Directed Placement for mVLSI Devices

BRIAN CRITES, University of California, Riverside
KAREN KONG, University of California, Riverside
PHILIP BRISK, University of California, Riverside

ACM Reference format:

Brian Crites, Karen Kong, and Philip Brisk. 2010. Directed Placement for mVLSI Devices. ACM J. Emerg.
Technol. Comput. Syst. 9, 4, Article 39 (March 2010), 25 pages.

https://doi.org/0000001.0000001

ABSTRACT

Continuous-flow microfluidic devices based on integrated channel networks are becoming increas-
ingly prevalant in research in the biological sciences. At present, these devices are physically laid
out by hand by domain experts who understand both the underlying technology and the biological
functions that will execute on fabricated devices. The lack of a design science that is specific to
microfluidic technology creates a substantial barrier to entry. To address this concern, this paper
introduces Directed Placement, a physical design algorithm that leverages the natural “directedness”
in most modern microfluidic designs: fluid enters at designated inputs, flows through a linear or
tree-based network of channels and fluidic components, and exits the device at dedicated outputs.
Directed placement creates physical layouts that share many principle similarities to those created
by domain experts. Directed placement allows components to be placed closer to their neighbors
compared to existing layout algorithms based on planar graph embedding or simulated annealing,
leading an average reduction in laid out fluid channel length of 91%, while improving area utilization
by 8% on average. Directed placement is compatible with both passive and active microfluidic
devices and is compatible with a variety of mainstream manufacturing technologies.

1 INTRODUCTION

Microfluidic chips are poised to revolutionize biochemistry and bioengineering through automation,
miniaturization, and programmability. The ability to precisely control the volumes of expensive
reagents at the microliter scale and below has enabled relevant biological applications such as
single-cell capture [7] and protein analysis [60] and significantly increased the throughput of
multiple important laboratory functions [4, 15, 21, 59].

While a handful of large and well-funded academic laboratories possess both the engineering
and biological expertise to design, fabricate, test, and validate microfluidic chips as prerequisites
for using them to produce publishable advances in the biological sciences, the vast majority of
laboratories lack the requisite expertise. Today, most advances in microfluidics are generated by
engineering-oriented laboratories; meanwhile, the majority of biological research laboratories do

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2009 Copyright held by the owner/author(s). Publication rights licensed to Association for Computing Machinery.
1550-4832/2010/3-ART39 $15.00

https://doi.org/0000001.0000001

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

not produce their own microfluidic solutions, which limits the type of research problems that
they can explore. A second limiting factor is cost: starting with Stanford’s gas chromatographic
air analyzer in 1979 [48], researchers have relied on semiconductor-inspired microfabrication
techniques to produce the majority of microfluidic devices [3, 13, 34, 54, 61]. This necessitates
expensive clean rooms, fabrication equipment, and highly trained technicians, which is once again
prohibitive for non-technologists.

There is an urgent need to increase access and lower barriers to entry for researchers who would
like to integrate microfluidic solutions into their laboratories. The recent rise of low-cost rapid
prototyping technologies, namely desktop CNC milling [23, 24] and 3D printing [10, 43, 56] ad-
dresses the equipment and facilities barriers; however, they do not solve the key engineering design
challenge. At present, most microfluidic chip designers use general-purpose CAD software such as
AutoCAD or SolidWorks, which lack domain-knowledge. Using semiconductor hardware design as
an analogy, it is certainly possible to use SolidWorks or AutoCAD to produce the photomask set
that defines the geometries used during the photolithography steps of semiconductor fabrication;
however, doing so is thoroughly impractical due to the presence of software produced by leading
companies in the Electronic Design Automation (EDA) industry, namely Cadence, Synopsys, and
Mentor, which are tailored to the needs of semiconductor designers. The creation of similar software
specialized for microfluidics could substantially simplify the design process. The combination of
low-cost desktop fabrication equipment and easy-to-use design software will substantially improve
accessibility to microfluidic technologies in both research and education.

One important algorithmic step for microfluidic design automation software is physical design, i.e.,
placement and routing. While many microfluidic chips visually appear to be similar to semiconductor
chips, the physical design constraints are notably different. The two key differences are the lack
of a fluidic analogues to both multi-layer metallization and standard cells. The former limits fluid
processing and transport functions to a single device layer, while the latter means that physical
design tools must be able to place components having arbitrary geometries. Consequently, the
design rules that govern placement and routing are substantially different for microfluidic layout
in comparison to semiconductor physical design. Using another semiconductor industry metaphor,
the current design paradigm for microfluidics is stuck in the early 1970s, before the Conway-Mead
revolution led to integrated semiconductor VLSI technology and computer-aided design tools,
which are now industry standard [33], which limits the design and integration complexities that
can be achieved by manual layout.

Contribution Most microfluidic devices have a naturally directed structure: fluid is injected into
the device via designated input ports, flows through the devices for process, and exits the device
via designated output ports. Based on this observation, this paper introduces Directed Placement,
an efficient and effective heuristic for microfluidic physical design. Directed placement yields
layouts that share many principle similarities to designs that are produced by hands, which makes
the designs easier to reason about if or when modifications are needed. Quantitatively, Directed
Placement yields shorter channel route lengths than several existing placement heuristics when
used in conjunction with existing routing methods. Specifically, we compare against three previous
microfluidic placement methods: Simulated Annealing [29], which was adapted from semiconductor
VLSI placement; Planar Placement [30], which adapts planar graph layout methods for microfluidics,
and Diagonal Component Expansion [6], which is a more refined variant of the Planar Placement
method. Directed Placement is shown to be far more effective these three prior heuristics in terms
of improving area utilization and reducing average channel length.

,— Control Layer
Pressure Source N 7

\
__ Flexible

Pressure Source
Membrane

J > [‘ F— .
S “— Flow Layer / ‘l yd
Fluidic Input — Control Layer —

(a) (b)

Fig. 1. Exploded views of (a) multilayer soft lithography and (b) monolithic membrane valves

2 MICROFLUIDIC TECHNOLOGY OVERVIEW

This section provides an overview of microfluidic fabrication technologies and the ways that they
can be used to fabricate passive and active devices. Passive devices do not contain any active
elements (e.g., valves), and, as such, are simpler, cheaper, and easier to fabricate than active devices,
and require less external equipment to operate. In principle, Directed Placement can lay out both
passive and active devices. We discuss both device types here however will focus our examples on
passive devices as they are the most restrictive and aid in explanation clarity.

2.1 Fabrication Technology

Microfluidic devices rely on a continuous flow of fluid through a network of microchannels and
components that are patterned onto one or more device layers. Each patterned layer may be a rigid
substrate [8, 19, 38] or imprinted in a flexible polymer (e.g., polydimethylsiloxane (PDMS)) [61]. An
additional layer of material, which is typically rigid and not patterned (e.g., a glass slide), is bonded
to the topmost patterned layer to enclose the channel network, which would otherwise be exposed
to the environment. Depending on the specific choice of materials used, small holes may be drilled
(rigid material) or punched (flexible material) into the second layer to provide I/O access for fluids.

The process to create each patterned layer is technology dependent. In general, more expensive
fabrication equipment is necessary to produce patterns with smaller features; that said, many
applications in biology are not compatible with features smaller than the biological media being
studied (e.g., cells, DNA molecules, etc.). In terms of rigid substrates, desktop CNC milling [23, 24]
represents the lower-cost, larger feature-size end of the spectrum, while microfabrication represents
the higher-cost, smaller-feature size end of the spectrum. CNC milling typically cuts patterns
into polycarbonate thermoplastic polymers, while microfabrication etches patterns into glass via
photolithography. In certain cases, compatibility between the device material and biological media
under study may dictate the choice of fabrication technology as well.

Imprinting patterns in flexible materials is more complicated and expensive than patterning
a rigid material[61] as a photolithographic process is required to produce physical molds. The
flexible material must be available initially in a liquid form so that it can be poured onto the mold.
While resting on the mold, the liquid must partially harden to imprint the mold’s pattern, before it
can be removed and mounted on a rigid substrate. A number of additional challenging steps (e.g.,
degassing to remove air bubbles) are necessary as well, which increases the time and cost of this
fabrication process while inhibiting scalability. Further details are omitted to conserve space.

Additive manufacturing (e.g., 3D printing [10, 43, 56]) can create enclosed rigid 3D structures.
The key advantage of 3D additive manufacturing is the elimination of a separate bonding step

Input A—>,
<«— Output

Input B——

S 01 QFO 0
S U 0

<«—— Output

Fig. 2. A passive serpentine mixer (top), the shape of which allows for dilution between the two fluids causing
the two input flows to mix and a rotary mixer (bottom) which uses peristaltic pumping to mix.

between distinct patterned and enclosing material layers. The most significant disadvantages are
twofold: Firstly, unlike glass or PDMS, 3D printed objects are opaque, which makes the material a
poor choice for use in biological studies that involve imaging. Secondly, there is concern about
the biological toxicity of 3D printed parts; recent research has shown that different 3D printing
technologies yield parts with different toxicity levels and that exposure to ultraviolet light largely
mitigates these issues in the most extreme cases [37].

Directed Placement primarily targets 2D channel networks; the authors are unaware of any 3D
physical design algorithms targeting 3D printed microfluidics. The subsequent discussion will focus
exclusively on devices created by one or more 2D patterned device layers.

