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Abstract
This paper introduces a compiler optimization strategy for

Software-Programmable Laboratories-on-a-Chip (SP-LoCs),

which miniaturize and automate a wide variety of benchtop

laboratory experiments. The compiler targets a specific class

of SP-LoCs that manipulate discrete liquid droplets on a 2D

grid, with cyber-physical feedback provided by integrated

sensors and/or video monitoring equipment. The optimiza-

tion strategy employed here aims to reduce the overhead of

transporting fluids between operations, and explores trade-

offs between the latency and resource requirements of mix-

ing operations: allocating more space for mixing shortens

mixing time, but reduces the amount of spatial parallelism

available to other operations. The compiler is empirically

evaluated using a cycle-accurate simulator that mimics the

behavior of the target SP-LoC. Our results show that a co-

alescing strategy, inspired by graph coloring register allo-

cation, effectively reduces droplet transport latencies while

speeding up the compiler and reducing its memory footprint.

For biochemical reactions that are dominated by mixing

operations, we observe a linear correlation between a pre-

liminary result using a default mixing operation resource

allocation and the percentage decrease in execution time

that is achieved via resizing.

Keywords laboratory-on-a-chip (LoC), microfluidics, digi-

tal microfluidic biochip (DMFB), interference graph, coalesc-

ing

1 Introduction
The past 20 years have witnessed the development of

programmable, integrated micro-scale machines called

laboratories-on-a-chip (LoCs), which can automate and

miniaturize a number of laboratory functions which were

previously performed by hand at the benchtop scale. While

the majority of LoCs that are in use today are application-

specific, single-use, and disposable, software-programmable

(and reusable) LoCs (SP-LoCs) are also available. At present,

SP-LoCs are programmed at a level of abstraction akin to
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machine code, i.e., by specifying a sequence of actuation

and deactuation operations for each programmable ele-

ment. Moreover, many “cyber-physical” SP-LoCs feature

integrated sensors, which provide feedback to the software

controlling them in real-time. Thus, language and compiler

support can help SP-LoCs gain traction and grow a user base.

Prior work has made progress toward compiling high level

languages for execution on SP-LoCs, but has either been

limited in scope to a single basic block, or altogether missed

optimization opportunities that can speed up compilation

and dramatically decrease execution time. This paper

describes solutions to these shortcomings as an optimizing

compiler targeting a class of SP-LoCs called Digital

Microfluidic Biochips (DMFBs). The optimization strategy

crosses basic block boundaries by modeling placement of

microfluidic operations on a reconfigurable processing array

as a problem that generalizes graph coalescing, similar to

graph coloring register allocation in traditional compilers.

Fluid transport operations can be eliminated through a

coalescing mechanism; when coalescing is not possible,

fluid transport lengths can be reduced by incorporating

knowledge of transport operations into placement. The

compiler also adjusts the size of mixing operations to

improve performance: prior work has shown that allocating

more space to each mixing operation reduces its latency

[65]; however, doing so reduces the spatial parallelism

available to other concurrently scheduled operations. The

compiler accounts for all of the aforementioned information,

yielding a clear and concise problem formulation that can

be solved using either exact or heuristic means.

The paper is organized as follows: § 2 provides an overview

of the SP-LoC technology that we target in this paper; § 3

presents the compiler and emphasizes the optimization prob-

lems that must be solved, along with their interactions. Sec-

tions 4 and 5, respectively present our implementation and

simulation-based empirical evaluation, including compari-

son to prior work. Section 6 summarizes related work on

DMFB compilation to put the contribution of this paper in

context. Lastly, § 7 concludes the paper and outlines direc-

tions for future work.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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2 Background
2.1 Language Design for SP-LoCs
An assay is a laboratory procedure that aims to assess the

activity of a target entity, called the analyte; as an over-

generalization, we use the term assay to represent a bio-

chemical “algorithm” that will execute on an SP-LoC. Ideally,

the (bio-)chemist of the future will specify an assay using an

appropriately designed domain-specific programming lan-

guage (DSL). A compiler or interpreter will translate the spec-

ification into an executable format that will run on the SP-

LoC. A number of domain-specific programming languages

have been proposed for SP-LoCs [4, 5, 17, 18, 64, 83, 84, 86];

while most of these languages are tied to specific SP-LoC

technologies, any DSL compatible with DMFBs (see § 2.2)

could be used as a front-end to the compiler presented here.

2.2 Digital Microfluidic Biochips (DMFBs)
The compiler described in this paper targets a class of SP-

LoCs called Digital Microfluidic Biochips (DMFBs), which
manipulate discrete droplets of fluid using electrostatic actu-

ation [49, 60]. DMFBs exploit a physical phenomenon called

electrowetting, shown in Fig. 1a: an electrostatic potential

applied to a droplet at rest modifies its shape and angle

of contact with the surface; droplet transport can then be

achieved by activating and deactivating adjacent electrodes

in sequence, as shown in Fig. 1b. An optional top “ground

electrode” reduces the voltage required to move a droplet

and improves the fidelity of on-chip operations.

