A quasilinear complexity algorithm for the numerical simulation of scattering
from a two-dimensional radially symmetric potential

James Bremer

Department of Mathematics, University of California, Davis

Abstract

Standard solvers for the variable coefficient Helmholtz equation in two spatial dimensions have
running times which grow at least quadratically with the wavenumber k. Here, we describe a solver
which applies only when the scattering potential is radially symmetric but whose running time is
O (klog(k)) in typical cases. We also present the results of numerical experiments demonstrating
the properties of our solver, the code for which is publicly available.
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1. Introduction

The variable coefficient Helmholtz equation
Au(z) + k* (1 + q(x))u(z) =0 for all x € R? (1)

can be used to model the scattering of waves in inhomogeneous media. Derivations of this equation
from physical principles and discussions of its role in applications can be found in [22], [1] and [7],
among other sources.

In many applications, the wavenumber k is real-valued and the scattering potential ¢ is piecewise
smooth with compact support contained inside of a disk €2 of radius R centered at 0. Moreover, u,
which is also referred to as the total field, is the sum of a known incident field u; that is a solution
of the constant coefficient Helmholtz equation

Aui(z) + K*ui(z) = 0 for all z € R? (2)
and an unknown scattered field us which satisfies the Sommerfeld radiation condition
0
lim sup +/r &(r, t) — ikug(r, t)‘ =0. (3)
T 0<t<2m or

In and in what follows, 7 and ¢ are the usual polar coordinates for the point z € R? so that
x = rexp(it). Together , and imply that the scattered field satisfies the boundary value
problem

Aug(z) + 2 (1 + q(z)) us(z) = —k*q(z)ui(z) for all x e R?

sup /1

0<t<2m

(4)

Oug .
Besrt) = iburt) = 0

Email address: bremer@math.ucdavis.edu (James Bremer)



and it is well known that suffices to uniquely determine us (see, for instance, Theorem 8.7 in
Chapter 8 of [7]).

The scattered field us becomes increasingly oscillatory as k grows, and O (k‘z) unknowns are required
to discretize it accurately using standard methods, such as collocation, orthogonal polynomial bases
and finite element bases. This is true even in the case of the constant coefficient Helmholtz equation

Au(z) + K*u(z) =0 for all z e R> (5)
Indeed,
cos(kz1) + sin(kxa), (6)

where 21 and x5 denote the usual rectangular coordinates in R?, is a typical solution of . Ac-
cording to the Nyquist sampling theorem (see, for instance, Chapter 3 of [21]), O (k:Q) discretization
nodes are required to accurately represent @

Consequently, all numerical methods for which rely on standard methods for representing its
solutions have running times which grow at least quadratically with the wavenumber k. In fact,
most existing solvers for |D use n = 0 (k:2) discretization nodes to represent the desired solution
and have running times which grow superlinearly with n. See, for instance, [8], [7], [11], [2], and
their references for examples of such methods and discusions of the asymptotic complexity of state-
of-the-art solvers for the variable coefficient Helmholtz equation.

Numerical-asymptotic methods, such as [I8], [16] 17, 18], 24 [ 6], 20, 28], combine asymptotic models
with conventional numerical schemes (finite element methods, discontinuous Galerkin methods,
integral equation methods, etc.) to represent solutions more efficiently. Typically, these schemes are
able to achieve high-accuracy at a wide range of wavenumbers. However, although they generally
require far fewer degrees of freedom per wavelength than conventional numerical methods, their
running times still typically grow quadratically with k, at least until such large frequencies are
reached that the underlying asymptotic models become highly accurate.

Here, we describe a high accuracy method for solving the variable coefficient Helmholtz equation
whose running time is O (klog(k)) in typical cases but which only applies when the scattering
potential ¢ is radially symmetric. Our approach exploits this symmetry to construct an expansion
of the total field through separation of variables. More explicitly, we represent w in the interior of
the the disk €2 via a sum of the form

m
u(r,t) = Z an Py (1) exp(int), (7)
n=—m

where, for each nonnegative integer n, 1, satisfies a second order differential equation whose coeffi-
cients depend on the wavenumber k£ and the index n and which we refer to as the “perturbed Bessel
equation.” The value of m in @ is equal to the number of Fourier modes needed to accurately rep-
resent the restriction of the incident wave u; to the boundary of the scatterer 0f). Since w; satisfies
the constant coefficient Helmholtz equation at wavenumber k, m is O (k) in typical applications.
Moreover, we solve the perturbed Bessel equation using a method whose worst case running time
appears to be O (log(k)).

We say “appears to be” because our evidence for this claim is, in part, experimental. To construct
the 1, we use an approach based on the method of [3] for the numerical solution of second order
differential equations of the form

y'(t) + k*n(t)y(t) = 0 for all a <t <b. (8)



When 7 is positive, the solutions of are oscillatory and O (k) unknowns are required to discretize
them using standard approaches (e.g., by sampling their values). The solver of 3] instead represents
them using a nonoscillatory phase function which can be calculated and stored efficiently. Indeed,
according to the estimates of [4], the method of [3] runs in time independent of k£ under mild
assumptions on 7 including that it is smooth and strictly positive on the interval [a, b]. The equation
which defines v, can have turning points, however, and in the neighborhood of such a point, the
estimates of [4] do not apply. Here, we present the results of numerical experiments which strongly
indicate that at worst our method requires O (log(k)) to construct each t,. Assuming this is
correct, O (klog(k)) time is required to construct all of the functions 1, appearing in (7). A further
O (klog(k)) operations are needed to calculate the coefficients in this expansion, so that the time
required to solve (4) is O (klog(k)).

