
Directed Placement for mVLSI Devices

BRIAN CRITES, University of California, Riverside

KAREN KONG, University of California, Riverside

PHILIP BRISK, University of California, Riverside

ACM Reference format:
Brian Crites, Karen Kong, and Philip Brisk. 2010. Directed Placement for mVLSI Devices. ACM J. Emerg.
Technol. Comput. Syst. 9, 4, Article 39 (March 2010), 25 pages.

https://doi.org/0000001.0000001

ABSTRACT
Continuous-flow microfluidic devices based on integrated channel networks are becoming increas-

ingly prevalant in research in the biological sciences. At present, these devices are physically laid

out by hand by domain experts who understand both the underlying technology and the biological

functions that will execute on fabricated devices. The lack of a design science that is specific to

microfluidic technology creates a substantial barrier to entry. To address this concern, this paper

introduces Directed Placement, a physical design algorithm that leverages the natural “directedness”

in most modern microfluidic designs: fluid enters at designated inputs, flows through a linear or

tree-based network of channels and fluidic components, and exits the device at dedicated outputs.

Directed placement creates physical layouts that share many principle similarities to those created

by domain experts. Directed placement allows components to be placed closer to their neighbors

compared to existing layout algorithms based on planar graph embedding or simulated annealing,

leading an average reduction in laid out fluid channel length of 91%, while improving area utilization

by 8% on average. Directed placement is compatible with both passive and active microfluidic

devices and is compatible with a variety of mainstream manufacturing technologies.

1 INTRODUCTION
Microfluidic chips are poised to revolutionize biochemistry and bioengineering through automation,

miniaturization, and programmability. The ability to precisely control the volumes of expensive

reagents at the microliter scale and below has enabled relevant biological applications such as

single-cell capture [7] and protein analysis [60] and significantly increased the throughput of

multiple important laboratory functions [4, 15, 21, 59].

While a handful of large and well-funded academic laboratories possess both the engineering

and biological expertise to design, fabricate, test, and validate microfluidic chips as prerequisites

for using them to produce publishable advances in the biological sciences, the vast majority of

laboratories lack the requisite expertise. Today, most advances in microfluidics are generated by

engineering-oriented laboratories; meanwhile, the majority of biological research laboratories do

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.

1550-4832/2010/3-ART39 $15.00

https://doi.org/0000001.0000001

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

not produce their own microfluidic solutions, which limits the type of research problems that

they can explore. A second limiting factor is cost: starting with Stanford’s gas chromatographic

air analyzer in 1979 [48], researchers have relied on semiconductor-inspired microfabrication

techniques to produce the majority of microfluidic devices [3, 13, 34, 54, 61]. This necessitates

expensive clean rooms, fabrication equipment, and highly trained technicians, which is once again

prohibitive for non-technologists.

There is an urgent need to increase access and lower barriers to entry for researchers who would

like to integrate microfluidic solutions into their laboratories. The recent rise of low-cost rapid

prototyping technologies, namely desktop CNC milling [23, 24] and 3D printing [10, 43, 56] ad-

dresses the equipment and facilities barriers; however, they do not solve the key engineering design

challenge. At present, most microfluidic chip designers use general-purpose CAD software such as

AutoCAD or SolidWorks, which lack domain-knowledge. Using semiconductor hardware design as

an analogy, it is certainly possible to use SolidWorks or AutoCAD to produce the photomask set

that defines the geometries used during the photolithography steps of semiconductor fabrication;

however, doing so is thoroughly impractical due to the presence of software produced by leading

companies in the Electronic Design Automation (EDA) industry, namely Cadence, Synopsys, and

Mentor, which are tailored to the needs of semiconductor designers. The creation of similar software

specialized for microfluidics could substantially simplify the design process. The combination of

low-cost desktop fabrication equipment and easy-to-use design software will substantially improve

accessibility to microfluidic technologies in both research and education.

One important algorithmic step formicrofluidic design automation software is physical design, i.e.,

placement and routing.Whilemanymicrofluidic chips visually appear to be similar to semiconductor

chips, the physical design constraints are notably different. The two key differences are the lack

of a fluidic analogues to both multi-layer metallization and standard cells. The former limits fluid

processing and transport functions to a single device layer, while the latter means that physical

design tools must be able to place components having arbitrary geometries. Consequently, the

design rules that govern placement and routing are substantially different for microfluidic layout

in comparison to semiconductor physical design. Using another semiconductor industry metaphor,

the current design paradigm for microfluidics is stuck in the early 1970s, before the Conway-Mead

revolution led to integrated semiconductor VLSI technology and computer-aided design tools,

which are now industry standard [33], which limits the design and integration complexities that

can be achieved by manual layout.

ContributionMost microfluidic devices have a naturally directed structure: fluid is injected into

the device via designated input ports, flows through the devices for process, and exits the device

via designated output ports. Based on this observation, this paper introduces Directed Placement,
an efficient and effective heuristic for microfluidic physical design. Directed placement yields

layouts that share many principle similarities to designs that are produced by hands, which makes

the designs easier to reason about if or when modifications are needed. Quantitatively, Directed

Placement yields shorter channel route lengths than several existing placement heuristics when

used in conjunction with existing routing methods. Specifically, we compare against three previous

microfluidic placement methods: Simulated Annealing [29], which was adapted from semiconductor

VLSI placement; Planar Placement [30], which adapts planar graph layout methods for microfluidics,

and Diagonal Component Expansion [6], which is a more refined variant of the Planar Placement

method. Directed Placement is shown to be far more effective these three prior heuristics in terms

of improving area utilization and reducing average channel length.

(a) (b)

Fig. 1. Exploded views of (a) multilayer soft lithography and (b) monolithic membrane valves

2 MICROFLUIDIC TECHNOLOGY OVERVIEW
This section provides an overview of microfluidic fabrication technologies and the ways that they

can be used to fabricate passive and active devices. Passive devices do not contain any active

elements (e.g., valves), and, as such, are simpler, cheaper, and easier to fabricate than active devices,

and require less external equipment to operate. In principle, Directed Placement can lay out both

passive and active devices. We discuss both device types here however will focus our examples on

passive devices as they are the most restrictive and aid in explanation clarity.

2.1 Fabrication Technology
Microfluidic devices rely on a continuous flow of fluid through a network of microchannels and

components that are patterned onto one or more device layers. Each patterned layer may be a rigid

substrate [8, 19, 38] or imprinted in a flexible polymer (e.g., polydimethylsiloxane (PDMS)) [61]. An
additional layer of material, which is typically rigid and not patterned (e.g., a glass slide), is bonded

to the topmost patterned layer to enclose the channel network, which would otherwise be exposed

to the environment. Depending on the specific choice of materials used, small holes may be drilled

(rigid material) or punched (flexible material) into the second layer to provide I/O access for fluids.

The process to create each patterned layer is technology dependent. In general, more expensive

fabrication equipment is necessary to produce patterns with smaller features; that said, many

applications in biology are not compatible with features smaller than the biological media being

studied (e.g., cells, DNA molecules, etc.). In terms of rigid substrates, desktop CNC milling [23, 24]

represents the lower-cost, larger feature-size end of the spectrum, while microfabrication represents

the higher-cost, smaller-feature size end of the spectrum. CNC milling typically cuts patterns

into polycarbonate thermoplastic polymers, while microfabrication etches patterns into glass via

photolithography. In certain cases, compatibility between the device material and biological media

under study may dictate the choice of fabrication technology as well.

Imprinting patterns in flexible materials is more complicated and expensive than patterning

a rigid material[61] as a photolithographic process is required to produce physical molds. The

flexible material must be available initially in a liquid form so that it can be poured onto the mold.

While resting on the mold, the liquid must partially harden to imprint the mold’s pattern, before it

can be removed and mounted on a rigid substrate. A number of additional challenging steps (e.g.,

degassing to remove air bubbles) are necessary as well, which increases the time and cost of this

fabrication process while inhibiting scalability. Further details are omitted to conserve space.

Additive manufacturing (e.g., 3D printing [10, 43, 56]) can create enclosed rigid 3D structures.

The key advantage of 3D additive manufacturing is the elimination of a separate bonding step

Fig. 2. A passive serpentine mixer (top), the shape of which allows for dilution between the two fluids causing
the two input flows to mix and a rotary mixer (bottom) which uses peristaltic pumping to mix.

between distinct patterned and enclosing material layers. The most significant disadvantages are

twofold: Firstly, unlike glass or PDMS, 3D printed objects are opaque, which makes the material a

poor choice for use in biological studies that involve imaging. Secondly, there is concern about

the biological toxicity of 3D printed parts; recent research has shown that different 3D printing

technologies yield parts with different toxicity levels and that exposure to ultraviolet light largely

mitigates these issues in the most extreme cases [37].

Directed Placement primarily targets 2D channel networks; the authors are unaware of any 3D

physical design algorithms targeting 3D printed microfluidics. The subsequent discussion will focus

exclusively on devices created by one or more 2D patterned device layers.

