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Abstract

This paper introduces a compiler optimization strategy for
Software-Programmable Laboratories-on-a-Chip (SP-LoCs),
which miniaturize and automate a wide variety of benchtop
laboratory experiments. The compiler targets a specific class
of SP-LoCs that manipulate discrete liquid droplets on a 2D
grid, with cyber-physical feedback provided by integrated
sensors and/or video monitoring equipment. The optimiza-
tion strategy employed here aims to reduce the overhead of
transporting fluids between operations, and explores trade-
offs between the latency and resource requirements of mix-
ing operations: allocating more space for mixing shortens
mixing time, but reduces the amount of spatial parallelism
available to other operations. The compiler is empirically
evaluated using a cycle-accurate simulator that mimics the
behavior of the target SP-LoC. Our results show that a co-
alescing strategy, inspired by graph coloring register allo-
cation, effectively reduces droplet transport latencies while
speeding up the compiler and reducing its memory footprint.
For biochemical reactions that are dominated by mixing
operations, we observe a linear correlation between a pre-
liminary result using a default mixing operation resource
allocation and the percentage decrease in execution time
that is achieved via resizing.

Keywords laboratory-on-a-chip (LoC), microfluidics, digi-
tal microfluidic biochip (DMFB), interference graph, coalesc-
ing

1 Introduction

The past 20 years have witnessed the development of
programmable, integrated micro-scale machines called
laboratories-on-a-chip (LoCs), which can automate and
miniaturize a number of laboratory functions which were
previously performed by hand at the benchtop scale. While
the majority of LoCs that are in use today are application-
specific, single-use, and disposable, software-programmable
(and reusable) LoCs (SP-LoCs) are also available. At present,
SP-LoCs are programmed at a level of abstraction akin to
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machine code, i.e., by specifying a sequence of actuation
and deactuation operations for each programmable ele-
ment. Moreover, many “cyber-physical” SP-LoCs feature
integrated sensors, which provide feedback to the software
controlling them in real-time. Thus, language and compiler
support can help SP-LoCs gain traction and grow a user base.
Prior work has made progress toward compiling high level
languages for execution on SP-LoCs, but has either been
limited in scope to a single basic block, or altogether missed
optimization opportunities that can speed up compilation
and dramatically decrease execution time. This paper
describes solutions to these shortcomings as an optimizing
compiler targeting a class of SP-LoCs called Digital
Microfluidic Biochips (DMFBs). The optimization strategy
crosses basic block boundaries by modeling placement of
microfluidic operations on a reconfigurable processing array
as a problem that generalizes graph coalescing, similar to
graph coloring register allocation in traditional compilers.
Fluid transport operations can be eliminated through a
coalescing mechanism; when coalescing is not possible,
fluid transport lengths can be reduced by incorporating
knowledge of transport operations into placement. The
compiler also adjusts the size of mixing operations to
improve performance: prior work has shown that allocating
more space to each mixing operation reduces its latency
[65]; however, doing so reduces the spatial parallelism
available to other concurrently scheduled operations. The
compiler accounts for all of the aforementioned information,
yielding a clear and concise problem formulation that can
be solved using either exact or heuristic means.

The paper is organized as follows: § 2 provides an overview
of the SP-LoC technology that we target in this paper; § 3
presents the compiler and emphasizes the optimization prob-
lems that must be solved, along with their interactions. Sec-
tions 4 and 5, respectively present our implementation and
simulation-based empirical evaluation, including compari-
son to prior work. Section 6 summarizes related work on
DMEFB compilation to put the contribution of this paper in
context. Lastly, § 7 concludes the paper and outlines direc-
tions for future work.
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2 Background
2.1 Language Design for SP-LoCs

An assay is a laboratory procedure that aims to assess the
activity of a target entity, called the analyte; as an over-
generalization, we use the term assay to represent a bio-
chemical “algorithm” that will execute on an SP-LoC. Ideally,
the (bio-)chemist of the future will specify an assay using an
appropriately designed domain-specific programming lan-
guage (DSL). A compiler or interpreter will translate the spec-
ification into an executable format that will run on the SP-
LoC. A number of domain-specific programming languages
have been proposed for SP-LoCs [4, 5, 17, 18, 64, 83, 84, 86];
while most of these languages are tied to specific SP-LoC
technologies, any DSL compatible with DMFBs (see § 2.2)
could be used as a front-end to the compiler presented here.