2.2 Passive Devices

Passive microfluidic devices rely primarily on the underlying physical properties of fluid flow
to achieve their desired microfluidic functionality [11, 57]. A passive microfluidic device has no
moving parts (other than the fluid or fluidics that flow within it). Each component in the channel
network is designed to ensure that it can perform a specific action, such as the serpentine channel
mixer, shown in Fig. 2, which allows dilution to mix two flows of fluid together. The only physical
connections to a passive device are fluid inputs and outputs. Driven by an external pressure source
such as a syringe pump, fluid flows into the device, through the device to perform its function(s),
and then out of the device into an external reservoir to collect the excess.

In terms of technology, a passive microfluidic device typically comprises two material layers: a
patterned layer, which may be rigid or flexible (see the preceding subsection), and a non-patterned
enclosing layer, which is typically rigid (e.g., a glass slide). Once the two layers have been mounted
and bonded, the final fabrication step is to create holes that will act as the fluidic I/O interface. If
the patterned layer is rigid, the holes are drilled; if it is flexible, the holes are punched. I/O holes do
not penetrate the enclosing layer.

2.3 Active Devices

Active microfluidic devices employ pneumatically-controlled microvalves to actuate transport and
mixing of fluids [3, 13, 34, 54]. Microvalves typically perform one of two functions: active pumping
and mixing, or reconfiguring the various fluidic pathways through the device. While beyond the
scope of this particular paper, it is worth noting that several research groups have shown that
microvalves introduce an element of programmability into microfluidics that is not otherwise
achieveable in passive devices [9, 55].

Active microfluidic devices are more complicated and expensive to design, fabricate, and test
when compared to passive devices, and require additional external equipment to deliver pneumatic
control signals. Active devices typically require multiple patterned substrate layers, at least one
of which uses a flexible material, which acts as a membrane to produce pneumatically-controlled
microvalves [3, 13, 34, 54].

Active devices typically are partitioned into “fluidic” and “pneumatic” layers. The fluidic layer
performs fluid transport and operations that directly interact with the fluid. The pneumatic layer,
in contrast, is effectively a channel network that delivers pneumatic control signals, provided by
an external source, to the (set of) microvalve(s) that each control input drives.

2.3.1 Multilayer Soft Lithography. The first widely recognized and successful microvalve tech-
nology was based on multi-layer soft lithography [54]. In single-layer soft lithography [61] a channel
network is patterned into PDMS (once again, a flexible material) and then mounted on a glass slide
as an enclosing layer. Multi-layer soft lithography employs a similar principle, but stacks two or
three imprinted PDMS layers on top of the rigid substrate.

Fig. 1a shows an example of a two-layer multilayer soft lithography microvalve: the flow layer on
the bottom manipulates biological fluids of interest, while the control layer above provides actuation
capabilities from the external pressure source. The microvalve is formed where a control channel
on one top layer crosses a flow channel on the bottom layer. By default, all microvalves are open;
pressurizing a control channel closes the microvalves that it drives. The control channel geometry
at the microvalve point must be wide enough to allow a small amount of pressure external pressure
to deflect the small PDMS membrane to close the microvalve.

Similar to transistors or logic gates, microvalves can be combined to form larger components
such as peristaltic pumps, mixers, and multiplexers, which can then be integrated to form fully
integrated microfluidic devices, akin to integrated semiconductor circuits [34]. Fig. 2 (bottom)
shows a rotary mixer. Valves at the mixers input and output allow two fluids to be loaded, and for
the mixer to be isolated off from the rest of the device during mixing; when the mixer is closed the
3-valve pump applies peristaltic actuation to active mix the fluids. The mixed fluids can then be
driven out of the mixer at its output.

Since its inception in the year 2000, the integration density of microvalves has followed a trend
similar to Moore’s Law under multilayer soft lithography [14]; this was called microfluidic Large
Scale Integration (mLSI). In 2012, microvalve densities up to 0.4 — —0.8 valves per cm? were reported
[3], which represented an increase in valve density of more than two orders of magnitude; this led
to the terminology microfluidic Very Large Scale Integration (mVLSI).

2.3.2 Monolithic Membrane Valves. While highly successful from a technological standpoint,
multi-layer soft lithography has a high barrier to entry due to the cost and complexity of imprinting
channel network patterns onto PDMS. A secondary concern regarding PDMS is its non-specific
absorption, as a porous material, which limits its use in many potential biological applications
[18, 46].

To address these concerns, an alternative monolithic membrane valve was introduced in 2003 [13].
As shown in Fig. 1b, a monolithic membrane valve consists of a thin unpatterned PDMS membrane
sandwiched between two patterned rigid layers. Fluid flows in one of the rigid layers, allowing
the PDMS membrane to act as the enclosing layer. The second layer delivers external pressure to
each microvalve. Monolithic membrane valves are normally closed, and can be opened by applying
vacuum or pressure via the control layer.

Monolithic membrane microvalve technology has not achieved the same integration densities as
multilayer soft lithography; however, it’s key advantage is cost. The initial monolithic membrane
valve designs employed etched glass as the rigid substrates [13], which was considerably simpler

and more cost effective than patterning PDMS; moreover, providing a rigid, rather than porous,
channel wall on three out of four sides mitigated the absorption issue. Subsequetly, the same basic
monolithic membrane microvalve design has been translated to both 3D printing [43] and CNC
milling [24]; while 3D printing and CNC milling cannot achieve feature sizes as small as glass
etching, they are much cheaper and cost effective, making them far more accessible to researchers
in the life sciences.

2.4 Microfluidic Technology: Summary

Active microfluidics, and multi-layer soft lithography in particular, have achieved tremendous
academic impact, and the underlying technologies show great promise to integrate semiconductor-
like complexity into biological instrumentation. That said, to date, the vast majority of microfluidic
devices that are produced commercially today are passive. The key driving factors are cost and
complexity. In addition to fabrication costs, which we discussed previously, other cost factors
including multi-layer assembly, testing and validation (e.g., to ensure that layer alignment errors
during assembly did not occur), and the cost and complexity associated with external solenoid
pressure sources, and software, which are needed to operate the device. The extra equipment
required to run the device may prohibit its use in the field, e.g., for point-of-care diagnostics.

Additionally, while microvalve integration density has increased over time, the integration
density of the external control capabilities has not. For example, the Stanford Microfluidic Foundry
limits the number of I/Os for both fluid and control to 35 as a design rule, regardless of the number
of integrated microvalves to be controlled [1]. This limits the ability to harness the benefits of
highly integrated valve densities outside of lock-step SIMD-style parallel control patterns.

All of the aforementioned issues have informed our microfluidic physical design strategy.

3 RELATED WORK

Physical design for continuous flow microfluidics differs substantially from modern semiconductor
physical design in several key respects. Nowadays, semiconductor physical design is built on a
foundation that includes standard cells, larger IP blocks, multi-layer metallization, and parame-
terzied geometric design rules, the origins of which are generally attributed to Conway and Mead
who introduced the notion of Very Large Scale Integration (VLSI) in the late 1970s [33].

For a typical microfluidic chip, the fluid flow layer (both components and channels) must be
planar, and components may have arbitrary geometries. This is quite different from standard cell
design methodologies used in semiconductor VLSI, in which cells are placed in rows with uniform
height: the placement of a standard cell is characterized by a tuple (r, x) where r is the ID of the
row into which it is placed and x is the horizontal offset from the leftmost position in the row.
In contrast, the placement of a microfluidic component is characterized by an (x, y) pair which
represents the position of the component in a 2D plane. For active devices, additional steps (and
optimization opportunities) are needed for control layer physical design.

3.1 Planarization

As described above, the flow layer of a typical microfluidic chip is limited to a single device layer.
In other words, only planar netlists can be placed legally, given this design constraint. For passive
devices, this imposes a planarity test on the netlist: a non-planar netlist, which is any netlist
that contains one or more subgraphs isomorphic to one of the Kuratowski subgraphs show in
Fig. 3, cannot be placed legally as proven by Kuratowski [22]. One possibility is to redesign the
device, if possible, in a manner that ensures planarity. Another option may be to switch to a
fabrication technology, such as 3D printing, that can admit non-planar devices. The latter option is
an interesting potential research topic, but goes far beyond the scope of this paper.

2

(@) (b)

Fig. 3. The Kuratowski subgraphs (a) K5 and (b) K3 3. If a subgraph is isomorphic to one of these then the
entire graph is known to be non-planar

Active devices can be planarized algorithmically by inserting valve-based switches at points
where two or more flow channels cross. As a design rule, the Stanford Microfluidic Foundry limits
the number of I/Os for both fluid and control to 35 [1]. Many of these I/Os will be consumed by the
netlist itself (fluid I/O) and for valve actuation. As a separate constraint, many devices that are used
for biological experiments in the field or as point-of-care diagnostics in resource-limited settings
may have more stringent I/O constraints as well.

Planarization for active devices has proposed as a netlist preprocessing step prior to physical
design [53]. An alternative approach is to allow a limited number of planarity violations during
physical design [32], as long as the total I/O constraint is not violated. Directed Placement assumes
that the netlist is planar prior to layout, which is sufficient for both active and passive devices.