A DMFB is a 2D electrode array (Fig. 2a) which supports

an instruction set consisting of five operations: store, trans-

port, mix, merge, and split (Fig. 2b) [1, 26, 32, 59, 62, 68]. An

“executable program” is a sequence of electrode activations

supplied by a host PC or microcontroller. A compiler trans-

lates a text-based assay specification into an executable pro-

gram [18, 64]. A DMFB is “reconfigurable” in the sense that

each operation can be performed anywhere on the electrode

array and any given electrode may contribute to different

operations at different points in time during execution. A typ-

ical DMFB will integrate non-reconfigurable resources such

as I/O reservoirs on its perimeters, as well as heaters [53]

or optical detectors [51, 52, 78, 85] into the array itself. All

five basic operations can be performed at the same location

as a heater (when off) or a detector; however, heating and

detection cannot be performed at any location on-chip. Thus,

a compiler must know the precise location of all I/O pads on

the device perimeter and both the location and function of

all other integrated components; these impose constraints

that the compiler’s code generator must satisfy.

Integration of sensors [1, 8, 16, 23, 43, 45, 46, 56, 61, 69, 73–

76, 82] and online video monitoring [2, 3, 33, 36–39, 47, 54,

55, 66, 93] allows a CPU controlling a DMFB to obtain online

feedback regarding the state of the assay during execution.

(a) The electrowetting effect: applying an electrostatic potential

to a droplet modifies its contact angle [49, 60].

(b) A droplet transport is achieved by activating and deactivat-

ing electrodes in sequence.

Figure 1. (a) The electrowetting principle, (b) droplet transport

(a) A DMFB (left) is comprised of a 2D array of discrete electrodes,

with an optional ground electrode on top. A cyber-physical feed-

back loop to a microcontroller is enabled by sensory feedback.

(b) DMFB instruction set architecture (ISA).

Figure 2. (a) A DMFB and (b) its 5-operation ISA.

At the language design level, this provides control flow: ar-

bitrary computations can be performed on acquired sensory

data, including predicates that resolve conditions at run-

time [18, 31]. The compiler must ensure that all droplets are

routed to the same location at the start of each basic block,

regardless of which control paths are taken [18].

2.3 Mixing Modules
The latency of mixing two fluids depends on the number of

electrodes that have been allocated to perform the mixing

and also the routing path that the droplet takes within the

mixer [65] (see Table 1). While larger mixers yield lower

latency, they reduce the availability of spatial parallelism

on-chip. The compiler described here includes a feedback

loop that adjusts the size of different mixing operations in

order to optimize performance.

Table 1. Mixing module dimensions and their latencies [65].

Size 2 × 2 2 × 3 1 × 4 2 × 4

Mixing time (sec) 9.95 6.61 4.6 2.9
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Figure 3. Overview of our DMFB compiler. The front-end compiles an assay specification to a CFG (not shown). The back-end converts the

CFG to an executable format. The “Interference Graph”, “coalescing”, and “rescheduling” arrows are the novel aspects of this paper.

3 Compiler
3.1 Overview
The assay is specified in a domain-specific language such as

BioCoder [18] or BioScript [64], that seamlessly interleaves

fluidic operations with computation. The target is a cyber-

physical DMFB (Fig. 2) which provides sensory feedback to

the runtime software that manages the device. This enables

the programmer to specify assays featuring arbitrary control

flow: the assay obtains sensory feedback from the device and

performs computations on the acquired data; the result of the

computation can be used as a condition which determines

which fluidic operations to execute next.

Our input language supports function calls, but does not

support unbounded recursion. The compiler’s preprocessor

inlines all function calls, which converts the assay to one

procedure. The input language restricts all fluidic variables

to be scalars; it does not support fluidic arrays. We hope to

relax these assumptions in the future.

Figure 4a depicts an assay specified in the BioScript

language [64]. We first convert the assay to a hybrid

computational-fluidic intermediate representation (IR) [18],
as shown in Fig. 4b. This IR represents the assay as a

Control Flow Graph (CFG). Next, we convert both fluidic

and computational variables to Static Single Information
(SSI) Form [6, 10, 77]; each basic block is represented as a

hybrid-fluidic/data dependence graph. Figures 4c and 4d

respectively show the BioScript specification and hybrid-IR

converted to SSI Form: in this case, π - and ϕ- functions1

are inserted for one fluidic variable. Figure 3 outlines the

subsequent steps of the compiler’s back-end. The following

subsections discuss each step in greater detail.

1
SSI’s π -function (sometimes σ -function) defines a split set for a variable at
the end of some basic blocks where control flow follows, allowing a unique

identifier for each conditional usage of the variable in a similar way that a

ϕ-function provides a single definition point for each variable.

3.2 Scheduling
The first step is to schedule assay operations. Each basic

block is scheduled individually. The scheduler ensures that

each operation starts and finishes within the basic block

containing it to ensure atomicity. Referring back to Table 1,

the scheduler assumes 2 × 2 mixers with 9.95s latencies;

this assumption is later relaxed during Rescheduling (§ 3.5.1).

