A Performance-Optimizing Compiler for
Cyber-Physical Digital Microfluidic Biochips

Tyson Loveless Jason Ott Philip Brisk
University of California, Riverside University of California, Riverside University of California, Riverside
USA USA USA
tlove004@ucr.edu jott002@ucr.edu philip@cs.ucr.edu

Abstract

This paper introduces a compiler optimization strategy for
Software-Programmable Laboratories-on-a-Chip (SP-LoCs),
which miniaturize and automate a wide variety of benchtop
laboratory experiments. The compiler targets a specific class
of SP-LoCs that manipulate discrete liquid droplets on a 2D
grid, with cyber-physical feedback provided by integrated
sensors and/or video monitoring equipment. The optimiza-
tion strategy employed here aims to reduce the overhead of
transporting fluids between operations, and explores trade-
offs between the latency and resource requirements of mix-
ing operations: allocating more space for mixing shortens
mixing time, but reduces the amount of spatial parallelism
available to other operations. The compiler is empirically
evaluated using a cycle-accurate simulator that mimics the
behavior of the target SP-LoC. Our results show that a co-
alescing strategy, inspired by graph coloring register allo-
cation, effectively reduces droplet transport latencies while
speeding up the compiler and reducing its memory footprint.
For biochemical reactions that are dominated by mixing
operations, we observe a linear correlation between a pre-
liminary result using a default mixing operation resource
allocation and the percentage decrease in execution time
that is achieved via resizing.

Keywords laboratory-on-a-chip (LoC), microfluidics, digi-
tal microfluidic biochip (DMFB), interference graph, coalesc-
ing

1 Introduction

The past 20 years have witnessed the development of
programmable, integrated micro-scale machines called
laboratories-on-a-chip (LoCs), which can automate and
miniaturize a number of laboratory functions which were
previously performed by hand at the benchtop scale. While
the majority of LoCs that are in use today are application-
specific, single-use, and disposable, software-programmable
(and reusable) LoCs (SP-LoCs) are also available. At present,
SP-LoCs are programmed at a level of abstraction akin to

Conference’17, July 2017, Washington, DC, USA
© 2020

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

machine code, i.e., by specifying a sequence of actuation
and deactuation operations for each programmable ele-
ment. Moreover, many “cyber-physical” SP-LoCs feature
integrated sensors, which provide feedback to the software
controlling them in real-time. Thus, language and compiler
support can help SP-LoCs gain traction and grow a user base.
Prior work has made progress toward compiling high level
languages for execution on SP-LoCs, but has either been
limited in scope to a single basic block, or altogether missed
optimization opportunities that can speed up compilation
and dramatically decrease execution time. This paper
describes solutions to these shortcomings as an optimizing
compiler targeting a class of SP-LoCs called Digital
Microfluidic Biochips (DMFBs). The optimization strategy
crosses basic block boundaries by modeling placement of
microfluidic operations on a reconfigurable processing array
as a problem that generalizes graph coalescing, similar to
graph coloring register allocation in traditional compilers.
Fluid transport operations can be eliminated through a
coalescing mechanism; when coalescing is not possible,
fluid transport lengths can be reduced by incorporating
knowledge of transport operations into placement. The
compiler also adjusts the size of mixing operations to
improve performance: prior work has shown that allocating
more space to each mixing operation reduces its latency
[65]; however, doing so reduces the spatial parallelism
available to other concurrently scheduled operations. The
compiler accounts for all of the aforementioned information,
yielding a clear and concise problem formulation that can
be solved using either exact or heuristic means.

The paper is organized as follows: § 2 provides an overview
of the SP-LoC technology that we target in this paper; § 3
presents the compiler and emphasizes the optimization prob-
lems that must be solved, along with their interactions. Sec-
tions 4 and 5, respectively present our implementation and
simulation-based empirical evaluation, including compari-
son to prior work. Section 6 summarizes related work on
DMEFB compilation to put the contribution of this paper in
context. Lastly, § 7 concludes the paper and outlines direc-
tions for future work.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

2 Background
2.1 Language Design for SP-LoCs

An assay is a laboratory procedure that aims to assess the
activity of a target entity, called the analyte; as an over-
generalization, we use the term assay to represent a bio-
chemical “algorithm” that will execute on an SP-LoC. Ideally,
the (bio-)chemist of the future will specify an assay using an
appropriately designed domain-specific programming lan-
guage (DSL). A compiler or interpreter will translate the spec-
ification into an executable format that will run on the SP-
LoC. A number of domain-specific programming languages
have been proposed for SP-LoCs [4, 5, 17, 18, 64, 83, 84, 86];
while most of these languages are tied to specific SP-LoC
technologies, any DSL compatible with DMFBs (see § 2.2)
could be used as a front-end to the compiler presented here.

2.2 Digital Microfluidic Biochips (DMFBs)

The compiler described in this paper targets a class of SP-
LoCs called Digital Microfluidic Biochips (DMFBs), which
manipulate discrete droplets of fluid using electrostatic actu-
ation [49, 60]. DMFBs exploit a physical phenomenon called
electrowetting, shown in Fig. 1a: an electrostatic potential
applied to a droplet at rest modifies its shape and angle
of contact with the surface; droplet transport can then be
achieved by activating and deactivating adjacent electrodes
in sequence, as shown in Fig. 1b. An optional top “ground
electrode” reduces the voltage required to move a droplet
and improves the fidelity of on-chip operations.

A DMFB is a 2D electrode array (Fig. 2a) which supports
an instruction set consisting of five operations: store, trans-
port, mix, merge, and split (Fig. 2b) [1, 26, 32, 59, 62, 68]. An
“executable program” is a sequence of electrode activations
supplied by a host PC or microcontroller. A compiler trans-
lates a text-based assay specification into an executable pro-
gram [18, 64]. A DMFB is “reconfigurable” in the sense that
each operation can be performed anywhere on the electrode
array and any given electrode may contribute to different
operations at different points in time during execution. A typ-
ical DMFB will integrate non-reconfigurable resources such
as I/O reservoirs on its perimeters, as well as heaters [53]
or optical detectors [51, 52, 78, 85] into the array itself. All
five basic operations can be performed at the same location
as a heater (when off) or a detector; however, heating and
detection cannot be performed at any location on-chip. Thus,
a compiler must know the precise location of all I/O pads on
the device perimeter and both the location and function of
all other integrated components; these impose constraints
that the compiler’s code generator must satisfy.

Integration of sensors [1, 8, 16, 23, 43, 45, 46, 56, 61, 69, 73—
76, 82] and online video monitoring [2, 3, 33, 3639, 47, 54,
55, 66, 93] allows a CPU controlling a DMFB to obtain online
feedback regarding the state of the assay during execution.

Tyson Loveless, Jason Ott, and Philip Brisk

Hydrophobic
Layer

Control
Electrodes

(a) The electrowetting effect: applying an electrostatic potential
to a droplet modifies its contact angle [49, 60].

Ground Electrode (-)

Ground Electrode ()
—>

Ground Electrode ()

(b) A droplet transport is achieved by activating and deactivat-
ing electrodes in sequence.

Figure 1. (a) The electrowetting principle, (b) droplet transport

Sensor Data

R A 4
'Control Data Microcontroller

(a) A DMFB (left) is comprised of a 2D array of discrete electrodes,
with an optional ground electrode on top. A cyber-physical feed-
back loop to a microcontroller is enabled by sensory feedback.

\ 2| i
— d S =
| @ 5
l 1 = Q
Storage Transportation Mixing

(b) DMFB instruction set architecture (ISA).
Figure 2. (a) A DMFB and (b) its 5-operation ISA.

At the language design level, this provides control flow: ar-
bitrary computations can be performed on acquired sensory
data, including predicates that resolve conditions at run-
time [18, 31]. The compiler must ensure that all droplets are
routed to the same location at the start of each basic block,
regardless of which control paths are taken [18].

2.3 Mixing Modules

The latency of mixing two fluids depends on the number of
electrodes that have been allocated to perform the mixing
and also the routing path that the droplet takes within the
mixer [65] (see Table 1). While larger mixers yield lower
latency, they reduce the availability of spatial parallelism
on-chip. The compiler described here includes a feedback
loop that adjusts the size of different mixing operations in
order to optimize performance.

Table 1. Mixing module dimensions and their latencies [65].

Size [2x2 2x3 1x4 2x4
Mixing time (sec) | 9.95 6.61 46 2.9

A Performance-Optimizating Compiler for Cyber-Physical DMFBs

Conference’17, July 2017, Washington, DC, USA

Rescheduling (if module sizes changed)

Interference
Graph

| Placement >

Figure 3. Overview of our DMFB compiler. The front-end compiles an assay specification to a CFG (not shown). The back-end converts the
CFG to an executable format. The “Interference Graph”, “coalescing”, and “rescheduling” arrows are the novel aspects of this paper.

3 Compiler
3.1 Overview

The assay is specified in a domain-specific language such as
BioCoder [18] or BioScript [64], that seamlessly interleaves
fluidic operations with computation. The target is a cyber-
physical DMFB (Fig. 2) which provides sensory feedback to
the runtime software that manages the device. This enables
the programmer to specify assays featuring arbitrary control
flow: the assay obtains sensory feedback from the device and
performs computations on the acquired data; the result of the
computation can be used as a condition which determines
which fluidic operations to execute next.

Our input language supports function calls, but does not
support unbounded recursion. The compiler’s preprocessor
inlines all function calls, which converts the assay to one
procedure. The input language restricts all fluidic variables
to be scalars; it does not support fluidic arrays. We hope to
relax these assumptions in the future.

