ) — H%dﬁbi

r r r r
in the background Schwarzschild spacetime, where we have used the coor-
dinate relation (73). In view of this, the Myers-Perry expansion (74) gives
rise to linearized solutions

1
hapdz®da® = ﬁu?dtd¢i,i =1---q

Since id (%) — ¥ (2) is dual to a rotation Killing field and the duals of

T T T
X;{m”(n’l)daco‘, 1 <my(n,1) < $n(n+1) form a basis of the space of rotation
Killing fields per (39). For each i = 1---¢, there exist ¢, (1), M0u(n,1) =
1--- %n(n + 1) such that
%n(n+1)
pidgi = D e X" dat.

my(n,1)=1

On the other hand, we claim that each Xém”(n’l)dxo‘ on S™ can be ex-
pressed as a linear combination of ,u?dgi)i,i = 1--.q by choosing a suitable
coordinate system. We assume that n = 2¢ — 1 and take an arbitrary
Cartesian coordinate system X4, A =1---2¢ on R?%. Recall from (39) that
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XA4dXE — XBdX4 1< A < B < 2q form a basis of the space of rotation
Killing fields. In particular, there exists an alternating constant 2g x 2¢q
matrix Pap, Pap = —Ppa such that Xa™ ™V dze = Y20 p,p XAdX5.
Applying the spectral theorem to Pap, we deduce that there exist a new

coordinate system z;,y;,4 = 1---¢ of R?? and constants \;,i = 1---¢ such
that

X{ym(n,l)awjZ = zq:)\i[?d (%) - %d <%>]’

The coordinate change (73) turns the last expression into > .7 ; Nip2de;.
The case of n = 2¢g can be derived similarly.
Infinitesimal change in angular velocity is encoded in the basis solutions

1
habdl'adxb — ﬁXémv(n’l)dtdan, (76)

with the Xém”(n’l) spanning the ¢ = 1 eigenspace of divergence-free co-
vectors, 1 < my(n,1) < in(n+1) (39). These basis two-tensors are co-vector
solutions supported at £ = 1, satisfying the linearized vacuum Einstein equa-
tions.

Together, linear combinations of the above linear perturbations of the
Schwarzschild metric form the family of linearized Myers-Perry solutions.

Definition 8. The linearized Myers-Perry solutions of the linearized vac-
uum Einstein equation on the Schwarzschild spacetime in n + 2 dimensions
are linear combinations of the basis solutions

1 9 rn—1 9
K = Tn_ldt + (rn—l — 2M>2dr ,

1
Ky = —— X ™ dtdz?,
rn-

(77)

where X! = X3 (n’l), with eigenvalue given by (37), and

1 <m=my(n,1) < -n(n+1).

DN | =

6. ANALYSIS OF THE LOWER ANGULAR MODES AND PROOF OF
THEOREM 1

In this section we analyze the lower angular mode solution dg‘<? and

prove its decomposition into a pure gauge solution and a linearized Myers-
Perry solution, the content of Theorem 1. In doing so, we provide the
first rigorous treatment of the lower angular modes in higher dimensions,
formalizing the same claim in Kodama-Ishibashi [21], which the authors
base upon an enumeration of degrees of freedom.
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6.1. The ¢ = 0 Scalar Mode. In this case the scalar portion A; has the
form

hy = hapdz’dz® + Héopda®da®,
and the linearized Ricci tensor reduces to
20RAB = gaB (@C@DhCD) +2Khap — KSgap — (0S) gan
+nr1r¢ (@BhCA + Vahcn — @chmy;)
— nr_?’rB@AH — nr_SrA@BH

+ 4’1’LT‘_4TATBH — n@A@B (7‘_2H) ,

25Ra5&a5 = n<2rrA@BhAB +2(n — 1)rArBhAB +r (ir) S
— TTA@AS) —nr’0 (T_QH) — 2n2r_1rA@AH
— 2nr~ 1 (le) H + 2n(n+ 1)r~ 274 4 H,
where we have used S := ¢g4Bh4p and the identity
— Ohap + VVahep + VVBhea
- o<D . . .- - (78)
= gAB (V \% hCD) +2Khap — KSgap +VaVBS — (DS) JAB-

Given a co-vector X = X dz?, the associated pure gauge solution 7y
modifies h; as

hy — hy —7x,
hap — hap — VaXp — VpXa, (79)
H— H—2rrX 4.
We choose X to eliminate S and H; that is, X satisfies
2VAX, =S,
2 X 4 = H.
Rewriting the first equation as
—2TA@A (TBXB) + QTA@A (TBXB) = rBrBS,

we observe that 74X 4 is determined by the second equation, while T4 X 4 is
determined by the first equation only up to specification on an initial slice,
say the hypersurface 3y appearing in the decay foliation of Subsection 7.3
to follow. We utilize this additional gauge freedom to set

145 (hap - VaXp - VpXa)
= T4%Phap — T4V 4 (rPXp) (81)
— (L= p)rVa (1= p) ' TP Xp) =0
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on Yg. Note that there is still residual gauge freedom of the form T2 Xp =
¢(1 — p); these gauge transformations correspond to scalar multiples of the
static Killing vector field T'. To summarize, we have performed a change of
gauge eliminating S and H globally and T4rBh4p on an initial slice X.

The Einstein equations for the gauge-normalized solution h] = h; — 7mx
amount to

9ap (VOVPRED ) + 2K R + 100 (Vhion + Vahis = Vohig) =0,
2rrAVERY 5 + 2(n — 1) rrBRY 5 = 0.

Taking the trace of the first equation and comparing with the second
equation, we can rewrite the first equation as

1y C (@Bh*CA +Vahty — %hfw) 2K, )
+n(n— 1)7"72 (rCrDh*CD) gap = 0.

Contracting (82) with 4r? and noting the identity

~ ~ ind — 2 %
r4rPrC (Vahion + Vahip = Velip) = r'Va (rPrChipe) =K (rPrOnic)
we deduce
4V 4 (7’”71 (TBTCh*BC)) =0,
such that

rArBhi g = c(t)r~ Y,
with c(t) an arbitrary function of time. Contracting (82) with T4r? instead,
we find

T4V 4 (rBrCthC) =0,
so that ¢(t) is constant. We add a linearized Schwarzschild solution of the
form (75) to eliminate 772 h* 5; note that this addition preserves the global
vanishing of S* and H*, as well as that of T4r5 g on Xo. In particular,
owing to the vanishing of S*, this addition will also eliminate TAT5 5
The solution hi* = hi—cK = hi—mx —cK has only the cross-term T4rBh%,
to be accounted for. The solution still satisfies (82), the contraction of which
with TATE leads to

TAV 4 (TPrChge) = 0.
Together with the vanishing of 7475 h*p on the initial slice ¥g, the above
gives vanishing of 7475 R globally. In summary, we have hy = mx + cK.

6.2. The ¢ =1 Scalar Mode. The scalar portion A1 has the form
hy = hapdzAdz® + 2V, Hadztde® + Héopdada”,

and the linearized Ricci tensor appears as
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20RAB = gaB (ﬁC@DhCD) +2Khap — KSgap — (3S) gas
+nr2hag +nr ¢ <@thA + Vahcp — @chAB>
— 2 (@AHB + @BHA) — nr_?’rB@AH — nr_grA@BH
+ dnr~4rarpH — n@A@B (r_QH) ,

26R 40 = Va [@BhAB +(n—2)r ' Phap +17raS — VaS
—OH 4 + (2 — n)r_er@BHA + VBV HE — 2r7 1 (@A@Br) Hp
+2(1— n)rferrBHB — 2 Y VP HE + nr BV 4 Hp
+(1—=n)Va (r*QH) },

26Ra5&aﬁ = n(QTTA@BhAB +2(n — 1)rArBhAB +r (@r) S — TTA@AS) +nS
—4n(n —1)r~YAH, — 2nVAH,
— nr?0] (r2H) +2n(n—1)r?H — o2 AV A H
— 2nr~ 1 (ﬂr) H +2n(n+ 1)r 2rr4H,

where we have used the notation S := g4Php and (78).
Given a co-vector X = Xadz? 4+ V,Xodz®, the associated pure gauge
solution 7x modifies hi as

hi — hy —mx,
hap — hap —VaXp — VpXa,
Ha— Ha—Xa—1V4 (r2Xs),
H — H — 2rr* X 4 + 2Xo.

We choose X’ to eliminate the quantities H — 2rrAH, and H,4. This
reduction amounts to solving

—2r3r4V 4 (7"72X2) —2Xy=H —2rrHy

for X5, then solving

(83)

XA + T'Q@A (T72X2) = HA
for X 4. Note that there is residual freedom in the form
X = e(t)r(1 = p) MY,
X4=—-r’Vy (c(t)ril(l — u)fl/("fl)) .
In particular, we note the transformation

4 Bhag — 1P hap + 2c(t)pr (1 — p)~ D
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of the component 74rBh4p under this residual gauge freedom.
The linearized Einstein equations for the gauge-normalized solution h} =
hi1 — mx» amount to

9B (?C@Dh*@) + 2K by — KS*gap — (08*) gan
+ nr_Qh*AB +nr ¢ (@Bh*CA + @Ah*CB - @Ch*AB> =0,

VB s + (n— 2)r rBhi g + 7 lraS* — VAS* =0,
2rrANVERY 5 + 2(n — V)P g + 1 (Or) $* - rrAV S 4+ 8* = 0.
Replacing the first term in the third equation by means of the second equa-

tion, we find

rrAN 4 S* — 2rdr 49 + T(‘jT)S* + 5% +2 (TATBh*AB) = 0.
Taking the divergence of the second equation, we deduce the relation
VAVIRYp = 08" + (1= n)r V48" + (n = Dr *rPrps”
- gr_l(ﬁr)S* +(n—2)(n—1)r2 (rArBhfilB) .
Rewriting the double divergence term in the first equation in this way, con-

tracting with 74r®, and applying the previous relation between S* and
rArB I g, we find an autonomous equation for rArB Nyg

r Ve (rArBh*AB) +r2 (1 +(n— 1)rcrc) (rArthilB) =0,
with general solution
rArBhig = d(t)pr (1 — p) =Y,
Contracting the first equation with 7475 instead, we find
nr 1TV (TArBh*AB) +nr—? (TArBhZB) =0.