2.2 Digital Microfluidic Biochips (DMFBs)

The compiler described in this paper targets a class of SP-
LoCs called Digital Microfluidic Biochips (DMFBs), which
manipulate discrete droplets of fluid using electrostatic actu-
ation [49, 60]. DMFBs exploit a physical phenomenon called
electrowetting, shown in Fig. 1a: an electrostatic potential
applied to a droplet at rest modifies its shape and angle
of contact with the surface; droplet transport can then be
achieved by activating and deactivating adjacent electrodes
in sequence, as shown in Fig. 1b. An optional top “ground
electrode” reduces the voltage required to move a droplet
and improves the fidelity of on-chip operations.

A DMFB is a 2D electrode array (Fig. 2a) which supports
an instruction set consisting of five operations: store, trans-
port, mix, merge, and split (Fig. 2b) [1, 26, 32, 59, 62, 68]. An
“executable program” is a sequence of electrode activations
supplied by a host PC or microcontroller. A compiler trans-
lates a text-based assay specification into an executable pro-
gram [18, 64]. A DMFB is “reconfigurable” in the sense that
each operation can be performed anywhere on the electrode
array and any given electrode may contribute to different
operations at different points in time during execution. A typ-
ical DMFB will integrate non-reconfigurable resources such
as I/O reservoirs on its perimeters, as well as heaters [53]
or optical detectors [51, 52, 78, 85] into the array itself. All
five basic operations can be performed at the same location
as a heater (when off) or a detector; however, heating and
detection cannot be performed at any location on-chip. Thus,
a compiler must know the precise location of all I/O pads on
the device perimeter and both the location and function of
all other integrated components; these impose constraints
that the compiler’s code generator must satisfy.

Integration of sensors [1, 8, 16, 23, 43, 45, 46, 56, 61, 69, 73—
76, 82] and online video monitoring [2, 3, 33, 3639, 47, 54,
55, 66, 93] allows a CPU controlling a DMFB to obtain online
feedback regarding the state of the assay during execution.
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(a) The electrowetting effect: applying an electrostatic potential
to a droplet modifies its contact angle [49, 60].
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(b) A droplet transport is achieved by activating and deactivat-
ing electrodes in sequence.

Figure 1. (a) The electrowetting principle, (b) droplet transport
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(a) A DMFB (left) is comprised of a 2D array of discrete electrodes,
with an optional ground electrode on top. A cyber-physical feed-
back loop to a microcontroller is enabled by sensory feedback.
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(b) DMFB instruction set architecture (ISA).
Figure 2. (a) A DMFB and (b) its 5-operation ISA.

At the language design level, this provides control flow: ar-
bitrary computations can be performed on acquired sensory
data, including predicates that resolve conditions at run-
time [18, 31]. The compiler must ensure that all droplets are
routed to the same location at the start of each basic block,
regardless of which control paths are taken [18].

2.3 Mixing Modules

The latency of mixing two fluids depends on the number of
electrodes that have been allocated to perform the mixing
and also the routing path that the droplet takes within the
mixer [65] (see Table 1). While larger mixers yield lower
latency, they reduce the availability of spatial parallelism
on-chip. The compiler described here includes a feedback
loop that adjusts the size of different mixing operations in
order to optimize performance.

Table 1. Mixing module dimensions and their latencies [65].

Size [2x2 2x3 1x4 2x4
Mixing time (sec) | 9.95 6.61 46 2.9




A Performance-Optimizating Compiler for Cyber-Physical DMFBs

Conference’17, July 2017, Washington, DC, USA

Rescheduling (if module sizes changed)

Interference
Graph

| Placement >

Figure 3. Overview of our DMFB compiler. The front-end compiles an assay specification to a CFG (not shown). The back-end converts the
CFG to an executable format. The “Interference Graph”, “coalescing”, and “rescheduling” arrows are the novel aspects of this paper.

3 Compiler
3.1 Overview

The assay is specified in a domain-specific language such as
BioCoder [18] or BioScript [64], that seamlessly interleaves
fluidic operations with computation. The target is a cyber-
physical DMFB (Fig. 2) which provides sensory feedback to
the runtime software that manages the device. This enables
the programmer to specify assays featuring arbitrary control
flow: the assay obtains sensory feedback from the device and
performs computations on the acquired data; the result of the
computation can be used as a condition which determines
which fluidic operations to execute next.

Our input language supports function calls, but does not
support unbounded recursion. The compiler’s preprocessor
inlines all function calls, which converts the assay to one
procedure. The input language restricts all fluidic variables
to be scalars; it does not support fluidic arrays. We hope to
relax these assumptions in the future.