Figure 4a depicts an assay specified in the BioScript
language [64]. We first convert the assay to a hybrid
computational-fluidic intermediate representation (IR) [18],
as shown in Fig. 4b. This IR represents the assay as a
Control Flow Graph (CFG). Next, we convert both fluidic
and computational variables to Static Single Information
(SSI) Form [6, 10, 77]; each basic block is represented as a
hybrid-fluidic/data dependence graph. Figures 4c and 4d
respectively show the BioScript specification and hybrid-IR
converted to SSI Form: in this case, 7- and ¢- functions’
are inserted for one fluidic variable. Figure 3 outlines the
subsequent steps of the compiler’s back-end. The following
subsections discuss each step in greater detail.

1SSI’s s -function (sometimes o -function) defines a split set for a variable at
the end of some basic blocks where control flow follows, allowing a unique
identifier for each conditional usage of the variable in a similar way that a
¢-function provides a single definition point for each variable.

3.2 Scheduling

The first step is to schedule assay operations. Each basic
block is scheduled individually. The scheduler ensures that
each operation starts and finishes within the basic block
containing it to ensure atomicity. Referring back to Table 1,
the scheduler assumes 2 X 2 mixers with 9.95s latencies;
this assumption is later relaxed during Rescheduling (§ 3.5.1).
O’Neal et al. [63] present the problem formulation and survey
many scheduling heuristics that have been published to date.

The compiler infers droplet storage operations from the
schedule and inserts them into the IR. The IR treats storage
as an explicit operation that uses (and consumes) its input
and defines a new output droplet. This may necessitate the
insertion of additional - and ¢- functions to maintain SSI
Form, as shown in Figs. 5a and 5b. This representation en-
ables the placer (§ 3.5) to treat droplet storage the same as
all other scheduled assay operations.

The scheduler enforces resource constraints that conser-
vatively over-approximate placement. To simplify the discus-
sion, we omit resource constraints involving I/O operations.
The scheduler partitions the DMFB into N modules (Fig. 6).
At any point in the schedule, a reconfigurable module can
perform one mix, split, or merge operation, or can store up
to k droplets, depending on its size. Any module that fea-
tures an integrated heater or sensor can perform a heating
or sensing operation as well; let the number of such modules
be Npeqr and Niepse respectively. Let rj(p) be the number of
operations of type j € {mix, split, merge, store, heat, sense}
scheduled at program point p. A legal schedule must satisfy
the following constraints for each program point p:

rheat(p) < Nhear (1)
rsense(P) < Ngense (2)

Tmix(p) + rsplit(p) + rmerge(P) + ’rrst%e(p)“

+ rheat(p) + rsense(P) <N

Conference’17, July 2017, Washington, DC, USA

1 dispense ap
2 dispense by
1 dispense a 3 dispense ¢
2 dispense b 4 a; = heat qp
3 dispense c 5 ¢ = heat ¢
4 heat a 6 di = mix a; with by
5 heat ¢ 7 detect d;
6 d = mix a with b 8 dy,d; = n(dy)
7 detect d 9 if (...)
8 if (...) 10 dispense a;
9 dispense a 11 dy = mix a; with d;
10 d = mix a with d 12 ds = ¢(ds, ds)
11 d = mix ¢ with d 13 d¢ = mix c¢; with ds
12 heat d 14 d; = heat ds
13 drain d 15 drain dy

(b) (@

Figure 4. A simple assay written in BioScript (a) and the associated
CFG (b) can be augmented with SSI form’s ¢ and & nodes (c and d).

Scheduling failures may occur and are unavoidable in the
general case, even if the problem is solved optimally. If sched-
uling fails, the only option is to switch to a larger DFMB
target, or rewrite the assay. During compilation, switching
to larger and faster mixers Table 1 increases the likelihood of
failure, which is one reason why we default to the smallest,
slowest mixer for the initial scheduling step. Failures due to
module sizes are addressed in § 3.5.1.

3.3 Interference Graph

3.3.1 Definitions and Properties

Let G = (V,E, A) be the interference graph [11-13]: V is the
set of assay operations, E is the set of interference edges, and
A is the set of affinity edges that represent fluid transfers

between operations. Let adj[o;] and aff[o;] denote the sets
of interference and affinity neighbors of 0; € V; additionally,

let adj*[o;] = adj[o;] U {o;} and aff"[0;] = aff[0:] U {o:}.

Tyson Loveless, Jason Ott, and Philip Brisk

dispense aqp
dispense by
dispense c¢g

a; = heat ap

c; = heat ¢

di = mix a; with by
detect d;

cp = store ¢

9 dyds = m(dy)

10 ¢3,¢4 = 7(c2)

0 N U R W N

1 if (... Y —) L
12 dispense ap

13 dy = mix ap; with dy

14 c; = store c3 @

15 ds = $(ds, ds)

16 ¢ = Ples, cs @

17 dg = mix c¢¢ with ds

18 d; = heat dg
19 drain dy

(@) (b)

Figure 5. Our scheduler adds implicit store operations (a) and
updates SSI form to generate a schedule (b) that captures the linear
def-use chain that SSI form provides.

=
oo

Figure 6. A DMFB partitioned into a 2X 2 array of modules exposed
to the scheduler: one module has a heater and one has a sensor.

Each vertex is labeled with a type, denoted type[o;] €
{mix, split, merge, store, heat, sense}. As shorthand, and al-
beit a slight abuse of notation, we define a meta-type, reconfig,
as the union of types mix, merge, split, or store.

The set of interference or affinity neighbors of type t are
respectively denoted adji[o;] = {o; € adj[o;] | type[o;] = t}
and affi[o;] = {o; € afflo;] | typelo;] = t}; adj;"[0;] and
aff;*|o;] are defined analogously to adj*[o;] and aff *[0;].

3.3.2 Construction

An interference edge (0;,0;) € E is placed between two
operations o; and o; whose lifetimes overlap. Affinity edges
arise from fluidic dependencies in the IR, including those
arising between fluidic variables used and defined by the ¢-
and 7-functions inserted during SSI construction [18, 64].

A Performance-Optimizating Compiler for Cyber-Physical DMFBs

heaterl sensorl
heat1, detectl,
heat2,... detect2,...

heater2 sensor2
heat1, detectl,
heat2,... detect2,...

(a) I/O interferences (b) External module interferences
Figure 7. I/O & Module Interferences: All 1/O reservoirs (a) are
universal nodes; their subgraph forms a clique. The subgraph of
external modules (b) is a complete multipartite graph, with each
module type comprising a part.

An affinity edge (ok, 0;) € A indicates that a droplet must
be transported between the locations where oy and o; are
placed. The transport operation can be eliminated if o and
oy are placed at the same location.

Affinity edges can only be inserted between “compati-
ble” operations. For example, a mix operation is compatible
with a heat because a mix operation can be scheduled on a
DMFB module that includes an integrated heater (presum-
ably turned off). On the other hand, heat and sense opera-
tions are incompatible: to date no DMFB devices has inte-
grated a heater and sensor at the same on-chip location.

The interference graph includes a complete multipartite
gadget (Fig. 7b) to make resource-related incompatibilities
explicit. I/O operations bound to the same reservoir cannot
interfere, while I/O operations bound to different reservoirs
explicitly interfere. Without loss of generality, a sensing op-
eration cannot be bound to a region of a DMFB that features
an integrated heater, and vice-versa.

Figure 8a shows the interference graph corresponding
to the assay in Fig. 4 after scheduling and storage inser-
tion, and assuming that the target DMFB has at least two
heaters. Instructions 1, 2, 3,9, and 13 are statically bound to
I/O reservoirs. Operation 5 (heat c¢) overlaps with operations
4,6, and 7; droplet ¢ is stored after operation 7 (detect d)
completes. To conserve space, the interference graph omits
the interference edges that belong to the gadget in resource-
interferences between operation 7 (detect d) and the three
heat operations (4, 5, and 12). Fluidic dependencies result in
affinity edges: (v4, vs), (vs, v7), (v7,v10), (v5,011), (V7,011),
(v10, v11), and (v11, V12).

3.4 Coalescing

Coalescing merges non-interfering affinity-related vertices
in the interference graph to ensure that the correspond-
ing operations are placed at the same on-chip location: this
eliminates the need to transport droplets, which can reduce
the burden on placement and routing (§§ 3.5 and 3.6), two

Conference’17, July 2017, Washington, DC, USA

NP-complete problems. Coalescing is implemented as an
affinity edge contraction operation [11, 24, 40, 44]: given an
affinity edge (0;,0;) € A where (0;,0;) ¢ E, vertices o; and
o; are merged to form new vertex o;; having interference
and affinity neighbor sets adj[o;;] = (adjlo;] U adj[o;]) and
affloi;] = (aff[o:] U aff[o;]) \ {0i,0;}. Figure 8a shows the
interference graph derived from the scheduled CFG shown
in Fig. 5b; Figs. 8b and 8c show two possible coalescing out-
comes. In this example, Fig. 8c has coalesced more affinity
edges than Fig. 8b. This, in turn, reduces the workload of the
placer (§ 3.5) and router (§ 3.6) downstream.

Coalescing here differs from register allocation in one
key respect. Consider the example shown in Fig. 9a: when
coalescing (0;, 0;) into o;;, traditional mechanisms discard
(04, 0), which may result in extended routes (Fig. 9b). We
instead maintain the affinity, allowing routes to be optimized
by placing operations near each other (Fig. 9c).

When reconfigurable operations of different dimensions
are coalesced, the coalesced vertex is given the minimum
rectangular dimension that can accommodate its constitu-
tions (see Fig. 10a). The type of a coalesced vertex has the
most restrictive among {reconfig, heat, sense}, as shown in
Fig. 10b.