2.2 Passive Devices
Passive microfluidic devices rely primarily on the underlying physical properties of fluid flow

to achieve their desired microfluidic functionality [11, 57]. A passive microfluidic device has no

moving parts (other than the fluid or fluidics that flow within it). Each component in the channel

network is designed to ensure that it can perform a specific action, such as the serpentine channel

mixer, shown in Fig. 2, which allows dilution to mix two flows of fluid together. The only physical

connections to a passive device are fluid inputs and outputs. Driven by an external pressure source

such as a syringe pump, fluid flows into the device, through the device to perform its function(s),

and then out of the device into an external reservoir to collect the excess.

In terms of technology, a passive microfluidic device typically comprises two material layers: a

patterned layer, which may be rigid or flexible (see the preceding subsection), and a non-patterned
enclosing layer, which is typically rigid (e.g., a glass slide). Once the two layers have been mounted

and bonded, the final fabrication step is to create holes that will act as the fluidic I/O interface. If

the patterned layer is rigid, the holes are drilled; if it is flexible, the holes are punched. I/O holes do

not penetrate the enclosing layer.

2.3 Active Devices
Active microfluidic devices employ pneumatically-controlled microvalves to actuate transport and

mixing of fluids [3, 13, 34, 54]. Microvalves typically perform one of two functions: active pumping

and mixing, or reconfiguring the various fluidic pathways through the device. While beyond the

scope of this particular paper, it is worth noting that several research groups have shown that

microvalves introduce an element of programmability into microfluidics that is not otherwise

achieveable in passive devices [9, 55].

Active microfluidic devices are more complicated and expensive to design, fabricate, and test

when compared to passive devices, and require additional external equipment to deliver pneumatic

control signals. Active devices typically require multiple patterned substrate layers, at least one

of which uses a flexible material, which acts as a membrane to produce pneumatically-controlled

microvalves [3, 13, 34, 54].

Active devices typically are partitioned into “fluidic” and “pneumatic” layers. The fluidic layer

performs fluid transport and operations that directly interact with the fluid. The pneumatic layer,

in contrast, is effectively a channel network that delivers pneumatic control signals, provided by

an external source, to the (set of) microvalve(s) that each control input drives.

2.3.1 Multilayer Soft Lithography. The first widely recognized and successful microvalve tech-

nology was based onmulti-layer soft lithography [54]. In single-layer soft lithography [61] a channel

network is patterned into PDMS (once again, a flexible material) and then mounted on a glass slide

as an enclosing layer. Multi-layer soft lithography employs a similar principle, but stacks two or

three imprinted PDMS layers on top of the rigid substrate.

Fig. 1a shows an example of a two-layer multilayer soft lithography microvalve: the flow layer on
the bottom manipulates biological fluids of interest, while the control layer above provides actuation
capabilities from the external pressure source. The microvalve is formed where a control channel

on one top layer crosses a flow channel on the bottom layer. By default, all microvalves are open;

pressurizing a control channel closes the microvalves that it drives. The control channel geometry

at the microvalve point must be wide enough to allow a small amount of pressure external pressure

to deflect the small PDMS membrane to close the microvalve.

Similar to transistors or logic gates, microvalves can be combined to form larger components

such as peristaltic pumps, mixers, and multiplexers, which can then be integrated to form fully

integrated microfluidic devices, akin to integrated semiconductor circuits [34]. Fig. 2 (bottom)

shows a rotary mixer. Valves at the mixers input and output allow two fluids to be loaded, and for

the mixer to be isolated off from the rest of the device during mixing; when the mixer is closed the

3-valve pump applies peristaltic actuation to active mix the fluids. The mixed fluids can then be

driven out of the mixer at its output.

Since its inception in the year 2000, the integration density of microvalves has followed a trend

similar to Moore’s Law under multilayer soft lithography [14]; this was called microfluidic Large
Scale Integration (mLSI). In 2012, microvalve densities up to 0.4−−0.8 valves per cm2

were reported

[3], which represented an increase in valve density of more than two orders of magnitude; this led

to the terminology microfluidic Very Large Scale Integration (mVLSI).

2.3.2 Monolithic Membrane Valves. While highly successful from a technological standpoint,

multi-layer soft lithography has a high barrier to entry due to the cost and complexity of imprinting

channel network patterns onto PDMS. A secondary concern regarding PDMS is its non-specific

absorption, as a porous material, which limits its use in many potential biological applications

[18, 46].

To address these concerns, an alternativemonolithic membrane valve was introduced in 2003 [13].

As shown in Fig. 1b, a monolithic membrane valve consists of a thin unpatterned PDMS membrane

sandwiched between two patterned rigid layers. Fluid flows in one of the rigid layers, allowing

the PDMS membrane to act as the enclosing layer. The second layer delivers external pressure to

each microvalve. Monolithic membrane valves are normally closed, and can be opened by applying

vacuum or pressure via the control layer.

Monolithic membrane microvalve technology has not achieved the same integration densities as

multilayer soft lithography; however, it’s key advantage is cost. The initial monolithic membrane

valve designs employed etched glass as the rigid substrates [13], which was considerably simpler

and more cost effective than patterning PDMS; moreover, providing a rigid, rather than porous,

channel wall on three out of four sides mitigated the absorption issue. Subsequetly, the same basic

monolithic membrane microvalve design has been translated to both 3D printing [43] and CNC

milling [24]; while 3D printing and CNC milling cannot achieve feature sizes as small as glass

etching, they are much cheaper and cost effective, making them far more accessible to researchers

in the life sciences.

2.4 Microfluidic Technology: Summary
Active microfluidics, and multi-layer soft lithography in particular, have achieved tremendous

academic impact, and the underlying technologies show great promise to integrate semiconductor-

like complexity into biological instrumentation. That said, to date, the vast majority of microfluidic

devices that are produced commercially today are passive. The key driving factors are cost and

complexity. In addition to fabrication costs, which we discussed previously, other cost factors

including multi-layer assembly, testing and validation (e.g., to ensure that layer alignment errors

during assembly did not occur), and the cost and complexity associated with external solenoid

pressure sources, and software, which are needed to operate the device. The extra equipment

required to run the device may prohibit its use in the field, e.g., for point-of-care diagnostics.

Additionally, while microvalve integration density has increased over time, the integration

density of the external control capabilities has not. For example, the Stanford Microfluidic Foundry

limits the number of I/Os for both fluid and control to 35 as a design rule, regardless of the number

of integrated microvalves to be controlled [1]. This limits the ability to harness the benefits of

highly integrated valve densities outside of lock-step SIMD-style parallel control patterns.

All of the aforementioned issues have informed our microfluidic physical design strategy.

3 RELATEDWORK
Physical design for continuous flow microfluidics differs substantially from modern semiconductor

physical design in several key respects. Nowadays, semiconductor physical design is built on a

foundation that includes standard cells, larger IP blocks, multi-layer metallization, and parame-

terzied geometric design rules, the origins of which are generally attributed to Conway and Mead

who introduced the notion of Very Large Scale Integration (VLSI) in the late 1970s [33].

For a typical microfluidic chip, the fluid flow layer (both components and channels) must be

planar, and components may have arbitrary geometries. This is quite different from standard cell

design methodologies used in semiconductor VLSI, in which cells are placed in rows with uniform

height: the placement of a standard cell is characterized by a tuple (r ,x) where r is the ID of the

row into which it is placed and x is the horizontal offset from the leftmost position in the row.

In contrast, the placement of a microfluidic component is characterized by an (x ,y) pair which
represents the position of the component in a 2D plane. For active devices, additional steps (and

optimization opportunities) are needed for control layer physical design.

3.1 Planarization
As described above, the flow layer of a typical microfluidic chip is limited to a single device layer.

In other words, only planar netlists can be placed legally, given this design constraint. For passive

devices, this imposes a planarity test on the netlist: a non-planar netlist, which is any netlist

that contains one or more subgraphs isomorphic to one of the Kuratowski subgraphs show in

Fig. 3, cannot be placed legally as proven by Kuratowski [22]. One possibility is to redesign the

device, if possible, in a manner that ensures planarity. Another option may be to switch to a

fabrication technology, such as 3D printing, that can admit non-planar devices. The latter option is

an interesting potential research topic, but goes far beyond the scope of this paper.

(a) (b)

Fig. 3. The Kuratowski subgraphs (a) K5 and (b) K3,3. If a subgraph is isomorphic to one of these then the
entire graph is known to be non-planar

Active devices can be planarized algorithmically by inserting valve-based switches at points

where two or more flow channels cross. As a design rule, the Stanford Microfluidic Foundry limits

the number of I/Os for both fluid and control to 35 [1]. Many of these I/Os will be consumed by the

netlist itself (fluid I/O) and for valve actuation. As a separate constraint, many devices that are used

for biological experiments in the field or as point-of-care diagnostics in resource-limited settings

may have more stringent I/O constraints as well.