Figure 4a depicts an assay specified in the BioScript
language [64]. We first convert the assay to a hybrid
computational-fluidic intermediate representation (IR) [18],
as shown in Fig. 4b. This IR represents the assay as a
Control Flow Graph (CFG). Next, we convert both fluidic
and computational variables to Static Single Information
(SSI) Form [6, 10, 77]; each basic block is represented as a
hybrid-fluidic/data dependence graph. Figures 4c and 4d
respectively show the BioScript specification and hybrid-IR
converted to SSI Form: in this case, 7- and ¢- functions’
are inserted for one fluidic variable. Figure 3 outlines the
subsequent steps of the compiler’s back-end. The following
subsections discuss each step in greater detail.

1SSI’s s -function (sometimes o -function) defines a split set for a variable at
the end of some basic blocks where control flow follows, allowing a unique
identifier for each conditional usage of the variable in a similar way that a
¢-function provides a single definition point for each variable.

3.2 Scheduling

The first step is to schedule assay operations. Each basic
block is scheduled individually. The scheduler ensures that
each operation starts and finishes within the basic block
containing it to ensure atomicity. Referring back to Table 1,
the scheduler assumes 2 X 2 mixers with 9.95s latencies;
this assumption is later relaxed during Rescheduling (§ 3.5.1).
O’Neal et al. [63] present the problem formulation and survey
many scheduling heuristics that have been published to date.

The compiler infers droplet storage operations from the
schedule and inserts them into the IR. The IR treats storage
as an explicit operation that uses (and consumes) its input
and defines a new output droplet. This may necessitate the
insertion of additional - and ¢- functions to maintain SSI
Form, as shown in Figs. 5a and 5b. This representation en-
ables the placer (§ 3.5) to treat droplet storage the same as
all other scheduled assay operations.

The scheduler enforces resource constraints that conser-
vatively over-approximate placement. To simplify the discus-
sion, we omit resource constraints involving I/O operations.
The scheduler partitions the DMFB into N modules (Fig. 6).
At any point in the schedule, a reconfigurable module can
perform one mix, split, or merge operation, or can store up
to k droplets, depending on its size. Any module that fea-
tures an integrated heater or sensor can perform a heating
or sensing operation as well; let the number of such modules
be Npeqr and Niepse respectively. Let rj(p) be the number of
operations of type j € {mix, split, merge, store, heat, sense}
scheduled at program point p. A legal schedule must satisfy
the following constraints for each program point p:

rheat(p) < Nhear (1)
rsense(P) < Ngense (2)

Tmix(p) + rsplit(p) + rmerge(P) + ’rrst%e(p)“

+ rheat(p) + rsense(P) <N
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1 dispense ap
2 dispense by
1 dispense a 3 dispense ¢
2 dispense b 4 a; = heat qp
3 dispense c 5 ¢ = heat ¢
4 heat a 6 di = mix a; with by
5 heat ¢ 7 detect d;
6 d = mix a with b 8 dy,d; = n(dy)
7 detect d 9 if (...)
8 if (...) 10 dispense a;
9 dispense a 11 dy = mix a; with d;
10 d = mix a with d 12 ds = ¢(ds, ds)
11 d = mix ¢ with d 13 d¢ = mix c¢; with ds
12 heat d 14 d; = heat ds
13 drain d 15 drain dy

(b) (@

Figure 4. A simple assay written in BioScript (a) and the associated
CFG (b) can be augmented with SSI form’s ¢ and & nodes (c and d).

Scheduling failures may occur and are unavoidable in the
general case, even if the problem is solved optimally. If sched-
uling fails, the only option is to switch to a larger DFMB
target, or rewrite the assay. During compilation, switching
to larger and faster mixers Table 1 increases the likelihood of
failure, which is one reason why we default to the smallest,
slowest mixer for the initial scheduling step. Failures due to
module sizes are addressed in § 3.5.1.

3.3 Interference Graph

3.3.1 Definitions and Properties

Let G = (V,E, A) be the interference graph [11-13]: V is the
set of assay operations, E is the set of interference edges, and
A is the set of affinity edges that represent fluid transfers

between operations. Let adj[o;] and aff[o;] denote the sets
of interference and affinity neighbors of 0; € V; additionally,

let adj*[o;] = adj[o;] U {o;} and aff"[0;] = aff[0:] U {o:}.
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dispense aqp
dispense by
dispense c¢g

a; = heat ap

c; = heat ¢

di = mix a; with by
detect d;

cp = store ¢

9 dyds = m(dy)

10 ¢3,¢4 = 7(c2)

0 N U R W N

1 if (... Y —) L
12 dispense ap

13 dy = mix ap; with dy

14 c; = store c3 @

15 ds = $(ds, ds)

16 ¢ = Ples, cs @

17 dg = mix c¢¢ with ds

18 d; = heat dg
19 drain dy

(@) (b)

Figure 5. Our scheduler adds implicit store operations (a) and
updates SSI form to generate a schedule (b) that captures the linear
def-use chain that SSI form provides.