It is well known that the condition number of evaluation of oscillatory functions increases with
the frequency of their oscillations and that this generally limits the accuracy with which they can
evaluated numerically (see, for instance, Chapter 1 of [I3]). As a consequence, numerical schemes
for solving , including the algorithm of this paper, lose accuracy with increasing k. Section
describes numerical experiments which were conducted to assess the speed and accuracy of our
scheme.

Separation of variables is hardly a new idea; but, it appears to have been rarely used as a numerical
tool for solving . This is most likely because it offers no advantage in asymptotic running time
when standard numerical methods are used to solve the differential equations which arise. Moreover,
when the parameter n is large, 1, behaves like a rapidly increasing exponential function on some
part of its domain, and the accurate numerical solution of the corresponding differential equation
becomes difficult. One of the few robust numerical algorithms for solving via separation of
variables is described in [I5]. It proceeds by reformulating the differential equations that arise an
integral equations which are then inverted using a “fast direct solver.” This results in an extremely
accurate and robust method for solving ; however, the running time of this method still grows
quadratically with k. Our scheme also bears some similarities to that of [I1]. There, spectral
methods are used to construct expansions of the total field in the interior of {2 and of the scattered
field in the exterior of €2, and the coefficients in these expansion are found using a mechanism very
similar to that used by our algorithm to compute the coefficients in the expansion . However,
the scheme of [11] is not limited to radially symmetric potentials and its running time grows faster
than O (k:z)

The remainder of this document is structured as follows. Section (2] discusses the solution of of
the boundary value problem via the method separation of variables. Our algorithm for the
numerical solution of the boundary value problem is discussed in Sections|3|and 4] In Section
we describe several numerical experiments which demonstrate the properties of our solver. We close
in Section [6] with a few brief remarks regarding this work and a discussion of possible directions for
future research.

2. Determination of the Scattered Field Through Separation of Variables

In this section, we describe how to the method of separation of variables can be used to solve the
boundary value problem .

The total field u satisfies
Au(r,t) + k2(1 +q(r)u(r,t) =0 9)



in 2 and is nonsingular at 0. Separating variables in @ gives us the representation formula
e}
U(ﬁ t) = Z an¢|n|<r) eXp<int)7 (10)
n—aoo
where, for each nonnegative integer n, 1, is a nonzero solution of
r2y”(r) + 7y (r) + (k2(1 + q(r))r2 — n2) y(r) =0, 0<r <R, (11)
which is regular at 0. When ¢ = 0, becomes Bessel’s differential equation and we refer to it as
the perturbed Bessel equation. Since this equation has a regular singular point at 0 and the roots

of the indicial equation are n and —n, there exists a basis {u,,v,} in the space of its solutions such
that

up(r) =0 (") as r—0 (12)

and

on(r) = {(’) (log(r)) as r—0 ifn=20 (13)

O™ a r—0 ifn>0

(see, for instance, Chapter 5 of [I4]). Since 1y, is nonsingular at 0, it must be a multiple of the
solution u,. Because we do not impose a second boundary condition on %, it is only determined
up to a (nonzero) multiplicative constant. It is perhaps tempting to impose a second condition on
1, in the hopes of uniquely determining it. However, doing so generally leads to a boundary value
problem which is not solvable for all possible k. Moreover, this ambiguity has no impact on the form
of the expansion used to represent the total field in the interior of €2, although the particular
value of the coefficient a,, depends on the choice of 1),.

Because ¢ is supported inside of the disk 2, the scattered field us solves

Aug(r,t) + Eus(r,t) =0 in Q°

lim sup +/r

=0 0<t<L27

Ous . (14)
W(T’ t) — ikus(r,t)| = 0.

Separating variables in ([14]) shows that us can be represented in the exterior of {2 via a sum of the
form

us(r,t) = > bnopy(kr) exp(int), (15)

n=—0
where, for each nonnegative n, o, is a solution of Bessel’s differential

r2y" (r) + ry (r) + (k:21“2 — n2) y(r) =0, R<r <o, (16)

consistent with the Sommerfeld radiation condition. It follows from the integral representation
formula

_ n+1i 0 1
H,(z) = exp(iz) (\/”2(714-5)271]0 (2% —iz)"" 2 exp(—2z2) dx) (17)

for the Hankel function of the first kind of order n (which can be found as Formula 3.388(4) in [12])
and standard results regarding the decay properties of Laplace transforms (see, for instance, [27])
that H,(kr) is a solution of which has the appropriate behavior at infinity. In particular, wug
admits the representation

us(r,t) = > bpHy(kr) exp(int) (18)

n=—au

in the exterior of €.



Standard elliptic regularity results (see, for instance, Section 8.4 of [10]) imply that the total field
u and its derivative du/0r with respect to the radial variable are continuous across the boundary
00 of the disk . This suffices to determine the coefficients a,, in and b, in . To see this,
we first let

u; (R, t) Z cn explint) (19)

n=—ao
and
ou;

a0 — (R, 1) Z dy,, exp(int) (20)

n=—a
be the Fourier expansions of the restrictions of the incident field u; and its radial derivative to 0.
Since u — us = u;, the continuity of u and its radial derivative imply that

Z antyp|(R) exp(int) — Z bnH,, (kR) exp(int) = Z cn exp(int) (21)
and : i
Z an@bm( ) exp(int) — Z bnkH, (kR) exp(int) = Z dy, exp(int) (22)

for all 0 <t < 2m. Owing to the orthogonality of the set {exp(int)}, and hold if and only
if for each integer n, a, and b, satisfy the linear system of equations
anyp|(R) — bnHy (ER) = cp
an@/)fm(R) — bykH), (kR) = d,,.