Planarization for active devices has proposed as a netlist preprocessing step prior to physical

design [53]. An alternative approach is to allow a limited number of planarity violations during

physical design [32], as long as the total I/O constraint is not violated. Directed Placement assumes

that the netlist is planar prior to layout, which is sufficient for both active and passive devices.

3.2 Flow Layer Physical Design
Directed Placement is most similar to several prior heuristics that start with a planar graph

embedding and one-by-one expand vertices (initially points) into 2D components, shifting the

positions of yet-to-be-expanded components to prevent overlap and to preserve planarity [6, 30].

We compare directly to Planar Placement as well as the similar but largely more effective Diagonal
Component Expansion (DICE). We report substantial improvements in area utilization and fluid

channel length; both DICE and Directed Placement employ the same fluid channel router.

We also compare Directed Placement to a simulated annealing-based microfluidic placer [32, 35],

which does not guarantee planarity; planarity can be achieved post-physical design via switch

insertion, as described above. Directed Placement reports improved utilization and fluid channel

length, despite the fact that Directed Placement imposes a planarity constraint while the simulated

annealing-based placer does not, causing it to serve as a more optimal baseline for placement. We

eschew additional comparisons with other flow layer placement heuristics that cannot guarantee

planarity [50, 58].

We are aware of one other standalone flow channel router that could potentially compete with

the one used by Planar Placement and DICE and the Directed placement heuristic presented here

[27]. This router employs a heuristic that tries to simultaneously minimize total routed channel

length and the length of the longest routed channel; however, it cannot ensure a planar routing

result, even for planar netlists, and makes no attempt to minimize the number of channel crossings.

As such, we do not consider it to be a good basis for comparison.

It is also possible to formulate flow layer placement together with routing in a single problem

formulation, for example, as a Boolean Satisfiability (SAT) problem [12]. While a SAT solver can

solve the joint problem optimally, it necessarily suffers from high runtimes and scalability challenges,

under the assumption that P , NP . While is it possible to prune the size of the search space, e.g.,

by downscaling component sizes or partitioning the netlist into independent subproblems, doing

so sacrifices optimality. This points toward the possibility of investigating hierarchical partitioning

and placement strategies, similar in principle to UCLA’s Dragon standard cell placer [47]; however,

this potential research direction is far beyond the scope of this paper.

Prior work has also investigated physical design for capillary electrophoresis (CE) microfluidic

chips [16, 39], which are used to perform chemical separations. The earliest approach formulated

minimum-area CE placement as a non-linear program [39], which lacks scalability; the routing stage

adjusts the placement and inserts I/Os after the fact and on the perimeter of the chip, sacrificing

optimality. A more recent and more effective approach [16], which reduced area compared to the

former, applies simulated annealing to minimize area and routing cost, followed by an auxiliary

routing step to minimize total channel length and the number of bends, and I/O placement to

minimize the length of auxiliary channels. The most fundamental difference compared to our work

is that Directed Placement treats I/Os as components, treating them as part of the netlist, as opposed

to placing and routing them as a post-processing step. Ignoring this difference, Directed Placement

could be used in lieu of the simulated annealing step. The simulated annealing-based placer which

we compare against is quite similar to this approach as well.

3.3 Control Layer Physical Design
One approach to the physical design of active microfluidic devices is to first place-and-route the

flow layer, e.g., using the techniques described in the preceding subsection, and then generate the

control layer afterward. Control layer generation necessitates the placement of control inputs and

control layer routing, which connects each control input to the valve (or valves) that it drives.

Valve sharing typically occurs in one of two contexts, noting that the total number of I/Os is

limited as a design constraint. In the first context, microfluidic chips are designed to process fluids

in a lock-step SIMD fashion [60], and this design choice is reflected as an inherent property of the

netlist; this allows one set of valves to control k independent or mostly independent datapaths,

which increases throughput without increasing demand for control inputs.

In the second context, valve sharing is posed as an application-specific optimization: two valves

whose actuation timings are wholly independent from one another can share the same control

input [2, 36]. In this case, the overall objective is to minimize the total number of control inputs,

which reduces total chip area and increases the likelihood of satisfying design constraints. Another

strategy to reduce the number of control inputs is to instantiate a large control demultiplexer on

the perimeter of the chip [9, 52, 64]: this allows n external control inputs to independently drive

2
n
internal control lines; the drawback is that the control demultiplexer and associated control

routing area itself may be quite large, and in certain cases, dominates the overall chip area. To

reduce the cost, the demultiplexer, which is a general-purpose solution, can be replaced with

application-specific pneumatic control logic [20] which can be optimized to minimize gate count

[41] or to enhance testability [28, 40].

Valve sharing can be performed prior to control layer physical design, or as an integrated

co-optimization step [17] with control placement and routing algorithms. One advantage of the

integrated approach is that, to achieve precise timing, it may necessary to perform (near-)equal

length routing, so that the application of pressure at a control input actuates all of the valves that

are driven at precisely the same time [62].

With respect to this paper, control layer generation (with or without valve sharing) is performed

after Directed Placement generates the flow layer; as such, they are complementary steps that are

only applicable to the automated layout of active microfluidic devices.

3.4 Combined Flow/Control Layer Physical Design
It is also possible to simultaneously generate the flow and control layers of an active microfluidic

device, which creates opportunities for co-optimization. One early effort in this direction [63]

generated the flow layer using planar placement, improved it using simulated annealing, and then

generated the control layer using A* routing (valve sharing and other control optimizations were

not considered). The algorithm adjusts the flow layer layout if control layer congestion exceeds a

threshold. In principle, Directed Placement could be used to generate the initial flow layer.

The Columba [53] and Columba 2.0 [51] frameworks formulated this problem as an Integer

Linear Program (ILP), which could be solved optimally, albeit in exponential worst-case time under

the assumption that P , NP . Because of these scalability issues, the same authors introduced

Columba S [52], which severely restricted the design space. The flow layer restrictions include

the following: (1) all inputs are on the left-side of the chip; (2) all outputs are on the right side of

the chip; and (3) all flow channels are horizontal and do not bend. Despite the ILP, this problem

is actually more restricted than what we propose for Directed Placement. The third limitation

necessitates the introduction of additional switches in certain cases, an issue that does not affect

Directed Placement (when placing and routing active devices).

The Columba S control layout includes several nice features, including multiplexers at the top

and/or bottom of the chip to reduce the number of control inputs, and the ability to route-through

and bypass components; this latter feature could be integrated into other physical design algorithms

as well. The one key restriction on control layer generation is that all control lines are vertical (except

at component bypass points). While the Columba S ILP formulation simultaneously generates the

flow and control layers, it would just as easily be possible to start with a flow layer generated by

Directed Placement and use a reduced version of Columba S to generate the control layer.

4 PRELIMINARIES
An mVLSI netlist M = (C,E) consists of a set of components, C , and a set of edges, E, between
them. A component ci ∈ C is a tuple ci = (Ti , Pi ,xi ,yi ,hi ,wi) where Ti is the set of neighboring
components to ci , Pi is the set of ci ’s ports, (xi ,yi) is the coordinate location of the upper left corner

of ci , and hi and wi are the height and width of ci , respectively. A port on a component ci ∈ C ,
pi, j ∈ Pi is located at (ai, j ,bi, j), a point on the perimeter of ci ; ci is called a terminal component if
|Ti | = 1. An edge, ei ∈ E, is a pair of components ei = (ci , c j) which represents a fluidic connection

between them. An optional set of components I ⊂ C can also be provided that represents the inputs

of the microfluidic device.

A lane Li is defined to be an ordered set of components that align vertically. These lanes are

numbered and ordered L0,L1, ...Ln , where L0 is the left (west) most lane and Ln is the right (east)

most lane. The first component in the set c0 ∈ L is the top (north) most in the lane and the last

component in the set c |L |−1 ∈ L is the bottom (south) most in the lane. Adjacent lanes may be

separated by an optional buffer space ∆ to improve routability and/or to satisfy fabrication design

rules relating to spacing.

5 PLACEMENT
5.1 Preprocessing
Directed Placement uses a microfluidic netlist as an input, but does not require a microfluidic

application in order to perform placement and routing. Because no application is given as input

no optimizations can be made to the netlist, since it would be impossible to determine if a change

to the netlist would render the application unable to map. Previous methods for generating and

optimizing netlists based on applications [35] have been proposed, and methods to optimize the

Fig. 4. (a) The input graph is converted such that (b) Type-II nodes are introduced for all components with an
edge degree larger than 2 and connected to the original Type-I nodes. (c-f) Pairs of Type-I nodes that are
then connected through an edges are iteratively combined until no more pairs exist. In the case of the K5 this
results in a single Type-I node that will be replaced with a five way switch.

netlist before placement and routing are compatible with the Directed Placement method. For these

reasons architectural optimization is out of scope for this work, and the assumption is made that

all components and connections are required to create a valid layout.