=
oo

Figure 6. A DMFB partitioned into a 2X 2 array of modules exposed
to the scheduler: one module has a heater and one has a sensor.

Each vertex is labeled with a type, denoted type[o;] €
{mix, split, merge, store, heat, sense}. As shorthand, and al-
beit a slight abuse of notation, we define a meta-type, reconfig,
as the union of types mix, merge, split, or store.

The set of interference or affinity neighbors of type t are
respectively denoted adji[o;] = {o; € adj[o;] | type[o;] = t}
and affi[o;] = {o; € afflo;] | typelo;] = t}; adj;"[0;] and
aff;*|o;] are defined analogously to adj*[o;] and aff *[0;].

3.3.2 Construction

An interference edge (0;,0;) € E is placed between two
operations o; and o; whose lifetimes overlap. Affinity edges
arise from fluidic dependencies in the IR, including those
arising between fluidic variables used and defined by the ¢-
and 7-functions inserted during SSI construction [18, 64].
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heaterl sensorl
heat1, detectl,
heat2,... detect2,...

heater2 sensor2
heat1, detectl,
heat2,... detect2,...

(a) I/O interferences (b) External module interferences
Figure 7. I/O & Module Interferences: All 1/O reservoirs (a) are
universal nodes; their subgraph forms a clique. The subgraph of
external modules (b) is a complete multipartite graph, with each
module type comprising a part.

An affinity edge (ok, 0;) € A indicates that a droplet must
be transported between the locations where oy and o; are
placed. The transport operation can be eliminated if o and
oy are placed at the same location.

Affinity edges can only be inserted between “compati-
ble” operations. For example, a mix operation is compatible
with a heat because a mix operation can be scheduled on a
DMFB module that includes an integrated heater (presum-
ably turned off). On the other hand, heat and sense opera-
tions are incompatible: to date no DMFB devices has inte-
grated a heater and sensor at the same on-chip location.

The interference graph includes a complete multipartite
gadget (Fig. 7b) to make resource-related incompatibilities
explicit. I/O operations bound to the same reservoir cannot
interfere, while I/O operations bound to different reservoirs
explicitly interfere. Without loss of generality, a sensing op-
eration cannot be bound to a region of a DMFB that features
an integrated heater, and vice-versa.

Figure 8a shows the interference graph corresponding
to the assay in Fig. 4 after scheduling and storage inser-
tion, and assuming that the target DMFB has at least two
heaters. Instructions 1, 2, 3,9, and 13 are statically bound to
I/O reservoirs. Operation 5 (heat c¢) overlaps with operations
4,6, and 7; droplet ¢ is stored after operation 7 (detect d)
completes. To conserve space, the interference graph omits
the interference edges that belong to the gadget in resource-
interferences between operation 7 (detect d) and the three
heat operations (4, 5, and 12). Fluidic dependencies result in
affinity edges: (v4, vs), (vs, v7), (v7,v10), (v5,011), (V7,011),
(v10, v11), and (v11, V12).

3.4 Coalescing

Coalescing merges non-interfering affinity-related vertices
in the interference graph to ensure that the correspond-
ing operations are placed at the same on-chip location: this
eliminates the need to transport droplets, which can reduce
the burden on placement and routing (§§ 3.5 and 3.6), two
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NP-complete problems. Coalescing is implemented as an
affinity edge contraction operation [11, 24, 40, 44]: given an
affinity edge (0;,0;) € A where (0;,0;) ¢ E, vertices o; and
o; are merged to form new vertex o;; having interference
and affinity neighbor sets adj[o;;] = (adjlo;] U adj[o;]) and
affloi;] = (aff[o:] U aff[o;]) \ {0i,0;}. Figure 8a shows the
interference graph derived from the scheduled CFG shown
in Fig. 5b; Figs. 8b and 8c show two possible coalescing out-
comes. In this example, Fig. 8c has coalesced more affinity
edges than Fig. 8b. This, in turn, reduces the workload of the
placer (§ 3.5) and router (§ 3.6) downstream.

Coalescing here differs from register allocation in one
key respect. Consider the example shown in Fig. 9a: when
coalescing (0;, 0;) into o;;, traditional mechanisms discard
(04, 0 ), which may result in extended routes (Fig. 9b). We
instead maintain the affinity, allowing routes to be optimized
by placing operations near each other (Fig. 9c).