Finally, contracting the second equation with 7, we have

. 0 3
VE (rthip) — 77“5* +(n=2)r 7t (rArBRg) +r e a8t — 1AV A4St = 0.

Exercising our residual freedom by the choice c(t) = —1d(t) above, with
associated co-vector field X, and letting X = X’+X, the normalized solution
h* = h1 — mx has vanishing rArB h*{p component. The equations above
immediately imply vanishing of the component 7475 . It remains to
consider the component S**, which satisfies

AV 8% — 2747 4 S 4 1 (Or)S™ + ™ = 0,

0 .
—?TS** +r Ay 18 — pAV 45 = 0.

Taken together, the two equations imply S$** = 0. In this way, we have
shown that hi* = 0; that is, hy = mx is a pure gauge solution.



28 PEI-KEN HUNG, JORDAN KELLER, AND MU-TAO WANG

6.3. The ¢/ =1 Co-Vector Mode. The co-vector portion amounts to
ho = 2ﬁAadaL‘Ad$O‘,
and the linearized Ricci tensor takes the form
2R A0 = —1 "eapVE (r”“eCD@D (?”_Qilca)) .
Given a co-vector X = X, dz®, with X, satisfying the divergence-free
condition V*X, = 0, the associated pure gauge solution mx modifies ho as
hy = hg — 7x,

) ) | (84)

iLAa — iLAa - 7"2@,4 (TﬁQXa
We choose X’ to eliminate 74k 40, such that
AV X — 2r A a Xy, = 1 hag. (85)

In accordance with the homogeneous solutions of the equation above, there

remains residual gauge freedom in the form X, = Emv(ml)(t)erém” (1),

We consider the normalized hj = ho—mx’ and decompose izj‘m = va(n 1) ﬁi‘l;" v(m,1)

Contracting the linearized Einstein equation
—r e gVE (T"+260D@D (T_Qﬁz}am“(n’l)>> =0
with 74 and T4, we deduce
20D (T_szgf”("’l)) = (1),

with d,,, (n,1) @ constant. As rAiLzloin“("’l) = 0, the above reduces to

Pr2pAY (T—QTB;LEIZLU(nJ)) _ dmv(n,l)TBrB>
with general solution

~ * d
TAhAlotnv(m) = ey (P2 X Lm0 %

Taking X = Emv(n,l)(t)TQXém”(n’l) with E;nv(ml)(t) = Cm,(n,1)(t) and letting
X = X' + X, we have shown
%n(n—‘rl)
hg =Tx + Z demv
m=1

with Ky, being the Myers-Perry solutions of Definition 8 and dp, = dyy,,,(n,1)-
Note that there remains gauge freedom in the form ¢(¢) = ¢; such transfor-
mations correspond to scalar multiples of the angular Killing fields €2;.
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6.4. Proof of Theorem 1. Combining the results of the subsections above,
we have a proof of Theorem 1. In particular, adding the various linearized so-
lutions, we obtain a smooth co-vector X*<? on the Schwarzschild-Tangherlini
background, unique modulo Killing fields, and constants c, d,,, such that

%n(n—&—l)
09" =myics + K+ > dmKo, (86)

m=1

where K, K,, are the basis solutions for the linearized Myers-Perry family
of Definition 8.
The remainder of the paper concerns the identification and analysis of the

gauge-invariant master quantities of the higher angular frequency portion
59522.

7. ANALYSIS OF REGGE-WHEELER TYPE EQUATIONS

The remainder of this work is concerned with the higher angular modes,
encoded by 6g*22. For each portion of §g*22, we decouple gauge-invariant
quantities satisfying Regge-Wheeler type equations, the analysis of which is
expected to provide an avenue towards proving decay of the solution.

To eliminate redundancy, we present in this section a general theory for
the analysis of such equations, specialized as necessary in subsequent sec-
tions. We consider solutions within the sub-bundle £(—2) of symmetric
traceless two-tensors on the spheres of symmetry, with such solutions either
being divergence-free or possessing scalar potentials or divergence-free co-
vector potentials. In this language, we define a solution of a Regge-Wheeler
type equation as follows.

Definition 9. Let ¥ be a symmetric traceless two-tensor, regarded as a
section of £(—2). We say that ¥ is a solution of a Regge-Wheeler type
equation with potential V if ¥ satisfies

Do oy¥ = V. (87)

We further assume that V is a radial function with the form

ap  boM M? n? —2n

We remark that V needs not be non-negative; indeed, this will be the
case for two of the potentials derived subsequently.

The argument in this section goes as follows. For a solution ¥ of equa-
tion (87) with potential V' of the form (88), we further assume the T-energy
comparison (112) and the Morawetz estimate in Assumption 14 and derive
various estimates based on these assumptions. Whether these assumptions
hold or not would depend on the more refined structure of V. We then
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verify these assumptions for each case in subsequent sections. For exam-
ple, the potential for the two-tensor portion is given in (130), the T-energy
comparison is verified in 8.3.1 and the Morawetz estimate is verified in 8.3.2.

7.1. Stress-Energy Tensors. We consider the natural stress-energy tensor

Tl W] = V¥ - Yo — Jgu((PU)? + V]TP), (59)

where we emphasize that

Vol - Yol =g g7 (Vo¥)ar (V5 ¥) s,

U? = g*P g0, Wgs,
and

(YO)? = 99" (Vo )y (Y5 ) g5,

= (Y9)* +r 2|V ep,
(Y0)? = g4 PP 0% (Y 4 0) oy (V5 0) 5.
VO = 676797 (VW) (Y, 0) 5

In addition, we will use the virtual stress-energy tensor
. 1
Tab[\y] = Waqj : Wb\IJ - igab(vc\ll : ch}) (90)

Estimates are obtained by contracting with a vector-field multiplier X
and applying the spacetime Stokes’ theorem

/ Top[¥]ndp X = / V(T[] X°), (91)
oD D

over a spacetime region D with boundary 0D. A similar identity holds for
the virtual stress tensor (90).

We remark that the natural stress-energy tensor (89) has non-trivial di-
vergence

VT [0] = —%vbvmfﬁ + YUV, V¥, (92)

with the commutator [Y,, ¥;] vanishing when contracted with a multiplier
invariant under the angular Killing fields. In particular, all such multipliers
considered in the analysis below have this property.

Although the virtual stress-energy tensor satisfies a positive energy condi-
tion, this is not necessarily true for the natural stress-energy tensor. Indeed,
in what follows it will be the case that the stress-energy tensor fails to sat-
isfy a pointwise positivity condition, owing to lack of non-negativity of the
potential V', at which point it becomes necessary to incorporate integral
estimates.
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7.2. Comparisons. Given A and B, we use the notation
A= B

if the two quantities are comparable up to constants depending upon the
orbit sphere dimension n and the mass M. That is, there exists C(n, M)

such that
1
—— A< B<(C(n,M)A.
CoanAsB=sChM)
Likewise, we use
AZ B

for one-sided comparisons up to constants with such dependence.

7.3. Decay Foliation. Recalling the Eddington-Finkelstein double null co-
ordinates

1
u= i(t —Ty),

1
= Z(t+71,),
v 2(+r)

we further define

p D00
v Ot Oy

0 0 0

= 8u:a76r*'

Fixing radii 1 and R; satisfying r, < r1 < rp < Ri, we choose a Lipschitz
hypersurface >y with the following properties:

(93)

e Y intersects the future horizon H™ transversely and X is spacelike
inr, <r<R,
e YonN{r <r<R}={t=0}n{r <r <Ry},
e YoN{R <r}={u= —% (R1),}n{R: <7},
where (R;), is given by (11) with normalization (22).

Flowing along the static Killing vector field T', we construct our decay
foliation 3, := ¢-(3g). We define ny_ as the unit timelike normal vector
for 3; for r < Ry and ny, := L for r > R;. Further, we denote the volume
form on ¥, corresponding to ny_ by dVoly_, and the volume form on the
unit round n-sphere S™ by dVolgn.

We denote by D(71,72) the spacetime region between the hypersurfaces
3, and X, with 7 < 7. To be more precise, we define

D(11,72) == J T (Z,) NI (Zr,), (94)

with volume form dVol. We denote the null hypersurface bounding D(71, 72)
at the future event horizon by

HY (11, 72) == D(r1,72) NHT, (95)
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with null tangential chosen to be ny+ := T and the associated volume form
denoted dVoly+. In addition, we define the null hypersurfaces

Cuo(u1,u2) := {v =vp,u1 < u < ug}, (96)

with the choice of null tangential L and the associated volume form r"™dudV olgn.
Intersecting the constant v-hypersurface with the spacetime region D(7y, 72),
we find

1 1
Cy(—00,00) N D(71,72) = Cp(11 — 9 (R1), .72 — 5 (R1),),
and define the limit of such hypersurfaces
. 1 1
I+(71,T2) = vhﬁnolo CU(Tl - 5 (Rl)* ,TQ — 5 (Rl)*) (97)

Often we write boundary integrals of the form
/ JX[W|L® (rdudVolgn) ,
I+ (Tl,’rz)

where it is understood that we are evaluating the limit as v approaches
infinity of the boundary integrals

/ JXW]LA (r"dudV olgn) .
Co(r1—5(R1),,m2—5(R1),)

7.4. Poincaré Inequalities. The spherical Laplacian operator acts as an
endomorphism on each of the aforementioned sub-bundles of £(—2), with
spectra described in (36, 41, 42).

We assume that, in acting on the sub-bundle associated with ¥, the spher-
ical Laplacian A has least eigenvalue A. The identity

AU = 240 - ¥ + 2| Y02 (98)

yields the Poincaré inequality

[owopzaf joe (99)

For those sections of £(—2) with scalar potential, we have A = 2, whereas
those with divergence-free co-vector potential have A = n. Finally, on the
sub-bundle of divergence-free symmetric traceless two-tensors we have A =
2n.