O’Neal et al. [63] present the problem formulation and survey

many scheduling heuristics that have been published to date.

The compiler infers droplet storage operations from the

schedule and inserts them into the IR. The IR treats storage

as an explicit operation that uses (and consumes) its input

and defines a new output droplet. This may necessitate the

insertion of additional π - and ϕ- functions to maintain SSI

Form, as shown in Figs. 5a and 5b. This representation en-

ables the placer (§ 3.5) to treat droplet storage the same as

all other scheduled assay operations.

The scheduler enforces resource constraints that conser-

vatively over-approximate placement. To simplify the discus-

sion, we omit resource constraints involving I/O operations.

The scheduler partitions the DMFB into N modules (Fig. 6).

At any point in the schedule, a reconfigurable module can
perform one mix, split, or merge operation, or can store up

to k droplets, depending on its size. Any module that fea-

tures an integrated heater or sensor can perform a heating

or sensing operation as well; let the number of such modules

be Nheat and Nsense respectively. Let r j (p) be the number of

operations of type j ∈ {mix , split ,merдe, store,heat , sense}
scheduled at program point p. A legal schedule must satisfy

the following constraints for each program point p:

rheat (p) ≤ Nheat (1)

rsense (p) ≤ Nsense (2)

rmix (p) + rsplit (p) + rmerдe (p) +

⌈
rstore (p)

k

⌉
+ rheat (p) + rsense (p) ≤ N

(3)
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1 dispense a

2 dispense b

3 dispense c

4 heat a

5 heat c

6 d = mix a with b

7 detect d

8 if (...)

9 dispense a

10 d = mix a with d

11 d = mix c with d

12 heat d

13 drain d

(a)

1 dispense a0
2 dispense b0
3 dispense c0
4 a1 = heat a0
5 c1 = heat c0
6 d1 = mix a1 with b0
7 detect d1
8 d2, d3 = π (d1)
9 if (...)

10 dispense a2
11 d4 = mix a2 with d2
12 d5 = ϕ(d3, d4)
13 d6 = mix c1 with d5
14 d7 = heat d6
15 drain d7

(c)

(b) (d)

Figure 4. A simple assay written in BioScript (a) and the associated

CFG (b) can be augmented with SSI form’s ϕ and π nodes (c and d).

Scheduling failures may occur and are unavoidable in the

general case, even if the problem is solved optimally. If sched-

uling fails, the only option is to switch to a larger DFMB

target, or rewrite the assay. During compilation, switching

to larger and faster mixers Table 1 increases the likelihood of

failure, which is one reason why we default to the smallest,

slowest mixer for the initial scheduling step. Failures due to

module sizes are addressed in § 3.5.1.

3.3 Interference Graph
3.3.1 Definitions and Properties
Let G = (V ,E,A) be the interference graph [11–13]: V is the

set of assay operations, E is the set of interference edges, and

A is the set of affinity edges that represent fluid transfers

between operations. Let adj[oi ] and aff [oi ] denote the sets
of interference and affinity neighbors of oi ∈ V ; additionally,

let adj∗[oi ] = adj[oi ] ∪ {oi } and aff ∗[oi ] = aff [oi ] ∪ {oi }.

1 dispense a0
2 dispense b0
3 dispense c0
4 a1 = heat a0
5 c1 = heat c0
6 d1 = mix a1 with b0
7 detect d1
8 c2 = store c1
9 d2, d3 = π (d1)
10 c3, c4 = π (c2)
11 if (...)

12 dispense a2
13 d4 = mix a2 with d2
14 c5 = store c3
15 d5 = ϕ(d3, d4)
16 c6 = ϕ(c4, c5
17 d6 = mix c6 with d5
18 d7 = heat d6
19 drain d7

(a) (b)

Figure 5. Our scheduler adds implicit store operations (a) and

updates SSI form to generate a schedule (b) that captures the linear

def-use chain that SSI form provides.

Figure 6.ADMFB partitioned into a 2×2 array of modules exposed

to the scheduler: one module has a heater and one has a sensor.

Each vertex is labeled with a type, denoted type[oi ] ∈
{mix, split,merge, store, heat, sense}. As shorthand, and al-

beit a slight abuse of notation, we define ameta-type, reconfig,
as the union of types mix, merge, split, or store.

The set of interference or affinity neighbors of type t are
respectively denoted adjt[oi ] = {oj ∈ adj[oi ] | type[oj ] = t}
and afft[oi ] = {oj ∈ aff [oi ] | type[oj ] = t}; adjt∗[oi ] and
afft∗[oi ] are defined analogously to adj∗[oi ] and aff ∗[oi ].

3.3.2 Construction
An interference edge (oi ,oj ) ∈ E is placed between two

operations oi and oj whose lifetimes overlap. Affinity edges

arise from fluidic dependencies in the IR, including those

arising between fluidic variables used and defined by the ϕ-
and π -functions inserted during SSI construction [18, 64].
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(a) I/O interferences (b) External module interferences

Figure 7. I/O & Module Interferences: All I/O reservoirs (a) are

universal nodes; their subgraph forms a clique. The subgraph of

external modules (b) is a complete multipartite graph, with each

module type comprising a part.