3.2 Flow Layer Physical Design

Directed Placement is most similar to several prior heuristics that start with a planar graph
embedding and one-by-one expand vertices (initially points) into 2D components, shifting the
positions of yet-to-be-expanded components to prevent overlap and to preserve planarity [6, 30].
We compare directly to Planar Placement as well as the similar but largely more effective Diagonal
Component Expansion (DICE). We report substantial improvements in area utilization and fluid
channel length; both DICE and Directed Placement employ the same fluid channel router.

We also compare Directed Placement to a simulated annealing-based microfluidic placer [32, 35],
which does not guarantee planarity; planarity can be achieved post-physical design via switch
insertion, as described above. Directed Placement reports improved utilization and fluid channel
length, despite the fact that Directed Placement imposes a planarity constraint while the simulated
annealing-based placer does not, causing it to serve as a more optimal baseline for placement. We
eschew additional comparisons with other flow layer placement heuristics that cannot guarantee
planarity [50, 58].

We are aware of one other standalone flow channel router that could potentially compete with
the one used by Planar Placement and DICE and the Directed placement heuristic presented here
[27]. This router employs a heuristic that tries to simultaneously minimize total routed channel
length and the length of the longest routed channel; however, it cannot ensure a planar routing
result, even for planar netlists, and makes no attempt to minimize the number of channel crossings.
As such, we do not consider it to be a good basis for comparison.

It is also possible to formulate flow layer placement together with routing in a single problem
formulation, for example, as a Boolean Satisfiability (SAT) problem [12]. While a SAT solver can
solve the joint problem optimally, it necessarily suffers from high runtimes and scalability challenges,
under the assumption that P # NP. While is it possible to prune the size of the search space, e.g.,

by downscaling component sizes or partitioning the netlist into independent subproblems, doing
so sacrifices optimality. This points toward the possibility of investigating hierarchical partitioning
and placement strategies, similar in principle to UCLA’s Dragon standard cell placer [47]; however,
this potential research direction is far beyond the scope of this paper.

Prior work has also investigated physical design for capillary electrophoresis (CE) microfluidic
chips [16, 39], which are used to perform chemical separations. The earliest approach formulated
minimum-area CE placement as a non-linear program [39], which lacks scalability; the routing stage
adjusts the placement and inserts I/Os after the fact and on the perimeter of the chip, sacrificing
optimality. A more recent and more effective approach [16], which reduced area compared to the
former, applies simulated annealing to minimize area and routing cost, followed by an auxiliary
routing step to minimize total channel length and the number of bends, and I/O placement to
minimize the length of auxiliary channels. The most fundamental difference compared to our work
is that Directed Placement treats I/Os as components, treating them as part of the netlist, as opposed
to placing and routing them as a post-processing step. Ignoring this difference, Directed Placement
could be used in lieu of the simulated annealing step. The simulated annealing-based placer which
we compare against is quite similar to this approach as well.

3.3 Control Layer Physical Design

One approach to the physical design of active microfluidic devices is to first place-and-route the
flow layer, e.g., using the techniques described in the preceding subsection, and then generate the
control layer afterward. Control layer generation necessitates the placement of control inputs and
control layer routing, which connects each control input to the valve (or valves) that it drives.

Valve sharing typically occurs in one of two contexts, noting that the total number of I/Os is
limited as a design constraint. In the first context, microfluidic chips are designed to process fluids
in a lock-step SIMD fashion [60], and this design choice is reflected as an inherent property of the
netlist; this allows one set of valves to control k independent or mostly independent datapaths,
which increases throughput without increasing demand for control inputs.

In the second context, valve sharing is posed as an application-specific optimization: two valves
whose actuation timings are wholly independent from one another can share the same control
input [2, 36]. In this case, the overall objective is to minimize the total number of control inputs,
which reduces total chip area and increases the likelihood of satisfying design constraints. Another
strategy to reduce the number of control inputs is to instantiate a large control demultiplexer on
the perimeter of the chip [9, 52, 64]: this allows n external control inputs to independently drive
2™ internal control lines; the drawback is that the control demultiplexer and associated control
routing area itself may be quite large, and in certain cases, dominates the overall chip area. To
reduce the cost, the demultiplexer, which is a general-purpose solution, can be replaced with
application-specific pneumatic control logic [20] which can be optimized to minimize gate count
[41] or to enhance testability [28, 40].

Valve sharing can be performed prior to control layer physical design, or as an integrated
co-optimization step [17] with control placement and routing algorithms. One advantage of the
integrated approach is that, to achieve precise timing, it may necessary to perform (near-)equal
length routing, so that the application of pressure at a control input actuates all of the valves that
are driven at precisely the same time [62].

With respect to this paper, control layer generation (with or without valve sharing) is performed
after Directed Placement generates the flow layer; as such, they are complementary steps that are
only applicable to the automated layout of active microfluidic devices.

3.4 Combined Flow/Control Layer Physical Design

It is also possible to simultaneously generate the flow and control layers of an active microfluidic
device, which creates opportunities for co-optimization. One early effort in this direction [63]
generated the flow layer using planar placement, improved it using simulated annealing, and then
generated the control layer using A* routing (valve sharing and other control optimizations were
not considered). The algorithm adjusts the flow layer layout if control layer congestion exceeds a
threshold. In principle, Directed Placement could be used to generate the initial flow layer.

The Columba [53] and Columba 2.0 [51] frameworks formulated this problem as an Integer
Linear Program (ILP), which could be solved optimally, albeit in exponential worst-case time under
the assumption that P # NP. Because of these scalability issues, the same authors introduced
Columba S [52], which severely restricted the design space. The flow layer restrictions include
the following: (1) all inputs are on the left-side of the chip; (2) all outputs are on the right side of
the chip; and (3) all flow channels are horizontal and do not bend. Despite the ILP, this problem
is actually more restricted than what we propose for Directed Placement. The third limitation
necessitates the introduction of additional switches in certain cases, an issue that does not affect
Directed Placement (when placing and routing active devices).

The Columba S control layout includes several nice features, including multiplexers at the top
and/or bottom of the chip to reduce the number of control inputs, and the ability to route-through
and bypass components; this latter feature could be integrated into other physical design algorithms
as well. The one key restriction on control layer generation is that all control lines are vertical (except
at component bypass points). While the Columba S ILP formulation simultaneously generates the
flow and control layers, it would just as easily be possible to start with a flow layer generated by
Directed Placement and use a reduced version of Columba S to generate the control layer.

4 PRELIMINARIES

An mVLSI netlist M = (C, E) consists of a set of components, C, and a set of edges, E, between
them. A component ¢; € C is a tuple ¢; = (T}, P;, x4, yi, hi, w;) where T; is the set of neighboring
components to ¢;, P; is the set of ¢;’s ports, (x;, y;) is the coordinate location of the upper left corner
of ¢;, and h; and w; are the height and width of ¢;, respectively. A port on a component ¢; € C,
pi,j € P;islocated at (a; j, b; ;), a point on the perimeter of ¢;; c; is called a terminal component if
IT;| = 1. An edge, e; € E, is a pair of components e; = (c;, ¢;) which represents a fluidic connection
between them. An optional set of components I C C can also be provided that represents the inputs
of the microfluidic device.

A lane L; is defined to be an ordered set of components that align vertically. These lanes are
numbered and ordered Ly, Ly, ...L,, where Ly is the left (west) most lane and L,, is the right (east)
most lane. The first component in the set ¢y € L is the top (north) most in the lane and the last
component in the set ¢j|-; € L is the bottom (south) most in the lane. Adjacent lanes may be
separated by an optional buffer space A to improve routability and/or to satisfy fabrication design
rules relating to spacing.

5 PLACEMENT
5.1 Preprocessing

Directed Placement uses a microfluidic netlist as an input, but does not require a microfluidic
application in order to perform placement and routing. Because no application is given as input
no optimizations can be made to the netlist, since it would be impossible to determine if a change
to the netlist would render the application unable to map. Previous methods for generating and
optimizing netlists based on applications [35] have been proposed, and methods to optimize the

A
B
E / \ B E B E
\D</ o
D C
D c D
(@ (b) ()
A
B
A A
j i)o—c(i :C(
B B
D
b C D C
(@) c (e))

‘ O Type-l Node Type-Il Node

Fig. 4. (a) The input graph is converted such that (b) Type-Il nodes are introduced for all components with an
edge degree larger than 2 and connected to the original Type-I nodes. (c-f) Pairs of Type-I nodes that are
then connected through an edges are iteratively combined until no more pairs exist. In the case of the K5 this
results in a single Type-I node that will be replaced with a five way switch.

netlist before placement and routing are compatible with the Directed Placement method. For these
reasons architectural optimization is out of scope for this work, and the assumption is made that
all components and connections are required to create a valid layout.

Directed Placement requires that the input device architecture is planar, as this is a requirement
for the manufacturing of the physical device. Planarity in a graph can be determined by the absence
of the Kuratowski subgraphs K5 and Kj 3 (illustrated in Fig. 3) as proven in Kuratowski’s theorem
[22]. If a non-planar graph is given as input for Directed Placement, then the planarization method
introduced by Tseng et al. [53] can be used to pre-process the non-planar input into a planar
one for placement, routing, and fabrication. A short description of this method follows here for
completeness.