Since the scattered field is uniquely determined by , each of the systems must be uniquely
solvable. In particular, for each integer n, the determinant

Hy, (KR) iy (R) = k ¥y (R)Hy, (kR) (24)

of the coefficient matrix in (23)) is necessarily nonzero and the coefficients a,, and b,, are given by
the formulas

(23)

—kH! (kR) ¢y + Hy, (kR) dy,
Hy, (KR) W, (R) — k ¥y, (R)H}, (kR)

an =

(25)

and

it (R)en + iy (R)d
H, (kR 7, (R) — k Wy (R)H, (RF)

This procedure determines the scattered field in the sense that once the coefficients a,, and b,, are
determined through and , the scattered field can be evaluated at any point outside of {2
via and it can be evaluated at any point inside of 2 or on 0€2 by first evaluating the total field
via and then subtracting the value of the (known) incident field u; from the result.

3. A Numerical Algorithm for the Determination of the Scattered Field

This is the first of two sections detailing our method for the solution of the boundary value problem
(). In it, we describe all elements of the algorithm except for the procedure for solving Equa-
tion . The following section addresses that topic.

Our algorithm operates in two phases: a precomputation phase in which the perturbed Bessel



equation is repeatedly solved in order to construct the functions %, used in the representation
of the total field, and a solution phase in which the coefficients in the expansions of the total and
scattered fields are calculated. We refer to the first procedure as the “precomputation phase” because
in many applications it is necessary to solve for multiple incident fields u; while the wavenumber
k and scattering potential ¢ are fixed. In this event, the precomputation phase is only executed
once and the solution phase is executed once for each incident field.

The precomputation phase takes as input the wavenumber k for the problem, a subroutine for
evaluating the scattering potential ¢ at any specified point, a list

X1<X2<...<Xs (27)
of all of the points on the interval (0, R) at which the scattering potential ¢(r) is nonsmooth (recall

that ¢ is assumed to be piecewise smooth), and a positive integer m. It consists of calculating
functions

Yo, Y1, -y Ym (28)

such that for each integer 0 < n < m, 1, is a solution of the perturbed Bessel equation which
is regular at 0. We detail our algorithm for solving the perturbed Bessel equation in Section
which follows this one. Based on strong experimental evidence, we believe that the running time of
the precomputation phase is O (mlog(m)).

The solution phase takes as input a routine for evaluating the incident field u; and its derivative
ou;/0r with respect to the radial variable r. It proceeds by first forming the approximations

u; (R, t) ~ Z cn explint) (29)
and

aui = .

pe (R,t) ~ n;m d,, exp(int) (30)

of the restrictions of u; and its normal derivative to the boundary 02 in the usual way — that is,
using the fast Fourier transform. The integer m must be sufficiently large for the approximations
and to be highly accurate. In the next step of the solution phase, the coefficients in the

truncated expansion

m
u(r,t) = Z antyy) () exp(int) (31)
n=—m
which represents the total wave in the interior of 2 are computed using Formula (25). Finally, the
coefficients in the truncated expansion

m
ug(r,t) = Z b Hy, (kr) exp(int) (32)
n=—m
used to represent the scattered field in the exterior of 2 are computed using . The fast Fourier
transforms take O (mlog(m)) operations, and they dominate the cost of this phase of the algorithm.
Ounly O (m) operations are required to construct the coefficients in the expansions and .

The coefficients in the expansions and are the principal outputs of the algorithm of this
paper. Once they have been determined, the scattered field can be evaluated at any point in the
exterior of 2 in O (m) operation by evaluating the sum , and it can be evaluated at any point
in the interior of © in O (m) operations by evaluating and subtracting the value of the incident
field ;.



Since u; is a solution of the constant coefficient Helmholtz equation at wavenumber k, it is expected
that m will be on the order of k so that the running time of our algorithm is O (klog(k)). We found
m = w/2Rk to be sufficient in all of the numerical experiments discussed in this paper. If m is not
known a priori it can be determined through an adaptive procedure. For instance, starting from an
initial guess, m could be gradually increased until the coefficients in the expansions and
decay sufficiently fast.

4. Numerical Solution of the Perturbed Bessel Equation

This is the second of two sections detailing our method for the solution of the boundary value
problem . In it, we discuss the method used to solve Equation numerically.

It can be easily seen that if v, solves (L1)), then ¢, (r) = 1/r 1,(r) is a solution of
y'(r) +Q(r)y(r) =0, 0<r <R, (33)

where
2

1
Qr) =X (L+q(r)) + *—5—. (34)

We refer to as the normal form of the perturbed Bessel equation and we find it more convenient
to work with than . Among other things, a great deal of information about the behavior of the
solutions of can be easily discerned from the coefficient . Indeed, according to standard
asymptotic results (see, for instance, [25] or [9]), in intervals on which @ is positive the solutions of
behave roughly as oscillatory exponential functions, while they resemble increasing or decreasing
exponential functions in intervals on which @ is negative. The zeros of () which separate these regions
are known as turning points for . We do not, in fact, produce a solution of the perturbed Bessel
equation over the entire interval [0, R] since @ is singular at 0 and, as a consequence, all but one of
the solutions of are also singular at 0. Instead, we produce a solution over [1071° R], which
generally suffices for the purposes of numerical computation.

The first step of our algorithm for solving the perturbed Bessel equation consists of forming a
partition
W0 P=¢<&b<...<&=R (35)

of the solution interval [1071, R] such that @ is smooth and does not change sign on each interval
(&,&+1). We do so by finding the set of all zeros of @ on [0, R] and merging it with the list
of the singularities of Q provided by the user as well as the additional points 10~ and R.