When reconfigurable operations of different dimensions
are coalesced, the coalesced vertex is given the minimum
rectangular dimension that can accommodate its constitu-
tions (see Fig. 10a). The type of a coalesced vertex has the
most restrictive among {reconfig, heat, sense}, as shown in
Fig. 10b.

Next, we describe two important subroutines, followed by
a description of two coalescing heuristics adapted for our
constraints. In the discussion that follows, we talk about
interference graph “vertices” rather than assay operations.

Simplification is a subroutine commonly used during
register allocation, which we here adapt for our purposes.
Any vertex that trivially satisfies the scheduling resource
constraints above, but is not affinity-adjacent to any other
vertices can be removed from the graph: the rationale is
that a legal placement for the simplified vertex can always
be found regardless of where all of its neighboring vertices
are placed. Removing simplified vertices from the graph
creates opportunities for new coalescing while also rendering
other vertices simplifiable. Following repeated rounds of
simplification, all vertices in the remaining graph can be
placed. Simplified vertices can then be placed by processing
them in reverse order of their removal.

Conservative Coalescing Coalescing is conservative if
the coalesced vertex o;; and its interference neighbors satisfy
the scheduler’s resource constraints (Egs. (1) to (3)), i.e.:

|adjheat*[0ij]| < Nheat (4)
|adjsense*[oij]| < Nsense (5)
|adjmix* [Oij]| + |adjsplit*[0ij]| + |adjmerge* [Oij]|
’V |adjstore>k [Oij“
+ S —
k
+ |adjsense* [Oij]l <N

+ |adjheat*[0ij]| (6)
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Figure 8. (a) The interference graph for the Assay in Figure 4a: solid lines are interferences, while dotted lines are affinities between nodes.
Note that all interferences in Figure 7 are present but not depicted; (b) and (c) show that a coalescing solution is not unique.

I | I
Oijj Ok

Oij 5

(b) (©

Figure 9. (a) o; has affinity with 0j and o, while 0; and o, interfere;
traditional coalescing does not maintain the affinity edge when
coalescing o;j, which may result in extended routes (b); by keeping

the edge, we can optimize routes by placing dependent operations
near each other (c).

3.4.1 Coalescing Strategy

Iterated Coalescing, depicted in Fig. 11, is adapted from it-
erated register coalescing [24], but without spilling. The
iterated coalescer simplifies the interference graph until it is
not possible to do so any further. It then applies conservative

(@

(b)

Figure 10. The rectangular dimensions of a coalesced vertex are
the minimum dimensions that can accommodate its constituent

parts (a); a coalesced vertex takes on the type of its most restrictive
module (b).

coalescing; if coalescing occurs, further simplification is per-
formed; otherwise, an low-degree vertex with at least one
incident affinity edge is “frozen” i.e., the coalescer gives up
hope of coalescing its incident affinity edges, thereby allow-
ing the vertex to be simplified. Iterated coalescing terminates
when all vertices have been removed via simplification. The
graph is then rebuilt and passed to the placer. Conservatism
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Figure 11. Phase ordering of Iterated Coalescing [24]

is guaranteed by the observation that the initial interference
graph, simplification process, and conservative coalescing
strategy ensure that the scheduler’s resource constraints are
satisfied at each step of the heuristic.

3.5 Placement

The placer determines the location on-chip where each
assay operation will execute. A legal placement satisfies
the constraint that operations o; and o; are placed at non-
overlapping positions for each interference edge (0;, 0;) € E.
Our compiler implements two distinct placement strategies
that have been published elsewhere: Virtual Topology
with Left-Edge Binder (VI-LEB) [28] and Keep All
Maximal Empty Rectangles (KAMER) [7]. Prior work
implemented these heuristics in a manner similar to linear
scan register allocation [67]. Starting with a scheduled basic
block, the placer scans each program point in sequential
order: operations scheduled to complete at the previous
time-step are removed from the current placement, and
operations scheduled to begin at the subsequent time-step
are added to the placement.

Our compiler uses modified versions of VI-LEB and
KAMER to perform placement on a coalesced interference
graph rather than a scheduled CFG; vertices are processed
one-by-one in a worklist sorted by the earliest time step.

When coalescing is performed, affinity relationships be-
tween interfering vertices may still exist, indicating exactly
which vertices should be placed near each other; hence, af-
ter placing o;, if aff[o;] # 0, we recursively process affinity
neighbors prior to returning to the sorted order (see Fig. 9c).