7.5. Hardy Inequalities. We adapt the Hardy inequalities found in the
work of Andersson-Blue [1] and the earlier work of Blue-Soffer [5], utilizing
them to prove Morawetz estimates as in these earlier works. In addition,
owing to the non-positivity of our potentials in higher dimensions, we rely
upon such inequalities in proving uniform boundedness estimates.
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Lemma 10. Suppose A and W are smooth functions on [sg,s1], with A
non-negative. Further, assume that the ODE

d dg
- <Ad8) +Wg=0 (100)

has a smooth, positive solution g on [sg, s1]. Given any smooth function f,
as long as

d
2
A—(1
frA--(logg)
vanishes at sg and s1, we have the estimate
s1 d 2
/ A <f) + W f2| ds > 0. (101)
S0 ds
Proof. Let h = f/g. Then
s1 | 2
/ A<df> +Wf2] ds
so | ds
suf dh\? dg\ > dg dh
= Ag? | — AR? [ = 2Agh—=— +W¢?h?| d
/50 g <ds> + <ds> +olg dsds+ g °
suf dh\? dg\ > d
_/ Ag2< ) + Ah? <g> + Wgh? + — <Ah299>
so | S ds d ds

O

Often we will assume that s = 2M and s; = oo, with A vanishing at
this boundary and f compactly supported. In applying the estimate, the
primary difficulty lies in finding a positive solution to the associated ODE.
To this end, we transform the ODE into a hypergeometric form, from which
a well-known positive solution can be constructed.

7.6. Hypergeometric Differential Equations. We consider the hyper-
geometric ODE

d*g dg
(1—-2)z2—5 + (c— (a—f—b—l—l)z)%

7 — abg = 0, (102)
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with z < 1 and 0 < b < ¢. With such constraints, the hypergeometric
function F'(a,b;c; z), defined by

P(C) ! b—1/1 _ p\c—b—-1 — )@
F(a)r(b)/ot (1 —1)°b=1(1 — 2t)~adt, (103)

is a solution of (102). We can easily divide out the terms involving the
Gamma function to obtain a positive solution of (102).

F(a,b;c;2) =

7.7. The T-Energy.

7.7.1. Definition and Monotonicity. We define the T-current
Jg[\lj] = ab[\I’]Tbv (104)
and the T-energy

EL(x,) = / JIWIng, dVols,
i (105)
— / Top[¥]ng TdVols, .

Applying the static Killing multiplier T" over the spacetime region bounded
by the decay foliation hypersurfaces ¥, and X,, , where 0 < 71 < 7o, we
have

EL(z.,) + / JIWIng, . dV ol +

Ht(71,72)

- / JEW) L (r"dudVolgn) = EL(%5,),
IH(11,72)

with the terms of the density
divJT[0] = (VOT [ 0])T7 + T, [¥]VOT)
vanishing according to (92) and Killing condition on 7,
(Tr)® .= Lpgih = 2vieT? = 0.

Non-negativity of the boundary integral along the event horizon follows
from T being null tangential, which makes the V' term have no contribution
in JI [\Il]ng”_ﬁ Non-negativity of the boundary integral along future null
infinity follows from the asymptotic property of the potential V and the
spectral property (see 7.4) in each portion, which can be verified individually.
Hence we have

/ JIWIng, . dVoly+ > 0,
HH(rm) (106)

/ JEW) L (r"dudV olgn) > 0.
I+ (11,72)

Together, the two imply monotonicity of the T-energy:
By (Sr,) < By (Sn). (107)
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Before proceeding, we define the virtual T-energy:

BY(S) = [ Tulting, T (108)

T

7.7.2. The Adapted Hardy Fstimate. The natural stress-energy tensors un-
der consideration often fail to satisfy pointwise positive energy conditions; as
a consequence, the T-energies above are not obviously positive-definite. To
address this issue, we rely upon the Poincaré inequality (99) and an adapted
Hardy estimate, in the spirit of Lemma 10.

To begin, we regard R = r as a function on the hypersurface >, and con-
sider the coordinate system (7, R, z). Written in this form, the integrand
of the virtual T-energy (108) takes the form

Top[P]ng, TdVols,,
1

=5 (= cosh 22|V, 2 + (1= )|V p¥* + B2VU[?) R'dRAVolsn,

where z(r) is specified by
(1—p) Y% cosha = — (ny,T).

In particular, the coefficients of |V z¥|? and ]W\I/P don’t depend on the
defining function of ¥ ;. Incorporating the potential V', the T-energy (105)
has the form

1 o0
Ey(Xr) =5 / / [(1 = )|V rY|* + V[¥[*] R"dRAV olsn
n ,,,h
1 %0 o
+ 2/ / [COSh_z 2(1—p) Y, > + R2|YU[?| R"dRdVolsn.
n rh

With the change of variable s = R"™!, the radial coefficient naturally
takes the form A = s(s — 2M), in the notation of Lemma 10. Further
choosing sg = 2M and s; = oo, the following Hardy estimate holds for a
large class of potentials V:

Lemma 11. Let f(s) be a function defined on [2M,o0) and E,F > 0 be
two nonnegative numbers with |2F — E| <1 and E > 1. Then

< (d\? 2
Al— ) +V(E,F)f*|ds>0, (109)
2M dS
where
A=s(s—2M),
1 2M F?

V(E,F) = 1(E2 —1) - —
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Proof. We first assume f(s) has compact support in [2M, 00). From Lemma
10, the estimate follows from the existence a positive function g(s) defined
on [2M,c0) and satisfying the equation

d dg
—— | A= V(E,F)g=0. 110
& (A%) +viE. P (110

One can obtain an explicit positive solution of (110) by using hypergeometric
functions. Letting o = £F and g = s~ %g, the equation (110) becomes

) ]
—s(s — 2M)ZT§ + ( —2(s — 2M)a — (25 — 2M))% - i((Qa +1)2 - E2>§(z) ~0.

Performing the change of variable z = 1 — 537, we have

2

(1- z)zg + (1 ~(2a+ 2)2)% - i((m +1)? - E2>§(z) 0. (111)

Comparing (111) to hypergeometric ODE (102), we have a hypergeometric
equation with z < 0, ¢ = 1, and {a, b} = %(1+2aiE) = %<1i2FiE). The

associated hypergeometric function F'(a,b;c;z) has integral representation
(103) assuming

1 1
0<§(1+2F+E)<lor0<§<1—2F+E) <1
0r0<%(1+2F—E><10r0<%<1—2F—E) <1

In particular, when E, F' > 0, the above condition is equivalent to |2F — F| <
1.

For general f(s) assume without loss of generality that

0o df 2
L [ (i) +r

as the left hand side of (109) is infinity otherwise. Then approximating such
f(s) with compactly supported functions yields the result.

ds < o0,

O

7.7.3. The T-Energy Comparison. We briefly describe a typical application
of the Hardy estimate above. First, we borrow from the angular term using
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the Poincaré inequality (99), and find the underestimate

1 o
EY(2,) = 2/5 / (1= )|V rP|* + V|¥|*] R"drdVolgn
n Th

1 o ;

= / / [cosh_2 (1 —p) Y, 9 + R_2|W\If|2} R"drdV olgn
Sn Th

1 0

> 5 / / (1= w|YRY|* + (V4 A1 = 86)R?) |¥[*] R"drdVolgn

sn Jry,

1 o0 .
+3 / / [cosh_Q (1 —p) Y, 0 + 5R—2|y7\1/y2} R™drdV olgn,
s Jry,

where ¢ > 0 is a small residual angular coefficient.
Isolating the term

| 0= IRV + (V70 = 5)R2) ] s

we perform the change of variables s = R""! and determine a V(E,F)
in Lemma 11 underestimating the s-dependent potential associated with
(V + (A= 5)R_2) pointwise on the exterior region. The lemma then implies

[ =0 FRP + (v + 3= R o) R 2 0

and we can choose €(d) > 0 such that

Ey(3-)

// (1= w)|YRY[ + (V + A1 —0)R™2) ||?] R"drdVolgn
Sn Jry

v

_|_
= NI o~

// [cosh (1 —p) |V, 9P +6R™ 2|W@1}R"drdvozsn
s Jry,

v

/n/oo (1= W) VRYP + (V+ M1 —8)R™?) [¥|?] R"drdVolgn

+
DN |

o0 °
/ / [cosh_2 (1 —p) Y, 0 + 5R_2|Y7\IJ]2} R"drdV olgn
s Jry
2 By(S.),
with €(0) chosen small enough to absorb possible negative contributions
from (V + A(1 — §)R™?) into the J-small residual angular term, again via
application of (99).

We remark that, owing to the characteristics of the potential V' and the
Poincaré inequality (99), we have the other direction in the comparison

EY(S,) 2 EY(S,).
In what follows, we assume the T-energy comparison

Ey (%) = By (3-). (112)
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We remark that the comparison is trivial in the event that V is non-
negative, as in four spacetime dimensions. On the other hand, if V' lacks
non-negativity, the inequality is not obvious.

Owing to the spacetime Stokes’ theorem, the comparison (112) implies

| vl S By,
Hhrm) (113)

/ JEW) L (r"dudVolgn) < EL(2,).
IH(11,72)

7.8. The N-Energy. We describe the red-shift vector field, introduced in
Dafermos-Rodnianski [10] in four spacetime dimensions and generalized to
the higher-dimensional setting by Schlue [30].
For convenience, we calculate in the ingoing Eddington-Finkelstein coor-
dinates
0 =147,
R=r.

Let Y be a smooth vector field, specified by

0

Yi=r, = ~ap

‘ h aR
LrY =0,
Ly,.Y =0,

(VyY),,, = —o(Y +7),

r=rp

where o is a positive number to be determined. At the event horizon R = 7,
we compute

T [U]VOYY = 0|V, 0|2 + |V T2 + %m\p g
1 fcR n °
— (=4 1) |y
el ( 2, >|y7 |
o
2 (Vo + kal VR + IV 9P).

Here k, = (n_r,ll)M is the surface gravity. Hence
h

va(Tab[\I’]Yb) = (vaTab[\I[])Yb + Tabv(ayb)
o

2 (oWl + V9P + 5 IVOP) +VOy e (1)
i

2 (oAVo U + e V2 + 25|V P)

using the Cauchy-Schwarz and Poincaré inequalities and a choice of large o.
Note that such a choice can be made for any bounded radial potential V.
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We extend Y to the exterior region such that Y is causal and Y = 0 for
r > r1. By continuity, the coercive estimate (114) is satisfied in r, <7 < rg
for some rg < 71.