Next, for each j = 1,...,t, our solver forms a basis

Bj = {uj,v;} (36)
in space of the restrictions of solutions of to (§5,&j+1). The mechanisms used to construct
and represent these basis functions differ depending on whether @ is positive in the interval (the

oscillatory regime) or negative in the interval (the nonoscillatory regime). We discuss the details in
each case below.

Finally, for each j = 1,...,¢, it calculates coefficients «; and (; such that the restriction of the
desired solution ¢,, of to the interval (&;,&;+41) is
Vi (r) + njv(r). (37)

In the case of the first interval (£1,&2), the values of ¢, and its derivative at the point & = 10715



are first estimated via the asymptotic approximation

on(r) ~ /1y (x/q(O) + /6‘27‘) as r — 0, (38)

which can be easily derived using standard methods (see, for instance, [25] or [9]). Then, the linear
system of equations

{’nm(fl) + Gj—1ui (&) = en(&1) (39)

yuh (&) + G—1uy (1) = ¢, (&1)

is solved for y; and (;. For each j > 1, the coefficients ~; and (; are determined by enforcing the
continuity of ¢, and its derivative at the point £;. More explicitly, we solve the system of linear
equations

{'leujl(gj) + nj—1ui—1(§5) = 1w (&) + nju;(€5) (40)

V11 (&) + mj—auy_1 (&) = (&) + mijui (&)
for v; and n;.

4.1. The oscillatory regime

For intervals (&;,&;+1) on which @ is positive, we use a basis generated by a nonoscillatory phase
function. A function « is a phase function for the differential equation

y'(t) +n(t)y(t) =0 forall a<t<b (41)
provided o/(r) > 0 for all a < r < b and
sin (a(r)) and &% (a(r))
o (r) o/ (r)
is a basis in its space of solutions. An extensive discussion of phase functions for second order

differential equations can be found in [23]. Among other things, it is shown there that « is a phase
function for if and only if its derivative satisfies the nonlinear second order differential equation

(42)

2
2 1a"(r)y 3 (d"(r)
ad'(r) =nr)— = + - a<r<b 43

( ( )) 77( ) 2 O[/(T) 4 O/(T) ’ ’ ( )
which we refer to as Kummer’s equation after E. E. Kummer who studied it in [I9]. We note that
only determines v up to a constant. For our purposes, the constant is largely irrelevant (our
only requirement is that it not be too large in magnitude), and we always determine it by taking «
to be zero at left-hand endpoint of the interval on which it is defined.

In [], it is shown that, under mild assumptions on the coefficient 1 (including the condition that
it be positive on the interval [a,b]), there exists a phase function for which is roughly as
oscillatory as the coefficient 7. Moreover, in [3], a fast algorithm for the numerical calculation
of this nonoscillatory phase functions is presented. It operates by first introducing a “windowed
version” 7 of 1 such that

B A2 forall a<r < 3atb

(r) = at3b ! (44)
n(r) forall “= <r <b

with A a constant chosen to be roughly on the order of y/n(a). Since 7) = A\? near a, the nonoscillatory

phase function for the equation

y"(r) +n(r)y(r) =0 (45)



is equal to Ar near a. By solving the initial value problem

-, 2 . 1 5/”(7“) § @”(T) 2
(@) = 2(r) ()
&(r)=X and &"(r) =0,

C24a/(r) 4
the values of &'(b) and &”(b) are determined. Since 7] is equal to n near b, these values closely
approximate o/(b) and «”(b). The function « is then determined over the interval (a,b) by solving
the terminal value problem

(46)

a/ ) 2 o la///(r) § 04”(7‘) 2
( ()) =n(r) 2 o/(r) +4<o/(7“)>
o' (b) = &/ (b)
a”(b) _ d”(b).

To solve and , we use a spectral method which represents the phase function « and its
derivatives using piecewise Chebyshev expansions over a collection of subintervals of (a,b). The
subintervals are chosen adaptively. Other mechanisms for the solution of these differential equations
could be used, so long as they are well-suited for stiff problems. When the coefficient 7 is strictly
positive on [a,b], the nonoscillatory phase function for produced by this algorithm can be
constructed and evaluated in time independent of the magnitude of n (which is a measure of the
frequency of oscillation of the solutions of )

(47)

Since can have turning points at the endpoints &; and 1, the estimates of [4] do not apply.
However, we have found experimentally (see Sections and that the worst case running time
of the algorithm of [3] is O (log(k)) in this case.

4.2. The nonoscillatory regime

For intervals (&;,&;4+1) on which @ is negative, we use a basis {u;,v;} of solutions of such
that u; resembles an increasing exponential function and v; resembles a decreasing exponential
function. Because the cost of representing these functions using standard methods, such as through
expansions in orthogonal polynomials or via sampling their values, increases rapidly with n and k,
we instead construct their logarithms and use these to evaluate u; and v; as needed.

If y(r) = exp(o(t)) satisfies the second order differential equation (33)), then it can be easily verified
that o’ satisfies the Riccati equation

o"(r) + (o'(r)* + Q(r) = 0 (48)
(see, for instance, Chapter 4 of [I4] for a discussion of the Riccati equation). To construct the
logarithm of w;, we first calculate a solution o’ of which satisfies the initial condition ¢’ (§;) =
0. Again, we use an adaptive spectral solver whose output is a piecewise Chebyshev expansion
representing the solution. We then use spectral integration to form the antiderivative o of ¢’ such

that 0({;+1) = 0. Since the dominant solution of when solving in the forward direction is
increasing, the function u; constructed in this fashion resembles an increasing exponential function.