Let adj<[o;] be the set of 0;’s interference neighbors that
precede o; in the computed order. Placement proceeds in a
greedy fashion: operation o; can be placed at any position
that does not overlap the position(s) where operations in
adj<[o;] have been placed. All vertices that have been coa-
lesced with/into o; are placed at the same location. The result-
ing placement is guaranteed to be legal as it ensures that o;’s
position never overlaps that of any vertices in adj[o;]. VI-
LEB guarantees that a legal placement can be found because
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it ensures that all placement decisions adhere to scheduling
resource constraints. Further details regarding the placement
heuristics are available in the supplemental materials.

3.5.1 Mix Operation Resizing and Rescheduling

The rescheduling loop in Fig. 3 enables the compiler to ad-
just the size of mixing operations (Table 1) to reduce assay
execution time. The availability of space to accommodate
larger mixing operations is not known until placement; on
the other hand, the benefits of adjusting the latency of a mix-
ing operation cannot be ascertained without rescheduling,
and the updated schedule may change which fluidic variable
live ranges overlap, thereby rendering the interference graph
invalid. This observation necessitates the rescheduling loop.

The compiler uses a local search, which converges to a
locally optimal solution, to adjust mixing operation sizes.
When placing an interference graph, the first mixing oper-
ation or coalesced vertex o; that contains at least one mix
operation invokes Algorithm 1 to select an appropriate mixer
size. The heuristic relies on two subroutines:

1. MaxParallel applies Dilworth’s Theorem [20] to com-
pute the width, i.e., the maximum number of opera-
tions that could be scheduled concurrently, of the basic
block that contains o;; if 0; contains multiple coalesced
vertices, MaxParallel returns the maximum width of
among all of the basic blocks containing them.

2. CanFit computes the number of mixing modules of
size s that can fit on a given DMFB architecture. Re-
ferring back to Fig. 6, CanFit is effectively the same
subroutine that a scheduler would use to determine
the resource constraints of the target chip.

The heuristic first checks if 0;’s scheduled module size
CanFit MaxParallel operations. If more parallelism is avail-
able than what is currently scheduled, it checks if smaller
modules CanFit more than those currently scheduled, and
continues until it finds a module size that CanFit up to
MaxParallel operations.

The heuristic will increase o;’s size in two cases:

1. If the chip CanFit strictly fewer than MaxParallel
operations, and the heuristic is unable to increase the
number of operations the chip CanFit by decreasing
o0;’s module size, then it increases o;’s size as long as it
does not further reduce the number of operations that
the chip CanFit.

2. If 0;’s scheduled module size CanFit MaxParallel op-
erations, then the heuristic increases o;’s size to the
largest point where MaxParallel operations CanFit
on the chip.

When the size of a mixing operation is updated, the size
of any other mixing operations that are coalesced with it
are updated as well. If a mixing operation is updated during
placement, its latency is scaled as per Eq. (7) and the compiler
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loops back to scheduling:

t" =t * latencyney /latency,iq (7)
For example, if the compiler changes a 10 second mix opera-
tion’s given work module from a 2 X 3 to a 2 X4 module, then
the compiler computes the new latency as t’ = 10%2.9/6.1
4.76 seconds. The compiler rounds the new latency up to the
next millisecond. The termination criteria to continue on to
droplet routing is either (1) module sizes are not updated
during placement, so rescheduling is unnecessary, or (2) the
loop taken during a rescheduling loop failed during sched-
uling or placement. In the case of (2), we revert to the last
legal schedule and placement found. The interested reader
can find an example of module resizing in the supplemental
materials.

Algorithm 1 Resizing Heuristic

1: function CHOOSEMODULESIZE(Block(s) b, Vertex 0;)
2 current <« oj.size

3 choice < current

4: max < MaxParallel(b)

5: currNum « CanFit(current)

6 updated < False

7 if max > currNum then

8 chosenNum «— currNum

9 smaller < current

10: while smaller # smallest do

11: smaller « decrease(current)

12: check « CanFit(smaller)

13: if check > chosenNum then

14: choice «— smaller

15: updated < True

16: chosenNum « check

17: if chosenNum > max then break
18: if updated = False then

19: larger < decrease(current)

20: check « CanFit(larger)

21: while check = currNum OR check > max do
22: choice « larger

23: if larger = largest then break

24: larger « increase(choice)

25: check « CanFit(larger)

26: 0;.size « choice

3.6 Droplet Routing

Once a legal placement solution is obtained, each droplet
must be routed from its source to its destination; many papers
published in the past 15 years have described routing algo-
rithms, and in principle any can be used [9, 15, 34, 41, 42, 71,
72,81, 91]. The most advanced routers also integrate washing
operations to eliminate cross-contamination [35, 89, 92]. The
only additional requirement is that droplet routes must be
inserted at basic block boundaries; our compiler implements
these routes as part of SSI elimination [18].