An affinity edge (ok ,ol ) ∈ A indicates that a droplet must

be transported between the locations where ok and ol are
placed. The transport operation can be eliminated if ok and

ol are placed at the same location.

Affinity edges can only be inserted between “compati-

ble” operations. For example, a mix operation is compatible

with a heat because a mix operation can be scheduled on a

DMFB module that includes an integrated heater (presum-

ably turned off). On the other hand, heat and sense opera-

tions are incompatible: to date no DMFB devices has inte-

grated a heater and sensor at the same on-chip location.

The interference graph includes a complete multipartite

gadget (Fig. 7b) to make resource-related incompatibilities

explicit. I/O operations bound to the same reservoir cannot

interfere, while I/O operations bound to different reservoirs

explicitly interfere. Without loss of generality, a sensing op-

eration cannot be bound to a region of a DMFB that features

an integrated heater, and vice-versa.

Figure 8a shows the interference graph corresponding

to the assay in Fig. 4 after scheduling and storage inser-

tion, and assuming that the target DMFB has at least two

heaters. Instructions 1, 2, 3, 9, and 13 are statically bound to

I/O reservoirs. Operation 5 (heat c) overlaps with operations

4, 6, and 7; droplet c is stored after operation 7 (detect d)
completes. To conserve space, the interference graph omits

the interference edges that belong to the gadget in resource-
interferences between operation 7 (detect d) and the three

heat operations (4, 5, and 12). Fluidic dependencies result in
affinity edges: (v4,v6), (v6,v7), (v7,v10), (v5,v11), (v7,v11),
(v10,v11), and (v11,v12).

3.4 Coalescing
Coalescing merges non-interfering affinity-related vertices

in the interference graph to ensure that the correspond-

ing operations are placed at the same on-chip location: this

eliminates the need to transport droplets, which can reduce

the burden on placement and routing (§§ 3.5 and 3.6), two

NP-complete problems. Coalescing is implemented as an

affinity edge contraction operation [11, 24, 40, 44]: given an

affinity edge (oi ,oj ) ∈ A where (oi ,oj ) < E, vertices oi and
oj are merged to form new vertex oi j having interference

and affinity neighbor sets adj[oi j ] = (adj[oi ] ∪ adj[oj ]) and
aff [oi j ] = (aff [oi ] ∪ aff [oj ]) \ {oi ,oj }. Figure 8a shows the
interference graph derived from the scheduled CFG shown

in Fig. 5b; Figs. 8b and 8c show two possible coalescing out-

comes. In this example, Fig. 8c has coalesced more affinity

edges than Fig. 8b. This, in turn, reduces the workload of the

placer (§ 3.5) and router (§ 3.6) downstream.

Coalescing here differs from register allocation in one

key respect. Consider the example shown in Fig. 9a: when

coalescing (oi ,oj ) into oi j , traditional mechanisms discard

(oi ,ok ), which may result in extended routes (Fig. 9b). We

instead maintain the affinity, allowing routes to be optimized

by placing operations near each other (Fig. 9c).

When reconfigurable operations of different dimensions

are coalesced, the coalesced vertex is given the minimum

rectangular dimension that can accommodate its constitu-

tions (see Fig. 10a). The type of a coalesced vertex has the

most restrictive among {reconfig, heat, sense}, as shown in

Fig. 10b.

Next, we describe two important subroutines, followed by

a description of two coalescing heuristics adapted for our

constraints. In the discussion that follows, we talk about

interference graph “vertices” rather than assay operations.

Simplification is a subroutine commonly used during

register allocation, which we here adapt for our purposes.

Any vertex that trivially satisfies the scheduling resource

constraints above, but is not affinity-adjacent to any other

vertices can be removed from the graph: the rationale is

that a legal placement for the simplified vertex can always
be found regardless of where all of its neighboring vertices

are placed. Removing simplified vertices from the graph

creates opportunities for new coalescingwhile also rendering

other vertices simplifiable. Following repeated rounds of

simplification, all vertices in the remaining graph can be

placed. Simplified vertices can then be placed by processing

them in reverse order of their removal.

Conservative Coalescing Coalescing is conservative if

the coalesced vertex oi j and its interference neighbors satisfy
the scheduler’s resource constraints (Eqs. (1) to (3)), i.e.:

|adjheat∗[oi j ]| ≤ Nheat (4)

|adjsense∗[oi j ]| ≤ Nsense (5)

|adjmix
∗[oi j ]| + |adjsplit∗[oi j ]| + |adjmerge

∗[oi j ]|

+

⌈
|adjstore∗[oi j ]|

k

⌉
+ |adjheat∗[oi j ]|

+ |adjsense∗[oi j ]| ≤ N

(6)
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(a)

(b) {4,6} & {7,10,11}

(c) {6,7,10} & {5,11,12}

Figure 8. (a) The interference graph for the Assay in Figure 4a: solid lines are interferences, while dotted lines are affinities between nodes.