To construct the logarithm of v;, we solve , imposing the terminal condition o’ ({4+1) = 0.
Next we use spectral integration to form the antiderivative o of ¢’ such that o(¢;) = 0. Since
the dominant solution of in the backward direction is decreasing, v; resembles a decreasing
exponential function.

Based on the extensive numerical experiments of Section [5] we believe that the worst case running
time of this procedure for constructing u; and v; is O (log(k)).



5. Numerical Experiments

In this section, we describe numerical experiments which were conducted to evaluate the performance
of the algorithm of this paper. Our code was written in Fortran with OpenMP extensions and was
compiled with the GNU Fortran compiler version 7.4.0. All calculations were performed on a
workstation computer equipped with 28 Intel Xeon E5-2697 processor cores running at 2.6 GHz.
We used P. Swarztrauber’s FFTPACK library [26] to apply the fast Fourier transform. We used a
code provided by V. Rokhlin to evaluate the Hankel functions. Our implementation of the algorithm
of this paper and our code for conducting the numerical experiments described here are available
on GitHub at the following address:

https://github.com/JamesCBremerJr/HelmRad

We used the following procedure to measure the accuracy of solutions produced by our solver for
. We first executed it using extended precision (Fortran REAL*16) arithmetic, which gives about
33 decimal digits of accuracy. When possible, we directly verified that the obtained scattered field
satisfies the partial differential equation

Aug(z) + 2 (1 + q(z)) us(z) + K2q(z)ui(z) = 0 (49)

to at least 15 decimal digits of accuracy using a Chebyshev spectral method. We then executed
our algorithm a second time using double precision (Fortran REAL*8) arithmetic and measured the
error in the obtained solution by comparison with the reference solution produced using extended
precision arithmetic. The condition number of the spectral discretization of increases rapidly
with the number of discretization nodes needed and hence with k, which is why extended precision
arithmetic was necessary to verify the reference solutions. Even so, ill-conditioning limited the use
of this technique to problems in which k£ was less than or equal to 1024. When reporting errors, we
use parentheses to indicate experiments in which we could not verify the accuracy of our extended
precision solution through a spectral method. To summarize, we first used our solver to generate
solutions using extended precision arithmetic. For all k& < 1024, these were verfied to be accurate
to at least 15 decimal digits of precision using a spectral method. We then generated solutions in
double precision arithmetic using our solver and measured the error of these solutions by comparison
with those generated in extended precision.

In each experiment, we used an excessive number of Fourier modes to represent the restriction of
the incoming field to 02 in order to avoid any loss of accuracy from the truncation of its Fourier
expansion. The number of Fourier modes used is reported in each experiment. In many cases,
we expect that the Fourier expansion of the incoming wave will be constructed using an adaptive
algorithm (and an implementation of such an algorithm is included with our publicly available code).

The code for the precomputation phase of our algorithm is multithreaded in order to take advantage
of the embarrassingly parallel nature of the calculation (each v, can constructed entirely indepen-
dent of the others). The FFTPACK library, on the other hand, is single-threaded and although
the solution phase of our algorithm could no doubt be accelerated by switching to a multithreaded
FFT library, we opted not to do so because the source code for the FFTPACK library was readily
available and easy to modify to use extended precision arithmetic.

In the course of conducting these experiments, we found that there is a large jump in the cost of
applying the FFT using the FFTPACK library when the dimension of the transform is increased
from 2'% to 216, and this is reflected in the timings for the solution phase of our algorithm. Since
algorithms for applying the fast Fourier transform are not our principal concern here, we did not
extensively investigate this issue. However, we suspect that it is a cache effect.
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5.1. The numerical solution of the perturbed Bessel equation, part I

We now describe a set of experiments conducted to measure performance of our method for solving
the normal form of the perturbed Bessel equation . In each of them, g was taken to be

q(r) =r*—1, (50)

and the equation was solved over the interval [0,2]. The functions

b (1) (29

form a basis in the space of solutions of in this case, so any solution which is regular at the
origin is necessarily multiple of J z (%7“2) /7. This made assessing the accuracy of obtained solutions

possible — we did so by measuring their absolute error at 100 points on the interval [0, 2].

In the first of these experiments, the results of which are shown in the first row of Figure (1] we held
k fixed at 217 = 131,072 and increased n from 0 to 217. We report the time taken by our solver and
the largest observed absolute error as functions of n.

In the second, the results of which are shown in the second row of Figure [T we let n = 0 and
increased k from 0 to 2'7. We once again report the time taken by our solver and the largest
observed absolute error as functions of k.

In the third and fourth experiments, the results of which are reported in the third and fourth rows
of Figure , respectively, we fixed n to be a constant multiple of k and increased k from 0 to 2!7.
We again measured the running time and largest absolute error. In the third experiment, we set
n = k/2 and in the fourth we set n = k.

We observe that in the case in which the solutions are purely oscillatory (i.e., when n = 0), the
running time of the procedure is essentially independent of k. This is consistent with the estimates
of [4]. When k is fixed and n is increased, there is modest growth in the runtime of the procedure.
In the cases in which the equation has a turning point and n is increased in proportion to k, the
running time of the procedure appears to grow logarithmically with k. This is consistent with our
conjecture that the running time of this procedure grows logarithmically with k£ in the worst case.