Next, we describe two important subroutines, followed by
a description of two coalescing heuristics adapted for our
constraints. In the discussion that follows, we talk about
interference graph “vertices” rather than assay operations.

Simplification is a subroutine commonly used during
register allocation, which we here adapt for our purposes.
Any vertex that trivially satisfies the scheduling resource
constraints above, but is not affinity-adjacent to any other
vertices can be removed from the graph: the rationale is
that a legal placement for the simplified vertex can always
be found regardless of where all of its neighboring vertices
are placed. Removing simplified vertices from the graph
creates opportunities for new coalescing while also rendering
other vertices simplifiable. Following repeated rounds of
simplification, all vertices in the remaining graph can be
placed. Simplified vertices can then be placed by processing
them in reverse order of their removal.

Conservative Coalescing Coalescing is conservative if
the coalesced vertex o;; and its interference neighbors satisfy
the scheduler’s resource constraints (Egs. (1) to (3)), i.e.:

|adjheat*[0ij]| < Nheat (4)
|adjsense*[oij]| < Nsense (5)
|adjmix* [Oij]| + |adjsplit*[0ij]| + |adjmerge* [Oij]|
’V |adjstore>k [Oij“
+ S —
k
+ |adjsense* [Oij]l <N

+ |adjheat*[0ij]| (6)

Conference’17, July 2017, Washington, DC, USA

heater

4 heata A

\ i

[

heater

5 heat ¢

sensor

7 detectd

Fa\IsTrue

\\d
~

d 1
1
heater - _‘f -

(@)

Tyson Loveless, Jason Ott, and Philip Brisk

” dis a | a heater

[=]

4 heata e
Wed:mixawm\b \ .
- heater
b 1
H 5 heatc
id _ 4 [implicit store c]

sensor -

7 detect d
if (...)

10 d=mixawithd | __ Iml
11 d=mixcwithd |a

'

1

'd
heater

12 heatd d

(b) {4.6} & {7,10,11}

heater

|[EEjmEse

d heater
sensor

5 heatc
6 d =mix awith b
7 detectd

if(.)

10 d=mixawithd

[implicit store c]

d| 11 d=mix cwithd
12 heatd

=

(c) {6,7,10} & {5,11,12}

Figure 8. (a) The interference graph for the Assay in Figure 4a: solid lines are interferences, while dotted lines are affinities between nodes.
Note that all interferences in Figure 7 are present but not depicted; (b) and (c) show that a coalescing solution is not unique.

I | I
Oijj Ok

Oij 5

(b) (©

Figure 9. (a) o; has affinity with 0j and o, while 0; and o, interfere;
traditional coalescing does not maintain the affinity edge when
coalescing o;j, which may result in extended routes (b); by keeping

the edge, we can optimize routes by placing dependent operations
near each other (c).

3.4.1 Coalescing Strategy

Iterated Coalescing, depicted in Fig. 11, is adapted from it-
erated register coalescing [24], but without spilling. The
iterated coalescer simplifies the interference graph until it is
not possible to do so any further. It then applies conservative

(@

(b)

Figure 10. The rectangular dimensions of a coalesced vertex are
the minimum dimensions that can accommodate its constituent

parts (a); a coalesced vertex takes on the type of its most restrictive
module (b).

coalescing; if coalescing occurs, further simplification is per-
formed; otherwise, an low-degree vertex with at least one
incident affinity edge is “frozen” i.e., the coalescer gives up
hope of coalescing its incident affinity edges, thereby allow-
ing the vertex to be simplified. Iterated coalescing terminates
when all vertices have been removed via simplification. The
graph is then rebuilt and passed to the placer. Conservatism

A Performance-Optimizating Compiler for Cyber-Physical DMFBs

}

build

any ‘

freeze .
conservative
coalesce

{

freeze

C simplify ‘)cozlgce

empty graph¢

rebuild

y

Figure 11. Phase ordering of Iterated Coalescing [24]

is guaranteed by the observation that the initial interference
graph, simplification process, and conservative coalescing
strategy ensure that the scheduler’s resource constraints are
satisfied at each step of the heuristic.

3.5 Placement

The placer determines the location on-chip where each
assay operation will execute. A legal placement satisfies
the constraint that operations o; and o; are placed at non-
overlapping positions for each interference edge (0;, 0;) € E.
Our compiler implements two distinct placement strategies
that have been published elsewhere: Virtual Topology
with Left-Edge Binder (VI-LEB) [28] and Keep All
Maximal Empty Rectangles (KAMER) [7]. Prior work
implemented these heuristics in a manner similar to linear
scan register allocation [67]. Starting with a scheduled basic
block, the placer scans each program point in sequential
order: operations scheduled to complete at the previous
time-step are removed from the current placement, and
operations scheduled to begin at the subsequent time-step
are added to the placement.

Our compiler uses modified versions of VI-LEB and
KAMER to perform placement on a coalesced interference
graph rather than a scheduled CFG; vertices are processed
one-by-one in a worklist sorted by the earliest time step.

When coalescing is performed, affinity relationships be-
tween interfering vertices may still exist, indicating exactly
which vertices should be placed near each other; hence, af-
ter placing o;, if aff[o;] # 0, we recursively process affinity
neighbors prior to returning to the sorted order (see Fig. 9c).

Let adj<[o;] be the set of 0;’s interference neighbors that
precede o; in the computed order. Placement proceeds in a
greedy fashion: operation o; can be placed at any position
that does not overlap the position(s) where operations in
adj<[o;] have been placed. All vertices that have been coa-
lesced with/into o; are placed at the same location. The result-
ing placement is guaranteed to be legal as it ensures that o;’s
position never overlaps that of any vertices in adj[o;]. VI-
LEB guarantees that a legal placement can be found because

Conference’17, July 2017, Washington, DC, USA

it ensures that all placement decisions adhere to scheduling
resource constraints. Further details regarding the placement
heuristics are available in the supplemental materials.

3.5.1 Mix Operation Resizing and Rescheduling

The rescheduling loop in Fig. 3 enables the compiler to ad-
just the size of mixing operations (Table 1) to reduce assay
execution time. The availability of space to accommodate
larger mixing operations is not known until placement; on
the other hand, the benefits of adjusting the latency of a mix-
ing operation cannot be ascertained without rescheduling,
and the updated schedule may change which fluidic variable
live ranges overlap, thereby rendering the interference graph
invalid. This observation necessitates the rescheduling loop.

The compiler uses a local search, which converges to a
locally optimal solution, to adjust mixing operation sizes.
When placing an interference graph, the first mixing oper-
ation or coalesced vertex o; that contains at least one mix
operation invokes Algorithm 1 to select an appropriate mixer
size. The heuristic relies on two subroutines:

1. MaxParallel applies Dilworth’s Theorem [20] to com-
pute the width, i.e., the maximum number of opera-
tions that could be scheduled concurrently, of the basic
block that contains o;; if 0; contains multiple coalesced
vertices, MaxParallel returns the maximum width of
among all of the basic blocks containing them.

2. CanFit computes the number of mixing modules of
size s that can fit on a given DMFB architecture. Re-
ferring back to Fig. 6, CanFit is effectively the same
subroutine that a scheduler would use to determine
the resource constraints of the target chip.

The heuristic first checks if 0;’s scheduled module size
CanFit MaxParallel operations. If more parallelism is avail-
able than what is currently scheduled, it checks if smaller
modules CanFit more than those currently scheduled, and
continues until it finds a module size that CanFit up to
MaxParallel operations.

The heuristic will increase o;’s size in two cases:

1. If the chip CanFit strictly fewer than MaxParallel
operations, and the heuristic is unable to increase the
number of operations the chip CanFit by decreasing
o0;’s module size, then it increases o;’s size as long as it
does not further reduce the number of operations that
the chip CanFit.

2. If 0;’s scheduled module size CanFit MaxParallel op-
erations, then the heuristic increases o;’s size to the
largest point where MaxParallel operations CanFit
on the chip.

When the size of a mixing operation is updated, the size
of any other mixing operations that are coalesced with it
are updated as well. If a mixing operation is updated during
placement, its latency is scaled as per Eq. (7) and the compiler

Conference’17, July 2017, Washington, DC, USA

loops back to scheduling:

t" =t * latencyney /latency,iq (7)
For example, if the compiler changes a 10 second mix opera-
tion’s given work module from a 2 X 3 to a 2 X4 module, then
the compiler computes the new latency as t’ = 10%2.9/6.1
4.76 seconds. The compiler rounds the new latency up to the
next millisecond. The termination criteria to continue on to
droplet routing is either (1) module sizes are not updated
during placement, so rescheduling is unnecessary, or (2) the
loop taken during a rescheduling loop failed during sched-
uling or placement. In the case of (2), we revert to the last
legal schedule and placement found. The interested reader
can find an example of module resizing in the supplemental
materials.

Algorithm 1 Resizing Heuristic

1: function CHOOSEMODULESIZE(Block(s) b, Vertex 0;)
2 current <« oj.size

3 choice < current

4: max < MaxParallel(b)

5: currNum « CanFit(current)

6 updated < False

7 if max > currNum then

8 chosenNum «— currNum

9 smaller < current

10: while smaller # smallest do

11: smaller « decrease(current)

12: check « CanFit(smaller)

13: if check > chosenNum then

14: choice «— smaller

15: updated < True

16: chosenNum « check

17: if chosenNum > max then break
18: if updated = False then

19: larger < decrease(current)

20: check « CanFit(larger)

21: while check = currNum OR check > max do
22: choice « larger

23: if larger = largest then break

24: larger « increase(choice)

25: check « CanFit(larger)

26: 0;.size « choice

3.6 Droplet Routing

Once a legal placement solution is obtained, each droplet
must be routed from its source to its destination; many papers
published in the past 15 years have described routing algo-
rithms, and in principle any can be used [9, 15, 34, 41, 42, 71,
72,81, 91]. The most advanced routers also integrate washing
operations to eliminate cross-contamination [35, 89, 92]. The
only additional requirement is that droplet routes must be
inserted at basic block boundaries; our compiler implements
these routes as part of SSI elimination [18].