First, a new graph of the system is constructed with two different node types. The first is a Type-I
node, which represents a switch that will be inserted into the system and can have an unconstrained
number of edges. The second is a Type-II node, which represents any component within the system
and will be constrained to having a maximum of two edges. The original input architecture is
then processed with Type-II nodes representing each component. If a given component has more
than two edges, a Type-I node is introduced with all the components original edges routing to the
new Type-I node along with an additional edge between the Type-I node and the Type-II node
representing the component. After the entire input has been processed in this way, the resulting
graph is then iteratively reduced by combining any two Type-I nodes that connect through an edge.
When all possible reductions of this type have been completed, then every Type-I node left in the

system is replaced with a switch component capable of handling the number of edges associated
with that node and the input graph has been planarized, and each Type-II node is replaced with the
component it represents. A short example showing the planarization process of a K5 subgraph can
be seen in Fig. 4.

It should be noted that this method requires the insertion of switches into the system which
require valves to operate, and can therefore only be used on active devices. Passive devices which
are non-planar cannot be fabricated onto a single layer.

5.2 Initial Lane Assignment

As an optional first step, all input components ¢; € I are added to the first lane Ly. Many microfluidic
devices naturally place all of the inputs on one side, and, without loss of generality, during device
operation, the fluid tends to flow from one side of the device to the opposite side. In all our examples
we utilize a west-to-east flow direction, but this could easily be modified by changing the orientation
of the device. If I is not specified, the first step is to add the component ¢; € C with the smallest
|T;| to L. In the case that there is a tie for the smallest component, the component with the fewest
ports |P;| is chosen. If there is still a tie for both smallest component and fewest ports then choose
randomly from the available candidates.

A queue Q is created to facilitate a breadth-first traversal of the components. Initially, all compo-
nents c¢; € Ly are enqueued. The initial lane assignment heuristic proceeds until Q is empty.

The first step is to dequeue a new component, c,. Each neighbor ¢, € T that has not yet been
assigned to a lane is enqueued; c, is also assigned to lane Lr,; where L¢ is the lane to which ¢ is
assigned. If ¢, is a terminal component, then it is added to L¢ to allow for a short connection (cq, ¢,);
we enforce the constraint that both components are placed adjacent to one another within the lane.
In order to minimize the lane height and simplify the later routing, a maximum of two terminal
components connected to ¢, may be placed in lane Ly and all additional terminal components
connected to ¢4 are added to lane Ly,;.

If an mVLSI netlist consists of multiple connected components, then some components will not
be assigned to a lane once Q is empty. This is unlikely to occur when placing and routing a single
microfluidic device but may occur when performing these steps for a number of different devices
on a single mask in order to increase production yields for mass manufacturing. If this occurs, the
unassigned component ¢; with the smallest degree |T;| is inserted into Q and initial lane assignment
proceeds as normal. The process terminates when all components have been assigned a lane.

Fig. 5a depicts an mVLSI netlist, and Fig. 5b shows the initial lane assignment after the breadth-
first search completes. In Fig. 5b, components are grouped into subsets, as will be discussed in the
next section.

5.3 Lane Ordering Optimization

Once each component has been assigned to a lane, those components need to be ordered within
the lane to reduce route lengths. This is done by segmenting the components within a lane L;
into some number of ordered subsets L; g, L; 1, ..., L; m, such that now the lane L; is an ordered
set of ordered component subsets, the union of which contains all the components in the original
lane L; = L;jp UL;1U...ULjp,. These ordered subsets continue to form a vertical arrangement
of components, with the subset L; ; being at the top of the lane and the subset L; ,,,, being at the
bottom. Within these ordered subsets the first component ¢, € L; ¢ will be placed at the top and
the last component c|z, ,|-1 € L;,0 will be placed at the bottom before the next subset L; ; begins to
be placed within the lane. There are three stages to ordering the components within their lane:

@\ © © ©®&
DS
® 6 & O
(a) (0

Fig. 5. (a) The mVLSI input netlist is represented as an abstract graph, with components as nodes and
connections as edges. In this example A is the only input. (b) Using a breadth-first traversal the nodes
are assigned to an initial lane based on their traversal depth. Here the different subgroups are circled for
illustration. Note that I is a terminal component so it is added to the same lane as its parent E. (c) Node B is
moved to the center since it’s subtree {F, G, H} is the largest. (d) In Ly, nodes F and H are added first because
they are processed from their last parent in the previous lane B. G is then added because it’s last parent is D,
which leads to a swap of G and H. This provides an abstract lane ordering but does not represent an actual
placement

(1) Subset Assignment: Components within a lane L; are assigned to a subset L; ; based on
their neighbors in the preceding lane

(2) Subtree Ordering: Components within a lane subset L; ; are ordered based on their subtree
in successive lanes

(3) Parental Reordering: Components within a lane subset L; ; are re-ordered based on the
position of their neighboring components in the previous lane

Each step processes all components in all lanes before the next step begins.

5.3.1 Subset Assignment. In the first step, each lane L; starting with Ly is partitioned into subsets
Lio,Li1s-..s Li,m;. In the first lane, Ly, each component c; € L; is partitioned into its own distinct
subset such that the number of subsets m = |L|. For each subsequent lane L;, i > 0, the components
¢j € L; are partitioned into subsets based on their connections to components in the previous lane
Li_1. All ¢j € L; connected to the same c; € L;_; are partitioned into the same subset L; , where s
is the lowest unused subset index in the lane L;. If ¢; connects to multiple components ci in L;_q, it
is partitioned into the first possible subset. Fig. 5b depicts the components in three lanes partitioned
into subsets.

5.3.2 Subtree Ordering. The second step begins after all components ¢; € C have been partitioned
into some subset L; . During this step, all lanes L; and subsets within lanes L; ; are traversed via
indices 0 < i < |L| — 1 and 0 < j < m;; recall that m; is the number of subsets in lane L;.

First, each component ¢ € L; ; is sorted based on the size, measured in number of components,
of its subtree in subsequent lanes L,,p > i. The subtree size is determined using a breadth-first
traversal starting from ci. If the search is presently processing component c; in lane L, then it is not
allowed to expand to any components belonging to lane L, where a < b. The number of components
traversed is then used to sort the components within the lane subset, with the component with the
largest subtree in L; ; being at the center of the subset and subsequent components being ordered
away from the center. This is illustrated in Fig. 5c.

5.3.3 Parental Reordering. Once the components have been ordered based on the size of their
subtree, the third step is to re-order them to remove edge crossings between lanes. When the

Fig. 6. (a) The mVLSI device after placement. (b) The components are rotated based on a weight function so
that the number of ports facing connected components is maximized, causing U, W, X, and Y to rotate. (c-d)
Port assignment is performed on component V, which performs a radar sweep to determine processing order.
In this case, the Manhattan distance used for port assignment matches the radar sweep ordering.

components with largest subtrees are moved toward the center in the previous step, doing so
can increase the number of intersections between lanes. Parental reodering tries to re-order the
components based on the locations of their neighbors in the previous lane (parent nodes when
viewed as a tree) to remove these intersections. A new lane L; is created to temporarily store the
new ordering of the components during the re-ordering. The lanes L; ; are iterated in reverse order
from i = |L| — 1 to 1 and component in forward order j = 0 to m;. For each component ¢ € L; ;
from the top of the subset to the bottom, the algorithm searches through c,’s neighbors in the
previous lane L;_; and adds them to L; based on their ordering in L;_;. If a component in L;_; is a
neighbor of multiple components in L;, then it is added to L; when processing its last neighbor
in L;. Any components in L;_; not connected to a component in L; are then added to L;, and the
previous lane L;_; is updated to L;_; = L;. This is illustrated in Fig. 5d.

The same steps are performed in the opposite direction, iterating the lanes from i = 0 to |L| — 2,
and j = 0 to m;. In this iteration, for all components ¢ € L; ; from the top of the subset to the
bottom we will identify neighbors in the next lane L;,; and add these components to L;, with the
rest of the process continuing as previously described, and updating L;,; to the ordering of L;.

5.4 Component Rotation & Port Assignment

The previous ordering steps mean that components are in optimized locations relative to their
neighbors, but it does not mean that the ports of those components are located in a good position
for routing. This necessitates a component rotation step before components can be given a location
and routing can be performed.

The source and sink of a connection in input architecture can be either port assigned or port
unassigned. When a connection’s source and/or sink is port assigned, then it is required to route
to a specific port on the component it is connected to. This occurs because the component that
it routes to is functionally dependent on fluids flowing into its input ports and out of its output
ports. An example of this would be a rotary mixer, which requires fluids to flow in through a
certain port in order for the valve actuation sequence to correctly input and mix the two fluids.

@ (b) ©

Fig. 7. (a) The horizontal dotted red line represents the vertical center of the parents of component J, calculated
as the average of the y-coordinate of each parent component {H, I}. (b) Component J is shifted to the center
of its neighbors in the preceding lane, shifting the other components in the lane, K, by the same amount. (c)
All other components in subsequent lanes, L in this case, must also be shifted down by that amount.

When a connection’s source and/or sink is port unassigned, it does not have a specific port on its
source/sink component that it needs to route to and can be routed to any port that is not already
port assigned. This usually occurs on components that can function in any direction equally well,
such as cameras and detection mechanisms.

In order to account for this, for each component ¢; € C a weight is calculated for the component
with rotations of 0°, 90°, 180°, and 270°, which are the only orientations that are allowed because
of the grid based routing used. For each orientation the weight is calculated to be the sum of the
number of port assigned connections with their matching connected component in that same
direction and the sum of the lesser of the number of unassigned ports or the number of connected
port unassigned components. This value is calculated for each side of the component and its
corresponding direction.