5.2. The numerical solution of the perturbed Bessel equation, part II

In most applications, it is necessary to calculate the solutions of the perturbed Bessel equation for
a fixed k and a range of value of n. For instance, it is often necessary to construct the set

Sk ={en:n=0,1,...,k}, (52)

where, for each n, @, is a solution of . We conducted several experiments to measure the time
required by our solver to construct the set S as a function of k. In each of them, R was taken to
be 2 and, for each k = 28,29 ...,216 217 we measured the time required to construct Si. In the
first experiment, the results of which are shown in Figure [2| ¢(r) was taken to be r? — 1. In the
second experiment, the results of which appear in Figure [3| ¢(r) = 14r2exp(—5r2). In the third
experiment, q(r) = 3x[1,21(r), where x[;2)(r) denotes the characteristic function of the interval
[1,2]. The results of this third experiment appear in Figure . In the case of the first and third
experiment, the solution of is known, and we were able to measure the absolute errors in the
obtained solutions.

We observe first that the time required to construct Sy, appears to be O (klog(k)), which is consistent
with our conjecture. We also observe that the accuracy of the obtained solutions deteriorates as k
increases. This is expected as the condition number of both and increase with k.
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5.8. Scattering of a plane wave from a Gaussian potential

In this experiment, the incident field was the plane wave

u;(r,t) = exp (ikr cos (t - %)) (53)
and the scattering potential was defined by

q(r) = exp(—5r7). (54)
We solved for each k = 24,25 ...,2!7 and measured the time required by each phase of our
algorithm. We also measured the absolute error in the obtained solution in the fashion described at
the beginning of this section. The results are shown in Figure [5| and Table[Il Figure [5|also displays
images of the incoming field, scattered field and total field when k& = 16, as well as a plot of the
function ¢(r). A plot of the scattering potential as a function of the two spatial variables z and y
appears in Figure [6]

We observe that the running time of our solver appears to grow in line with our conjecture — that
is, as O (klog(k)) — and that while the accuracy of our solver deteriorates with k, at least 6-7 digit
accuracy is achieved all cases, even for a problem of more than 100,000 wavelengths in size.

5.4. Scattering of a circular wave from a potential resembling a volcano

In this experiment, the incident field was the circular wave

ui(z) = Ho (k |z — 20) , (55)
where zg = 67, and the scattering potential was defined by
q(r) = 1472 exp(—5r?). (56)

Again, we solved for each k = 24,25, ...,2!7 and measured the time required by each phase of our
algorithm. We also measured the absolute error in the obtained solution in the fashion described at
the beginning of this section. The results are shown in Figure [ and Table 2] Figure[7]also displays
images of the incoming field, scattered field and total field when k = 16, as well as a plot of the
function ¢(r). A plot of the scattering potential as a function of the two spatial variables z and y
appears in Figure [§

Again, we see that the running time of our solver appears to grow as O (klog(k)), and that, in the
worst case for a problem of more than one hundred thousand wavelengths in size, roughly 6-7 digit
accuracy is obtained.

5.5. Scattering of a plane wave from a discontinuous potential

In this experiment, the incident field was the plane wave

u;(r,t) = exp (ikr cos (t - %)) (57)
and the scattering potential was defined by

1 0<r<l1
g(r)=<2 2<r<3 (58)
0 otherwise.
We once again solved for each k = 24,25, ...,2!7 and measured the time required by each phase
of our algorithm. We also measured the absolute error in the obtained solution in the fashion

described at the beginning of this section. The results are shown in Figure [9] and Table [3] Figure [9]
also displays images of the incoming field, scattered field and total field when k = 16, as well as a
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plot of the function ¢(r). A plot of the scattering potential as a function of the two spatial variables
x and y appears in Figure [10}

Again, we see that the running time of our solver appears to grow as O (klog(k)), and that, in the
worst case for a problem of more than one hundred thousand wavelengths in size, roughly 6-7 digit
accuracy is obtained.

5.6. Scattering of an indicent wave generated by a linear array from a discontinuous potential

In this experiment, the incident field was generated by a linear array of charges placed along the line
segment connecting the points (—5,10) and (5, 10). More explicitly, u; was given by the formula

ui(z) = 1201 Hy (k z— <—5 +10 ‘% + 10@'> D . (59)
j=1

The scattering potential was defined by

1 0<r<l1
gr)=32-4(2 =3 2<r<3 (60)
0 otherwise.

We once again solved for each k = 2%,2% ...,2'7 and measured the time required by each
phase of our algorithm. We also measured the absolute error in the obtained solution in the fashion
described at the beginning of this section. The results are shown in Figure[II]and Table[d] Figure[I]]
also displays images of the incoming field, scattered field and total field when k = 16, as well as a
plot of the function ¢(r). A plot of the scattering potential as a function of the two spatial variables
x and y appears in Figure [12]

Again, we see that the running time of our solver appears to grow as O (klog(k)), and that, in the
worst case for a problem of more than one hundred thousand wavelengths in size, roughly 6-7 digit
accuracy is obtained.

6. Conclusions and Future Work

We have developed a fast method for the numerical solution of the two-dimensional variable coef-
ficient Helmholtz equation in the radially symmetric case. It is based on separation of variables
and exploits the fact that a large class of second order differential equations admit nonoscillatory
phase functions. Using our scheme, problems of up to several hundred thousands wavelengths in
size can be solved with relatively high accuracy (at least 6-7 digits) in a matter of minutes on a
typical workstation computer.

Even so, there are many inefficiencies in our approach. For instance, a reduction in the asymptotic
running time of our method for solving the perturbed Bessel differential equation could be achieved
through the use of standard asymptotic methods for equations of the form . We could represent
the functions v, near turning points via expansions in Airy functions (see, for instance, Chapter 11 of
[25] or Chapter 4 of [9]). There are some numerical difficulties involved in computing the coefficients
in such expansions; however, assuming that these can be overcome, the asymptotic complexity of
the precomputation phase could be reduced to O () and a dramatic speedup in the running time
of our algorithm effected.