Note that all interferences in Figure 7 are present but not depicted; (b) and (c) show that a coalescing solution is not unique.

(a) (b) (c)

Figure 9. (a) oi has affinity with oj and ok , while oj and ok interfere;

traditional coalescing does not maintain the affinity edge when

coalescing oi j , which may result in extended routes (b); by keeping

the edge, we can optimize routes by placing dependent operations

near each other (c).

3.4.1 Coalescing Strategy
Iterated Coalescing, depicted in Fig. 11, is adapted from it-

erated register coalescing [24], but without spilling. The

iterated coalescer simplifies the interference graph until it is

not possible to do so any further. It then applies conservative

(a) (b)

Figure 10. The rectangular dimensions of a coalesced vertex are

the minimum dimensions that can accommodate its constituent

parts (a); a coalesced vertex takes on the type of its most restrictive

module (b).

coalescing; if coalescing occurs, further simplification is per-

formed; otherwise, an low-degree vertex with at least one

incident affinity edge is “frozen” i.e., the coalescer gives up

hope of coalescing its incident affinity edges, thereby allow-

ing the vertex to be simplified. Iterated coalescing terminates

when all vertices have been removed via simplification. The

graph is then rebuilt and passed to the placer. Conservatism
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Figure 11. Phase ordering of Iterated Coalescing [24]

is guaranteed by the observation that the initial interference

graph, simplification process, and conservative coalescing

strategy ensure that the scheduler’s resource constraints are

satisfied at each step of the heuristic.

3.5 Placement
The placer determines the location on-chip where each

assay operation will execute. A legal placement satisfies

the constraint that operations oi and oj are placed at non-

overlapping positions for each interference edge (oi ,oj ) ∈ E.
Our compiler implements two distinct placement strategies

that have been published elsewhere: Virtual Topology
with Left-Edge Binder (VT-LEB) [28] and Keep All
Maximal Empty Rectangles (KAMER) [7]. Prior work

implemented these heuristics in a manner similar to linear

scan register allocation [67]. Starting with a scheduled basic

block, the placer scans each program point in sequential

order: operations scheduled to complete at the previous

time-step are removed from the current placement, and

operations scheduled to begin at the subsequent time-step

are added to the placement.

Our compiler uses modified versions of VT-LEB and

KAMER to perform placement on a coalesced interference

graph rather than a scheduled CFG; vertices are processed

one-by-one in a worklist sorted by the earliest time step.

When coalescing is performed, affinity relationships be-

tween interfering vertices may still exist, indicating exactly

which vertices should be placed near each other; hence, af-

ter placing oi , if aff [oi] , ∅, we recursively process affinity

neighbors prior to returning to the sorted order (see Fig. 9c).

Let adj<[oi ] be the set of oi ’s interference neighbors that
precede oi in the computed order. Placement proceeds in a

greedy fashion: operation oi can be placed at any position

that does not overlap the position(s) where operations in

adj<[oi ] have been placed. All vertices that have been coa-

lesced with/into oi are placed at the same location. The result-

ing placement is guaranteed to be legal as it ensures that oi ’s
position never overlaps that of any vertices in adj[oi ]. VT-
LEB guarantees that a legal placement can be found because

it ensures that all placement decisions adhere to scheduling

resource constraints. Further details regarding the placement

heuristics are available in the supplemental materials.

3.5.1 Mix Operation Resizing and Rescheduling
The rescheduling loop in Fig. 3 enables the compiler to ad-

just the size of mixing operations (Table 1) to reduce assay

execution time. The availability of space to accommodate

larger mixing operations is not known until placement; on

the other hand, the benefits of adjusting the latency of a mix-

ing operation cannot be ascertained without rescheduling,

and the updated schedule may change which fluidic variable

live ranges overlap, thereby rendering the interference graph

invalid. This observation necessitates the rescheduling loop.

The compiler uses a local search, which converges to a

locally optimal solution, to adjust mixing operation sizes.

When placing an interference graph, the first mixing oper-

ation or coalesced vertex oi that contains at least one mix

operation invokes Algorithm 1 to select an appropriate mixer

size. The heuristic relies on two subroutines:

1. MaxParallel applies Dilworth’s Theorem [20] to com-

pute the width, i.e., the maximum number of opera-

tions that could be scheduled concurrently, of the basic

block that contains oi ; if oi contains multiple coalesced

vertices, MaxParallel returns the maximum width of

among all of the basic blocks containing them.

2. CanFit computes the number of mixing modules of

size s that can fit on a given DMFB architecture. Re-

ferring back to Fig. 6, CanFit is effectively the same

subroutine that a scheduler would use to determine

the resource constraints of the target chip.

The heuristic first checks if oi ’s scheduled module size

CanFit MaxParallel operations. If more parallelism is avail-

able than what is currently scheduled, it checks if smaller
modules CanFit more than those currently scheduled, and

continues until it finds a module size that CanFit up to

MaxParallel operations.