We define the strictly timelike red-shift multiplier N := T'+Y, in addition
to the current

INW] = T[] TP + T []Y?, (115)
and energies
EY(%,) = / JN[WIng, dVols,,

v (116)
EY(S,) = /Z T [W]n%. NdVols, .

Lemma 12. Assume the T-energy comparison (112) holds. Defining the
red-shift multiplier N as above, we have the pointwise density estimate

divJN 0] = va (Tab[m]yb) > T [Wlng, N in r < rg

vV

—Tab[\I/]n%TNb inr € [ro,ml,
in addition to the energy comparison
BY(2) ~ EY(S))

and the boundary estimates

/ JN[Wngy+dVoly+ >0,
H+(0,7)
/ JNTW]LA (" dudV olgn) > 0.
Z+(0,1)
With Lemma 12 we can follow the argument in Dafermos-Rodnianski [10]

to obtain uniform boundedness of the non-degenerate N-energy.

Theorem 13. Suppose V is a solution of the Regge- Wheeler type equation
(87) as in Definition 9. Further, assume that U satisfies the T-energy com-
parison (112). Then U satisfies the uniform boundedness estimate

EF(S,) S E§ (%), (117)
with 0 < 7. In addition, we have the boundary estimates
| Tl Wi " avolys < B (S0)

H(0,7)

(118)
/ T [P)LOT (r"dudVolgn) < EY (Z0).
Z+(0,7)
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7.9. The Morawetz Estimate. We assume the existence of a Morawetz
estimate, first adapted to curved four-dimensional spacetime backgrounds
by Blue-Soffer [4] and Dafermos-Rodnianski [10] and later to the higher-
dimensional setting by Schlue [30]. The requirements of such a multiplier
are described in the following assumption:

Assumption 14. There exists a current J2'[¥], with density K™ [¥] =
divJ™' 0], satisfying the bulk estimates

inr>rg,
m 1 (n+ 1) 2 2
E™WdVols. > [ — [ (1- 2= (\%\IJI AT )+ IV, 0|2 | dVolgn,
Sn Sn T T’
inr<rg,

MW]dVolgn > / Top[UINONOdV olgn,
Sn n

and the boundary estimates
[ JaVolse 5 [ Tulwing, NdVols:.
/ ] (JZR[\I/]ng‘#)_ dVolgn < / L[y TV ol
/S R PIL"|dVolsn S / ) To[U)LOT AV ol gn,

where (Jgﬁ[\lf]n‘;#)_ is the negative part of (Jgﬁ[\lf]ng_ﬁ)
Applying the divergence theorem and Theorem 13, we have the following
result, essential in proving uniform decay:

Theorem 15. Assuming the estimates of Assumption 14, along with the
conclusions of Theorem 13 following from the T-energy comparison (112),
we have the further density estimate

/ / [WdVols, dr < B (o). (119)
Yr ﬁ{T<R1}

Proof. By the divergence theorem

/ JPWng, dVols, + / TIWng, 4 dV oly

2 H+(0,7)

+ / JW)LE (rdudV olgn) + / K™[W])dVol
IZ+(0,7) D(0,7)

= / I Ung, dVols,,
=,

The boundary terms are controlled by the right hand side of (119) by As-
sumption 14 and Theorem 13. The result follows from the volume compar-
ison dVol = dVoly, dr. g
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Briefly we discuss the construction of candidate Morawetz currents and
the calculation of their densities, deferring details on the Verlﬁcatlon of the
estimates of Assumption 14 to the cases at hand. We denote by /', and

consider the vector field X = f(r)d,,. Letting w™® = f’ + WT“f and S(r)
be a radial function. We introduce the currents

T[] = ab[‘I’]Xb
1
TE W) = X0+ NP~ (], (120)
T W] = S ] o,
and calculate the density:
div (S5 w]) =
!
= f ‘WT*\II + AU + I (1 — (n+)> |y7q;|2 (121)
rn
(f, B)\‘I’\Q,

where

° 17 , 9
e o (35

7.10. The rP-Hierarchy. We adapt the rP-hierarchy appearing in the work
of Schlue [30], generalizing the earlier ideas of Dafermos-Rodnianski [11]. See
also the work of Moschidis [27] on the rP-hierarchy in general asymptotically
flat spacetimes.

We define
o = r"2P (122)
and the current
1 1 2n2M
Pli=—— T — ——— ((n?2 -2 2L
8] = g Tl — g (0 =200+ S ) o
(123)

from which we obtain the following rP density estimate:

Proposition 16. Suppose the potential V' has the form (88)
_ag  boM M? n? —2n
V_T’ . +01<T2” , ag > — 1 .
Then for 1 < p <2, Ry large, and an appropriate choice of k,
P J [P .
V(GRS ) 2 (YR 2 YRR s rx
—

Proof. Except for the presence of the potential V', the construction is the
same as the one in [30]. By direct calculation
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r —n—1 n — °
Ve (r? Jo[®]) :(11)_'“)2 (g(l — ) = (7°"—13M> VL@ + <1 - g) P Yol
—%rp—" <1iuvLW +w) -2+ W)> D2,

where

1 [n2—-2n n2M
T2 4 + orn—11"

From the assumption on V,

a bo M M?
V+W:%+O +01< )

,,anJrl ,,a2n

where g = ag + @ > 0 and by = by + ”72, the coefficient of |®|? has the

form
s p\ by M M?
rP <CLO (1—5) +§(n+1—p)rn71 + 0O <T‘2n2 .

The leading positive term ag (1 — g) vanishes as p = 2. In order to make
the coefficient positive, we consider

(4

rpfnfl n —
=1 _ kil [p(l —p) - k(rn_ll)M} V@

(1=t |2
pp—3-m .
o {(1 - g) + (k=1 -1)01 - u)lTiwl] Vo|?

e [0 (05 (om0 ) w0 (0 ) 1

By taking k large such that % (n+1—p)+ao(k—1)(n—1) > 0, the coefficient
of |®|? above is non-negative for r > R; sufficiently large. Rechoosing Ry
as necessary, comparison of the coefficient of |V ;®|? above with that of the
right-hand side in the proposition holds, and the proposition follows. O

We remark that this lemma will be applied to the Regge-Wheeler type
equations (129), (144), and (169). Since the potentials Vé(” in (169) satisfy

VK(JF) — V1) as £ — oo, we can choose R; and k large which hold for all
the equations (129), (144), and (169).
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Defining

p—n ‘W @’2
EP (%, ::/ " L
w(r) songrzry (1= )k (1—p)

AL(E,) = / rp_”]r_l%fbprndvd‘/olsn,
E,—ﬂ{’I‘ZRl}

rdvdVolgn,
(124)

with @ specified in terms of ¥ by (122), the Morawetz estimate of Assump-
tion 14 and the P density estimate of Proposition 16 give the rP-estimate:

Theorem 17. Suppose V is a solution of the Regge- Wheeler type equation
(87) as in Definition 9 with potential of the form (88). Further, assume
that W satisfies the T-energy comparison (112) and the Morawetz estimate
of Assumption 14, with choices of Ry made such that Proposition 16 holds.
For1 <p<2and m < 1o, we have the rP-estimate:

By + g [ (B )+ -4 () )

< EY (%) + CEY (2,).

(125)

Proof. Let JY[®] = n(r)r(’ii‘i;i], where 7 is a radial cut-off function with

x =1forr > R; and x =0 for r < Ry — 1, with k£ and R; chosen to ensure
that Proposition 16 holds. Let J2[¥] be a current satisfying the Morawetz

estimates in Assumption 14. Using Proposition 16 and the coercivity of
K™W] ;= divJ™[¥] in Ry — 1 <r < Ry, we have for C >> 1

div(JP[®] + CJ™[W]) > 0 as r < Ry,
div(JP[®] + CIT[W]) = P Y U2 + (2 — p)rP 3|V as > Ry,

Owing to the T-energy comparison (112), implying Theorem 13, we have
estimates on many of the boundary terms in terms of the initial N-energy.
The result then follows from the divergence theorem.

O

In addition, we have the lemma:

Lemma 18.

EO(S,) + A% (5,) > / T, [U]Nn, dVols.,
ETQ{TZRl }

Proof. The integrand of Ey is |V, (r"/?¥)]? ~ |r”/2Y7L\I/—|—%T”/2_1\II|2. Bor-
rowing some of the |¥|? term from Ay by applying a Poincaré inequality
yields the estimate. O
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7.11. Uniform Decay Estimates. We introduce the notation

E\%,EK\I/(ET) = E\%(Z‘r) + E%T\I/(E‘r) + E%Q\IJ(ET)a

E\IJY,LK\II(ET) = E\]I/V(ZT) + EéVT‘I,(ZT) + EgQ\II(ET%
with K := {T, §;} ranging over the background Killing fields and 2 := {€;}
ranging over the angular Killing fields.

Assuming the T-energy comparison (112) and the Morawetz estimate of
Assumption 14, we have the following theorem on uniform decay.

(126)

Theorem 19. Suppose ¥ is a solution of the Regge- Wheeler type equation
(87) as in Definition 9. Further, assume that U satisfies the T-energy com-
parison (112) and the Morawetz estimate of Assumption 14, with choices of
k and Ry made such that Proposition 16 holds. Then V satisfies the uniform
decay estimate

§ Iy(2
Ey(5) S W(f), (127)
T
where
Iy(S0) == By £,.4(Z0) + Egﬁwa(zo). (128)

Proof. The proof follows the argument in Dafermos-Rodnianski [11], so we
only describe main steps and refer readers to [11] for more detail.

By applying Theorem 17 with p = 2 and using the mean value theorem,
there exists a sequence ok < T < 2k+1 such that

BY(S5) < & (B (S0) + B (%0).