A more challenging problem is to extend the results of this paper to the case of nonsymmetric
scattering potentials. The notion of phase function extends easily to this case. Indeed, if u(x,y) =
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exp(o(x,y)) solves

Au(z,y) + q(z, y)u(z,y) = 0, (61)
then ¢ must satisfy the two-dimensional Riccati equation
Ao(z,y) + |Vo(z,y))* + q(z,y) = 0. (62)

Moreover, preliminary numerical experiments suggest that, just like its one-dimensional counterpart,
admits solutions which are nonoscillatory even when ¢ is of large magnitude. It seems likely,
then, that the rapid numerical solution of various boundary value problems for can be carried
out by constructing a collection of nonoscillatory solutions of .

Suppose, for example, that Q — R? is the disk of radius R > 0 centered at 0. If
O—my0—m+15---,0-1,00,01,---,0m—1,0m (63)

are nonoscillatory solutions of such that for each n the restriction of exp(on(z,y)) to the
boundary of € is equal to the exponential function exp(int). If the restriction of f to 02 admits
the expansion

Z an exp(int), (64)

n=—m

then the solution of the Dirichlet boundary value problem

Au(z,y) + q(z,y)u(z,y) =0 in Q
{ u(z,y) = f(z,y) on 0N (65)
D anexp(on(z,y)). (66)

n=—m

Assuming that can be solved in O (log(k)) time, this would provide a method for solving in
the general case whose running time behaves as O (log(k)). This line of inquiry is being vigorously
pursued by the author and will be reported on at a later date.
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Figure 1: The results of the experiments described in Section in which the performance of our solver for the
perturbed Bessel equation was tested. In each of these experiments ¢(r) = r? —1 and R = 2. The first row gives the
running time and largest observed absolute error as functions of n when k is held fixed at 2!7. The second row gives
them as functions of & when n = 0 and k is increased from 0 to 2'7. The third and fourth row give the running time
and largest observed absolute error as functions of n when n is equal to a multiple of k; n = k/2 in third row and
n = k in the fourth.
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Figure 2: The results of the first experiment of Section The plot in the upper left gives the time required to
construct the set of solutions Sk = {pn : n = 0,...,k} of the perturbed Bessel equation when ¢(r) = 3x1,2(r) as
function of k. In the upper right is a graph of the function ¢(r). Each row of the table corresponds to one value of
k and reports the time t; required to compute the set of solutions Sk, the maximum observed absolute error and,
when applicable, the ratio of ¢y to t/2.
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as function of k. In the upper right is a graph of the function ¢(r). Each row of the table corresponds to one value
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function of k. In the upper right is a graph of the function ¢(r). Each row of the table corresponds to one value of
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Figure 5: Figures related to the experiment of Section In the upper left is a plot of the function ¢(r) and in the
upper right is an image of the incident wave when & = 16. The image at middle left is of the real part of the total
field £ = 16. At middle right is an image of the real part of the scattered field when k = 16. At bottom left, the
running time of the precomputation phase is plotted as a function of k£ and at bottom right, the running time of the
solution phase is plotted as a function of k.
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k m  Maximum absolute Precomp time  Solve time

error (in seconds)  (in seconds)
24 100 8.34 x 10714 3.61x107%  1.71x107%
25 201 1.55 x 10712 5.38x10792  3.03x107%
26 402 1.26 x 10712 1.07x107%  3.95x107%
27 804 1.22 x 10712 2.22x107%  6.88x107%3
28 1608 2.17 x 10712 4.51x107%  2.45x107%2
29 3216 4.72 x 10712 9.47x107%  1.06x1072
210 6433 8.54 x 10712 1.98x107%0  8.97x10792
21 12867  (1.85x 10711) 4.19x10%90  2.27%x107
212 25735 (6.13 x 10711) 9.02x107%  3.29x107%2
213 51471 (2.05 x 10719) 191109 1.79x10~%
214102943 (1.51 x 107%) 4.16x10M00  1.82x107%
215 205887  (3.85 x 107%) 8.89x107%  2.46x10
216 411774 (216 x 107%) 1.92x10%%2  2.40x10*%
2'7 823549  (1.01 x 107°7) 4.14x10792 1.44x10700

Table 1: The results of the experiments of Section Each row of the table corresponds to one wavenumber k and
gives the number m of Fourier modes used to represent the incident wave, the maximum observed absolute error in
the obtained solution (in cases in which this could be measured), and the time taken by each phase of our solver. The
absolute maximum errors are calculated via comparison with solutions generated using extended precision arithmetic.
Parentheses are used to indicate cases in which the wavenumber was too large for the the extended precision solution
to be verified via a spectral method.