Tyson Loveless, Jason Ott, and Philip Brisk

4 Implementation

Our compiler targets an open-source cycle-accurate DMFB
simulator [27, 29]; we modified a back-end that can statically
compile CFGs [18], and rely on the simulator to report exe-
cution time. We used a collection of benchmarks specified
using the BioScript language, which is compatible with the
framework’s static compilation model [64]. Our compiler
uses List Scheduling [28, 80], the VT-LEB [28] and KAMER
[7] placers, and a greedy, yet effective, droplet router [28, 71].

Interference graph construction and coalescing are per-
formed after scheduling (Fig. 3). Coalescing is abstracted
away from placement so that any existing placement heuris-
tic could be modified easily to operate on a coalesced inter-
ference graph. While rescheduling is abstracted away from
placement, the resizing operations, by necessity, must be
performed during placement, which necessitates a substan-
tial revamp of the heuristic. Our current implementation
is only compatible with placers that place operations one-
at-a-time in a greedy fashion. A further discussion of the
necessary modifications is available for the curious reader
as a supplemental material.

5 Evaluation

Even though we support physical chips, the expense associ-
ated with their use is prohibitive for evaluation; hence, we
evaluate our compiler through simulation-based empirical
studies on known real-world assays specified for execution
on DMFBs. Specifically, we aim to evaluate the impact of
coalescing and mix operation resizing on compilation and as-
say execution time. All reported averages use the geometric
mean over the ratios of each benchmark to avoid providing
too much weight to longer- or shorter-running benchmarks
[22].

5.1 Experimental Setup

Experiments were performed on a 2.7 GHz Intel®; Core™ i7
processor, 8GB RAM, machine running macOS®. We compare
directly against two previously published compilers [18, 64]
using an identical 15 x 19 DMFB architecture. We also report
results on 15 X 15, 12 X 12 and 8 X 8 DMFBs to evaluate the
impact of our mix operation resizing heuristic.

5.2 Benchmarks

Our evaluation uses a set of DMFB benchmarks that were
previously used to evaluate the two compilers that we use as
a baseline for comparison. Ref. [18] specified them using a
variant of the BioCoder language, which is now deprecated;
Ref. [64], as well as this work, uses the replacement BioScript
language; a detailed summary of the benchmarks are given
in [64]’s supplemental materials.

A Performance-Optimizating Compiler for Cyber-Physical DMFBs

5.3 Baseline Compilers

The DMFB compilers we compare against do not employ co-
alescing or mix operation resizing: Ref. [18] compiles a CFG
one basic block at a time using the standard VT-LEB algo-
rithm for placement ([28]), eschewing optimizations across
basic block boundaries. Ref. [64] employs the NSGA-II [19]
metaheuristic for placement. The NSGA-II placer attempts
to maximize the number of affinity-adjacent operations that
are placed at the same location, as well as affinity-adjacent
operations which interfere nearby one another in order to
reduce droplet routing paths, but it does not employ coalesc-
ing. The runtime of NSGA-II depends on a complex set of
parameter values; to get good results, it needs to run much
longer than a greedy heuristic such as VI-LEB or KAMER.

5.4 Results and Analysis

Table 2 compares simulated assay execution times previ-
ously reported for the two baseline compilers [18, 64] to
three configurations of the compiler presented here: VI-LEB
placement plus coalescing (VC), KAMER placement plus co-
alescing (KC), and KAMER placement plus both coalescing
and mix operation resizing (KCR). On average, VC, KC, and
KCR reduce assay execution time by 1.1%, 1.2%, and 25.0%
respectively. These results are not surprising, as assay exe-
cution time is known to be dominated by schedule latency,
not droplet routing time [81]; as optimizations, coalescing
aims to reduce droplet routing overhead while mix operation
resizing can lead to shorter schedules. We observed that con-
vergence typically occurs after 2 iterations of rescheduling
when resizing is enabled.

The improvements reported for VC and KC over Ref. [64]
indicate situations where coalescing turns out to be more
effective than the NSGA-II placer; however, NSGA-II may dis-
cover different (and possibly better) solutions if the random
number seed and other configuration parameters are varied.
Future work may extend the NSGA-II placer to utilize a coa-
lesced interference graph; the amount of work required to
extend the NSGA-II placer with resizing capabilities (which
would entail re-scheduling and re-placing at every perturba-
tion) is prohibitive, so we did not evaluate this option.

The compiler described in Ref. [18] utilizes the same placer
as VC, sans coalescing. Adding coalescing capabilities yielded
marginal improvements, due to the fact that droplet routing
does not dominate total assay execution time.

Mix operation resizing had a more profound impact on to-
tal assay execution time than coalescing. Furthermore, Fig. 12
depicts an observed linear correlation between the amount
of time an assay is specified for mixing and the percentage
decrease we expect to achieve via resizing across DMFBs of
varying size. At the smallest size, 8 X 8 (Figure 12d), resizing
allows us to compile several assays that failed to compile
successfully without this optimization turned on. Through
inspection, we determined that our resizing heuristic was

Conference’17, July 2017, Washington, DC, USA

able to avail the minimum required parallelism for these
assays by using a 1 X 4 module size; the default 2 X 2 mixer
did not provide enough room for a legal schedule.

Table 3 provides details into how coalescing impacts the
placer’s workload and droplet routing time. On average, co-
alescing reduces the number of operations that are placed
by 77%; this, in turn, reduces the amount of work that needs
to be done during both placement and routing. In terms of
overall performance impact, the VC and KC placers reduced
droplet routing times by 9.4% and 8.6% compared to the
baseline.

6 Related Work

The majority of work on DMFB compilation targets devices
that do not feature sensory feedback or control flow; as such,
the scope of compilation was limited to programs that con-
sisted of a single basic block. Discrete formulations of the var-
ious compilation stages of scheduling[21, 30, 50, 63, 70, 80],
placement [14, 28, 48, 57, 58, 79, 87, 88, 90], and droplet rout-
ing [9, 15, 34, 41, 42, 71, 72, 81, 91] were explored, along with
wash-droplet [35, 89, 92] to eliminate contamination on the
surface of the chip. The compiler described here is a general
framework and could implement any of these algorithms.

Early work on DMFB compilation featuring control flow
targeted online error detection and recovery for the single
basic-block compilation model described above [2, 3, 33, 36—
39, 47, 54, 55, 66, 93]. With appropriate extensions to handle
CFGs, these techniques could be integrated into the runtime
system that executes assays compiled using the techniques
described here on a DMFB; it is beyond the scope of this
work to design and evaluate such techniques.

This work builds directly on two prior papers that de-
scribed techniques for DMFB compilers. The first [18] in-
troduced the hybrid computational-fluidic IR used in this
paper, and demonstrated how to compile a CFG: each basic
block could be compiled individually, with additional droplet
routes inserted at control flow edges. These routes ensure
that each basic block begins with its incoming droplets at the
same position regardless of which control path is taken lead-
ing into that basic block. A subsequent paper [64] introduced
the BioScript language (which we use here) and represents
the first attempt to optimize placement on the granularity of
a CFG, as opposed to individual basic blocks; this provided
the ability to optimize the additional droplet routes inserted
by the earlier compiler [18]; placement relied on an iterative
improvement metaheuristic, which ran slowly but generated
locally optimal solutions. The contributions of this paper are
threefold: (1) coalescing as a placement strategy; (2) faster-
running heuristics that can handle placement on the CFG

2We discovered a semantic error in the OpiateDetection assay as used in [18,
64] and have adjusted it for correctness. Also, the BioScript specifications
we use from [64]’s supplemental materials do not match results when
running the framework. Timing specifications were updated through to
match previous results prior to conducting our experiments.

Conference’17, July 2017, Washington, DC, USA Tyson Loveless, Jason Ott, and Philip Brisk

Table 2. Impact of coalescing, choice of placement heuristic, and mix operation Table 3. Impact of coalescing on placement effort and

resizing on total assay execution time. droplet routing time.
Total Execution Time (m:s.ms) # Modules Placed Droplet Route Time (s.ms)
) VT-LEB KAMER KAMER . . VT-LEB KAMER
Assay Baseline + Coalesce Baseline Coalesced Baseline + +
+ Coalesce + Coalesce .
+ Resize Coalesce Coalesce