Through Theorem 17 with p = 1, Lemma 18, and the Morawetz estimate
(119), we have for any 7 > 7,

1 (™
BY(Sn)+ 5 [ BY(Sdr < BY(E0) + CEY cu,con(Sn)
T1

Apply this inequality with 71 = 7, and 70 = T2 and the mean value
theorem, we obtain another sequence 7, ~ 2F such that

1
EY (%) S ;k(E&/(Efk) + B v 20w (E5)-
Combining with the 77! decay of E&, discussed above yields the desired
772 decay of E\]I,V
O
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8. THE Two-TENSOR PORTION

8.1. The Linearized Einstein Equations. There is just a single wave-
type equation involving the two-tensor portion h, a gauge-invariant quantity
as remarked following Definition 7. Namely, from (69) we have

— 20 (r_2ﬁ05> — nr_er@AfLaﬁ — r_gﬁﬁaﬁ
+2r—2 (n + TA’I“A — rﬁr) ﬁa@ =0.

8.2. Master Equation for the Two-Tensor Portion. Expanding the
first term in the equation above and noting

—r?0 (T_2) =2r~10r — 6r_2rArA,

we deduce
mg(,Q)ﬁag = 2r2 (n +(1- n)rArA — rﬂr) ﬁag,
or X R
De(—2)hap = Uhag, (129)
with
U:=2r2 (130)

In deriving (129), we have made use of (28) and (51). The equation is
analogous to that first discovered in Kodama-Ishibashi-Seto [22].

8.3. Analysis of the Master Equation. In contrast with the Regge-
Wheeler type equations to be considered later in this work, the potential
in (129) is non-negative throughout the exterior region. As a consequence,
the natural stress-energy tensor (89) satisfies a positive energy condition,
dramatically simplifying the analysis.

8.3.1. The T-Energy Comparison. Owing to the positive energy condition,
the T-energy comparison (112) is easily satisfied. This, in turn, implies the
uniform boundedness result of Theorem 13.

8.3.2. The Morawetz FEstimate. The calculation of the weighted density of

X A
the current Jg [h] (121) with 8 = 0 agrees with that of the two-tensor
wave equation, up to the presence of the potential terms

1 1 .
[20rufU - marU] 2
u) A2,

2f n+1
=2 (1=
r3 2
with coefficient proportional to that of the angular gradient. Choosing a
function f increasing on the exterior and vanishing at the photon sphere, the

extra terms above are manifestly non-negative. Such a choice of f appears
in the work of Schlue [30]. Then we can define J2*[h] as

N N 1 N 1 N SR
TR = TR+ S (Vag)lhl = TVaglhl® + eTulbY’,  (131)
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with suitable choices of g(r) and e3 > 0 to obtain the density estimate in
Assumption 14. See subsection 9.3.2 for details. In addition, the function
f constructed in [30] is uniformly bounded on the exterior region, ensuring
that the boundary terms associated with the 9-current are dominated by
those of the N-current as required in Assumption 14.

8.4. Uniform Boundedness and Decay of the Master Quantity. With
the T-comparison and the Morawetz estimates in place, we have uniform
boundedness and decay of solutions to the Regge-Wheeler equation (129) in
all spacetime dimensions:

Theorem 20. Let dg be a smooth, symmetric two-tensor on a Schwarzschild-
Tangherlini spacetime, satisfying the linearized Einstein equation (2). There
exists a gauge-invariant master quantity izag in the two-tensor portion hs of
dg satisfying the Regge- Wheeler type equation (129). As a solution of (129),
ﬂaﬁ satisfies the uniform boundedness estimate

EY(2) S BN (%), (132)

and the uniform decay estimate

. I: (%)
B (%) S 5 (133)
where
I}AZ(EO) = Eg’cKE(EO) + Egﬁkﬁ,ﬁﬁ(il(zo) (134)
and T > 0.

We emphasize that the relevant constants in the comparisons depend only
upon the orbit sphere dimension n and the mass M > 0.

9. THE Co-VECTOR PORTION

9.1. The Linearized Einstein Equations. The cross-term and the trace-
less portion of the pure angular term of the linearized Ricci tensor above
yield the co-vector equations

— Ohag — 1 2Ahag + (2 - n)rier@BlAzAa
+(n— 1)T_2ﬁ,4a + VBV Ahpgy — 27! (6‘4@37“) iLBa

. . . 135
+2(1 —n)r*ZTArBhBa — 2 Y 4 VP hpe + nr BV AhBa (135)
+(n— 1)@,4 (7”72500 + @A (rfzﬁﬁa) =0,
VAhag 4+ (n — 2)rrthag — r?0 (T_Qizg>
— nr_er@AiLB +2(n — 1)1"_235 + 2T—27”A7“A;L,B (136)

—9p~1 (@r) ﬁg =0.
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We define the connection-level co-vector quantities

Poi= 1PV (1) (137)

QQBA = 65?1,404 + %OJZAQ — ?“Q@A (7‘72 (65?104 + 604%5)) . (138)

The two quantities are gauge-invariant in view of (72) and Definition 7.

The quantity Qasa is the higher-dimensional analog of a gauge-invariant

quantity appearing in the authors’ earlier work [16]; contraction with r

yields the gauge-invariant quantity appearing in Kodama-Ishibashi-Seto [22],

generalizing the quantity of Regge-Wheeler [29] in four spacetime dimen-
sions. The quantity P, is a higher dimensional generalization of the Cunningham-

Moncrief-Price quantity [8] in four spacetime dimensions, which we introduce

in this paper. The co-vector equations above can be rewritten in terms of
these gauge-invariant quantities as

—reapVE (1" IP,) — r72VPQupa = 0, (139)
r27VA (172 Qapa) = 0. (140)
In addition, the two are related by
EAB@B (T‘_ZQaﬁA) — 3 <%QP5 + %5Pa) =0. (141)
9.2. Master Equations for the Co-Vector Portion.

9.2.1. Decoupling of P,. The decoupling of P, proceeds as follows. Applying
the operator eA®V g to (139) and rewriting the result with (141), we find

BV (r*"GAc@C (r"ilPa)) + 4BV (7‘726562&514) =0,
gP¢ (@B (r‘”@c (r”_lPa)» +r3AP, 4+ (n—1)r 3P, = 0.
Expanding the first term and multiplying through by r, we have
0P, + (n — 2)?"_17”B@BP0‘ +7r2AP,
+((n=1r2=2r2(n—-1)rPrg+(n—1)r " (0Or)) P, =0.

Noting the formula for the spin-1 d’Alembertian (52), along with the
background formulae (28), the equation reduces to

mﬁ(—l)Pa =WPh,, (142)
where
1 2Mn?

We remark that P, is the higher-dimensional analog of the Cunningham-
Moncrief-Price quantity [8] in four spacetime dimensions.



48 PEI-KEN HUNG, JORDAN KELLER, AND MU-TAO WANG

9.2.2. Decoupling of QagArA. Multiplying (141) by 7"*2, and applying the
operator e4VP to the result, we find

eapV? (T”J“QECD@D (T_2QaﬁC))
— GAB@B (Tn_lﬁaprg;) — EAB@B (Tn_lﬁ/jpa) =0,
or, applying (139),
T_nEABECD@B (7“”+2@D (7"_2Qa50)>
+ 7“_260467625«7,4 + 7“_2%56762047,4 =0.
The first term above can be expanded by appealing to the relation
eape“P Phe = PBy — Plg,

valid for tensors on the two-dimensional quotient space. Applying this result,
and contracting the equation with 7, we find

(QQQBA) A — 27”_17“’47"3@3@&5,4 —rt (ﬁr) QQBATA
+ 27’_1(7“B7“B)@BQ0453 — A (@B@AQQ53>

+ 7’72%0467 (QB,YATA) + 7’726567 (Q(WA’I’A) =0.

Commuting the covariant derivative, and applying (140), we rewrite the
term

r (@B@AQaﬁB)
= (0= 2r 2 rpQapar® = (n = 2r 14 (VaVor) Quso

—(n— 2)7’_11"‘47"0@062&/3‘4 + f(QaﬁArA.

With this, and application of (140) to the preceding divergence term, our
equation takes the form

(@QaﬁA) rd 4 (n— 4)7’_17"‘41“36362@53 — ! (|j’l“) QaﬁArA
—2(n — 2)7‘727437“3@@5147“‘4 — IN(QagArA —(n— 2)T72TBTBQQ5ATA
+ (n — 2)T_1TA (@A@BT) QQBB

#7172 (VaV1Qayar) 4772 (V597 Quqar?) =0,
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Comparing this expression with the spin-2 d’Alembertian (51) applied to
Qapar™,
De(-2) (Qapar?) = (OQapa) r* + (Or) Qapa
+ 2 (@A@Ar) @BQQ@A +(n— 4)7’*17*‘4 (@A@Br) QasB
+(n— 4)T_17’ATB@BQQBB +r2A (QaﬂATA)
+ (6 — 2n)r_2rBrBQa5ArA —2r ! (|j7") QagArA,

a lengthy reduction, using also the background calculations (28) and the
commutation relation

VaV'Qpya + VeV Qarya — AQusa = —2Qusa4,
yields the equation

De(—2) (Qapar?) = V) (Qapar?), (144)
with )
_ n+2 2Mn

The quantity and associated equation are analogous to those first discovered
in Kodama-Ishibashi-Seto [22], although their derivation is quite different in
that work.

Subsequently, we employ the shorthand

Q%5 = Qapar™. (146)

9.2.3. Spin-Raising of P,. We denote by D the symmetrized gradient oper-
ation, and consider the quantity

Sap =1 (DP)o i= 17 (VaPs + VsPa ) . (147)

Expanding with definition (51), we find

Izlﬁ(_z)saﬁ = GSQB +(n— 4)T_1TA@ASQB
+ T_QASag + (6 — 2n)r_2TArASa5 T (ir) Sap
=r (Dmﬁ(_l)P)aﬁ + 7172 (n+1)S,p
= (W+ (n+1)r7?) Sap,
where we have used
ADP = DAP + (n+1)DP,

applied the definition (52), and used the wave equation (142). That is, the
spin-raised quantity S,z satisfies

De(-2)Sap = V) Sug, (148)
with V(=) defined by (145).
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9.3. Analysis of the Master Equation. We analyze solutions ¥ of the
Regge-Wheeler type equation (144), including both S, and Q((;ﬁ)

9.3.1. The T-Energy Comparison. The T-energy has the form
1 o0
EL(z,) = 2/ / [(1 — w)|VrY|? + v<—>\\m2} R™drdV olgn
nJr,
1 o0 o
+ 2/ / [cosh_2 z(1—p) Y Y, @2 + R_2|Y7<I>|2} R"drdVolgn.
Performing the change of variables s = R" ™!, we evaluate the quantity
° df n+2 2Mn? 9
—2M — ds.
/m [(S )<ds> +(<n—1>2 <n—1>2s>f] ’

Choosing F = -~ and E = 2F — 1 = 21 and noting ("+2) > 1(E? - 1),

Lemma 11 implies positivity of the expressmn above.
Choosing €(n) > 0 small, we find the lower bound

> 2/ / — )|V RY|? + V(_)|\I/|2} R™drdV olgn
S Jry
/ / COSh — ) Y7 + R_2|%<I>|2] R"drdVolgn
Sn Jry
pe E\IJ

with the reversed comparison in (112) following trivially. We conclude that
U satisfies the uniform boundedness estimate of Theorem 13 in all spacetime
dimensions.