Directed Placement requires that the input device architecture is planar, as this is a requirement

for the manufacturing of the physical device. Planarity in a graph can be determined by the absence

of the Kuratowski subgraphs K5 and K3,3 (illustrated in Fig. 3) as proven in Kuratowski’s theorem

[22]. If a non-planar graph is given as input for Directed Placement, then the planarization method

introduced by Tseng et al. [53] can be used to pre-process the non-planar input into a planar

one for placement, routing, and fabrication. A short description of this method follows here for

completeness.

First, a new graph of the system is constructed with two different node types. The first is a Type-I

node, which represents a switch that will be inserted into the system and can have an unconstrained

number of edges. The second is a Type-II node, which represents any component within the system

and will be constrained to having a maximum of two edges. The original input architecture is

then processed with Type-II nodes representing each component. If a given component has more

than two edges, a Type-I node is introduced with all the components original edges routing to the

new Type-I node along with an additional edge between the Type-I node and the Type-II node

representing the component. After the entire input has been processed in this way, the resulting

graph is then iteratively reduced by combining any two Type-I nodes that connect through an edge.

When all possible reductions of this type have been completed, then every Type-I node left in the

system is replaced with a switch component capable of handling the number of edges associated

with that node and the input graph has been planarized, and each Type-II node is replaced with the

component it represents. A short example showing the planarization process of a K5 subgraph can

be seen in Fig. 4.

It should be noted that this method requires the insertion of switches into the system which

require valves to operate, and can therefore only be used on active devices. Passive devices which

are non-planar cannot be fabricated onto a single layer.

5.2 Initial Lane Assignment
As an optional first step, all input components ci ∈ I are added to the first lane L0. Many microfluidic

devices naturally place all of the inputs on one side, and, without loss of generality, during device

operation, the fluid tends to flow from one side of the device to the opposite side. In all our examples

we utilize a west-to-east flow direction, but this could easily be modified by changing the orientation

of the device. If I is not specified, the first step is to add the component c j ∈ C with the smallest

|Tj | to L0. In the case that there is a tie for the smallest component, the component with the fewest

ports |Pj | is chosen. If there is still a tie for both smallest component and fewest ports then choose

randomly from the available candidates.

A queue Q is created to facilitate a breadth-first traversal of the components. Initially, all compo-

nents c j ∈ L0 are enqueued. The initial lane assignment heuristic proceeds until Q is empty.

The first step is to dequeue a new component, cq . Each neighbor cr ∈ Tq that has not yet been

assigned to a lane is enqueued; cr is also assigned to lane Lf +1 where Lf is the lane to which cq is

assigned. If cr is a terminal component, then it is added to Lf to allow for a short connection (cq , cr);
we enforce the constraint that both components are placed adjacent to one another within the lane.

In order to minimize the lane height and simplify the later routing, a maximum of two terminal

components connected to cq may be placed in lane Lf and all additional terminal components

connected to cq are added to lane Lf +1.
If an mVLSI netlist consists of multiple connected components, then some components will not

be assigned to a lane once Q is empty. This is unlikely to occur when placing and routing a single

microfluidic device but may occur when performing these steps for a number of different devices

on a single mask in order to increase production yields for mass manufacturing. If this occurs, the

unassigned component c j with the smallest degree |Tj | is inserted intoQ and initial lane assignment

proceeds as normal. The process terminates when all components have been assigned a lane.

Fig. 5a depicts an mVLSI netlist, and Fig. 5b shows the initial lane assignment after the breadth-

first search completes. In Fig. 5b, components are grouped into subsets, as will be discussed in the

next section.

5.3 Lane Ordering Optimization
Once each component has been assigned to a lane, those components need to be ordered within

the lane to reduce route lengths. This is done by segmenting the components within a lane Li
into some number of ordered subsets Li,0, Li,1, ..., Li,mi such that now the lane Li is an ordered

set of ordered component subsets, the union of which contains all the components in the original

lane Li = Li,0 ∪ Li,1 ∪ ... ∪ Li,mi . These ordered subsets continue to form a vertical arrangement

of components, with the subset Li,0 being at the top of the lane and the subset Li,mi being at the

bottom. Within these ordered subsets the first component c0 ∈ Li,0 will be placed at the top and

the last component c |Li,0 |−1 ∈ Li,0 will be placed at the bottom before the next subset Li,1 begins to
be placed within the lane. There are three stages to ordering the components within their lane:

(a) (b) (c) (d)

Fig. 5. (a) The mVLSI input netlist is represented as an abstract graph, with components as nodes and
connections as edges. In this example A is the only input. (b) Using a breadth-first traversal the nodes
are assigned to an initial lane based on their traversal depth. Here the different subgroups are circled for
illustration. Note that I is a terminal component so it is added to the same lane as its parent E. (c) Node B is
moved to the center since it’s subtree {F ,G,H } is the largest. (d) In L2, nodes F and H are added first because
they are processed from their last parent in the previous lane B. G is then added because it’s last parent is D,
which leads to a swap of G and H . This provides an abstract lane ordering but does not represent an actual
placement

(1) Subset Assignment: Components within a lane Li are assigned to a subset Li, j based on

their neighbors in the preceding lane

(2) Subtree Ordering: Components within a lane subset Li, j are ordered based on their subtree

in successive lanes

(3) Parental Reordering: Components within a lane subset Li, j are re-ordered based on the

position of their neighboring components in the previous lane

Each step processes all components in all lanes before the next step begins.

5.3.1 Subset Assignment. In the first step, each lane Li starting with L0 is partitioned into subsets
Li,0,Li,1, ...,Li,mi . In the first lane, L0, each component c j ∈ Li is partitioned into its own distinct

subset such that the number of subsetsm = |L0 |. For each subsequent lane Li , i > 0, the components

c j ∈ Li are partitioned into subsets based on their connections to components in the previous lane

Li−1. All c j ∈ Li connected to the same ck ∈ Li−1 are partitioned into the same subset Li,s , where s
is the lowest unused subset index in the lane Li . If c j connects to multiple components ck in Li−1, it
is partitioned into the first possible subset. Fig. 5b depicts the components in three lanes partitioned

into subsets.

5.3.2 Subtree Ordering. The second step begins after all components c j ∈ C have been partitioned

into some subset Li,s . During this step, all lanes Li and subsets within lanes Li, j are traversed via

indices 0 ≤ i ≤ |L| − 1 and 0 ≤ j ≤ mi ; recall thatmi is the number of subsets in lane Li .
First, each component ck ∈ Li, j is sorted based on the size, measured in number of components,

of its subtree in subsequent lanes Lp ,p > i . The subtree size is determined using a breadth-first

traversal starting from ck . If the search is presently processing component c j in lane Lb , then it is not
allowed to expand to any components belonging to lane La where a < b. The number of components

traversed is then used to sort the components within the lane subset, with the component with the

largest subtree in Li, j being at the center of the subset and subsequent components being ordered

away from the center. This is illustrated in Fig. 5c.

5.3.3 Parental Reordering. Once the components have been ordered based on the size of their

subtree, the third step is to re-order them to remove edge crossings between lanes. When the

(a) (b)

(c) (d)

Fig. 6. (a) The mVLSI device after placement. (b) The components are rotated based on a weight function so
that the number of ports facing connected components is maximized, causingU ,W , X , and Y to rotate. (c-d)
Port assignment is performed on component V , which performs a radar sweep to determine processing order.
In this case, the Manhattan distance used for port assignment matches the radar sweep ordering.

components with largest subtrees are moved toward the center in the previous step, doing so

can increase the number of intersections between lanes. Parental reodering tries to re-order the

components based on the locations of their neighbors in the previous lane (parent nodes when

viewed as a tree) to remove these intersections. A new lane Lt is created to temporarily store the

new ordering of the components during the re-ordering. The lanes Li, j are iterated in reverse order

from i = |L| − 1 to 1 and component in forward order j = 0 tomi . For each component ck ∈ Li, j
from the top of the subset to the bottom, the algorithm searches through ck ’s neighbors in the

previous lane Li−1 and adds them to Lt based on their ordering in Li−1. If a component in Li−1 is a
neighbor of multiple components in Li , then it is added to Lt when processing its last neighbor

in Li . Any components in Li−1 not connected to a component in Li are then added to Lt , and the

previous lane Li−1 is updated to Li−1 = Lt . This is illustrated in Fig. 5d.

The same steps are performed in the opposite direction, iterating the lanes from i = 0 to |L| − 2,

and j = 0 tomi . In this iteration, for all components ck ∈ Li, j from the top of the subset to the

bottom we will identify neighbors in the next lane Li+1 and add these components to Lt , with the

rest of the process continuing as previously described, and updating Li+1 to the ordering of Lt .

5.4 Component Rotation & Port Assignment
The previous ordering steps mean that components are in optimized locations relative to their

neighbors, but it does not mean that the ports of those components are located in a good position

for routing. This necessitates a component rotation step before components can be given a location

and routing can be performed.