Figure 6: A plot of the scattering potential used in the experiment of Section
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Figure 7: Figures related to the experiment of Section In the upper left is a plot of the function ¢(r) and in the
upper right is an image of the incident wave when k = 16. The image at middle left is of the real part of the total
field £ = 16. At middle right is an image of the real part of the scattered field when k = 16. At bottom left, the
running time of the precomputation phase is plotted as a function of k£ and at bottom right, the running time of the
solution phase is plotted as a function of k.
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k m  Maximum absolute Precomp time  Solve time

error (in seconds)  (in seconds)
24 100 9.81 x 1071° 3.70x107%2  1.95x107%4
25 201 6.61 x 10714 5.39x10792  2.84x107™
26 402 5.96 x 10714 1.08x1079  4.45%x10~%
27 804 2.94 x 10714 2.25x107%  6.99x107%3
28 1608 4.85 x 10714 4.55%x1070  2.58x10792
29 3216 6.01 x 10714 9.43x107%  1.04x10702
210 6433 9.30 x 10714 1.99x10%%°  9.01x10702
21 12867 (1.32x 1071?) 4.23x10%90  2.12x107%
212 25735 (5.22 x 1071) 9.06x101%  2.73x107"2
213 51471 (1.32 x 10712) 19110 1.59x10%
214102943 (3.43 x 1071?) 4.12x107%0 1.65%x107%
215 205887 (1.3 x 10711) 8.79x10M0t  2.54x107%
216411774 (544 x 10711) 1.94x10%%2  2.63x107%
217823549  (1.09 x 10717) 4.14x10792  1.23x107%0

Table 2: The results of the experiments of Section Each row of the table corresponds to one wavenumber k and
gives the number m of Fourier modes used to represent the incident wave, the maximum observed absolute error in
the obtained solution (in cases in which this could be measured), and the time taken by each phase of our solver. The
absolute maximum errors are calculated via comparison with solutions generated using extended precision arithmetic.
Parentheses are used to indicate cases in which the wavenumber was too large for the the extended precision solution
to be verified via a spectral method.

Figure 8: A plot of the volcano-shaped scattering potential used in the experiment of Section
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Figure 9: Figures related to the experiment of Section In the upper left is a plot of the function ¢(r) and in the
upper right is an image of the incident wave when & = 16. The image at middle left is of the real part of the total
field £ = 16. At middle right is an image of the real part of the scattered field when k = 16. At bottom left, the
running time of the precomputation phase is plotted as a function of k£ and at bottom right, the running time of the
solution phase is plotted as a function of k.
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k m  Maximum absolute Precomp time  Solve time

error (in seconds)  (in seconds)
24 100 8.03 x 10714 7.95x10792  1.81x10~™
25 201 1.20 x 10713 1.57x107%  522x107%
26 402 3.15 x 10713 3.23x10790  4.14x107%
27 804 8.20 x 10712 6.48x1079  6.87x107%3
28 1608 3.46 x 10712 9.84x1079  2.45x10702
29 3216 8.46 x 10712 2.05x107%0  1.13x10792
210 6433 4.01 x 10711 4.24x10790  9.62x10702
2112867 (1.30 x 1071°) 8.79x107%0  2.24x10~%
212 25735 (3.80 x 10717) 1.79%x10%0  2.18x107%2
213 51471 (1.99 x 107%9) 3.67x10M00  1.54x107%
214102943 (5.87 x 107%) 7.68x10700  1.55x107%
215205887  (4.07 x 107%) 1.59%x10%%2  3.01x10%
216 411774 (1.00 x 1077) 3.52x10%92  2.53x10"00
217823549 (3.64 x 107°7) 7.24x10%92  1.45x1070

Table 3: The results of the experiments of Section Each row of the table corresponds to one wavenumber k and
gives the number m of Fourier modes used to represent the incident wave, the maximum observed absolute error in
the obtained solution (in cases in which this could be measured), and the time taken by each phase of our solver. The
absolute maximum errors are calculated via comparison with solutions generated using extended precision arithmetic.
Parentheses are used to indicate cases in which the wavenumber was too large for the the extended precision solution
to be verified via a spectral method.

Figure 10: A plot of the discontinuous scattering potential used in the experiment of Section
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Figure 11: Figures related to the experiment of Section
upper right is an image of the incident wave when k = 16. The image at middle left is of the real part of the total
field £ = 16. At middle right is an image of the real part of the scattered field when k = 16. At bottom left, the
running time of the precomputation phase is plotted as a function of k£ and at bottom right, the running time of the

solution phase is plotted as a function of k.
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In the upper left is a plot of the function ¢(r) and in the




k m  Maximum absolute Precomp time  Solve time

error (in seconds)  (in seconds)
24 100 2.71 x 10714 8.02x10792  6.33x107%
25 201 1.71 x 10714 1.57x107%  1.18x107%
20 402 2.90 x 10714 3.33x1079%  2.35x10703
27 804 7.41 x 10713 6.55x10790  9.38x10703
28 1608 1.18 x 10713 1.03x10%%0  3.08x10792
29 3216 4.27 x 10713 2.16x107%0  2.04x10792
210 6433 1.12 x 10712 4.46x107%0  1.15x107%¢
2112867 (241 x 10712) 9.41x107%  2.37x10~%
21225735 (1.00 x 10711) 1.87x107%  1.06x10%
213 51471 (1.93 x 1071) 3.82x10M%t  3.09x10~%
214102943 (5.21 x 1071) 8.02x107%t  4.60x10~%
215 205887  (1.42 x 10710) 1.66x107%2  8.28x107%
216 411774 (4.83 x 10710) 3.60x10702  3.77x10+%
217823549  (1.16 x 107%%) 7.47x107%2  3.60x101%

Table 4: The results of the experiments of Section Each row of the table corresponds to one wavenumber k and
gives the number m of Fourier modes used to represent the incident wave, the maximum observed absolute error in
the obtained solution (in cases in which this could be measured), and the time taken by each phase of our solver. The
absolute maximum errors are calculated via comparison with solutions generated using extended precision arithmetic.
Parentheses are used to indicate cases in which the wavenumber was too large for the the extended precision solution
to be verified via a spectral method.
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Figure 12: A plot of the discontinuous scattering potential used in the experiment of Section
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