BroadSpectrumOpiate 00:18.550 00:18.200 00:17.810 00:16.180 5 2 00.740 00.740 00.910
CancerDetection 1920:08.010 1920:06.000 1920:02.810 1919:24.000 11 4 00.820 00.680 01.000
g‘ Ciprofloxacin 101:31.800 100:37.100 100:36.910 100:29.950 11 3 02.390 02.450 02.220
“_:\' Diazepam 96:48.130 96:50.180 96:49.760 96:14.970 13 2 02.600 02.670 03.950
"< | Dilution 21:05.000 20:43.000 20:41.000 06:25.470 11 2 00.710 00.750 01.150
B Fentanyl et al. 126:32.400 126:24.540 126:24.330 72:20.600 11 3 02.670 02.770 02.540
g FullMorphine2 157:21.540 157:21.500 157:19.890 122:52.780 19 8 05.840 05.760 08.420
GlucoseDetection 00:23.770 00:23.590 00:23.730 00:16.730 10 5 01.470 01.250 01.800
ImageProbeSynth 08:38.960 08:22.860 08:22.780 06:58.860 9 1 00.770 00.530 00.780
i~ OpiateDetection_N2 252:50.400 252:50.100 252:47.500 144:36.540 49 4 06.060 05.030 07.230
= OpiateDetectim‘LILH2 227:04.000 227:03.700 227:01.800 137:01.140 49 4 05.820 04.770 06.870
T: OpiateDetection_P_M2 353:20.700 353:20.200 353:17.100 209:13.700 49 4 08.470 06.890 10.030
3 PCRDropletReplacement 40:44.000 39:17.890 39:17.120 32:55.170 4 2 00.510 00.510 00.350
. | ProbabilisticPCR_early 07:21.000 07:12.420 07:12.390 07:05.430 10 2 07.610 03.920 05.420
g ProbabilisticPCR_full 11:19.000 11:10.600 11:10.550 11:03.610 8 2 00.630 00.530 00.390
© | PCR 11:43.000 11:27.370 11:27.380 11:27.370 8 2 00.870 00.770 00.550
Average Decrease: 1.1% 1.2% 25.0% 77.1% 9.4% 8.6%

N - negative P - positive H - heroin M - morphine

50% 50%

1oy R=0.8922 R = 06992

25%

Percent Decrease in Schedule
Percent Decrease in Schedule

]
0% 18% 26% 3% 52% 65% 0% 13% 26% 30% 52% 65%
Percent of Time Scheduled for Mixing Percent of Time Scheduled for Mixing
(a) 15 x 19 chip (b) 15 x 15 chip
o 9% o 0%
5 =i 15x 19 15x 15 12x12 8x8
B g0, B=0.8983 B oy =1
S 60% g 6% 5
= = £ o
G <] 5 . 4
N 50% B 50% 2
£ £ o
% 40% % 40% "GU)
: :
o 9 0
8 30% g 30% g
2 2% 2 20 0 4 3 12 16 2%
f=4 =4 . 10%
D ¢ Number of Successfully Synthesized)
o 10% O 10%)
5 5 Benchmarks @
a o =
13% 26% 39% 52% 65% o 62.5%
Percent of Time Scheduled for Mixing - Percent of Time Scheduled for Mixing
(c) 12 x 12 chip (d) 8 x 8 chip is hamstrung without resizing

Figure 12. Resizing mix operations: we observe a linear correlation between the ratio of time spent mixing and the expected percent
decrease in an assay’s total schedule. The size of the bubbles indicate the ratio of time scheduled for I/O operations. Without resizing, the
8 X 8 chip can only synthesize 2 of the 18 benchmarks. With resizing enabled, we are able to successfully synthesize 11 out of the 18.

A Performance-Optimizating Compiler for Cyber-Physical DMFBs

granularity; and (3) mixing operation resizing, which has a
much greater impact on performance than coalescing.

Another approach, which is orthogonal to what we pro-
pose here, is to interpret assays online, rather than compile
them offline [31, 86]. The interpreter JIT-compiles each basic
block in an on-demand fashion, emphasizing compilation
speed over solution quality. To the best of our knowledge,
prior work has not attempted to JIT-compile an assay on the
granularity of the CFG; any such approach could build on the
techniques used here, noting that the runtime overhead of
mix operation resizing may be prohibitive. Further, there is a
complex interplay between coalescing and module resizing,
as resizing may affect interferences across the CFG during
rescheduling; hence, the combination of these optimizations
are not well-suited for online compilation.

7 Conclusion and Future Work

This paper described the framework of an optimizing com-
piler for DMFBs; the key innovations were twofold: the for-
mulation of the placement problem for CFGs that shares
many principle similarities to register allocation [12, 13],
which enabled the adaptation of register coalescing tech-
niques [11, 24] to eliminating otherwise spurious droplet
routes, and a mix operation resizing step to reduce schedule
latency. While there is certainly room to investigate more
effective heuristics that solve the various problems within
the compiler, we believe that the general back-end frame-
work presented here represents the correct way to model
the constituent optimization problems that must be solved,
along with their interactions. Moreover, we believe that the
most important topics for future investigation start at the
programming language level; for example, determining how
to support function calls, fluidic arrays, and fluidic SIMD op-
erations; additionally, there is need to port BioScript (and/or
other similar languages) to a variety of SP-LoC targets in
addition to DMFBs.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 1351115, Grant
No. 1536026, Grant No. 1545097, and Grant No. 1910878. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Founda-
tion.

References

[1] Mirela Alistar and Urs Gaudenz. 2017. OpenDrop: An Integrated Do-
It-Yourself Platform for Personal Use of Biochips. Bioengineering 4, 2
(2017), 45. https://doi.org/10.3390/bioengineering4020045

[2] Mirela Alistar and Paul Pop. 2015. Synthesis of biochemical applica-
tions on digital microfluidic biochips with operation execution time
variability. Integration 51 (2015), 158-168. https://doi.org/10.1016/j.
vlsi.2015.02.004

(3]

[4

[l

(5

—

[6

—

[7

—

[8

[t

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Conference’17, July 2017, Washington, DC, USA

Mirela Alistar, Paul Pop, and Jan Madsen. 2016. Synthesis of
Application-Specific Fault-Tolerant Digital Microfluidic Biochip Archi-
tectures. IEEE Trans. on CAD of Integrated Circuits and Systems 35, 5
(2016), 764-777. https://doi.org/10.1109/TCAD.2016.2528498

Ahmed M. Amin, Raviraj Thakur, Seth Madren, Han-Sheng Chuang,
Mithuna Thottethodi, T. N. Vijaykumar, Steven T. Wereley, and
Stephen C. Jacobson. 2013. Software-programmable continuous-flow
multi-purpose lab-on-a-chip. Microfluid Nanofluidics 15, 5 (Nov 2013),
647-659.

Ahmed M. Amin, Mithuna Thottethodi, T. N. Vijaykumar, Steven
Wereley, and Stephen C. Jacobson. 2007. Aquacore: a programmable
architecture for microfluidics. In 34th International Symposium on Com-
puter Architecture (ISCA 2007), June 9-13, 2007, San Diego, California,
USA, Dean M. Tullsen and Brad Calder (Eds.). ACM, New York, NY,
USA, 254-265. https://doi.org/10.1145/1250662.1250694

Scott C. Ananian and Arthur C. Smith. 1999. The Static Single Informa-
tion Form. Ph.D. Dissertation. Massachusetts Institue of Technology.
Kia Bazargan, Ryan Kastner, and Majid Sarrafzadeh. 2000. Fast Tem-
plate Placement for Reconfigurable Computing Systems. IEEE Design
& Test of Computers 17 (2000), 68-83. https://doi.org/10.1109/54.825678
Biddut Bhattacharjee and Homayoun Najjaran. 2012. Droplet sensing
by measuring the capacitance between coplanar electrodes in a digital
microfluidic system. Lab Chip 12 (2012), 4416-4423. Issue 21. https:
//doi.org/10.1039/C2LC40647K

Karl-Friedrich Bohringer. 2006. Modeling and Controlling Parallel
Tasks in Droplet-Based Microfluidic Systems. IEEE Trans. on CAD of
Integrated Circuits and Systems 25, 2 (2006), 334-344. https://doi.org/
10.1109/TCAD.2005.855958

Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. 2012.
SSI Properties Revisited. ACM Trans. Embedded Comput. Syst. 11, S1
(2012), 21. https://doi.org/10.1145/2180887.2180898

Preston Briggs, Keith D Cooper, and Linda Torczon. 1994. Improve-
ments to graph coloring register allocation. ACM Transactions on
Programming Languages and Systems (TOPLAS) 16, 3 (1994), 428-455.
Gregory J. Chaitin. 1982. Register Allocation & Spilling via Graph
Coloring. In Proceedings of the SIGPLAN 82 Symposium on Compiler
Construction, Boston, Massachusetts, USA, June 23-25, 1982, John R.
White and Frances E. Allen (Eds.). ACM, Boston, MA, 98-105. https:
//doi.org/10.1145/800230.806984

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke,
Martin E. Hopkins, and Peter W. Markstein. 1981. Register Allocation
Via Coloring. Comput. Lang. 6, 1 (1981), 47-57. https://doi.org/10.
1016/0096-0551(81)90048-5

Ying-Han Chen, Chung-Lun Hsu, Li-Chen Tsai, Tsung-Wei Huang,
and Tsung-Yi Ho. 2013. A Reliability-Oriented Placement Algorithm
for Reconfigurable Digital Microfluidic Biochips Using 3-D Deferred
Decision Making Technique. IEEE Trans. on CAD of Integrated Circuits
and Systems 32, 8 (2013), 1151-1162. https://doi.org/10.1109/TCAD.
2013.2249558

Minsik Cho and David Z. Pan. 2008. A High-Performance Droplet
Routing Algorithm for Digital Microfluidic Biochips. IEEE Trans. on
CAD of Integrated Circuits and Systems 27, 10 (2008), 1714-1724. https:
//doi.org/10.1109/TCAD.2008.2003282

Peter Cooreman, Ronald Thoelen, Jean Manca, M. vandeVen, V. Ver-
meeren, L. Michiels, M. Ameloot, and P. Wagner. 2005. Impedimetric
immunosensors based on the conjugated polymer PPV. Biosens. Bio-
electron. 20 (2005), 2151-2156. Issue 10.

Christopher Curtis and Philip Brisk. 2015. Simulation of feedback-
driven PCR assays on a 2D electrowetting array using a domain-
specific high-level biological programming language. Microelectronic
Engineering 148 (2015), 110-116.