The heuristic will increase oi ’s size in two cases:

1. If the chip CanFit strictly fewer than MaxParallel
operations, and the heuristic is unable to increase the

number of operations the chip CanFit by decreasing

oi ’s module size, then it increases oi ’s size as long as it

does not further reduce the number of operations that

the chip CanFit.
2. If oi ’s scheduled module size CanFit MaxParallel op-

erations, then the heuristic increases oi ’s size to the

largest point where MaxParallel operations CanFit
on the chip.

When the size of a mixing operation is updated, the size

of any other mixing operations that are coalesced with it

are updated as well. If a mixing operation is updated during

placement, its latency is scaled as per Eq. (7) and the compiler
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loops back to scheduling:

t ′ = t ∗ latencynew/latencyold (7)

For example, if the compiler changes a 10 second mix opera-

tion’s given work module from a 2×3 to a 2×4 module, then

the compiler computes the new latency as t ′ = 10∗2.9/6.1 ≈
4.76 seconds. The compiler rounds the new latency up to the

next millisecond. The termination criteria to continue on to

droplet routing is either (1) module sizes are not updated

during placement, so rescheduling is unnecessary, or (2) the

loop taken during a rescheduling loop failed during sched-

uling or placement. In the case of (2), we revert to the last

legal schedule and placement found. The interested reader

can find an example of module resizing in the supplemental

materials.

Algorithm 1 Resizing Heuristic

1: function ChooseModuleSize(Block(s) b, Vertex oi )
2: current ← oi .size
3: choice ← current
4: max ← MaxParallel(b)
5: currNum ← CanFit(current)
6: updated ← False
7: if max > currNum then
8: chosenNum ← currNum
9: smaller ← current
10: while smaller , smallest do
11: smaller ← decrease(current)
12: check ← CanFit(smaller)
13: if check > chosenNum then
14: choice ← smaller
15: updated ← True
16: chosenNum ← check
17: if chosenNum ≥ max then break

18: if updated = False then
19: larдer ← decrease(current)
20: check ← CanFit(larger)
21: while check = currNum OR check ≥ max do
22: choice ← larдer
23: if larдer = larдest then break

24: larдer ← increase(choice)
25: check ← CanFit(larger)

26: oi .size ← choice

3.6 Droplet Routing
Once a legal placement solution is obtained, each droplet

must be routed from its source to its destination;many papers

published in the past 15 years have described routing algo-

rithms, and in principle any can be used [9, 15, 34, 41, 42, 71,

72, 81, 91]. Themost advanced routers also integrate washing

operations to eliminate cross-contamination [35, 89, 92]. The

only additional requirement is that droplet routes must be

inserted at basic block boundaries; our compiler implements

these routes as part of SSI elimination [18].

4 Implementation
Our compiler targets an open-source cycle-accurate DMFB

simulator [27, 29]; we modified a back-end that can statically

compile CFGs [18], and rely on the simulator to report exe-

cution time. We used a collection of benchmarks specified

using the BioScript language, which is compatible with the

framework’s static compilation model [64]. Our compiler

uses List Scheduling [28, 80], the VT-LEB [28] and KAMER

[7] placers, and a greedy, yet effective, droplet router [28, 71].

Interference graph construction and coalescing are per-

formed after scheduling (Fig. 3). Coalescing is abstracted

away from placement so that any existing placement heuris-

tic could be modified easily to operate on a coalesced inter-

ference graph. While rescheduling is abstracted away from

placement, the resizing operations, by necessity, must be

performed during placement, which necessitates a substan-

tial revamp of the heuristic. Our current implementation

is only compatible with placers that place operations one-

at-a-time in a greedy fashion. A further discussion of the

necessary modifications is available for the curious reader

as a supplemental material.

5 Evaluation
Even though we support physical chips, the expense associ-

ated with their use is prohibitive for evaluation; hence, we

evaluate our compiler through simulation-based empirical

studies on known real-world assays specified for execution

on DMFBs. Specifically, we aim to evaluate the impact of

coalescing and mix operation resizing on compilation and as-

say execution time. All reported averages use the geometric

mean over the ratios of each benchmark to avoid providing

too much weight to longer- or shorter-running benchmarks

[22].

5.1 Experimental Setup
Experiments were performed on a 2.7 GHz Intel

®
; Core™ i7

processor, 8GB RAM,machine runningmacOS
®
.We compare

directly against two previously published compilers [18, 64]

using an identical 15× 19 DMFB architecture. We also report

results on 15 × 15, 12 × 12 and 8 × 8 DMFBs to evaluate the

impact of our mix operation resizing heuristic.