Tyson Loveless, Jason Ott, and Philip Brisk

4 Implementation

Our compiler targets an open-source cycle-accurate DMFB
simulator [27, 29]; we modified a back-end that can statically
compile CFGs [18], and rely on the simulator to report exe-
cution time. We used a collection of benchmarks specified
using the BioScript language, which is compatible with the
framework’s static compilation model [64]. Our compiler
uses List Scheduling [28, 80], the VT-LEB [28] and KAMER
[7] placers, and a greedy, yet effective, droplet router [28, 71].

Interference graph construction and coalescing are per-
formed after scheduling (Fig. 3). Coalescing is abstracted
away from placement so that any existing placement heuris-
tic could be modified easily to operate on a coalesced inter-
ference graph. While rescheduling is abstracted away from
placement, the resizing operations, by necessity, must be
performed during placement, which necessitates a substan-
tial revamp of the heuristic. Our current implementation
is only compatible with placers that place operations one-
at-a-time in a greedy fashion. A further discussion of the
necessary modifications is available for the curious reader
as a supplemental material.

5 Evaluation

Even though we support physical chips, the expense associ-
ated with their use is prohibitive for evaluation; hence, we
evaluate our compiler through simulation-based empirical
studies on known real-world assays specified for execution
on DMFBs. Specifically, we aim to evaluate the impact of
coalescing and mix operation resizing on compilation and as-
say execution time. All reported averages use the geometric
mean over the ratios of each benchmark to avoid providing
too much weight to longer- or shorter-running benchmarks
[22].

5.1 Experimental Setup

Experiments were performed on a 2.7 GHz Intel®; Core™ i7
processor, 8GB RAM, machine running macOS®. We compare
directly against two previously published compilers [18, 64]
using an identical 15 x 19 DMFB architecture. We also report
results on 15 X 15, 12 X 12 and 8 X 8 DMFBs to evaluate the
impact of our mix operation resizing heuristic.

5.2 Benchmarks

Our evaluation uses a set of DMFB benchmarks that were
previously used to evaluate the two compilers that we use as
a baseline for comparison. Ref. [18] specified them using a
variant of the BioCoder language, which is now deprecated;
Ref. [64], as well as this work, uses the replacement BioScript
language; a detailed summary of the benchmarks are given
in [64]’s supplemental materials.
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5.3 Baseline Compilers

The DMFB compilers we compare against do not employ co-
alescing or mix operation resizing: Ref. [18] compiles a CFG
one basic block at a time using the standard VT-LEB algo-
rithm for placement ([28]), eschewing optimizations across
basic block boundaries. Ref. [64] employs the NSGA-II [19]
metaheuristic for placement. The NSGA-II placer attempts
to maximize the number of affinity-adjacent operations that
are placed at the same location, as well as affinity-adjacent
operations which interfere nearby one another in order to
reduce droplet routing paths, but it does not employ coalesc-
ing. The runtime of NSGA-II depends on a complex set of
parameter values; to get good results, it needs to run much
longer than a greedy heuristic such as VI-LEB or KAMER.

5.4 Results and Analysis

Table 2 compares simulated assay execution times previ-
ously reported for the two baseline compilers [18, 64] to
three configurations of the compiler presented here: VI-LEB
placement plus coalescing (VC), KAMER placement plus co-
alescing (KC), and KAMER placement plus both coalescing
and mix operation resizing (KCR). On average, VC, KC, and
KCR reduce assay execution time by 1.1%, 1.2%, and 25.0%
respectively. These results are not surprising, as assay exe-
cution time is known to be dominated by schedule latency,
not droplet routing time [81]; as optimizations, coalescing
aims to reduce droplet routing overhead while mix operation
resizing can lead to shorter schedules. We observed that con-
vergence typically occurs after 2 iterations of rescheduling
when resizing is enabled.

The improvements reported for VC and KC over Ref. [64]
indicate situations where coalescing turns out to be more
effective than the NSGA-II placer; however, NSGA-II may dis-
cover different (and possibly better) solutions if the random
number seed and other configuration parameters are varied.
Future work may extend the NSGA-II placer to utilize a coa-
lesced interference graph; the amount of work required to
extend the NSGA-II placer with resizing capabilities (which
would entail re-scheduling and re-placing at every perturba-
tion) is prohibitive, so we did not evaluate this option.