Christopher Curtis, Daniel T. Grissom, and Philip Brisk. 2018. A com-
piler for cyber-physical digital microfluidic biochips. In Proceedings of
the 2018 International Symposium on Code Generation and Optimization,
CGO 2018, Visendorf/ Vienna, Austria, February 24-28, 2018, Jens Knoop,

https://doi.org/10.3390/bioengineering4020045
https://doi.org/10.1016/j.vlsi.2015.02.004
https://doi.org/10.1016/j.vlsi.2015.02.004
https://doi.org/10.1109/TCAD.2016.2528498
https://doi.org/10.1145/1250662.1250694
https://doi.org/10.1109/54.825678
https://doi.org/10.1039/C2LC40647K
https://doi.org/10.1039/C2LC40647K
https://doi.org/10.1109/TCAD.2005.855958
https://doi.org/10.1109/TCAD.2005.855958
https://doi.org/10.1145/2180887.2180898
https://doi.org/10.1145/800230.806984
https://doi.org/10.1145/800230.806984
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1109/TCAD.2013.2249558
https://doi.org/10.1109/TCAD.2013.2249558
https://doi.org/10.1109/TCAD.2008.2003282
https://doi.org/10.1109/TCAD.2008.2003282

Conference’17, July 2017, Washington, DC, USA

(19]

[20]

[21]

(23]

[24]

[25

—

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Markus Schordan, Teresa Johnson, and Michael F. P. O’Boyle (Eds.).
ACM, New York, NY, USA, 365-377. https://doi.org/10.1145/3168826
Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan.
2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation 6, 2 (Apr 2002), 182-197.
https://doi.org/10.1109/4235.996017

R. P. Dilworth. 1950. A Decomposition Theorem for Partially Ordered
Sets. Annals of Mathematics 51, 1 (1950), 161-166. http://www.jstor.
org/stable/1969503

Jie Ding, Krishnendu Chakrabarty, and Richard B. Fair. 2001. Sched-
uling of microfluidic operations for reconfigurabletwo-dimensional
electrowetting arrays. IEEE Trans. on CAD of Integrated Circuits and
Systems 20, 12 (2001), 1463-1468. https://doi.org/10.1109/43.969439
Philip J. Fleming and John J. Wallace. 1986. How Not To Lie With Sta-
tistics: The Correct Way To Summarize Benchmark Results. Commun.
ACM 29, 3 (1986), 218-221. https://doi.org/10.1145/5666.5673

Jie Gao, Xianming Liu, Tianlan Chen, Pui-In Mak, Yuguang Du, Mang-I
Vai, Bingcheng Lin, and Rui P. Martins. 2013. An intelligent digital
microfluidic system with fuzzy-enhanced feedback for multi-droplet
manipulation. Lab Chip 13 (2013), 443-451. Issue 3. https://doi.org/10.
1039/C2LC41156C

Lal George and Andrew W. Appel. 1996. Iterated register coalescing.
Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages - POPL °96 18, 3 (1996), 208-218. https:
//doi.org/10.1145/237721.237777

Georges G.E. Gielen (Ed.). 2006. Proceedings of the Conference on Design,
Automation and Test in Europe, DATE 2006, Munich, Germany, March
6-10, 2006. European Design and Automation Association, Leuven, Bel-
gium. http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=
11014

Jian Gong and Chang-Jin Kim. 2008. Direct-referencing two-
dimensional-array digital microfluidics using multilayer printed circuit
board. J. Microelectromech. Syst. 17 (2008), 257-264. Issue 2.

Daniel Grissom and Philip Brisk. 2012. Fast Online Synthesis of Gener-
ally Programmable Digital Microfluidic Biochips. In Proceedings of the
Eighth IEEE/ACM/IFIP International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS ’12). ACM, New York, NY,
USA, 413-422. https://doi.org/10.1145/2380445.2380510

Daniel Grissom and Philip Brisk. 2014. Fast Online Synthesis of Digital
Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and
Systems 33, 3 (2014), 356-369. https://doi.org/10.1109/TCAD.2013.
2290582

Daniel Grissom, Christopher Curtis, Skyler Windh, Calvin Phung,
Navin Kumar, Zachary Zimmerman, O‘Neal Kenneth, Jeffrey McDaniel,
Nick Liao, and Philip Brisk. 2015. An open-source compiler and PCB
synthesis tool for digital microfluidic biochips. Integration, the VLSI
Journal 51 (2015), 169-193.

Daniel T. Grissom and Philip Brisk. 2012. Path scheduling on digital
microfluidic biochips. In The 49th Annual Design Automation Confer-
ence 2012, DAC ’12, San Francisco, CA, USA, June 3-7, 2012, Patrick
Groeneveld, Donatella Sciuto, and Soha Hassoun (Eds.). ACM, New
York, NY, USA, 26-35. https://doi.org/10.1145/2228360.2228367
Daniel T. Grissom, Christopher Curtis, and Philip Brisk. 2014. Inter-
preting Assays with Control Flow on Digital Microfluidic Biochips.
JETC 10, 3 (2014), 24:1-24:30. https://doi.org/10.1145/2567669

Ben. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R.
Hector, Y. Kubota, and H. Morgan. 2012. Programmable large area
digital microfluidic array with integrated droplet sensing for bioassays.
Lab Chip 12, 18 (Sep 2012), 3305-3313.

Yi-Ling Hsieh, Tsung-Yi Ho, and Krishnendu Chakrabarty. 2014.
Biochip Synthesis and Dynamic Error Recovery for Sample Prepa-
ration Using Digital Microfluidics. IEEE Trans. on CAD of Integrated
Circuits and Systems 33, 2 (2014), 183-196. https://doi.org/10.1109/
TCAD.2013.2284010

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]
[45]

[46]

[47]

Tyson Loveless, Jason Ott, and Philip Brisk

Tsung-Wei Huang and Tsung-Yi Ho. 2009. A fast routability- and
performance-driven droplet routing algorithm for digital microfluidic
biochips. In 27th International Conference on Computer Design, ICCD
2009, Lake Tahoe, CA, USA, October 4-7, 2009. IEEE Computer Society,
New York, NY, USA, 445-450. https://doi.org/10.1109/ICCD.2009.
5413119

Tsung-Wei Huang, Chun-Hsien Lin, and Tsung-Yi Ho. 2010. A Con-
tamination Aware Droplet Routing Algorithm for the Synthesis of
Digital Microfluidic Biochips. IEEE Trans. on CAD of Integrated Cir-
cuits and Systems 29, 11 (2010), 1682-1695. https://doi.org/10.1109/
TCAD.2010.2062770

Mohamed Ibrahim and Krishnendu Chakrabarty. 2015. Efficient Error
Recovery in Cyberphysical Digital-Microfluidic Biochips. IEEE Trans.
Multi-Scale Computing Systems 1, 1 (2015), 46-58. https://doi.org/10.
1109/TMSCS.2015.2478457

Mohamed Ibrahim and Krishnendu Chakrabarty. 2015. Error recovery
in digital microfluidics for personalized medicine. In Proceedings of
the 2015 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2015, Grenoble, France, March 9-13, 2015, Wolfgang Nebel and
David Atienza (Eds.). ACM, New York, NY, USA, 247-252. http://dl.
acm.org/citation.cfm?id=2755807

Mohamed Ibrahim, Krishnendu Chakrabarty, and Kristin Scott. 2017.
Synthesis of Cyberphysical Digital-Microfluidic Biochips for Real-Time
Quantitative Analysis. IEEE Trans. on CAD of Integrated Circuits and
Systems 36, 5 (2017), 733-746. https://doi.org/10.1109/TCAD.2016.
2600626

Christopher Jaress, Philip Brisk, and Daniel T. Grissom. 2015. Rapid
online fault recovery for cyber-physical digital microfluidic biochips.
In 33rd IEEE VLSI Test Symposium, VTS 2015, Napa, CA, USA, April
27-29, 2015. IEEE Computer Society, New York, NY, USA, 1-6. https:
//doi.org/10.1109/VTS.2015.7116246

Jinpyo Park and Soo-Mook Moon. 2004. Optimistic register coalescing.
Proceedings. 1998 International Conference on Parallel Architectures
and Compilation Techniques (Cat. No.98EX192) 26, 4 (2004), 196-204.
https://doi.org/10.1109/PACT.1998.727246

Oliver Keszdcze, Robert Wille, Krishnendu Chakrabarty, and Rolf
Drechsler. 2015. A General and Exact Routing Methodology for Digital
Microfluidic Biochips. In Proceedings of the IEEE/ACM International
Conference on Computer-Aided Design, ICCAD 2015, Austin, TX, USA,
November 2-6, 2015, Diana Marculescu and Frank Liu (Eds.). IEEE, New
York, NY, USA, 874-881. https://doi.org/10.1109/ICCAD.2015.7372663
Oliver Keszdcze, Robert Wille, and Rolf Drechsler. 2014. Exact routing
for digital microfluidic biochips with temporary blockages. In The
IEEE/ACM International Conference on Computer-Aided Design, ICCAD
2014, San Jose, CA, USA, November 3-6, 2014, Yao-Wen Chang (Ed.).
IEEE, New York, NY, USA, 405-410. https://doi.org/10.1109/ICCAD.
2014.7001383

Thomas Lederer, Stefan Clara, Bernhard Jakoby, and Wolfgang Hilber.
2012. Integration of impedance spectroscopy sensors in a digital
microfluidic platform. Microsystem Technologies 18, 7 (01 Aug 2012),
1163-1180. https://doi.org/10.1007/s00542-012-1464-6

Allen Leung and Lal George. 1998. A New MLRISC Register Allocator.
Yiyan Li, Hongzhong Li, and R. Jacob Baker. 2014. Volume and concen-
tration identification by using an electrowetting on dielectric device,
In 2014 IEEE Dallas Circuits and Systems Conference (DCAS). IEEE
DCAS 1,1, 1-4.