The source and sink of a connection in input architecture can be either port assigned or port
unassigned. When a connection’s source and/or sink is port assigned, then it is required to route

to a specific port on the component it is connected to. This occurs because the component that

it routes to is functionally dependent on fluids flowing into its input ports and out of its output

ports. An example of this would be a rotary mixer, which requires fluids to flow in through a

certain port in order for the valve actuation sequence to correctly input and mix the two fluids.

(a) (b) (c)

Fig. 7. (a) The horizontal dotted red line represents the vertical center of the parents of component J , calculated
as the average of the y-coordinate of each parent component {H , I }. (b) Component J is shifted to the center
of its neighbors in the preceding lane, shifting the other components in the lane, K , by the same amount. (c)
All other components in subsequent lanes, L in this case, must also be shifted down by that amount.

When a connection’s source and/or sink is port unassigned, it does not have a specific port on its

source/sink component that it needs to route to and can be routed to any port that is not already

port assigned. This usually occurs on components that can function in any direction equally well,

such as cameras and detection mechanisms.

In order to account for this, for each component ci ∈ C a weight is calculated for the component

with rotations of 0°, 90°, 180°, and 270°, which are the only orientations that are allowed because

of the grid based routing used. For each orientation the weight is calculated to be the sum of the

number of port assigned connections with their matching connected component in that same

direction and the sum of the lesser of the number of unassigned ports or the number of connected

port unassigned components. This value is calculated for each side of the component and its

corresponding direction.

That is, for a component located at Li, j the weight in the east direction would be the number of

assigned ports on the east side of the components who’s connected components exist in a lane east

of the component (Lk ,k > i) summed with the lesser of the number of unassigned ports on the

east side of the component or the number of port unassigned connected components in a lane east

of the component (Lk ,k > i). This is then calculated for the ports on the west side (Lk ,k < i), the
north side (Li,k ,k < j), and the south side (Li,k ,k > j). These values are then summed to create the

weight for that particular component orientation. The weight for each orientation is then calculated,

and the orientation with the highest weight chosen as illustrated in Fig. 6a and 6b.

Once the component has been rotated, each unassigned source and/or sink on each connection

must be assigned to a port. For each component cu ∈ C with an unassigned port from L0 to L |L |−1,

processing from the top of the lane to the bottom, we perform a radar sweep similar to the one

described in [5] beginning in the upper left corner of the component. As the radar sweep passes

components, if it sweeps past a component cv ∈ Tu then the associated edge ez = (cu , cv) ∈ E is

processed. The Manhattan distance between each unassigned port in the source component pj ∈ Pu
and each unassigned port in the sink component pk ∈ Pv is then calculated. The combination of

ports with the minimum Manhattan distance is then assigned as the source and sink ports for that

connection, and pj ,pk are no longer candidate ports for later assignments as illustrated in Fig. 6c

and 6d. This process continues until all connections with unassigned ports have been assigned.

5.5 In-lane Placement
At this point all components have been assigned to a lane, have been given an order within each

lane, and have been rotated to optimize connection routing. However, the components have not

yet been assigned an (x ,y) coordinate for placement. An initial y-coordinate can be determined

for each component by iterating through each lane Li and placing the components in-order, with

appropriate spacing between them. The first component c0 ∈ Li is given a y-coordinate of y0 = ∆
(assuming the top left of our 2D plane is the original at (0, 0)). This ensure that all components

have enough distance from the edge of the device for routing and fabrication. Each subsequent

component c j ∈ Li is then placed at the position yj = yj−1 + hj−1 + ∆, which is the y-coordinate of
the previous component placed shifted to account for the height of the component and an adjustable

spacing quanta, ∆.
From here, the components are adjusted to better align with their neighbors in the preceding lane.

The purpose is to improve routability and to try to create routes between lanes that are of similar

length. For each component c j ∈ Li , i > 0 a new set of components V = {ck ∈ Li−1 |(c j , ck) ∈ E} is
created. If |V | > 1 then the component c j is shifted to align with the average y-coordinate of the
neighboring components in V . A shift factor (δ) is calculated, such that:

δ =

∑ |V |

i=1 yV [i] + (hV [i]/2)

|V |
− yj

In the case where |V | = 1, V is redefined as V = {c j ∈ Li |(ck , c j) ∈ E}, and all the components in V
are shifted such that the average y-coordinate of all the components in V align with the center of

component ck . In this case, the shift factor is calculated such that:

δ =

∑ |V |

i=1 yV [i] + (hV [i]/2)

|V |
− yk

If either c j is shifted or the set of components inV are shifted, additional components in the lane

Li must be shifted to avoid intersections. Shifting a component c j (set of components V) requires

the movement of all the components in La , where a < i , and the rest of Li to prevent overlap. If

δ < 0, we shift c j (all components in V) upwards and need to ensure no components are moved

above the chip’s boundaries. That is, we must maintain for each ct ∈ C , xt ≥ ∆ and yt ≥ ∆. We

first shift all ct ∈ C downwards by |δ |. So for each ct ∈ C , yt = yt + |δ |.
Finally, shift the remaining elements of La by δ . For each ct ∈ La where yt > yj , ct is moved such

that yt = yt + δ . Any terminal components connected to a component ct should also be shifted by

δ . Components in La with a < i are shifted by δ as well. At this point the set V is emptied and the

process continues with the next component. Fig. 7 illustrate the shifting of the single component

and subsequent components while Fig. 8 illustrates the shifting of the component set.

If additional padding is required around the edge of the device to meet fabrication requirements,

it can now be added. The entire device can be shifted and/or the size of the device can be increased

to accommodate any padding requirements.

5.6 In-lane Horizontal Centering
The next step is to determine each component’s x-coordinate. This process begins by iterating

through each lane Li from i = 0 to |L| − 1. For the first lane L0, all components are given an

x-coordinate equal to the buffer space, x j = ∆,∀c j ∈ L0. This ensures that all components in the

left most lane have enough distance from the edge of the device for routing and fabrication.

Next, the minimum width of the lane (wmin) is found. To prevent overlapping components

between the lanes, the minimum width of the lane is equal to the component with the largest width

such thatwmin =min(w j),∀c j ∈ Li .

(a) (b)

Fig. 8. (a) During a backward iteration when processing component P , the component has only a single
preceding lane neighbor N . This causes the subtree of the neighbor N , which contains {P ,Q} to be shifted
instead of P itself. (b) The subset {P ,Q} is shifted down to the center of their parent N . Since there are no
other components in that lane and no subsequent lanes, no other components need to be shifted.

Oncewmin is determined, a second iteration of all components c j ∈ Li is made to center each

component within the lane. Each component’s x-coordinate is shifted to center the component

within it’s lane based on the following equation, which is illustrated in Fig. 9

x jnew = x j +
wmin −w j

2

Once all the components in the lane Li have had their x-coordinate re-centered within the lane,

the lane iteration continues. For all lanes Li , i > 0, instead of setting all components c j ∈ Li initial
x-coordinate x j = ∆ the initial x-coordinate is set to x j = x0 ∈ Li−1 + wmin + ∆. This ensures
that all the components in the next lane are far enough to the right of the previous lane to ensure

there is no component overlap between lanes with the additional buffer space needed to improve

routability and meet fabrication requirements.

6 ROUTING
6.1 Flow Layer Routing
Once the components have been placed and all connections assigned ports, the routing of the

connections is performed using a slight modification to the method described in [29]. A brief

description of that method as well as the modifications to it is provided for completeness. A routing

(a) (b) (c)

Fig. 9. (a) The vertical dotted red lines show the calculated horizontal center of the lane based on the widest
component, R in this case. (b-c) The center of component S and T are shifted to the lane center.

A
qu

aF
le
x-
3b

A
qu

aF
le
x-
5b

H
IV

1
[2
6]

M
G
G
[4
2]

Sy
nt
he

ti
c
1

Sy
nt
he

ti
c
2

Sy
nt
he

ti
c
3

Sy
nt
he

ti
c
4

Sy
nt
he

ti
c
5

H
ig
h
C
on

n

Components 15 17 13 30 21 15 34 34 46 24

Connections 14 16 12 37 21 21 33 34 45 42

Fig. 10. The number of components and connections for each benchmark, Real Life on the top and Synthetic
on bottom.

grid R = (U , F), where U is a set of grid points, and F is a set of edges representing potential

channel routes between adjacent grid points. For each component ci ∈ C a vertex ui for the ports
ph ∈ Pi is instantiated and added toU . A grid of vertices is then instantiated in the empty space

between components. Edges that represent potential routing channel segments are added to F by

instantiating a bidirectional edge fi with a capacity of 1 between ui ∈ U and uj ∈ U if and only if

(uj .x − ui .x == 1) ⊕ (uj .y − ui .y == 1).