That is, for a component located at L; ; the weight in the east direction would be the number of
assigned ports on the east side of the components who’s connected components exist in a lane east
of the component (L, k > i) summed with the lesser of the number of unassigned ports on the
east side of the component or the number of port unassigned connected components in a lane east
of the component (L, k > i). This is then calculated for the ports on the west side (L, k < i), the
north side (L; x, k < j), and the south side (L; g, k > j). These values are then summed to create the
weight for that particular component orientation. The weight for each orientation is then calculated,
and the orientation with the highest weight chosen as illustrated in Fig. 6a and 6b.

Once the component has been rotated, each unassigned source and/or sink on each connection
must be assigned to a port. For each component ¢, € C with an unassigned port from Ly to Lz |1,
processing from the top of the lane to the bottom, we perform a radar sweep similar to the one
described in [5] beginning in the upper left corner of the component. As the radar sweep passes
components, if it sweeps past a component c,, € T, then the associated edge e, = (¢, c,) € E is
processed. The Manhattan distance between each unassigned port in the source component p; € P,
and each unassigned port in the sink component py € P, is then calculated. The combination of
ports with the minimum Manhattan distance is then assigned as the source and sink ports for that
connection, and p;, px are no longer candidate ports for later assignments as illustrated in Fig. 6¢
and 6d. This process continues until all connections with unassigned ports have been assigned.

5.5 In-lane Placement

At this point all components have been assigned to a lane, have been given an order within each
lane, and have been rotated to optimize connection routing. However, the components have not
yet been assigned an (x, y) coordinate for placement. An initial y-coordinate can be determined
for each component by iterating through each lane L; and placing the components in-order, with

appropriate spacing between them. The first component ¢, € L; is given a y-coordinate of yy = A
(assuming the top left of our 2D plane is the original at (0, 0)). This ensure that all components
have enough distance from the edge of the device for routing and fabrication. Each subsequent
component ¢; € L; is then placed at the position y; = y;_; + hj_; + A, which is the y-coordinate of
the previous component placed shifted to account for the height of the component and an adjustable
spacing quanta, A.

From here, the components are adjusted to better align with their neighbors in the preceding lane.
The purpose is to improve routability and to try to create routes between lanes that are of similar
length. For each component ¢; € L;,i > 0 a new set of components V = {cx € Li_1|(cj, cx) € E} is
created. If |[V| > 1 then the component c; is shifted to align with the average y-coordinate of the
neighboring components in V. A shift factor () is calculated, such that:

 Z v + (via/2)

S)
V] Yj

In the case where |V| = 1, V is redefined as V = {c; € L;|(ck, ¢;) € E}, and all the components in V
are shifted such that the average y-coordinate of all the components in V align with the center of
component ci. In this case, the shift factor is calculated such that:

_ St + (hvia/2)

8
VI

Yk

If either c; is shifted or the set of components in V are shifted, additional components in the lane
L; must be shifted to avoid intersections. Shifting a component c; (set of components V) requires
the movement of all the components in L,, where a < i, and the rest of L; to prevent overlap. If
d < 0, we shift ¢; (all components in V) upwards and need to ensure no components are moved
above the chip’s boundaries. That is, we must maintain for each ¢; € C, x; > Aand y; > A. We
first shift all ¢; € C downwards by |J]. So for each ¢; € C, y; = y; + |9].

Finally, shift the remaining elements of L, by . For each ¢; € L, where y; > y;, ¢; is moved such
that y; = y; + . Any terminal components connected to a component ¢; should also be shifted by
§. Components in L, with a < i are shifted by é as well. At this point the set V is emptied and the
process continues with the next component. Fig. 7 illustrate the shifting of the single component
and subsequent components while Fig. 8 illustrates the shifting of the component set.

If additional padding is required around the edge of the device to meet fabrication requirements,
it can now be added. The entire device can be shifted and/or the size of the device can be increased
to accommodate any padding requirements.

5.6 In-lane Horizontal Centering

The next step is to determine each component’s x-coordinate. This process begins by iterating
through each lane L; from i = 0 to |L| — 1. For the first lane L, all components are given an
x-coordinate equal to the buffer space, x; = A, V¢; € L. This ensures that all components in the
left most lane have enough distance from the edge of the device for routing and fabrication.

Next, the minimum width of the lane (wy,;,) is found. To prevent overlapping components
between the lanes, the minimum width of the lane is equal to the component with the largest width
such that wy,;, = min(w;),Vc; € L;.

(a) (b)

Fig. 8. (a) During a backward iteration when processing component P, the component has only a single
preceding lane neighbor N. This causes the subtree of the neighbor N, which contains {P, Q} to be shifted
instead of P itself. (b) The subset {P, Q} is shifted down to the center of their parent N. Since there are no
other components in that lane and no subsequent lanes, no other components need to be shifted.

Once Wi, is determined, a second iteration of all components c; € L; is made to center each
component within the lane. Each component’s x-coordinate is shifted to center the component
within it’s lane based on the following equation, which is illustrated in Fig. 9

ey Mmin W
jnew = Xj 2
Once all the components in the lane L; have had their x-coordinate re-centered within the lane,
the lane iteration continues. For all lanes L;, i > 0, instead of setting all components c; € L; initial
x-coordinate x; = A the initial x-coordinate is set to x; = xo € L;_1 + Wp;» + A. This ensures
that all the components in the next lane are far enough to the right of the previous lane to ensure
there is no component overlap between lanes with the additional buffer space needed to improve
routability and meet fabrication requirements.

6 ROUTING
6.1 Flow Layer Routing

Once the components have been placed and all connections assigned ports, the routing of the
connections is performed using a slight modification to the method described in [29]. A brief
description of that method as well as the modifications to it is provided for completeness. A routing

Wmin :A/ Wmin :/ Wmin :A/

& __m___

X

i X:

]

LEIN 'Y

E[—Vf"’

1
1
i
1
i
i
i
i
i
1
i
i
1
1
1
i
i
1
i
i
i

<f[=Ha -2

i
|
i
|
|
1
|
I
1
|
I
L
1
I
1
i
i
i
i
i
i

=

@ (b) ©

Fig. 9. (a) The vertical dotted red lines show the calculated horizontal center of the lane based on the widest
component, R in this case. (b-c) The center of component S and T are shifted to the lane center.

2 2
DUt - N N E
% V- S e) Q Q Q Q
CRERICHE I I
S R D olE 8 £ £ £|3
5 2 2 T 8 E E B|®
s g5 8|5 5 B 8 B3
< < D =S |H & & &h A&
Components | 15 17 13 30|21 15 34 34 46| 24
Connections | 14 16 12 37 |21 21 33 34 45| 42

Fig. 10. The number of components and connections for each benchmark, Real Life on the top and Synthetic
on bottom.

grid R = (U, F), where U is a set of grid points, and F is a set of edges representing potential
channel routes between adjacent grid points. For each component ¢; € C a vertex u; for the ports
pn € P; is instantiated and added to U. A grid of vertices is then instantiated in the empty space
between components. Edges that represent potential routing channel segments are added to F by
instantiating a bidirectional edge f; with a capacity of 1 between u; € U and u; € U if and only if
(wj.x —u;x ==1)® (uj.y — u;.y == 1).

Once the grid R = (U, F) has been constructed, the next step is to route channels between the
components. Unlike in [30], where a network-flow based router is utilized to do routing and port
assignment, port assignment has already been completed. Instead of a network-flow based routing;
for each port p; € P; of component c; that has a connection assigned to it, a breadth-first search is
made start from the source port p; until it reaches that connections assigned sink port pi. A path
reclamation step adapted from Lee’s algorithm [25] is then performed to find the shortest path from
the sink pj to the source p;. The reclaimed path is then set as the final route for that connection
and its grid point are marked as unusable for future routes. If there is a minimum padding between
connections required for fabrication reasons, then that number of additional units away from the
route are also marked as unusable. This process is repeated for every connection in the system.

6.2 Control Layer Considerations

While control layer routing is beyond the scope of this paper, Directed Placement does facilitate
relaxation that can be useful when routing the control layer. Since Directed Placement places
flow-layer components in a left to right orientation, it is advised that control layer I/O should be
placed along the top and/or bottom edge of the device. From here, control lines can be routed
through the buffer space between lanes or directly through components (where fabrication allows)
to the edges. Pin insertion methods [17] could also use the inter-lane buffer space to insert control
pins closer to the components that they control to reduce control route length.

In both these cases, the amount of unused space that can be utilized for control routing can be
increased in a targeted manner through the manipulation of the lane buffer space A for a subset of
lanes. If, for example, a component ¢; € L; was unable to be routed to a viable control pin, then the
A between lanes L;_1, L; and L;, L;+; could be increased by some value ¢ to allow more space for
pin insertion or control line routing. This increase of ¢ would then re-trigger the in-lane placement
and routing steps, and another attempt by the control routing method to find a set of valid routes.
This process could be performed iteratively unless a valid control routing was found, or a maximum
size threshold was reached.