Yiyan Li, Hongzhong Li, and R. Jacob Baker. 2015. A Low-Cost
and High-Resolution Droplet Position Detector for an Intelligent
Electrowetting on Dielectric Device. Journal of Laboratory Automa-
tion 20, 6 (2015), 663-669. https://doi.org/10.1177/2211068214566940
arXiv:https://doi.org/10.1177/2211068214566940 PMID: 25609255.
Zipeng Li, Kelvin Yi-Tse Lai, John McCrone, Po-Hsien Yu, Krishnendu
Chakrabarty, Miroslav Pajic, Tsung-Yi Ho, and Chen-Yi Lee. 2018.
Efficient and Adaptive Error Recovery in a Micro-Electrode-Dot-Array
Digital Microfluidic Biochip. IEEE Trans. on CAD of Integrated Circuits

https://doi.org/10.1145/3168826
https://doi.org/10.1109/4235.996017
http://www.jstor.org/stable/1969503
http://www.jstor.org/stable/1969503
https://doi.org/10.1109/43.969439
https://doi.org/10.1145/5666.5673
https://doi.org/10.1039/C2LC41156C
https://doi.org/10.1039/C2LC41156C
https://doi.org/10.1145/237721.237777
https://doi.org/10.1145/237721.237777
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11014
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=11014
https://doi.org/10.1145/2380445.2380510
https://doi.org/10.1109/TCAD.2013.2290582
https://doi.org/10.1109/TCAD.2013.2290582
https://doi.org/10.1145/2228360.2228367
https://doi.org/10.1145/2567669
https://doi.org/10.1109/TCAD.2013.2284010
https://doi.org/10.1109/TCAD.2013.2284010
https://doi.org/10.1109/ICCD.2009.5413119
https://doi.org/10.1109/ICCD.2009.5413119
https://doi.org/10.1109/TCAD.2010.2062770
https://doi.org/10.1109/TCAD.2010.2062770
https://doi.org/10.1109/TMSCS.2015.2478457
https://doi.org/10.1109/TMSCS.2015.2478457
http://dl.acm.org/citation.cfm?id=2755807
http://dl.acm.org/citation.cfm?id=2755807
https://doi.org/10.1109/TCAD.2016.2600626
https://doi.org/10.1109/TCAD.2016.2600626
https://doi.org/10.1109/VTS.2015.7116246
https://doi.org/10.1109/VTS.2015.7116246
https://doi.org/10.1109/PACT.1998.727246
https://doi.org/10.1109/ICCAD.2015.7372663
https://doi.org/10.1109/ICCAD.2014.7001383
https://doi.org/10.1109/ICCAD.2014.7001383
https://doi.org/10.1007/s00542-012-1464-6
https://doi.org/10.1177/2211068214566940
http://arxiv.org/abs/https://doi.org/10.1177/2211068214566940

A Performance-Optimizating Compiler for Cyber-Physical DMFBs

and Systems 37, 3 (2018), 601-614. https://doi.org/10.1109/TCAD.2017.

2729347

[48] Chen Liao and Shiyan Hu. 2011. Multiscale variation-aware techniques
for high-performance digital microfluidic lab-on-a-chip component

placement. IEEE Trans Nanobioscience 10, 1 (Mar 2011), 51-58.

[49] Gabriel Lippmann. 1875. Relations entre les phénoménes électriques et

capillaires. Ph.D. Dissertation. Gauthier-Villars Paris, France:.

[50] Chia-Hung Liu, Kuang-Cheng Liu, and Juinn-Dar Huang. 2013.
Latency-optimization synthesis with module selection for digital mi-
crofluidic biochips. In 2013 IEEE International SOC Conference, Er-
langen, Germany, September 4-6, 2013, Norbert Schuhmann, Kaijian
Shi, and Nagi Naganathan (Eds.). IEEE, New York, NY, USA, 159-164.

https://doi.org/10.1109/SOCC.2013.6749681

[51] L.Luan, R.D.Evans, N.M. Jokerst, and R.B. Fair. 2008. Integrated optical
sensor in a digital microfluidic platform. IEEE Sensors 8 (2008), 628-635.

Issue 5.
[52

—

[53

[t

https://doi.org/10.1109/TCAD.2014.2363396

[54] Yan Luo, Krishnendu Chakrabarty, and Tsung-Yi Ho. 2013. Error
Recovery in Cyberphysical Digital Microfluidic Biochips. IEEE Trans.
on CAD of Integrated Circuits and Systems 32, 1 (2013), 59-72. https:

//doi.org/10.1109/TCAD.2012.2211104
(55

—

2277980
[56

=

theory, experiment, and applications. History 1, 8 (2005), 1-13.
[57

—

287-307. https://doi.org/10.1007/510617-010-9059-x
[58

[t

(59

—

4080-4087. Issue 7.
[60

[t}

R705-R774.
(61

—

C2LC21241B
(62

—

Chip 12, 2 (Jan 2012), 353-360.
(63

[t

(2018), 7:1-7:26. https://doi.org/10.1145/3093930
[64

—

(2018), 128.

Lin Luan, Matthew W Royal, Randall Evans, Richard B Fair, and Nan M
Jokerst. 2012. Chip scale optical microresonator sensors integrated
with embedded thin film photodetectors on electrowetting digital
microfluidics platforms. IEEE Sensors Journal 12, 6 (2012), 1794-1800.

Yan Luo, Bhargab B. Bhattacharya, Tsung-Yi Ho, and Krishnendu
Chakrabarty. 2015. Design and Optimization of a Cyberphysical
Digital-Microfluidic Biochip for the Polymerase Chain Reaction. IEEE
Trans. on CAD of Integrated Circuits and Systems 34, 1 (2015), 29-42.

Yan Luo, Krishnendu Chakrabarty, and Tsung-Yi Ho. 2013. Real-Time
Error Recovery in Cyberphysical Digital-Microfluidic Biochips Using
a Compact Dictionary. IEEE Trans. on CAD of Integrated Circuits and
Systems 32, 12 (2013), 1839-1852. https://doi.org/10.1109/TCAD.2013.

J Ross Macdonald and E Barsoukov. 2005. Impedance spectroscopy:

Elena Maftei, Paul Pop, and Jan Madsen. 2010. Tabu search-based syn-
thesis of digital microfluidic biochips with dynamically reconfigurable
non-rectangular devices. Design Autom. for Emb. Sys. 14, 3 (2010),

Elena Maftei, Paul Pop, and Jan Madsen. 2013. Module-Based Syn-
thesis of Digital Microfluidic Biochips with Droplet-Aware Operation
Execution. JETC 9,1(2013), 2. https://doi.org/10.1145/2422094.2422096
Hyejin Moon, Sung Kwon. Cho, Robin L. Garrell, and Chang-Jin Kim.
2002. Low voltage electrowetting-on-dielectric. J. Appl. Phys. 92 (2002),

Frieder Mugele and Jeanchristophe Baret. 2005. Electrowetting: from
basics to applications. Journal of Physics: Condensed Matter 17 (2005),

Miguel Angel Murran and Homayoun Najjaran. 2012. Capacitance-
based droplet position estimator for digital microfluidic devices.
Lab Chip 12 (2012), 2053-2059. Issue 11. https://doi.org/10.1039/

Joo Hyon Noh, Jiyong Noh, Eric Kreit, Jason Heikenfeld, and Philip D.
Rack. 2012. Toward active-matrix lab-on-a-chip: programmable elec-
trofluidic control enabled by arrayed oxide thin film transistors. Lab

Kenneth O’Neal, Daniel T. Grissom, and Philip Brisk. 2018. Resource-
Constrained Scheduling for Digital Microfluidic Biochips. JETC 14, 1

Jason Ott, Tyson Loveless, Chris Curtis, Mohsen Lesani, and Philip
Brisk. 2018. BioScript: programming safe chemistry on laboratories-on-
a-chip. Proceedings of the ACM on Programming Languages 2, OOPSLA

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

(82]

Conference’17, July 2017, Washington, DC, USA

Phil Paik, Vamsee K Pamula, and Richard B Fair. 2003. Rapid droplet
mixers for digital microfluidic systems. Lab on a Chip 3, 4 (2003),
253-259.

Sudip Poddar, Sarmishtha Ghoshal, Krishnendu Chakrabarty, and Bhar-
gab B. Bhattacharya. 2016. Error-Correcting Sample Preparation with
Cyberphysical Digital Microfluidic Lab-on-Chip. ACM Trans. Design
Autom. Electr. Syst. 22, 1 (2016), 2:1-2:29. https://doi.org/10.1145/
2898999

Massimiliano Poletto and Vivek Sarkar. 1999. Linear scan register
allocation. ACM Trans. Program. Lang. Syst. 21, 5 (1999), 895-913.
https://doi.org/10.1145/330249.330250

Michael G. Pollack, Alexander D. Shenderov, and Richard B. Fair. 2002.
Electrowetting-based actuation of droplets for integrated microfluidics.
Lab on a Chip 2, 2 (2002), 96-101.

Hong Ren, Richard B Fair, and Micheal G Pollack. 2004. Automated
on-chip droplet dispensing with volume control by electro-wetting
actuation and capacitance metering. Sensors and Actuators B: Chemical
98, 2-3 (2004), 319-327.