Once the grid R = (U , F) has been constructed, the next step is to route channels between the

components. Unlike in [30], where a network-flow based router is utilized to do routing and port

assignment, port assignment has already been completed. Instead of a network-flow based routing;

for each port pj ∈ Pi of component ci that has a connection assigned to it, a breadth-first search is

made start from the source port pj until it reaches that connections assigned sink port pk . A path

reclamation step adapted from Lee’s algorithm [25] is then performed to find the shortest path from

the sink pk to the source pj . The reclaimed path is then set as the final route for that connection

and its grid point are marked as unusable for future routes. If there is a minimum padding between

connections required for fabrication reasons, then that number of additional units away from the

route are also marked as unusable. This process is repeated for every connection in the system.

6.2 Control Layer Considerations
While control layer routing is beyond the scope of this paper, Directed Placement does facilitate

relaxation that can be useful when routing the control layer. Since Directed Placement places

flow-layer components in a left to right orientation, it is advised that control layer I/O should be

placed along the top and/or bottom edge of the device. From here, control lines can be routed

through the buffer space between lanes or directly through components (where fabrication allows)

to the edges. Pin insertion methods [17] could also use the inter-lane buffer space to insert control

pins closer to the components that they control to reduce control route length.

In both these cases, the amount of unused space that can be utilized for control routing can be

increased in a targeted manner through the manipulation of the lane buffer space ∆ for a subset of

lanes. If, for example, a component c j ∈ Li was unable to be routed to a viable control pin, then the

∆ between lanes Li−1,Li and Li ,Li+1 could be increased by some value σ to allow more space for

pin insertion or control line routing. This increase of σ would then re-trigger the in-lane placement

and routing steps, and another attempt by the control routing method to find a set of valid routes.

This process could be performed iteratively unless a valid control routing was found, or a maximum

size threshold was reached.

7 RESULTS
The Directed Placement paired with the Lees’ based router described here is compared to a Planar

Placement algorithm paired with a Network Flow based routing algorithm [29], a Simulated

Annealing based placer [32] paired with Hadlock’s maze routing algorithm [35], and a Diagonal

Component Expansion [6] algorithm paired with a Network Flow based routing algorithm [6]. The

Diagonal Component Expansion algorithm also includes the post processing method introduced in

the same paper that utilizes the diagonal nature of the resulting layout to increase area utilization.

All of these algorithms were implemented in C++ utilizing a a unitless grid, which decouples the

layout and design rule checking processes from the manufacturing resolution of any one specific

mVLSI technology [33].

7.1 Benchmarks
We obtained netlists for four real-world planar mVLSI devices that have been designed, fabricated,

and evaluated, as well as six netlists obtained by synthesizing synthetic benchmarks. The real-world

netlists are as follows: AquaFlex-3b & AquaFlex-5a are proprietary mVLSI LoC netlists provided

by Microfluidic Innovations, LLC, HIV1 is a multi-layer PDMS chip that performs a bead-based

HIV1 p24 sandwich immunoassay [26], and MGG is a molecular gradients generator that can

generate five concentration levels of a two-sample mixture [42]. Five of the synthetic benchmarks

(Synthetic 1-5) were generated by compiling a set of publicly available DAG specifications
1

through an established mVLSI architectural synthesis flow [31, 35]. The last synthetic benchmark

(High Conn) was designed to test high connectivity devices where the average connectivity of

a component is > 1 which often occurs in multiplexed systems such as fluidic storage [49]. The

number of components and connections in each benchmark can be found in Fig. 10.

7.2 Results and Analysis
For all benchmarks exceptHighConn, we report the area utilization (Fig. 11: the ratio of component

area to total chip area expressed as a percentage), average fluid channel length (Fig. 12), average

fluid channel length reduction (Fig. 13), and average runtime (Fig. 15). High Conn is an outlier, and

is discussed in more detail in Section 7.2.4. Directed Placement and Planar Placement achieved

planar layouts for all benchmarks other than High Conn, while Simulated Annealing did not.

As discussed earlier, Simulated Annealing is unlikely to generate planar layouts, even for planar

netlists: we do not report the number of channel crossings in the layouts produced by Simulated

Annealing, but the number was nonzero in all cases. Additionally, we remove the component

segmentation requirement from Simulated Annealing which caused it to be tied very closed to its

initial placement. The removal of the planar routing and the component segmentation requirements

creates unrealistic designs, but is a good point of comparison closer to the optimal.

7.2.1 Area Utilization. In Fig. 11, Simulated Annealing achieves the highest area utilization

for all the test cases except one. This result is expected since the Simulated Annealing method is

primarily focused on optimizing the total area of the device and ignores the requirement that no

routes intersect in the system. The one benchmark that Simulated Annealing is not best suited for

is Synthetic 2. Directed Placement and Diagonal Component Expansion are especially effective on

the Synthetic 2 benchmark, increasing its area utilization from 22.65% with Simulated Annealing,

3.60% with Planar Placement, and 24.2% with Diagonal Component Expansion to 68.57% with

Directed Placement. This dramatic increase on this particular benchmark is due its particularly linear

nature, yielding a straight line layout with Directed Placement and a relatively linear placement in

Diagonal Component Expansion. The rest of the benchmarks have a more complex placement and

do not allow for this type of straight line placement. On average Directed Placement is 81.60% as

effective as the Simulated Annealing method for area utilization.

1
https://sites.google.com/site/mlsibiochips/home

Fig. 11. The sum of the area of all the components in the device divided by the total area required to place
and route the device, represented as a percentage per benchmark.

Fig. 12. The average length of all the fluid channels present in the device per benchmark.

7.2.2 Fluid Channel Length. For all benchmarks in Fig. 12, Directed Placement achieves the

shortest average fluid channel length. This is because Directed Placement utilizes the tree-like

Fig. 13. The percent reduction in the average fluid channel route length when compared against Directed
Placement per benchmark.

structure of mVLSI devices to create designs that try optimize the placement of neighboring

components as close as possible, as illustrated in Fig. 14d. By optimizing in this way we are able to

derive a large reduction in route length versus the other methods.

Planar Placement utilizes a planar embedding for its initial placement which gives it an high

probability of yielding a planar routing. However, the initial planar embedding tends to lay out the

components into triangular substructures with increasing straight line distances between them.

This leads to small densely packed subgroups with large distances between them like those found

in Fig. 14a. Additionally, the expansion method used in the Planar Placement method to avoid

component intersections, while easing routing densities and further increasing the probability a

valid planar route can be found, also increases the necessary route distance between components.

Diagonal Component Expansion arranges the components across the diagonal of the layout

without particular regard to their ordering. As can be seen in Fig. 14b after the device is cropped along

the diagonal and re-oriented to create a small total device area it has densely packed connections

some of which must traverse the majority of the device length. This leads to a similar routing

situation as Planar Placement, with a mix of short and very long routes.

Simulated Annealing, in contrast to the above methods, starts with an initial placement and

incrementally adjusts the result via random perturbation; while simulated annealing methods

gained traction in standard cell placement in the mid-1980s [44, 45], the problem formulation was

different in two key respects. First, the placement of each standard cell is characterized by a pair

(i, j) indicating that the cell occupies position j in row i; as continuous flow microfluidics lacks

standard cells, the position of each component is an (x ,y) location in a 2D plane. Second, standard

cell placement assumes multiple layers of metal for routing, which eliminates the requirement that

the layout be planar; microfluidics, in contrast, imposes planarity as a requirement. Given these

factors, Simulated Annealing struggles to identify perturbations that can simultaneously improve

the layout quality while maintaining planarity; as such, it is notably ineffective in this context.

Directed Placement uses the same Network Flow-based routing algorithm as Planar Placement

andDiagonal Component Expansion, which actively avoids the introduction of channel intersections

into the systems, thereby ensuring planarity. Simulated Annealing, in contrast, optimizes route

length but treats the number of intersections as one part of a multi-objective optimization function.

While Simulated Annealing achieves shorter overall channel length than the alternatives, it does

so at the cost of introducing additional channel intersections; this, in turn, necessitates additional

control inputs, which may violate foundry design rules which impose a limit on the total number

of inputs (both flow and control). As such, Simulated Annealing is an interesting baseline for

comparison but, for all intents and purposes, is not a practical placement solution.

(a)

(b)

(c) (d)

Fig. 14. Placements generated by (a) Planar Placement, (b) Diagonal Component Expansion, (c) Simulated
Annealing, and (d) Directed Placement prior to routing. Blue bounding boxes represent placed components
and black lines represent to-be-routed channels.

7.2.3 Runtime. Fig. 15 shows the average runtime of each algorithm for each benchmark over

five runs. Simulated Annealing has variable parameters that will effect both its runtime and the

solution that it converges to. For the results presented here Simulated Annealing was run with

100, 000 moves per temperature change, a cooling rate of 1%, and an initial temperature of 100.