7 RESULTS

The Directed Placement paired with the Lees’ based router described here is compared to a Planar
Placement algorithm paired with a Network Flow based routing algorithm [29], a Simulated

Annealing based placer [32] paired with Hadlock’s maze routing algorithm [35], and a Diagonal
Component Expansion [6] algorithm paired with a Network Flow based routing algorithm [6]. The
Diagonal Component Expansion algorithm also includes the post processing method introduced in
the same paper that utilizes the diagonal nature of the resulting layout to increase area utilization.
All of these algorithms were implemented in C++ utilizing a a unitless grid, which decouples the
layout and design rule checking processes from the manufacturing resolution of any one specific
mVLSI technology [33].

7.1 Benchmarks

We obtained netlists for four real-world planar mVLSI devices that have been designed, fabricated,
and evaluated, as well as six netlists obtained by synthesizing synthetic benchmarks. The real-world
netlists are as follows: AquaFlex-3b & AquaFlex-5a are proprietary mVLSI LoC netlists provided
by Microfluidic Innovations, LLC, HIV1 is a multi-layer PDMS chip that performs a bead-based
HIV1 p24 sandwich immunoassay [26], and MGG is a molecular gradients generator that can
generate five concentration levels of a two-sample mixture [42]. Five of the synthetic benchmarks
(Synthetic 1-5) were generated by compiling a set of publicly available DAG specifications'
through an established mVLSI architectural synthesis flow [31, 35]. The last synthetic benchmark
(High Conn) was designed to test high connectivity devices where the average connectivity of
a component is > 1 which often occurs in multiplexed systems such as fluidic storage [49]. The
number of components and connections in each benchmark can be found in Fig. 10.

7.2 Results and Analysis

For all benchmarks except High Conn, we report the area utilization (Fig. 11: the ratio of component
area to total chip area expressed as a percentage), average fluid channel length (Fig. 12), average
fluid channel length reduction (Fig. 13), and average runtime (Fig. 15). High Conn is an outlier, and
is discussed in more detail in Section 7.2.4. Directed Placement and Planar Placement achieved
planar layouts for all benchmarks other than High Conn, while Simulated Annealing did not.
As discussed earlier, Simulated Annealing is unlikely to generate planar layouts, even for planar
netlists: we do not report the number of channel crossings in the layouts produced by Simulated
Annealing, but the number was nonzero in all cases. Additionally, we remove the component
segmentation requirement from Simulated Annealing which caused it to be tied very closed to its
initial placement. The removal of the planar routing and the component segmentation requirements
creates unrealistic designs, but is a good point of comparison closer to the optimal.

7.2.1 Area Utilization. In Fig. 11, Simulated Annealing achieves the highest area utilization
for all the test cases except one. This result is expected since the Simulated Annealing method is
primarily focused on optimizing the total area of the device and ignores the requirement that no
routes intersect in the system. The one benchmark that Simulated Annealing is not best suited for
is Synthetic 2. Directed Placement and Diagonal Component Expansion are especially effective on
the Synthetic 2 benchmark, increasing its area utilization from 22.65% with Simulated Annealing,
3.60% with Planar Placement, and 24.2% with Diagonal Component Expansion to 68.57% with
Directed Placement. This dramatic increase on this particular benchmark is due its particularly linear
nature, yielding a straight line layout with Directed Placement and a relatively linear placement in
Diagonal Component Expansion. The rest of the benchmarks have a more complex placement and
do not allow for this type of straight line placement. On average Directed Placement is 81.60% as
effective as the Simulated Annealing method for area utilization.

Ihttps://sites.google.com/site/mlsibiochips/home

Area Utilization

70%
B Simulated Annealing
B Planar Placement
60% M Diagonal Component Expansion
[l Directed Placement
50%
£
< 10%
i
8
£ 30%
5
20%
10%
0%

=] © — —_ — N 2] < [fe]
o 0 . & !) o o)
S 3 -) 3 5 B B B
[T [= 0] = £ = FS =
© «© T s c c c c c
S S > > > > >
g g w %] w %) w

Fig. 11. The sum of the area of all the components in the device divided by the total area required to place

and route the device, represented as a percentage per benchmark.

Average Fluid Channel Length

800
B Simulated Annealing
M Planar Placement
[l Diagonal Component Expansion
[Directed Placement
600
=
c
2
< 400
S
<
(]
|
200
0

Ke) (3] fa - - 2V} 2] < w0
? 0 = & 9) o g e
x < — = = = = =
K] @ Ay (O] 2 2 2 2 e
iy o = 5] £ £ £ £ £
© © T c c (= = c
=1 > = > > > > >
&r g— w (7] w w [¥p]

Fig. 12. The average length of all the fluid channels present in the device per benchmark.

7.2.2 Fluid Channel Length. For all benchmarks in Fig. 12, Directed Placement achieves the
shortest average fluid channel length. This is because Directed Placement utilizes the tree-like

Fluid Channel Length Reduction

120%
M vs. Simulated Annealing

M vs. Planar Placement
M vs. Diagonal Component Expansion

80%

Length Ratio

40%

0%

AquaFlex-5a
HIVA [11]
MGG [21]

Synthetic 1
Synthetic 2
Synthetic 3
Synthetic 4
Synthetic 5

a
?
x
K]
L
[}
3
g
<<

Fig. 13. The percent reduction in the average fluid channel route length when compared against Directed
Placement per benchmark.

structure of mVLSI devices to create designs that try optimize the placement of neighboring
components as close as possible, as illustrated in Fig. 14d. By optimizing in this way we are able to
derive a large reduction in route length versus the other methods.

Planar Placement utilizes a planar embedding for its initial placement which gives it an high
probability of yielding a planar routing. However, the initial planar embedding tends to lay out the
components into triangular substructures with increasing straight line distances between them.
This leads to small densely packed subgroups with large distances between them like those found
in Fig. 14a. Additionally, the expansion method used in the Planar Placement method to avoid
component intersections, while easing routing densities and further increasing the probability a
valid planar route can be found, also increases the necessary route distance between components.

Diagonal Component Expansion arranges the components across the diagonal of the layout
without particular regard to their ordering. As can be seen in Fig. 14b after the device is cropped along
the diagonal and re-oriented to create a small total device area it has densely packed connections
some of which must traverse the majority of the device length. This leads to a similar routing
situation as Planar Placement, with a mix of short and very long routes.

Simulated Annealing, in contrast to the above methods, starts with an initial placement and
incrementally adjusts the result via random perturbation; while simulated annealing methods
gained traction in standard cell placement in the mid-1980s [44, 45], the problem formulation was
different in two key respects. First, the placement of each standard cell is characterized by a pair
(i,) indicating that the cell occupies position j in row i; as continuous flow microfluidics lacks
standard cells, the position of each component is an (x, y) location in a 2D plane. Second, standard
cell placement assumes multiple layers of metal for routing, which eliminates the requirement that
the layout be planar; microfluidics, in contrast, imposes planarity as a requirement. Given these

factors, Simulated Annealing struggles to identify perturbations that can simultaneously improve
the layout quality while maintaining planarity; as such, it is notably ineffective in this context.

Directed Placement uses the same Network Flow-based routing algorithm as Planar Placement
and Diagonal Component Expansion, which actively avoids the introduction of channel intersections
into the systems, thereby ensuring planarity. Simulated Annealing, in contrast, optimizes route
length but treats the number of intersections as one part of a multi-objective optimization function.
While Simulated Annealing achieves shorter overall channel length than the alternatives, it does
so at the cost of introducing additional channel intersections; this, in turn, necessitates additional
control inputs, which may violate foundry design rules which impose a limit on the total number
of inputs (both flow and control). As such, Simulated Annealing is an interesting baseline for
comparison but, for all intents and purposes, is not a practical placement solution.

(© (d)

Fig. 14. Placements generated by (a) Planar Placement, (b) Diagonal Component Expansion, (c) Simulated
Annealing, and (d) Directed Placement prior to routing. Blue bounding boxes represent placed components
and black lines represent to-be-routed channels.

7.2.3 Runtime. Fig. 15 shows the average runtime of each algorithm for each benchmark over
five runs. Simulated Annealing has variable parameters that will effect both its runtime and the
solution that it converges to. For the results presented here Simulated Annealing was run with
100, 000 moves per temperature change, a cooling rate of 1%, and an initial temperature of 100.
When Directed Placement is compared to Planar Placement and Diagonal Component Expansion,
Planar Placement and Diagonal Component Expansion tend to run faster on smaller benchmarks
while Directed Placement runs faster on larger ones. This occurs because the Directed Placement
algorithm is more complex than Planar Placement and Diagonal Component Expansion, but
yields a better placement for the routing step. Since all three methods utilize the same or similar
routing steps, on small test cases where the routing makes up a small portion of the runtime Planar
Placements and Diagonal Component Expansion run faster but as the routing requirements increase
Directed Placements superior layout means a shorter routing time and a faster overall runtime. The
one exception to this is the Synthetic 2 benchmark, which runs fastest on Diagonal Component
Expansion while still yielding a longer average fluid channel length. This is because the straight
line nature of that particular benchmark are trivial for the expansion method used in Diagonal
Component Expansion and yields long fluid channels with few possibilities for intersections. Since
the Network Flow based router will perform a rip and re-route step if an intersection occurs, a
reduction in possible intersections leads to a large reduction in the overall runtime. Because the
Simulated Annealing method uses a Hadlocks-based router that does not avoid intersections, the
vast majority of the time reported is spent in the placement stage. All other methods spend the
majority of their time performing the routing step.