5.2 Benchmarks
Our evaluation uses a set of DMFB benchmarks that were

previously used to evaluate the two compilers that we use as

a baseline for comparison. Ref. [18] specified them using a

variant of the BioCoder language, which is now deprecated;

Ref. [64], as well as this work, uses the replacement BioScript

language; a detailed summary of the benchmarks are given

in [64]’s supplemental materials.
2
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5.3 Baseline Compilers
The DMFB compilers we compare against do not employ co-

alescing or mix operation resizing: Ref. [18] compiles a CFG

one basic block at a time using the standard VT-LEB algo-

rithm for placement ([28]), eschewing optimizations across

basic block boundaries. Ref. [64] employs the NSGA-II [19]

metaheuristic for placement. The NSGA-II placer attempts

to maximize the number of affinity-adjacent operations that

are placed at the same location, as well as affinity-adjacent

operations which interfere nearby one another in order to

reduce droplet routing paths, but it does not employ coalesc-

ing. The runtime of NSGA-II depends on a complex set of

parameter values; to get good results, it needs to run much

longer than a greedy heuristic such as VT-LEB or KAMER.

5.4 Results and Analysis
Table 2 compares simulated assay execution times previ-

ously reported for the two baseline compilers [18, 64] to

three configurations of the compiler presented here: VT-LEB

placement plus coalescing (VC), KAMER placement plus co-

alescing (KC), and KAMER placement plus both coalescing

and mix operation resizing (KCR). On average, VC, KC, and

KCR reduce assay execution time by 1.1%, 1.2%, and 25.0%
respectively. These results are not surprising, as assay exe-

cution time is known to be dominated by schedule latency,

not droplet routing time [81]; as optimizations, coalescing

aims to reduce droplet routing overhead while mix operation

resizing can lead to shorter schedules. We observed that con-

vergence typically occurs after 2 iterations of rescheduling

when resizing is enabled.

The improvements reported for VC and KC over Ref. [64]

indicate situations where coalescing turns out to be more

effective than the NSGA-II placer; however, NSGA-II may dis-

cover different (and possibly better) solutions if the random

number seed and other configuration parameters are varied.

Future work may extend the NSGA-II placer to utilize a coa-

lesced interference graph; the amount of work required to

extend the NSGA-II placer with resizing capabilities (which

would entail re-scheduling and re-placing at every perturba-

tion) is prohibitive, so we did not evaluate this option.

The compiler described in Ref. [18] utilizes the same placer

as VC, sans coalescing. Adding coalescing capabilities yielded

marginal improvements, due to the fact that droplet routing

does not dominate total assay execution time.

Mix operation resizing had a more profound impact on to-

tal assay execution time than coalescing. Furthermore, Fig. 12

depicts an observed linear correlation between the amount

of time an assay is specified for mixing and the percentage

decrease we expect to achieve via resizing across DMFBs of

varying size. At the smallest size, 8 × 8 (Figure 12d), resizing

allows us to compile several assays that failed to compile

successfully without this optimization turned on. Through

inspection, we determined that our resizing heuristic was

able to avail the minimum required parallelism for these

assays by using a 1 × 4 module size; the default 2 × 2 mixer

did not provide enough room for a legal schedule.

Table 3 provides details into how coalescing impacts the

placer’s workload and droplet routing time. On average, co-

alescing reduces the number of operations that are placed

by 77%; this, in turn, reduces the amount of work that needs

to be done during both placement and routing. In terms of

overall performance impact, the VC and KC placers reduced

droplet routing times by 9.4% and 8.6% compared to the

baseline.

6 Related Work
The majority of work on DMFB compilation targets devices

that do not feature sensory feedback or control flow; as such,

the scope of compilation was limited to programs that con-

sisted of a single basic block. Discrete formulations of the var-

ious compilation stages of scheduling[21, 30, 50, 63, 70, 80],

placement [14, 28, 48, 57, 58, 79, 87, 88, 90], and droplet rout-

ing [9, 15, 34, 41, 42, 71, 72, 81, 91] were explored, along with

wash-droplet [35, 89, 92] to eliminate contamination on the

surface of the chip. The compiler described here is a general

framework and could implement any of these algorithms.

Early work on DMFB compilation featuring control flow

targeted online error detection and recovery for the single

basic-block compilation model described above [2, 3, 33, 36–

39, 47, 54, 55, 66, 93]. With appropriate extensions to handle

CFGs, these techniques could be integrated into the runtime

system that executes assays compiled using the techniques

described here on a DMFB; it is beyond the scope of this

work to design and evaluate such techniques.

This work builds directly on two prior papers that de-

scribed techniques for DMFB compilers. The first [18] in-

troduced the hybrid computational-fluidic IR used in this

paper, and demonstrated how to compile a CFG: each basic

block could be compiled individually, with additional droplet

routes inserted at control flow edges. These routes ensure

that each basic block begins with its incoming droplets at the

same position regardless of which control path is taken lead-

ing into that basic block. A subsequent paper [64] introduced

the BioScript language (which we use here) and represents

the first attempt to optimize placement on the granularity of

a CFG, as opposed to individual basic blocks; this provided

the ability to optimize the additional droplet routes inserted

by the earlier compiler [18]; placement relied on an iterative

improvement metaheuristic, which ran slowly but generated

locally optimal solutions. The contributions of this paper are

threefold: (1) coalescing as a placement strategy; (2) faster-

running heuristics that can handle placement on the CFG

2
We discovered a semantic error in the OpiateDetection assay as used in [18,

64] and have adjusted it for correctness. Also, the BioScript specifications

we use from [64]’s supplemental materials do not match results when

running the framework. Timing specifications were updated through to

match previous results prior to conducting our experiments.
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Table 2. Impact of coalescing, choice of placement heuristic, and mix operation

resizing on total assay execution time.