When Directed Placement is compared to Planar Placement and Diagonal Component Expansion,

Planar Placement and Diagonal Component Expansion tend to run faster on smaller benchmarks

while Directed Placement runs faster on larger ones. This occurs because the Directed Placement

algorithm is more complex than Planar Placement and Diagonal Component Expansion, but

yields a better placement for the routing step. Since all three methods utilize the same or similar

routing steps, on small test cases where the routing makes up a small portion of the runtime Planar

Placements and Diagonal Component Expansion run faster but as the routing requirements increase

Directed Placements superior layout means a shorter routing time and a faster overall runtime. The

one exception to this is the Synthetic 2 benchmark, which runs fastest on Diagonal Component

Expansion while still yielding a longer average fluid channel length. This is because the straight

line nature of that particular benchmark are trivial for the expansion method used in Diagonal

Component Expansion and yields long fluid channels with few possibilities for intersections. Since

the Network Flow based router will perform a rip and re-route step if an intersection occurs, a

reduction in possible intersections leads to a large reduction in the overall runtime. Because the

Simulated Annealing method uses a Hadlocks-based router that does not avoid intersections, the

vast majority of the time reported is spent in the placement stage. All other methods spend the

majority of their time performing the routing step.

7.2.4 The High Conn Benchmark. The High Conn benchmark represents an anomaly when

the results are compared to those of the other benchmarks. High Conn represents a device where

a small number of components each have a large number of connections. With this benchmark the

Fig. 15. The average runtime of all algorithms over five runs per benchmark.

Simulated Annealing method was able to find a valid placement and routing, but not without adding

a non-zero number of additional intersections as it did with the other benchmarks. The Planar

Placement and Diagonal Comment Expansion methods were able to generate valid placements

but unable to find a valid routing. Connection dense components represent a difficult problem for

the Planar Placement and Directed Component Expansion methods because these components

are not treated any differently from others in the system, leading to high congestion in portions

of the layout and routing failures. Only the Directed Placement method was able to generate a

valid placement and routing of the High Conn benchmark. With the Directed Placement method

the highly connected components are allocated to their own lanes while the components they are

connected to are all allocated into subsequent lane(s), and are sub-ordered within their lane to try

and eliminate cross-lane intersections creating a much easier routing problem.

8 CONCLUSION & FUTUREWORK
This paper introduced Directed Placement, a new method for the placement and routing of mVLSI

devices. This new method reduces fluid channel length at the cost of a small increase in the area

utilization over previous heuristics. Additionally, the use of lanes and a straightforward left-to-right

placement scheme yields layouts that are easier for designers to understand and modify, even at

large scales. That being said, there is one key issues that require further investigation.

It is still unclear what characteristics of a device layout will cause that device to function

properly post-fabrication. More investigation needs to take place into classifying different types

of microfluidic devices and determining for each classification what features of the layout are

important and to what degree, which will allow for placement and routing algorithms to be more

rigorously validated. We plan to further investigate this issue in the future.

ACKNOWLEDGEMENT
This work was supported in part by NSF Awards #1351115, #1545097, #1740052, and #1910878

REFERENCES
[1] Design your own device: Basic design rules. https://web.stanford.edu/group/foundry/. Accessed: May 30, 2019.

[2] Amin, N., Thies, W., and Amarasinghe, S. P. Computer-aided design for microfluidic chips based on multilayer soft

lithography. In 27th International Conference on Computer Design, ICCD 2009, Lake Tahoe, CA, USA, October 4-7, 2009
(2009), pp. 2–9.

[3] Araci, I. E., and Quake, S. R. Microfluidic very large scale integration (mVLSI) with integrated micromechanical

valves. Lab-on-a-chip 12, 16 (Aug. 2012), 2803–6.
[4] Balagaddé, F. K., You, L., Hansen, C. L., Arnold, F. H., andQuake, S. R. Long-termmonitoring of bacteria undergoing

programmed population control in a microchemostat. Science (New York, N.Y.) 309, 5731 (July 2005), 137–40.

[5] Brady, H. N. An Approach to Topological Pin Assignment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 3, 3 (1984), 250–255.

[6] Crites, B., Kong, K., and Brisk, P. Diagonal component expansion for flow-layer placement of flow-based microfluidic

biochips. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s (2017), 126.
[7] Di Carlo, D., Aghdam, N., and Lee, L. P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using

high-density hydrodynamic cell isolation arrays. Analytical Chemistry 78, 14 (2006), 4925–4930. PMID: 16841912.

[8] El-Ali, J., Sorger, P. K., and Jensen, K. F. Cells on chips. Nature 442, 7101 (2006), 403–411.
[9] Fidalgo, L. M., and Maerkl, S. J. A software-programmable microfluidic device for automated biology. Lab Chip 11

(2011), 1612–1619.

[10] Gong, H., Woolley, A. T., and Nordin, G. P. High density 3d printed microfluidic valves, pumps, and multiplexers.

Lab Chip 16 (2016), 2450–2458.
[11] Grimmer, A., Frank, P., Ebner, P., Häfner, S., Richter, A., andWille, R. Meander designer: Automatically generating

meander channel designs. Micromachines 9, 12 (2018), 625.
[12] Grimmer, A., Wang, Q., Yao, H., Ho, T., and Wille, R. Close-to-optimal placement and routing for continuous-flow

microfluidic biochips. In 22nd Asia and South Pacific Design Automation Conference, ASP-DAC 2017, Chiba, Japan,
January 16-19, 2017 (2017), pp. 530–535.

[13] Grover, W. H., Skelley, A. M., Liu, C. N., Lagally, E. T., and Mathies, R. A. Monolithic membrane valves and

diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors and Actuators B: Chemical
89, 3 (2003), 315 – 323.

[14] Hong, J. W., andQuake, S. R. Integrated nanoliter systems. Nature biotechnology 21, 10 (Oct. 2003), 1179–83.
[15] Hong, J. W., Studer, V., Hang, G., Anderson, W. F., and Quake, S. R. A nanoliter-scale nucleic acid processor with

parallel architecture. Nature Biotechnology 22 (Mar 2004), 435 EP –.

[16] Hsieh, Y., and Ho, T. Automated physical design of microchip-based capillary electrophoresis systems. In VLSI Design
2011: 24th International Conference on VLSI Design, IIT Madras, Chennai, India, 2-7 January 2011 (2011), pp. 165–170.

[17] Hu, K., Dinh, T. A., Ho, T., and Chakrabarty, K. Control-layer routing and control-pin minimization for flow-based

microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 36, 1 (2017), 55–68.
[18] Huang, B., Wu, H., Kim, S., and Zare, R. N. Coating of poly(dimethylsiloxane) with n-dodecyl-Îš-d-maltoside to

minimize nonspecific protein adsorption. Lab Chip 5 (2005), 1005–1007.
[19] Hung, P. J., Lee, P. J., Sabounchi, P., Lin, R., and Lee, L. P. Continuous perfusion microfluidic cell culture array for

high-throughput cell-based assays. Biotechnology and bioengineering 89, 1 (2005), 1–8.
[20] Jensen, E. C., Grover, W. H., and Mathies, R. A. Micropneumatic digital logic structures for integrated microdevice

computation and control. Journal of Microelectromechanical Systems 16, 6 (Dec 2007), 1378–1385.
[21] Jiang, X., Shao, N., Jing, W., Tao, S., Liu, S., and Sui, G. Microfluidic chip integrating high throughput continuous-flow

pcr and dna hybridization for bacteria analysis. Talanta 122 (2014), 246 – 250.

[22] Kuratowski, C. Sur le problème des courbes gauches en topologie. Fundamenta Mathematicae 15, 1 (1930), 271–283.
[23] Lashkaripour, A., Rodriguez, C., Ortiz, L., and Densmore, D. Performance tuning of microfluidic flow-focusing

droplet generators. Lab Chip 19 (2019), 1041–1053.
[24] Lashkaripour, A., Silva, R., and Densmore, D. Desktop micromilled microfluidics. Microfluidics and Nanofluidics 22,

3 (Feb 2018), 31.

[25] Lee, C. Y. An Algorithm for Path Connections and Its Applications. IRE Transactions on Electronic Computers 30 (1959),
1389–1401.

[26] Li, B., Li, L., Guan, A., Dong, Q., Ruan, K., Hu, R., and Li, Z. A smartphone controlled handheld microfluidic liquid

handling system. Lab-on-a-Chip 14 (2014), 4085–4092.
[27] Lin, C.-X., Liu, C.-H., Chen, I.-C., Lee, D. T., and Ho, T.-Y. An Efficient Bi-criteria Flow Channel Routing Algorithm For

Flow-basedMicrofluidic Biochips. In Proceedings of the The 51st Annual Design Automation (DAC) (2014), pp. 141:1–141:6.
[28] Liu, C., Li, B., Ho, T., Chakrabarty, K., and Schlichtmann, U. Design-for-testability for continuous-flowmicrofluidic

biochips. In Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San Francisco, CA, USA, June
24-29, 2018 (2018), pp. 164:1–164:6.