7.2.4 The High Conn Benchmark. The High Conn benchmark represents an anomaly when
the results are compared to those of the other benchmarks. High Conn represents a device where
a small number of components each have a large number of connections. With this benchmark the

Average Runtime

10000

B Simulated Annealing
B Planar Placement
[l Diagonal Component Expansion
[l Directed Placement

=

©

£ 100

c

=}

o

AquaFlex-3b
AquaFlex-5a
HIV1 [11]
MGG [21]
Synthetic 1
Synthetic 2
Synthetic 3
Synthetic 4
Synthetic 5

Fig. 15. The average runtime of all algorithms over five runs per benchmark.

Simulated Annealing method was able to find a valid placement and routing, but not without adding
a non-zero number of additional intersections as it did with the other benchmarks. The Planar
Placement and Diagonal Comment Expansion methods were able to generate valid placements
but unable to find a valid routing. Connection dense components represent a difficult problem for
the Planar Placement and Directed Component Expansion methods because these components
are not treated any differently from others in the system, leading to high congestion in portions
of the layout and routing failures. Only the Directed Placement method was able to generate a
valid placement and routing of the High Conn benchmark. With the Directed Placement method
the highly connected components are allocated to their own lanes while the components they are
connected to are all allocated into subsequent lane(s), and are sub-ordered within their lane to try
and eliminate cross-lane intersections creating a much easier routing problem.

8 CONCLUSION & FUTURE WORK

This paper introduced Directed Placement, a new method for the placement and routing of mVLSI
devices. This new method reduces fluid channel length at the cost of a small increase in the area
utilization over previous heuristics. Additionally, the use of lanes and a straightforward left-to-right
placement scheme yields layouts that are easier for designers to understand and modify, even at
large scales. That being said, there is one key issues that require further investigation.

It is still unclear what characteristics of a device layout will cause that device to function
properly post-fabrication. More investigation needs to take place into classifying different types
of microfluidic devices and determining for each classification what features of the layout are
important and to what degree, which will allow for placement and routing algorithms to be more
rigorously validated. We plan to further investigate this issue in the future.

ACKNOWLEDGEMENT
This work was supported in part by NSF Awards #1351115, #1545097, #1740052, and #1910878

REFERENCES

[1] Design your own device: Basic design rules. https://web.stanford.edu/group/foundry/. Accessed: May 30, 2019.

[2] AmiIN, N., THIES, W., AND AMARASINGHE, S. P. Computer-aided design for microfluidic chips based on multilayer soft
lithography. In 27th International Conference on Computer Design, ICCD 2009, Lake Tahoe, CA, USA, October 4-7, 2009
(2009), pp. 2-9.

[3] Aract, I E., AND QUAKE, S. R. Microfluidic very large scale integration (mVLSI) with integrated micromechanical
valves. Lab-on-a-chip 12, 16 (Aug. 2012), 2803-6.

[4] Baracappt, F. K., You, L., HaNsEN, C. L., ARNoOLD, F. H., AND QUAKE, S. R. Long-term monitoring of bacteria undergoing
programmed population control in a microchemostat. Science (New York, N.Y.) 309, 5731 (July 2005), 137-40.

[5] Brapy, H. N. An Approach to Topological Pin Assignment. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 3, 3 (1984), 250-255.

[6] CriTes, B., KoNg, K., AND Brisk, P. Diagonal component expansion for flow-layer placement of flow-based microfluidic
biochips. ACM Transactions on Embedded Computing Systems (TECS) 16, 5s (2017), 126.

[7] D1 Carro, D., AGHDAM, N., AND LEE, L. P. Single-cell enzyme concentrations, kinetics, and inhibition analysis using
high-density hydrodynamic cell isolation arrays. Analytical Chemistry 78, 14 (2006), 4925-4930. PMID: 16841912.

[8] Er-ALL J., SORGER, P. K., AND JENSEN, K. F. Cells on chips. Nature 442, 7101 (2006), 403-411.

[9] FipaLGo, L. M., AND MAERKL, S. J. A software-programmable microfluidic device for automated biology. Lab Chip 11
(2011), 1612-1619.

[10] Gong, H., WooLLEY, A. T., AND NorpIN, G. P. High density 3d printed microfluidic valves, pumps, and multiplexers.
Lab Chip 16 (2016), 2450—-2458.

[11] GRIMMER, A., FRANK, P., EBNER, P., HAFNER, S., RICHTER, A., AND WILLE, R. Meander designer: Automatically generating
meander channel designs. Micromachines 9, 12 (2018), 625.

[12] GRIMMER, A., WANG, Q., Yao, H., Ho, T., AND WILLE, R. Close-to-optimal placement and routing for continuous-flow
microfluidic biochips. In 22nd Asia and South Pacific Design Automation Conference, ASP-DAC 2017, Chiba, Japan,
January 16-19, 2017 (2017), pp. 530-535.

[13]
[14]
[15]
[16]
[17]
[18]
[19]

GROVER, W. H., SKELLEY, A. M,, L1u, C. N., LAGALLY, E. T., AND MATHIES, R. A. Monolithic membrane valves and
diaphragm pumps for practical large-scale integration into glass microfluidic devices. Sensors and Actuators B: Chemical
89,3 (2003), 315 — 323.

HonNg, J. W., AND QUAKE, S. R. Integrated nanoliter systems. Nature biotechnology 21, 10 (Oct. 2003), 1179-83.
Hong, J. W., STUDER, V., HANG, G., ANDERSON, W. F., AND QUAKE, S. R. A nanoliter-scale nucleic acid processor with
parallel architecture. Nature Biotechnology 22 (Mar 2004), 435 EP -.

Hsien, Y., AND Ho, T. Automated physical design of microchip-based capillary electrophoresis systems. In VLSI Design
2011: 24th International Conference on VLSI Design, IIT Madras, Chennai, India, 2-7 January 2011 (2011), pp. 165-170.
Hu, K., Ding, T. A., Ho, T., AND CHAKRABARTY, K. Control-layer routing and control-pin minimization for flow-based
microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 36, 1 (2017), 55-68.

Huang, B., Wu, H., KiM, S., AND ZARE, R. N. Coating of poly(dimethylsiloxane) with n-dodecyl-13-d-maltoside to
minimize nonspecific protein adsorption. Lab Chip 5 (2005), 1005-1007.

Hung, P. J., LEE, P. J,, SABoUNCHI, P., LIN, R., AND LEE, L. P. Continuous perfusion microfluidic cell culture array for
high-throughput cell-based assays. Biotechnology and bioengineering 89, 1 (2005), 1-8.

[20] JensEN, E. C., GROVER, W. H., AND MATHIES, R. A. Micropneumatic digital logic structures for integrated microdevice

computation and control. Journal of Microelectromechanical Systems 16, 6 (Dec 2007), 1378-1385.

[21] Jiang, X, SHAO, N, JING, W., TA0, S., L1U, S., AND Sul, G. Microfluidic chip integrating high throughput continuous-flow

[22]
[23]

[24]
[25]
[26]
[27]

[28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39

—

[40]

per and dna hybridization for bacteria analysis. Talanta 122 (2014), 246 — 250.

Kuratowskl, C. Sur le probléme des courbes gauches en topologie. Fundamenta Mathematicae 15, 1 (1930), 271-283.
LASHKARIPOUR, A., RODRIGUEZ, C., ORTIZ, L., AND DENSMORE, D. Performance tuning of microfluidic flow-focusing
droplet generators. Lab Chip 19 (2019), 1041-1053.

LASHKARIPOUR, A., SILVA, R., AND DENSMORE, D. Desktop micromilled microfluidics. Microfluidics and Nanofluidics 22,
3 (Feb 2018), 31.

LeE, C. Y. An Algorithm for Path Connections and Its Applications. IRE Transactions on Electronic Computers 30 (1959),
1389-1401.

L1, B, Lt L., Guan, A., Dong, Q., Ruan, K, Hu, R., AND L1, Z. A smartphone controlled handheld microfluidic liquid
handling system. Lab-on-a-Chip 14 (2014), 4085-4092.

LiN, C.-X,, L1y, C.-H., CHEN, L.-C., LEE, D. T., AND Ho, T.-Y. An Efficient Bi-criteria Flow Channel Routing Algorithm For
Flow-based Microfluidic Biochips. In Proceedings of the The 51st Annual Design Automation (DAC) (2014), pp. 141:1-141:6.
Liu, C., L1, B., Ho, T., CHAKRABARTY, K., AND SCHLICHTMANN, U. Design-for-testability for continuous-flow microfluidic
biochips. In Proceedings of the 55th Annual Design Automation Conference, DAC 2018, San Francisco, CA, USA, June
24-29, 2018 (2018), pp. 164:1-164:6.

MCcDANIEL, J., BAEZ, A., CRITES, B., TAMMEWAR, A., AND BRIsk, P. Design and Verification Tools for Continuous Fluid
Flow-based Microfluidic Devices. In Asia and South Pacific Design Automation Conference (ASPDAC) (2013).
MCcDANIEL, J., CRITES, B., BRisk, P., AND GROVER, W. H. Flow-layer physical design for microchips based on monolithic
membrane valves. IEEE Design & Test 32, 6 (2015), 51-59.