9.3.2. The Morawetz Estimate. Borrowing from the angular term via the
Poincaré inequality (99), with least eigenvalue A = n, and applying (121),
we find

: X,wX f/ 2 f/
/nd1v<J 9]+ 8] a,,*> Z/Sn<1—

where

Tx

+W!‘If!2> :

W(f,B) = <—tiX - %V(*)/f + 1MrV()f)

' g ng B
+(1—u 4 (1—u+r1—u>)
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For n = 3, choosing

(n+1)M M AM?
f= <1 Tl 1= 1 + 52n—2
(MY (M AM?
- r2 r2 5r4 )7
1
T+ 5 = 57

gives f/ > 0 and W(f,8) > 0. For n = 4, choices of

(n+1)M 2M  8M?
f= (1 Tl 1- pn—1 + 5r2n—2
_(1_B5MN(_2M 8M?
N r3 r3 5r6 )7
M
r4 - /8 =1 + ﬁv

do the same. Furthermore, W = r~3 near infinity.

Let J[¥] = JX«[¥] 4 1Jiu air*. For any €y > 0 we have
! HNMY g .
divJ[¥] = f . +i3 (1—(”:;1)) V|2 + W [T
€
- °f 90 - ) 2w () 2
n+1 € 2!
+";(1—( Bl )rwmwr\m? O I
7 —el—pu
/
€
> Dy, wp M|<1 )PV (1 ) 20
1 ° .
2 rn
1 « Bf
<2 l—el— 7.
€0 1
For r > rq, W > r~3 and £ ~ r~"; by choosing ¢y small enough, the last

term is positive in this reglon. To control the angular derivative, notice that

/ <1(”:1) >W7\If|2+W\\I/\2

7‘3

et (1 - (”“)> VU2 4+ WP — o ﬂ ( (”:nll)M> 2.

,r.3 rnf
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Again, W > 773 for r > r¢/2 and Z—; (1 - %71_)1]\/[) ~ r~3. By choosing €;

small, we have as r > r¢/2

/ (1 _ (”:1)> YU W2

3
f m+1DMY\ & o9 1 9
Hence for r > rg,

(o) > 5y 8 (1- PR g+ e

rh—

To obtain a |Y7t\11|2 term, let x be a cut-off function with y =0 as r < rg
and x =1 as r > (ro +71)/2. Define

o) = e (1= O

TTL
where €5 > 0 is a constant to be determined. Denoting
- 1 1
JalW) = Jal W)+ 5 (Vag) W — 59| P,
we calculate
T : 1 2 1 2> 1 (e
divJ[¥] = divJ[¥] + 1Dg|\lf| - 59(?7\11) — igV | 0|

1 1 1 1,
=divJ[¥] + =g [ —|YV, U2 — —— |V, U2 — —|VT|
ivJ| 1+29(1_M|% P O - IR

( Dg—ng >|\I’|2

Together with previous estimate, for r > rq

SR e LA Gt ) LA
+ <i}zf <1 - (n;13M> - 25’73) A2k

<W+ Dg—ng )|\IJ|2

For large radii, f ~ g =~ r~"™. By choosing e small, the coefficient

of |V, W¥|? is greater than 2(6101‘;). Both Elf (1 — ("Ttl)lM) and ¢ vanish
3

quadratically at the photon sphere, and the former, comparable to r~°,
decays no slower than the latter, comparable to r~™. Hence the coefficient

of |[Y¥|? can also be made positive with e; small. The term iDg - %gV(_)
behaves like »~"~2 toward infinity; yet again, positivity of the coefficient
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for |¥|? is ensured by a choice of small e3. With such a choice, we have for
r > T0

- 1 n+1)M\? ;
divJ[¥] 2 — ((1 -~ (Tnf> (\%W + |W|2> + |%\11|2> :
In r < rg, divJ[¥] = divJ[¥] > 0. By adding e37,,[¥]Y? into J,[¥], we
obtain a Morawetz current
JPW) = J, (V] + €37 [0]Y?
1
4
1 }

= V(@ = )| WP+ fHIUPdR, + esTo[9]Y".

1
= T [U1X" = VOUPX, + L (WY — g)Va| U (149)

By choosing €3 small enough, K™ [¥] := divJ™[¥] has the desired posi-
tivity. To estimate J2" [W]ng, _, note that X and Y are regular vector fields,
such that

1 .
(T VX" = SVOIUPX, + eaTup[ VY )n, | < Tup[Vlngs, N°.
X — g ~ r7! for large radii, the third and the fourth terms are
controlled. The estimate for the fifth term follows from regularity of 1{7 =
% at the horizon in addition to its comparability with =" for large radii.
The estimate for JP[W]L® is similar. For J2'[¥]ng,., we note that on the
horizon % and ng , are proportional to T" and that wX —g = 0. Except for
63Tab[\I/]Ybn§_é+, satisfying T,s[W]YPng,. > 0, the terms in J2'[¥]ng,, are
bounded by Ty [\IJ]Tbngﬁ, from which Assumption 14 follows.

From w

We remark that the construction of a current .J,[¥] with positivity in
r < rg, an essential feature in the construction above, is impossible for n > 5,
i.e. in spacetime dimension seven and above. From direct computation,

n— 2 n—4)(n? —
fo20)) B+ O g,

Ty

AW (£, B)l—r, = (

T+

Under the requirement that % > 0 and f(rp) = 0, one must have
f(ry) < 0. Therefore as n > 5, W(f, 3)|,—, is non-positive and equals
zero only if f =0 1in r € [ry,rp|. In this situation, the Morawetz current
cannot be used to absorb error in the red-shift estimate. In this regime, a
more refined analysis is needed to form a Morawetz current satisfying the
necessary density estimate. This difficulty is the reason for our restriction
to dimensions six and below in our decay estimates.

9.4. Uniform Boundedness and Decay of the Master Quantities.
With the T-comparison, we have uniform boundedness of solutions to the
Regge-Wheeler equation (142) in all spacetime dimensions; in addition, the
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Morawetz estimate for n < 4 gives uniform decay of solutions in six and
fewer spacetime dimensions.

Theorem 21. Let §g be a smooth, symmetric two-tensor on a Schwarzschild-
Tangherlini spacetime, satisfying the linearized Einstein equation (2). There
exists a gauge-invariant master quantities Q&? and Sag in the co-vector por-
tion hy of dg satisfying the Regge- Wheeler type equation (142). As solutions

of (142), Qfx,@‘) and Sup satisfy the uniform boundedness estimate

EN(2r) S EJ-) (Do), (150)
EJ(2r) S E§ (%),
)

in all spacetime dimensions. In six and fewer spacetime dimensions, Q((;B
and Sap satisfy the uniform decay estimate

. I, (X
BN (5 < fo0 o)
T
) (151)
- s(Xo
EéV(ET) S 2 ’
T
where
I (20) = B £,.00-(B0) + B 100 22 00 (Do), (152)

and similarly for S. Here we assume T > 0.

We emphasize that the relevant constants in the comparisons depend only
upon the orbit sphere dimension n and the mass M > 0.

10. THE SCALAR PORTION

10.1. The Linearized Einstein Equations. In this subsection we reduce
the linearized vacuum Einstein equations for the scalar solution, following
Kodama-Ishibashi [21]. Subsequently, we modify the gauge-invariant master
quantity appearing in their work, generalizing the Moncrief-Zerilli quantity
[26, 32], and argue that our modified quantity satisfies a Regge-Wheeler
equation. We remark that such an argument is absent in [21].

The authors consider the linearized Einstein tensor

S Egpdr®da® = §Egpda?da® + 20 Eanda?da® 4 §Eqppda®da’,  (153)

admitting the same Hodge decomposition as the linearized Ricci tensor
above. Define

1 ~
ea=Hy— §T2VA (r?H,), (154)
hap :=hap — Vaep — Ve, (155)
1

1-
=53 <H — —AH - QTTAeA) : (156)
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gauge-invariant quantities per (71) and Definition 7. The linearized vacuum
Einstein equations for the scalar portion can be expressed in terms of hap
and H. Following [21], we further rescale the quantities as

5Eab = ’r‘n_zéEab,
iLAB = Tn_Q}NLAB, (157)
H:=r""2H.

As noted in the same work, owing to the Bianchi identities, it suffices to
consider the rescaled linearized Einstein tensor components

. . 1 . . .
6Bas 0Eap =~ (5—7551575) Gags 0B, 6E.

With the aim of rewriting these remaining linearized equations, we define
the further gauge-invariants from hap and H

X =ht—2H,
Y = Al —2H, (158)
Z =hi.

Using the algebraic relation provided by the traceless equation
A N
0Ew3 — — (U'y (5E75> Gap =0,
n

we can invert these relations and find

- (m—1D)X-Y
ht_ 5

n
- X+(n-1)Y
h; = ,

n (159)
hi = Z,
7o _X+Y.

2n

We rewrite the linearized Einstein equations using scalar spherical har-
monic expansion with indices ¢ > 2 and ms(n,?) € {1,...,ds(n,?)}, with
the dimension of the eigenspaces ds(n,¥) given by (31), and the inversion
(159). First, the cross-term equations §E 4, = 0 imply

Or Zéms (n,6) = _atXéms (n,)»

o, (160)
aTlféms(n,K) = Q.}gf(Xst(n,K) Yvﬁmé n,0) ) f2 atZst (n,0)»

where we adopt the notation f:=1— p of [21].
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Substituting (160), the quotient equation 5EI = 0 can be rewritten as
-1 n+2)0 0?