[29] McDaniel, J., Baez, A., Crites, B., Tammewar, A., and Brisk, P. Design and Verification Tools for Continuous Fluid

Flow-based Microfluidic Devices. In Asia and South Pacific Design Automation Conference (ASPDAC) (2013).
[30] McDaniel, J., Crites, B., Brisk, P., and Grover, W. H. Flow-layer physical design for microchips based on monolithic

membrane valves. IEEE Design & Test 32, 6 (2015), 51–59.
[31] McDaniel, J., Curtis, C., and Brisk, P. Automatic synthesis of microfluidic large scale integration chips from a

domain-specific language. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, (BioCAS) (2013),
pp. 101–104.

[32] McDaniel, J., Parker, B., and Brisk, P. Simulated annealing-based placement for microfluidic large scale integration

(mlsi) chips. In Proceedings of the 22nd IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)
(2014), pp. 213–218.

[33] Mead, C., and Conway, L. Introduction to VLSI Systems. Addison-Wesley, 1980.

[34] Melin, J., andQuake, S. R. Microfluidic large-scale integration: the evolution of design rules for biological automation.

Annual review of biophysics and biomolecular structure 36 (Jan. 2007), 213–31.
[35] Minhass, W. H., Pop, P., Madsen, J., and Blaga, F. S. Architectural Synthesis of Flow-Based Microfluidic Large-

Scale Integration Biochips. In Proceedings of the International Conference on Compilers, Architectures and Synthesis of
Embedded Systems (CASES) (2012), pp. 181–190.

[36] Minhass, W. H., Pop, P., Madsen, J., and Ho, T.-y. Control Synthesis for the Flow-Based Microfluidic Large-Scale

Integration Biochips. In Asia and South Pacific Design Automation Conference (ASPDAC) (2013).
[37] Oskui, S. M., Diamante, G., Liao, C., Shi, W., Gan, J., Schlenk, D., and Grover, W. H. Assessing and reducing the

toxicity of 3d-printed parts. Environmental Science & Technology Letters 3, 1 (2016), 1–6.
[38] Pamme, N. Continuous flow separations in microfluidic devices. Lab on a Chip 7, 12 (2007), 1644–1659.
[39] Pfeiffer, A. J., Mukherjee, T., and Hauan, S. Synthesis of multiplexed biofluidic microchips. IEEE Trans. on CAD of

Integrated Circuits and Systems 25, 2 (2006), 321–333.
[40] Potluri, S., Pop, P., and Madsen, J. Design-for-testability of on-chip control in mvlsi biochips. IEEE Design & Test 36,

1 (2019), 48–56.

[41] Potluri, S., Schneider, A., Horslev-Petersen, M., Pop, P., and Madsen, J. Synthesis of on-chip control circuits for

mvlsi biochips. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland,
March 27-31, 2017 (2017), pp. 1799–1804.

[42] Rhee, M., and Burns, M. A. Microfluidic assembly blocks. Lab-on-a-Chip 8 (2008), 1365–1373.
[43] Rogers, C. I., Qaderi, K., Woolley, A. T., and Nordin, G. P. 3d printed microfluidic devices with integrated valves.

Biomicrofluidics 9, 1 (2015), 016501.
[44] Sechen, C., and Sangiovanni-Vincentelli, A. The timberwolf placement and routing package. IEEE Journal of

Solid-State Circuits 20, 2 (April 1985), 510–522.
[45] Sechen, C., and Sangiovanni-Vincentelli, A. L. Timberwolf3.2: a new standard cell placement and global routing

package. In Proceedings of the 23rd ACM/IEEE Design Automation Conference. Las Vegas, NV, USA, June, 1986. (1986),
pp. 432–439.

[46] Shah, J. J., Geist, J., Locascio, L. E., Gaitan, M., Rao, M. V., and Vreeland, W. N. Surface modification of poly(methyl

methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. ELECTROPHORESIS 27,
19 (2006), 3788–3796.

[47] Taghavi, T., Yang, X., Choi, B., Wang, M., and Sarrafzadeh, M. Dragon2006: blockage-aware congestion-controlling

mixed-size placer. In Proceedings of the 2006 International Symposium on Physical Design, ISPD 2006, San Jose, California,
USA, April 9-12, 2006 (2006), pp. 209–211.

[48] Terry, S. C., Jerman, J. H., and Angell, J. B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE
Transactions on Electron Devices 26, 12 (Dec 1979), 1880–1886.

[49] Thorsen, T., Maerkl, S. J., andQuake, S. R. Microfluidic large-scale integration. Science 298, 5593 (2002), 580–584.
[50] Tseng, K.-H., You, S.-C., Liou, J.-Y., and Ho, T.-Y. A Top-Down Synthesis Methodology for Flow-Based Microfluidic

Biochips Considering Valve-Switching Minimization. In Proceedings of the International Symposium on Physical Design
(ISPD) (2013), pp. 123–129.

[51] Tseng, T., Li, M., Freitas, D. N., McAuley, T., Li, B., Ho, T., Araci, I. E., and Schlichtmann, U. Columba 2.0: A

co-layout synthesis tool for continuous-flow microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and
Systems 37, 8 (2018), 1588–1601.

[52] Tseng, T., Li, M., Freitas, D. N., Mongersun, A., Araci, I. E., Ho, T., and Schlichtmann, U. Columba S: a scalable

co-layout design automation tool for microfluidic large-scale integration. In Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018 (2018), pp. 163:1–163:6.

[53] Tseng, T., Li, M., Li, B., Ho, T., and Schlichtmann, U. Columba: co-layout synthesis for continuous-flow microfluidic

biochips. In Proceedings of the 53rd Annual Design Automation Conference (DAC) (2016), pp. 147:1–147:6.
[54] Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., andQuake, S. R. Monolithic Microfabricated Valves and Pumps

by Multilayer Soft Lithography. Science 288, 5463 (Apr. 2000), 113–116.
[55] Urbanski, J. P., Thies, W., Rhodes, C., Amarasinghe, S., and Thorsen, T. Digital microfluidics using soft lithography.

Lab-on-a-Chip 6 (2006), 96–104.
[56] Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B., and Breadmore, M. C. 3d printed

microfluidic devices: enablers and barriers. Lab Chip 16 (2016), 1993–2013.
[57] Wang, J., Brisk, P., and Grover, W. H. Random design of microfluidics. Lab on a Chip 16, 21 (2016), 4212–4219.
[58] Wang, Q., Zou, H., Yao, H., Ho, T., Wille, R., and Cai, Y. Physical co-design of flow and control layers for flow-based

microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 37, 6 (2018), 1157–1170.
[59] White, R. A., Blainey, P. C., Fan, H. C., andQuake, S. R. Digital pcr provides sensitive and absolute calibration for

high throughput sequencing. BMC Genomics 10, 1 (Mar 2009), 116.

[60] Wu, A. R., Kawahara, T. L. a., Rapicavoli, N. a., van Riggelen, J., Shroff, E. H., Xu, L., Felsher, D. W., Chang,

H. Y., and Quake, S. R. High throughput automated chromatin immunoprecipitation as a platform for drug screening

and antibody validation. Lab on a chip 12, 12 (June 2012), 2190–8.
[61] Xia, Y., and Whitesides, G. M. Soft lithography. Annual review of materials science 28, 1 (1998), 153–184.
[62] Yao, H., Ho, T., and Cai, Y. PACOR: practical control-layer routing flowwith length-matching constraint for flow-based

microfluidic biochips. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, June
7-11, 2015 (2015), pp. 142:1–142:6.

[63] Yao, H., Wang, Q., Ru, Y., Cai, Y., and Ho, T. Integrated flow-control codesign methodology for flow-based microfluidic

biochips. IEEE Design & Test 32, 6 (2015), 60–68.
[64] Zhu, Y., Li, B., Ho, T., Wang, Q., Yao, H., Wille, R., and Schlichtmann, U. Multi-channel and fault-tolerant control

multiplexing for flow-based microfluidic biochips. In Proceedings of the International Conference on Computer-Aided
Design, ICCAD 2018, San Diego, CA, USA, November 05-08, 2018 (2018), p. 123.

Received February 2007; revised March 2009; accepted June 2009

	1 Introduction
	2 Microfluidic Technology Overview
	2.1 Fabrication Technology
	2.2 Passive Devices
	2.3 Active Devices
	2.4 Microfluidic Technology: Summary

	3 Related Work
	3.1 Planarization
	3.2 Flow Layer Physical Design
	3.3 Control Layer Physical Design
	3.4 Combined Flow/Control Layer Physical Design

	4 Preliminaries
	5 Placement
	5.1 Preprocessing
	5.2 Initial Lane Assignment
	5.3 Lane Ordering Optimization
	5.4 Component Rotation & Port Assignment
	5.5 In-lane Placement
	5.6 In-lane Horizontal Centering

	6 Routing
	6.1 Flow Layer Routing
	6.2 Control Layer Considerations

	7 Results
	7.1 Benchmarks
	7.2 Results and Analysis

	8 Conclusion & Future Work
	References