Andrew]J. Ricketts, Kevin M. Irick, Narayanan Vijaykrishnan, and
Mary Jane Irwin. 2006. Priority scheduling in digital microfluidics-
based biochips, See [25], 329-334. https://doi.org/10.1109/DATE.2006.
244178

Pranab Roy, Hafizur Rahaman, and Parthasarathi Dasgupta. 2010. A
novel droplet routing algorithm for digital microfluidic biochips. In
Proceedings of the 20th ACM Great Lakes Symposium on VLSI 2009,
Providence, Rhode Island, USA, May 16-18 2010, R. Iris Bahar, Fabrizio
Lombardi, David Atienza, and Erik Brunvand (Eds.). ACM, New York,
NY, USA, 441-446. https://doi.org/10.1145/1785481.1785583

Pranab Roy, Hafizur Rahaman, and Parthasarathi Dasgupta. 2012. Two-
level clustering-based techniques for intelligent droplet routing in
digital microfluidic biochips. Integration 45, 3 (2012), 316-330. https:
//doi.org/10.1016/j.vlsi.2011.11.006

Saman Sadeghi, Huijiang Ding, Gaurav J. Shah, Supin Chen, Pei Yuin
Keng, Chang-Jin “CJ” Kim, and R. Michael van Dam. 2012. On
Chip Droplet Characterization: A Practical, High-Sensitivity Mea-
surement of Droplet Impedance in Digital Microfluidics. Analytical
Chemistry 84, 4 (2012), 1915-1923. https://doi.org/10.1021/ac202715f
arXiv:http://dx.doi.org/10.1021/ac202715f PMID: 22248060.
Michael J Schertzer, R Ben Mrad, and Pierre E Sullivan. 2012. Auto-
mated detection of particle concentration and chemical reactions in
EWOD devices. Sensors and Actuators B: Chemical 164, 1 (2012), 1-6.
Steve C. Shih, Irena Barbulovic-Nad, Xuning Yang, Ryan Fobel, and
Aaron R. Wheeler. 2013. Digital microfluidics with impedance sensing
for integrated cell culture and analysis. Biosens Bioelectron 42 (Apr
2013), 314-320.

Steve C. Shih, Ryan Fobel, Paresh Kumar, and Aaron R. Wheeler. 2011.
A feedback control system for high-fidelity digital microfluidics. Lab
Chip 11 (2011), 535-540. Issue 3. https://doi.org/10.1039/COLC00223B
Jeremy Singer. 2005. Static Program Analysis based on Virtual Register
Renaming. Ph.D. Dissertation. University of Cambridge, UK.

Vijay Srinivasan, Vamsee Pamula, and Richard Fair. 2004. Droplet-
based microfluidic lab-on-a-chip for glucose detection. Analytica
Chimica Acta 507 (04 2004), 145-150.

Fei Su and Krishnendu Chakrabarty. 2006. Module placement for fault-
tolerant microfluidics-based biochips. ACM Trans. Design Autom. Electr.
Syst. 11, 3 (2006), 682-710. https://doi.org/10.1145/1142980.1142987
Fei Su and Krishnendu Chakrabarty. 2008. High-level synthesis of
digital microfluidic biochips. JETC 3, 4 (2008), 1. https://doi.org/10.
1145/1324177.1324178

Fei Su, William L. Hwang, and Krishnendu Chakrabarty. 2006. Droplet
routing in the synthesis of digital microfluidic biochips, See [25], 323~
328. https://doi.org/10.1109/DATE.2006.244177

Tan I Suni. 2008. Impedance methods for electrochemical sensors
using nanomaterials. TrAC Trends in Analytical Chemistry 27, 7 (2008),
604 — 611. https://doi.org/10.1016/j.trac.2008.03.012 Electroanalysis

https://doi.org/10.1109/TCAD.2017.2729347
https://doi.org/10.1109/TCAD.2017.2729347
https://doi.org/10.1109/SOCC.2013.6749681
https://doi.org/10.1109/TCAD.2014.2363396
https://doi.org/10.1109/TCAD.2012.2211104
https://doi.org/10.1109/TCAD.2012.2211104
https://doi.org/10.1109/TCAD.2013.2277980
https://doi.org/10.1109/TCAD.2013.2277980
https://doi.org/10.1007/s10617-010-9059-x
https://doi.org/10.1145/2422094.2422096
https://doi.org/10.1039/C2LC21241B
https://doi.org/10.1039/C2LC21241B
https://doi.org/10.1145/3093930
https://doi.org/10.1145/2898999
https://doi.org/10.1145/2898999
https://doi.org/10.1145/330249.330250
https://doi.org/10.1109/DATE.2006.244178
https://doi.org/10.1109/DATE.2006.244178
https://doi.org/10.1145/1785481.1785583
https://doi.org/10.1016/j.vlsi.2011.11.006
https://doi.org/10.1016/j.vlsi.2011.11.006
https://doi.org/10.1021/ac202715f
http://arxiv.org/abs/http://dx.doi.org/10.1021/ac202715f
https://doi.org/10.1039/C0LC00223B
https://doi.org/10.1145/1142980.1142987
https://doi.org/10.1145/1324177.1324178
https://doi.org/10.1145/1324177.1324178
https://doi.org/10.1109/DATE.2006.244177
https://doi.org/10.1016/j.trac.2008.03.012

Conference’17, July 2017, Washington, DC, USA

(83]

(84]

(85

[

(86]

(87]

(88]

Based on Nanomaterials.

William Thies, John Paul Urbanski, Todd Thorsen, and Saman Amaras-
inghe. 2007. Abstraction layers for scalable microfluidic biocomputing.
Natural Computing 7, 2 (5 2007), 255-275.

John Paul Urbanski, William Thies, Christopher Rhodes, Saman Ama-
rasinghe, and Todd Thorsen. 2006. Digital microfluidics using soft
lithography. Lab Chip 6 (2006), 96-104. Issue 1. https://doi.org/10.
1039/B510127A

Matthew White Royal, Nan M. Jokerst, and Richard Fair. 2013. Droplet-
Based Sensing: Optical Microresonator Sensors Embedded in Digital
Electrowetting Microfluidics Systems. IEEE Sensors Journal 13 (12
2013), 4733-4742.

Max Willsey, Ashley P. Stephenson, Chris Takahashi, Pranav Vaid,
Bichlien H. Nguyen, Michal Piszczek, Christine Betts, Sharon Newman,
Sarang Joshi, Karin Strauss, and Luis Ceze. 2019. Puddle: A Dynamic,
Error-Correcting, Full-Stack Microfluidics Platform. In Proceedings of
the Twenty-Third International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’19). ACM,
New York, NY, USA, 183-197. https://doi.org/10.1145/3297858.3304027
Tao Xu and Krishnendu Chakrabarty. 2008. Integrated droplet routing
and defect tolerance in the synthesis of digital microfluidic biochips.
JETC 4,3 (2008), 11. https://doi.org/10.1145/1389089.1389091

Tao Xu, Krishnendu Chakrabarty, and Fei Su. 2008. Defect-Aware
High-Level Synthesis and Module Placement for Microfluidic Biochips.

[89]

[90]

[o1]

[92]

[93]

Tyson Loveless, Jason Ott, and Philip Brisk

IEEE Trans. Biomed. Circuits and Systems 2, 1 (2008), 50-62.
//doi.org/10.1109/TBCAS.2008.918283

Hailong Yao, Qin Wang, Yiren Shen, Tsung Yi Ho, and Yici Cai. 2016.
Integrated Functional and Washing Routing Optimization for Cross-
Contamination Removal in Digital Microfluidic Biochips. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems
35, 8 (2016), 1283-1296. https://doi.org/10.1109/TCAD.2015.2504397

Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. 2007. Placement
of defect-tolerant digital microfluidic biochips using the T-tree formu-
lation. JETC 3, 3 (2007), 13. https://doi.org/10.1145/1295231.1295234

Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. 2008. BioRoute:
A Network-Flow-Based Routing Algorithm for the Synthesis of Digital
Microfluidic Biochips. IEEE Trans. on CAD of Integrated Circuits and
Systems 27, 11 (2008), 1928-1941. https://doi.org/10.1109/TCAD.2008.
2006140

Yang Zhao and Krishnendu Chakrabarty. 2012. Cross-contamination
avoidance for droplet routing in digital microfluidic biochips. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems 31, 6 (2012), 817-830. https://doi.org/10.1109/TCAD.2012.2183369
Yang Zhao, Tao Xu, and Krishnendu Chakrabarty. 2010. Integrated
control-path design and error recovery in the synthesis of digital
microfluidic lab-on-chip. JETC 6, 3 (2010), 11:1-11:28. https://doi.org/
10.1145/1777401.1777404

https:

https://doi.org/10.1039/B510127A
https://doi.org/10.1039/B510127A
https://doi.org/10.1145/3297858.3304027
https://doi.org/10.1145/1389089.1389091
https://doi.org/10.1109/TBCAS.2008.918283
https://doi.org/10.1109/TBCAS.2008.918283
https://doi.org/10.1109/TCAD.2015.2504397
https://doi.org/10.1145/1295231.1295234
https://doi.org/10.1109/TCAD.2008.2006140
https://doi.org/10.1109/TCAD.2008.2006140
https://doi.org/10.1109/TCAD.2012.2183369
https://doi.org/10.1145/1777401.1777404
https://doi.org/10.1145/1777401.1777404

	Abstract
	1 Introduction
	2 Background
	2.1 Language Design for SP-LoCs
	2.2 Digital Microfluidic Biochips (DMFBs)
	2.3 Mixing Modules

	3 Compiler
	3.1 Overview
	3.2 Scheduling
	3.3 Interference Graph
	3.4 Coalescing
	3.5 Placement
	3.6 Droplet Routing

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Benchmarks
	5.3 Baseline Compilers
	5.4 Results and Analysis

	6 Related Work
	7 Conclusion and Future Work
	Acknowledgments
	References