Total Execution Time (m:s.ms)

Assay Baseline VT-LEB
+ Coalesce

KAMER
+ Coalesce

KAMER
+ Coalesce
+ Resize

O
tt
et

al
.,
[6
4]

BroadSpectrumOpiate 00:18.550 00:18.200 00:17.810 00:16.180

CancerDetection 1920:08.010 1920:06.000 1920:02.810 1919:24.000

Ciprofloxacin 101:31.800 100:37.100 100:36.910 100:29.950

Diazepam 96:48.130 96:50.180 96:49.760 96:14.970

Dilution 21:05.000 20:43.000 20:41.000 06:25.470

Fentanyl et al. 126:32.400 126:24.540 126:24.330 72:20.600

FullMorphine
2

157:21.540 157:21.500 157:19.890 122:52.780

GlucoseDetection 00:23.770 00:23.590 00:23.730 00:16.730

ImageProbeSynth 08:38.960 08:22.860 08:22.780 06:58.860

C
ur

ti
s
et

al
.,
[1
8] OpiateDetection_N

2
252:50.400 252:50.100 252:47.500 144:36.540

OpiateDetection_P_H
2

227:04.000 227:03.700 227:01.800 137:01.140

OpiateDetection_P_M
2

353:20.700 353:20.200 353:17.100 209:13.700

PCRDropletReplacement 40:44.000 39:17.890 39:17.120 32:55.170

ProbabilisticPCR_early 07:21.000 07:12.420 07:12.390 07:05.430

ProbabilisticPCR_full 11:19.000 11:10.600 11:10.550 11:03.610

PCR 11:43.000 11:27.370 11:27.380 11:27.370

Average Decrease: 1.1% 1.2% 25.0%
N - negative P - positive H - heroin M - morphine

Table 3. Impact of coalescing on placement effort and

droplet routing time.

# Modules Placed Droplet Route Time (s.ms)

Baseline Coalesced Baseline
VT-LEB

+
Coalesce

KAMER
+

Coalesce

5 2 00.740 00.740 00.910

11 4 00.820 00.680 01.000

11 3 02.390 02.450 02.220

13 2 02.600 02.670 03.950

11 2 00.710 00.750 01.150

11 3 02.670 02.770 02.540

19 8 05.840 05.760 08.420

10 5 01.470 01.250 01.800

9 1 00.770 00.530 00.780

49 4 06.060 05.030 07.230

49 4 05.820 04.770 06.870

49 4 08.470 06.890 10.030

4 2 00.510 00.510 00.350

10 2 07.610 03.920 05.420

8 2 00.630 00.530 00.390

8 2 00.870 00.770 00.550

77.1% 9.4% 8.6%

(a) 15 × 19 chip (b) 15 × 15 chip

(c) 12 × 12 chip (d) 8 × 8 chip is hamstrung without resizing

Figure 12. Resizing mix operations: we observe a linear correlation between the ratio of time spent mixing and the expected percent

decrease in an assay’s total schedule. The size of the bubbles indicate the ratio of time scheduled for I/O operations. Without resizing, the

8 × 8 chip can only synthesize 2 of the 18 benchmarks. With resizing enabled, we are able to successfully synthesize 11 out of the 18.
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granularity; and (3) mixing operation resizing, which has a

much greater impact on performance than coalescing.

Another approach, which is orthogonal to what we pro-

pose here, is to interpret assays online, rather than compile

them offline [31, 86]. The interpreter JIT-compiles each basic

block in an on-demand fashion, emphasizing compilation

speed over solution quality. To the best of our knowledge,

prior work has not attempted to JIT-compile an assay on the

granularity of the CFG; any such approach could build on the

techniques used here, noting that the runtime overhead of

mix operation resizing may be prohibitive. Further, there is a

complex interplay between coalescing and module resizing,

as resizing may affect interferences across the CFG during

rescheduling; hence, the combination of these optimizations

are not well-suited for online compilation.

7 Conclusion and Future Work
This paper described the framework of an optimizing com-

piler for DMFBs; the key innovations were twofold: the for-

mulation of the placement problem for CFGs that shares

many principle similarities to register allocation [12, 13],

which enabled the adaptation of register coalescing tech-

niques [11, 24] to eliminating otherwise spurious droplet

routes, and a mix operation resizing step to reduce schedule

latency. While there is certainly room to investigate more

effective heuristics that solve the various problems within

the compiler, we believe that the general back-end frame-

work presented here represents the correct way to model

the constituent optimization problems that must be solved,

along with their interactions. Moreover, we believe that the

most important topics for future investigation start at the

programming language level; for example, determining how

to support function calls, fluidic arrays, and fluidic SIMD op-

erations; additionally, there is need to port BioScript (and/or

other similar languages) to a variety of SP-LoC targets in

addition to DMFBs.
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