7"2 2r n

0 Xfms(n ) — 8
2 [1-— 3n — 2
)XMM@+ <rj—( )o,s

-(F+5)%
r orf 2r

(n—1) l+n—1)—n orf nf\of (161)
_T83f+ 2 +<2 7’) 2f>1/€m5n€)

20 1 (0.f nf
(51 (5 0) e

815 XEmS (n,0) + 815 nms(n Z))

r f

L
f fof

Finally, the quotient equation 6] = 0 has the form

<€(€ to-l) - av%f - nfi»f) Zéms(n,é)

r2
+ £ (80 Xomy (n,0) + 010: Yo (np)) (162)
(n=2), 0.f o 0.
- <7“f + 9 at)(ﬂmg(n 0) + r 9 8tYVZmS(n,E) = 0.

10.2. Master Equation for the Scalar Portion. Let us define the fur-
ther gauge-invariant quantity

- 1

e <€(12+n D _g2f m) <f (9r- X, ) + Yo, n.0))

" (163)
(n=2), 0f 2f 0/
- <7“f Xfms(n £) + 7 - 9 }/Kms(n,f) )
in addition to
nZéms nt) — T(Xéms nt + YZmS n,f )

B () = (n,0) (n,0) (n,0) (164)

r/ 2100 +n—1) —n+ in(n+1)p)’
modifying those definitions provided in [21]. Substituting (161) and (160)
into ngs(n,g), we regard @gms(n’g) as an expression in Xgms(nj), ngs(n’g),
atZKms(n,Z)u az‘,Q)(ZmS (n,0)» 81?%17% (n,)-

As described below, @, (, ) satisfies the following scalar wave equation:

E‘(I)éms(n,é) - ‘7((+)(I)€m5(n,ﬂ)7 (165)

where
‘7e(+) - Qe . (166)
1672 (¢ +n(n + 1)u/2)
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with
g =0l+n—-1)—n
and

Qo= ni(n+1)28 + n(n + 1) [4(2n2 — 3n +4)q
+nln —2)(n—4)(n + 1)];3 - 12n[(n —4)q (167)

+n(n+1)(n — 2)] g+ 1645 + 4n(n + 2)¢>.

Note that the equation reduces to the well-known Zerilli equation in the case
n=2.

Suppressing the angular harmonic dependence where possible, the equa-
tion in standard Schwarzschild coordinates is tantamount to

0, (f0,8y) = VDo, + ;afcbe.

Again, we regard ®, as an expression in X,Y,9;Z,9?X,0?Y, and apply the
linearized Einstein equations (160, 161, 162) to the left-hand side of the
equation above as follows. Differentiating in r, we replace radial derivatives
on X,Y,0:Z using (161) and (160), respectively. Differentiation of the terms
02X and 0?Y results in mixed partials, with the same coefficient on each
quantity; we replace these terms using (162). After this first differentiation
and substitution, we are again left with an expression in X, Y, 0,7, 9? X, 0%Y .
Multiplying by f and differentiating the product in r, we again replace
radial derivatives on X,Y, 0;Z using (161) and (160). The situation for the
mixed partial terms is more subtle. Regarding the mixed term obtained
via radial derivatives on 02X, we first substitute (161) for an appropriate
portion in order to match the 97X 4 9}Y term in the right-hand side of
the equation above. For the remainder of the term, we add and subtract
appropriate radial derivatives on 2Y and apply (162) to the matching mixed
partial terms in X and Y. Finally, the residual radial derivatives on 92Y are
handled via substitution with (160). The resulting quantity, an expression in
X,Y,0,7,0?X,02Y and their second time derivatives, is equal to the right-
hand side of the equation above, as can be verified by direct calculation. We
remark that verification of the Regge-Wheeler equation for ®, is absent in
[21].

10.3. The Spin-Raised Equation. We spin-raise the equation by associ-

ating Py, (5,¢) With a symmetric traceless two-tensor Qé;)s (n.8) 08" specified
by
(+) — (k tms (n,0)
Qumg(n0),0p = (7“ q)ﬂms(nj)) Y, 5" dzda”, (168)

where A

-n

k=
2

and Yf;ns(n’g) are the tensor spherical harmonics (35).
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We calculate
mc(-z)@éx(n@w = | 0, (n0) + 00" L (n0)
+(n— 4)]{77"727'A7°A7°k(p@ms(n’g):| Y(fg“ (n.6)
725 Dy () (20— L0+ — 1)) Yo

+ (6 - 271)7“_27"A7“AQ§:2€(”75)7&I3 - 2r_1 (ljr) Qé;)s(n,é),aﬁ

= f/g(ﬂ + k(k — 1)rPrgr 2 4+ kr—10r
+(n—4)r2Brg 4+ 2n — Ll +n—1))r 2
+ (6 — 2n)r2rBrp — 297t (Er) ]Qé;)s(n 0.0
where we have used
O6*) = k(k — D)rF =204 4 + krk =100
Simplifying, we obtain the master equation
(+) —_ )
mﬁ(_Q)Qfms(n,E),aﬁ - ‘/Z Qﬂms(n,é),aﬁ’
where
V) = Vi + Ve + Ve
is given by

’I“QVLng =—{l+n—-1)—2n),

9 n?—10n+16 3n?—12n+16 [ 2M
r VQ,TL[ = - )

4 4 rn—l

4ﬂ%mw—[w—lfm+%PMn+2%+«€—D%n+@3
- (6(€ “ D+ O(n—2)n2(n + 1)M
F6(0—1)%(n+0)*(n — 4)nM)f“+1
+ (4@ ~D(n+ On(n + 1)(2n2 — 3n + 4)M?
+ (n = 4)(n = 2)n2(n + 1)2M?) =202
+2n*(n + 1)2M37~‘3”+3] ,

with
Dy =n(n+ 1)Mr~"" 4 (0 —1)(n+0).

(169)

(170)

(171)

(172)
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Note that the potentials converge as

: (+) _ (+).:L 2 _ _(En2 2M
elg(r)love Vi 5,2 (n® —2n+8) — (5n* — 10n + 8) o R (173)

10.4. Analysis of the Master Equation. In this subsection we show for
any dimension n > 3, the T-energy comparison (112) holds for the scalar
portion. In dimensions five and six, we further obtain Morawetz estimates.

Lemma 22. For anyn > 3 and and £ > 2, QEZL).( satisfies the T-energy

nt)
comparison (112). Forn = 5,6 and any € > 2, Qﬁ;)s(ne) satisfies a Morawetz
estimate as in Assumption 14.

This will be proved in the following two subsubsections.

10.4.1. The T-Energy Comparison. The T-energy comparison for the Zer-
illi potential is more involved than the earlier equations. The argument
naturally splits into two regimes, n > 4 and n < 3.

Turning to the higher dimensional analysis, with n > 4, we make use of
the following inequalities:

For a, 3, we have

(a+8)* > dap,
and for x,y and Ay, Ay > 0,
)\1.732 + )\2y2 > )\1)\2
(x+y)?2 — M+

n—1

Moreover, we let s = r
Grouping terms in Vi’z,
1

4r2V3, = o [(K —1)2(n+0)*n(n+2)+4(0 — 1)3(n+ )3 +2n* (n + 1)2M3r—30F3
nt

1 11
+ ( (n—4)(n — 2)n*(n + 1)°M? + 4(L — 1)(n + O)n(n + 1)(2n° — 3n + 4)M* )r*%”
1 11

- (6(5 — 1) (n+0)(n—2)n(n+ )M +6(£ — 1)*(n + £)*(n — 4)nM) r—”“]
II1

we estimate each of the pieces as follows.
For I and II, we apply the second inequality to deduce

z2 A1 y2 A2

(£=1)*(n+6)*n(n+2) +n*(n + 1)°M?s™> (n — 4)(n — 2)
(t=1)(n+0) +n(n+1)Ms~1)?
nn+2)(n—4)(n—2)  nn+2)(n—4)(n—2)

“nn+2)+(n—4)(n-2) 2(n% —2n+4)

/D2, =
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and

(n+ 02(0 = 1)2(4(n + £)(¢ — 1)) +n?(n + 1)2012s~ 22O td)

n(n+1)
/Dy, = (6 —1)(n+£€) +n(n+1)Ms=1)2

2n?2 —3n+4

For III, we apply the second inequality:
6(0—1)(n+£)(n—2)n*n+1)Ms™?
2
(n(n+ )Ms=1 4+ (£ = 1)(n+ )

6l —1)(n+0)(n— 2)n%(n+1)Ms1
- 40 -1 (n+On(n+1)Ms~1

~11I/D?, = —

= fgn(n —2).

After this first round of estimates, we have

93 _ nn+2)(n—2)(n—4) 2n? —3n+4 3
-1 R -9
Vit 2 8(n? —2n +4) + )(n+€)3n2—2n+4 8n(n )
+ 452 [2n*(n+ 1)2M3s ™% = 6(¢ — 1)2(n + 0)*(n — H)nMs~'] .
nl

Defining the quadratic polynomial
P(n) =an?® +bn +c,
with a, b, ¢ as yet unchosen, we rewrite the estimate above as

n(n+2)(n —2)(n —4) 2n? —3n+4 3

S(n2 —an +4) +(—=1)(n+2¥) —-n(n—2)

2773
rVae 2 32 —2n+4 8

2nt(n +1)2M3s™3 + P(n)(0 — 1)*(n — £)*Ms™*

v
P = 1)2(n+ 02Ms~' — 6(£ — 1)2(n + )% (n — 4)nMs~: ] :
\%

_|_
4Di ’

Using the second inequality, we estimate
—1)%(n —£)2P(n) + n%(n + 1)2M?s72(2n?)
(0 =1)(n+£)+n(n+1)Ms™1)?