McDANIEL, J., CurTIs, C., AND BRisk, P. Automatic synthesis of microfluidic large scale integration chips from a
domain-specific language. In Proceedings of the IEEE Biomedical Circuits and Systems Conference, (BioCAS) (2013),
pp. 101-104.

MCcDANIEL, J., PARKER, B., AND BRIsk, P. Simulated annealing-based placement for microfluidic large scale integration
(mlsi) chips. In Proceedings of the 22nd IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC)
(2014), pp. 213-218.

MEAD, C., AND CoNway, L. Introduction to VLSI Systems. Addison-Wesley, 1980.

MELIN, J., AND QUAKE, S. R. Microfluidic large-scale integration: the evolution of design rules for biological automation.
Annual review of biophysics and biomolecular structure 36 (Jan. 2007), 213-31.

MinuAss, W. H., Pop, P., MADSEN, J., AND BLAGa, F. S. Architectural Synthesis of Flow-Based Microfluidic Large-
Scale Integration Biochips. In Proceedings of the International Conference on Compilers, Architectures and Synthesis of
Embedded Systems (CASES) (2012), pp. 181-190.

Minnass, W. H., Pop, P., MADSEN, J., AND Ho, T.-v. Control Synthesis for the Flow-Based Microfluidic Large-Scale
Integration Biochips. In Asia and South Pacific Design Automation Conference (ASPDAC) (2013).

Oskul, S. M., DIAMANTE, G, L1ao, C., SHI, W., GAN, J., SCHLENK, D., AND GROVER, W. H. Assessing and reducing the
toxicity of 3d-printed parts. Environmental Science & Technology Letters 3, 1 (2016), 1-6.

PammE, N. Continuous flow separations in microfluidic devices. Lab on a Chip 7, 12 (2007), 1644-1659.

PFEIFFER, A. J., MUKHERJEE, T., AND HAUAN, S. Synthesis of multiplexed biofluidic microchips. IEEE Trans. on CAD of
Integrated Circuits and Systems 25, 2 (2006), 321-333.

PotLury, S., Pop, P., AND MADSEN,]J. Design-for-testability of on-chip control in mvlsi biochips. IEEE Design & Test 36,
1(2019), 48-56.

[41]
[42]
[43]
[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]

[57]
[58]

[59]

[60]

[61]

[62]

[63]

[64]

POTLURI, S., SCHNEIDER, A., HORSLEV-PETERSEN, M., Pop, P., AND MADSEN, J. Synthesis of on-chip control circuits for
mvlsi biochips. In Design, Automation & Test in Europe Conference & Exhibition, DATE 2017, Lausanne, Switzerland,
March 27-31, 2017 (2017), pp. 1799-1804.

RHEE, M., AND BURNs, M. A. Microfluidic assembly blocks. Lab-on-a-Chip 8 (2008), 1365-1373.

RoGERS, C. I, QADERI, K., WoOLLEY, A. T., AND NORDIN, G. P. 3d printed microfluidic devices with integrated valves.
Biomicrofluidics 9, 1 (2015), 016501.

SECHEN, C., AND SANGIOVANNI-VINCENTELLI, A. The timberwolf placement and routing package. IEEE Journal of
Solid-State Circuits 20, 2 (April 1985), 510-522.

SECHEN, C., AND SANGIOVANNI-VINCENTELLL A. L. Timberwolf3.2: a new standard cell placement and global routing
package. In Proceedings of the 23rd ACM/IEEE Design Automation Conference. Las Vegas, NV, USA, June, 1986. (1986),
pp. 432-439.

SHAH,].], GEIsT, J., Locascio, L. E., GAITAN, M., Rao, M. V., AND VREELAND, W. N. Surface modification of poly(methyl
methacrylate) for improved adsorption of wall coating polymers for microchip electrophoresis. ELECTROPHORESIS 27,
19 (2006), 3788-3796.

TacHAVL, T., YANG, X., CHOL, B., WANG, M., AND SARRAFZADEH, M. Dragon2006: blockage-aware congestion-controlling
mixed-size placer. In Proceedings of the 2006 International Symposium on Physical Design, ISPD 2006, San Jose, California,
USA, April 9-12, 2006 (2006), pp. 209-211.

TERRY, S. C., JERMAN, J. H., AND ANGELL, J. B. A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE
Transactions on Electron Devices 26, 12 (Dec 1979), 1880—-1886.

THORSEN, T., MAERKL, S. J., AND QUAKE, S. R. Microfluidic large-scale integration. Science 298, 5593 (2002), 580-584.
TsenG, K.-H., You, S.-C., Liou, J.-Y., aND Ho, T.-Y. A Top-Down Synthesis Methodology for Flow-Based Microfluidic
Biochips Considering Valve-Switching Minimization. In Proceedings of the International Symposium on Physical Design
(ISPD) (2013), pp. 123-129.

TseNG, T., L1, M., Frertas, D. N, McAuLEy, T., L1, B, Ho, T., Aracr, 1. E., AND SCHLICHTMANN, U. Columba 2.0: A
co-layout synthesis tool for continuous-flow microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and
Systems 37, 8 (2018), 1588-1601.

TseNG, T., L1, M., FREITAS, D. N., MONGERSUN, A., ARACL L. E., Ho, T., AND SCHLICHTMANN, U. Columba S: a scalable
co-layout design automation tool for microfluidic large-scale integration. In Proceedings of the 55th Annual Design
Automation Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018 (2018), pp. 163:1-163:6.

TsENG, T., L1, M,, L1, B,, Ho, T., AND SCHLICHTMANN, U. Columba: co-layout synthesis for continuous-flow microfluidic
biochips. In Proceedings of the 53rd Annual Design Automation Conference (DAC) (2016), pp. 147:1-147:6.

UNGER, M. A,, CHOU, H.-P., THORSEN, T., SCHERER, A., AND QUAKE, S. R. Monolithic Microfabricated Valves and Pumps
by Multilayer Soft Lithography. Science 288, 5463 (Apr. 2000), 113-116.

URBANSKYL, J. P, THIES, W., RHODES, C., AMARASINGHE, S., AND THORSEN, T. Digital microfluidics using soft lithography.
Lab-on-a-Chip 6 (2006), 96—104.

WAHEED, S., CABOT, J. M., MacpoNALD, N. P., LEwis, T., GuyT, R. M., PAuLL, B., AND BREADMORE, M. C. 3d printed
microfluidic devices: enablers and barriers. Lab Chip 16 (2016), 1993-2013.

WANG, J., BRISK, P., AND GROVER, W. H. Random design of microfluidics. Lab on a Chip 16, 21 (2016), 4212-4219.
WANG, Q., Zou, H., Yao, H,, Ho, T., WILLE, R., AND CarL Y. Physical co-design of flow and control layers for flow-based
microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems 37, 6 (2018), 1157-1170.

WHITE, R. A, BLAINEY, P. C,, Fan, H. C,, AND QUAKE, S. R. Digital pcr provides sensitive and absolute calibration for
high throughput sequencing. BMC Genomics 10, 1 (Mar 2009), 116.

Wu, A. R, Kawanara, T. L. A, Raricavolr, N. A., VAN RIGGELEN, J., SHROFF, E. H., Xu, L., FELSHER, D. W., CHANG,
H. Y., AND QUAKE, S. R. High throughput automated chromatin immunoprecipitation as a platform for drug screening
and antibody validation. Lab on a chip 12, 12 (June 2012), 2190-8.

X1a, Y., AND WHITESIDES, G. M. Soft lithography. Annual review of materials science 28, 1 (1998), 153-184.

Yao, H.,Ho, T., AND Car, Y. PACOR: practical control-layer routing flow with length-matching constraint for flow-based
microfluidic biochips. In Proceedings of the 52nd Annual Design Automation Conference, San Francisco, CA, USA, June
7-11, 2015 (2015), pp. 142:1-142:6.

Yao, H., WaNG, Q., Ru, Y., CarL Y., AND Ho, T. Integrated flow-control codesign methodology for flow-based microfluidic
biochips. IEEE Design & Test 32, 6 (2015), 60—68.

Zuu, Y., L1, B, Ho, T., WANG, Q., YA0, H., WILLE, R., AND SCHLICHTMANN, U. Multi-channel and fault-tolerant control
multiplexing for flow-based microfluidic biochips. In Proceedings of the International Conference on Computer-Aided
Design, ICCAD 2018, San Diego, CA, USA, November 05-08, 2018 (2018), p. 123.

Received February 2007; revised March 2009; accepted June 2009

	1 Introduction
	2 Microfluidic Technology Overview
	2.1 Fabrication Technology
	2.2 Passive Devices
	2.3 Active Devices
	2.4 Microfluidic Technology: Summary

	3 Related Work
	3.1 Planarization
	3.2 Flow Layer Physical Design
	3.3 Control Layer Physical Design
	3.4 Combined Flow/Control Layer Physical Design

	4 Preliminaries
	5 Placement
	5.1 Preprocessing
	5.2 Initial Lane Assignment
	5.3 Lane Ordering Optimization
	5.4 Component Rotation & Port Assignment
	5.5 In-lane Placement
	5.6 In-lane Horizontal Centering

	6 Routing
	6.1 Flow Layer Routing
	6.2 Control Layer Considerations

	7 Results
	7.1 Benchmarks
	7.2 Results and Analysis

	8 Conclusion & Future Work
	References