4 2n2P(n) P(n) oM
2 Ms 12n2 + P(n) <2n2 + P(n)> s

IV/D2, = Mgt

Y

where we have assumed that P(n) is non-negative.
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Next, we control V with the first inequality:
(=1 (n+£)*(—6n% 4 24n — P(n))M s~
N (L—=1)(n+0)+n(n+1)Ms=1)2
—6n?% + 24n — P(n)
> (-1 14 :
2 =D+ O — Ty
After this second round of estimates, we have
nn+2)(n—2)(n—4) 3 1 (n) 2M
—Zn(n—2
8(n? — 2n + 4) shn=2)+3 2n2 + P(n
2n2 —3n+4 —6n®>+24n— P
3n? —2n+4 16nn+1
2)(n —2 —4 1 2M
ot n=m=d) 3 (P
8(n? —2n +4) 8 2n2 + P(n)
2n? —3n+4  —6n>+24n — P(n)
2
+nt )<3n2—2n+4+ 16n(n+1) )’

assuming that

V/DZ,

TQVT?E =

+(€—1)(n+£)<

2n2 —3n +4 n —6n2 + 24n — P(n) >0
3n? —2n+4 16n(n+1) -

As anﬁ can be accounted for by borrowing from the angular gradient, it
remains to consider

1
3
[ V nt +r Vné] m
> n’ —10n+16  n(n+2)(n—2)(n—4) §n(n_2)
4 8(n2 — 2n + 4) 8
nt2) 2n2—3n+4+—6n2+24n—P(n) 1
3n? —2n+4 16n(n +1) (n—1)2
|3n*—12n+16 1 n*P(n) 1 2M
4 42n2 + P(n) | (n—1)2 s~
’VL2 n
Setting F2 = 3"27142’#16 4112n2f1(3(21)] (n31)2 and E,, = 2F,, —1, we must
check that
2
-1 — —
n On+16 n(n+2)(n—2)(n—4) —§n(n—2)
4 8(n% — 2n + 4) 8
2n? —3n+4  —6n%+ 24n — P(n) 1 1
9 > —(E? -1
+n+ )<3n2—2n+4 16n(n + 1) o1 2 1 )

Choosing P(n) = 2n? — 5n + 5, fulfilling both of the conditions on P(n)
above, we obtain positivity for n > 7 and n = 4. We remark that we can
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always perturb the estimate slightly and retain e(n+4£)3(¢—1)3 in II; phrased
another way, we can keep a small piece of the angular gradient, as necessary
to demonstrating positivity of the T-energy.

To extend the estimate to all n > 4, we need a refinement of the second
inequality above. Namely, given A1, A2 > 0 and x,y > 0, with some o > 0
such that 0 < y < a < %x, we have

A1
AL+ A

A2? 4+ \gy?

(z+y)? z (1)

where
¢ — ()\1.1‘ — )\204)2
 AMde(z+a)?

Specializing to I, with z = (£ — 1)(n +£),y = n(n + 1)Ms~ 1 A\ = n(n +
2),A2 = (n — 4)(n — 2), we note that Ms~! < %, such that 0 < y <
in(n+1) < gn(n+ £)(¢ — 1). The relation

1 n(n + 2) A1
== He -1 —_ He-1)=—
y <« 2n(n+ )( ) < (n—4)(n—2)(n+ )( ) )\2:1:
holds for 5 < n < 7, and we obtain the improvement
2
2t o (g MDD =) B 10 nP(n) \2M
e Ty ey s" =D+ 1\ Py )

o2 —3n+4 —6n%+24n— P(n
+(n+2)( () ,

3n? —2n+4 * 16n(n+1)
with

n(n? — 8n + 4)?
(n—4)(n—2)(n+2)%

€ =

Using the same choices of P(n), F,, and E,, as above, the result extends to
include n = 5 and n = 6.
Finally, we consider the low dimensions n = 2 and n = 3. Here we group

1
4r2V3, = BT [(z —1D2(n+0)*n(n+2) +4( — 1)3(n + 02 +2n*(n + 1)2M3p 3043

n
nt

11
+ ( (n—4)(n —2)n%(n +1)2M? +4(¢ — 1)(n + O)n(n + 1)(2n* — 3n + 4) M? )r_2"+2
I 11

- (6(€ —1)(n+0)(n—2n*(n+ )M +6(£ — 1)*(n+ £)*(n — 4)nM )wnﬂ] :

11T I
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The terms II and IIT are handled just as before. The terms in I change
sign for these low dimensions, and we estimate

I=6(¢0—1)2(n+0*4—n)nMs' —(n—2)n*(n+1)*(4 —n)M?s?
>12(n +2)%(4 — n)nM?*s? — (n — 2)n*(n + 1)%(4 — n) M?s 2
>n(4—n) (12(n +2)* —n(n — 2)(n + 1)?) M?s™2

In this way, we obtain

20?2 —3n+4 3

27,3 > _ —_—————— — — -

Vi > (= 1)+ 55— = on(n = 2)

by | €= D2+ 0Pn(n+2) + (4 = 0) (1200 + 2)° = nln = D(n + 1)) M5~
nt

v

Applying the second inequality, we find

n(n +2)(4 — n)(48 + 50n + 15n% — n?)
2(n5 — 5n3 4+ 6n2 4 76n + 96)

IV/Dyy >

With this new lower bound, and the usual choices of F,, and E,,, the result
extends to n =2 and n = 3.

10.4.2. The Morawetz FEstimate. Borrowing from the angular term using
(99), we have

. WX 1!
/ div <JX’ Qb ) + T2 5|Q§7J’rn)s(n,ﬁ)|28r*>
2/[ IWT*@;?SM +BQ4) o2 WIQL) |2]
with

W(h,8) = (305 - U+ v )

f'B s ng  p°
+<1—u+f (1—u+r1—u>)
L
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For n = 3, we make the same choice as for the Regge-Wheeler equation
(142):
(n+1)M M AM?
f= <1 ! 1- 1 + 5r2n—2

(AN [ M+4M2
N 72 r2 5t )7

(n+1)M 2M  6M?
f= (1 Tl 1- ;=1 T 502

_ (MY ([, 2M+6M2
N 73 r3 5r6 )’

M

For n =4 and ¢ = 2, we take

B (n+1)M M 2M?
f_ <1 pn—1 1 5yrn—1 + 5p2n—2
5M 2M2
11— — 1-—
73 5r3 5r6
1 M\? M\?
7‘+-B:2(2+5r3> /<2+5Tp> for r < rp,
_1 14_2 % e 14_2 % e forr>r
2l 275\ 2 5\ 13 =

Note that (2M)'/35 = 1 on the photon sphere r = rp, so that the divergence
theorem still applies. Wlth these choices, f/ > 0 and W(f,3) > 0, and
Assumption 14 can be proved in the same way as in Regge-Wheeler case.

10.5. Uniform Boundedness and Decay of the Master Quantity.
The estimates for the Qé;)s (n.0),08 in the previous subsection are uniform in
the angular mode numbers ¢ and m, owing to convergence of the potentials
V€(+) to the limiting potential V(+) (173). As the relevant energies involve
L?(S™)-terms integrated over the orbit spheres, there is no difficulty in sum-

ming the estimates on the angular modes QH) to obtain estimates
s (

s n,Z),ozB
on a total object Qaﬁ , defined as the L?(S™)-sum

ds(n,f)

= Z Z Q€m5 nl),af" (174)

£>2 mgs(n,l)=
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Following this reasoning, we have the following estimates for the gauge-
invariant master quantity Q((;B)

Theorem 23. Let dg be a smooth, symmetric two-tensor on a Schwarzschild-
Tangherlini spacetime, satisfying the linearized FEinstein equation (2). There

exists a gauge- invam’ant master quantity Q(+) in the scalar portion hi of
dg with harmonics Qz S(n0),08 satisfying the Regge- Wheeler type equations

(169). Summing estimates for the Qems(n@ terms, Q1) satisfies the uniform
boundedness estimate

B (20) S BNy (S0), (175)

in all spacetime dimensions. In siz and fewer spacetime dimensions, Q)
satisfies the uniform decay estimate

EQ(+)(E ) S IQ(J:Q(EO), (176)
where
g (Do) = Ejh) £, oo (Zo) + Eg(+),£KQ(+>,g§<Q<+>(EO) (177)
and T > 0.

We emphasize that the relevant constants in the comparisons depend only
upon the orbit sphere dimension n and the mass M > 0.

11. PROOF OF MAIN THEOREM

Theorem 24. Let dg be a smooth, symmetric two-tensor on a Schwarzschild-
Tangherlini spacetime, satisfying the linearized Finstein equation (2). Per-
forming a spacetime Hodge decomposition of dg, each of the portions of
dg contains gauge-invariant master quantities satisfying decoupled Regge-
Wheeler type wave equations. In particular, the two-tensor portion hy = ﬁag

satisfies the equation (129), the co-vector portion ho has quantities ngﬁ)
(146) and Sqp (147) satisfying the equation (144), and the scalar portion hy

has quantities Qe (008 (174) satisfying the equations (169).
As solutions of Regge- Wheeler type equations, the master quantities satisfy
the uniform boundedness estimates

EY (S

)(ET
s, (178)
(=

N
EN, (=,

;) SE
) S E
) S E
) S
QU (no) Qe
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in all spacetime dimensions. In siz and fewer spacetime dimensions, the
master quantities satisfy the uniform decay estimate

i L ()
N h
Efl (ET) 5 T2 )

) I, (%)
Q(=)I\~0
EéV(—)(Zr) S — 2
- Is(30) (179)
EéV(ET) 5 Ta
IQ2+> (20)

ms(n,l)

EN
T2

QE}H

ms(n,L)

(50) £

~

where
Iy(30) = E £,00(30) + By £, g 2 9(Z0) (180)
and T > 0 for the decay foliation X, of Subsection 7.3.
Owing to uniformity of the estimates for the Qé;l(n@’aﬂ in the angular
mode numbers £ and ms(n,l), we can concisely encode these estimates by
considering their L?(S™)-sum QS[? (174), which satisfies

vc]gVH)(ET) S; EN (20)7

QM)
181
Y (5. < fen ) e
Q) & =

We remark that further pointwise uniform boundedness and uniform de-
cay estimates can be derived from those above by means of commutation
with the angular Killing fields and application of Sobolev estimates on the
orbit spheres.
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