The compiler described in Ref. [18] utilizes the same placer
as VC, sans coalescing. Adding coalescing capabilities yielded
marginal improvements, due to the fact that droplet routing
does not dominate total assay execution time.

Mix operation resizing had a more profound impact on to-
tal assay execution time than coalescing. Furthermore, Fig. 12
depicts an observed linear correlation between the amount
of time an assay is specified for mixing and the percentage
decrease we expect to achieve via resizing across DMFBs of
varying size. At the smallest size, 8 X 8 (Figure 12d), resizing
allows us to compile several assays that failed to compile
successfully without this optimization turned on. Through
inspection, we determined that our resizing heuristic was
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able to avail the minimum required parallelism for these
assays by using a 1 X 4 module size; the default 2 X 2 mixer
did not provide enough room for a legal schedule.

Table 3 provides details into how coalescing impacts the
placer’s workload and droplet routing time. On average, co-
alescing reduces the number of operations that are placed
by 77%; this, in turn, reduces the amount of work that needs
to be done during both placement and routing. In terms of
overall performance impact, the VC and KC placers reduced
droplet routing times by 9.4% and 8.6% compared to the
baseline.

6 Related Work

The majority of work on DMFB compilation targets devices
that do not feature sensory feedback or control flow; as such,
the scope of compilation was limited to programs that con-
sisted of a single basic block. Discrete formulations of the var-
ious compilation stages of scheduling[21, 30, 50, 63, 70, 80],
placement [14, 28, 48, 57, 58, 79, 87, 88, 90], and droplet rout-
ing [9, 15, 34, 41, 42, 71, 72, 81, 91] were explored, along with
wash-droplet [35, 89, 92] to eliminate contamination on the
surface of the chip. The compiler described here is a general
framework and could implement any of these algorithms.

Early work on DMFB compilation featuring control flow
targeted online error detection and recovery for the single
basic-block compilation model described above [2, 3, 33, 36—
39, 47, 54, 55, 66, 93]. With appropriate extensions to handle
CFGs, these techniques could be integrated into the runtime
system that executes assays compiled using the techniques
described here on a DMFB; it is beyond the scope of this
work to design and evaluate such techniques.

This work builds directly on two prior papers that de-
scribed techniques for DMFB compilers. The first [18] in-
troduced the hybrid computational-fluidic IR used in this
paper, and demonstrated how to compile a CFG: each basic
block could be compiled individually, with additional droplet
routes inserted at control flow edges. These routes ensure
that each basic block begins with its incoming droplets at the
same position regardless of which control path is taken lead-
ing into that basic block. A subsequent paper [64] introduced
the BioScript language (which we use here) and represents
the first attempt to optimize placement on the granularity of
a CFG, as opposed to individual basic blocks; this provided
the ability to optimize the additional droplet routes inserted
by the earlier compiler [18]; placement relied on an iterative
improvement metaheuristic, which ran slowly but generated
locally optimal solutions. The contributions of this paper are
threefold: (1) coalescing as a placement strategy; (2) faster-
running heuristics that can handle placement on the CFG

2We discovered a semantic error in the OpiateDetection assay as used in [18,
64] and have adjusted it for correctness. Also, the BioScript specifications
we use from [64]’s supplemental materials do not match results when
running the framework. Timing specifications were updated through to
match previous results prior to conducting our experiments.
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Table 2. Impact of coalescing, choice of placement heuristic, and mix operation Table 3. Impact of coalescing on placement effort and

resizing on total assay execution time. droplet routing time.
Total Execution Time (m:s.ms) # Modules Placed Droplet Route Time (s.ms)
) VT-LEB KAMER KAMER . . VT-LEB KAMER
Assay Baseline + Coalesce Baseline Coalesced Baseline + +
+ Coalesce + Coalesce .
+ Resize Coalesce Coalesce

BroadSpectrumOpiate 00:18.550 00:18.200 00:17.810 00:16.180 5 2 00.740 00.740 00.910
CancerDetection 1920:08.010  1920:06.000 1920:02.810 1919:24.000 11 4 00.820 00.680 01.000
g‘ Ciprofloxacin 101:31.800 100:37.100 100:36.910 100:29.950 11 3 02.390 02.450 02.220
“_:\' Diazepam 96:48.130 96:50.180 96:49.760 96:14.970 13 2 02.600 02.670 03.950
"< | Dilution 21:05.000 20:43.000 20:41.000 06:25.470 11 2 00.710 00.750 01.150
B Fentanyl et al. 126:32.400 126:24.540 126:24.330 72:20.600 11 3 02.670 02.770 02.540
g FullMorphine2 157:21.540 157:21.500 157:19.890 122:52.780 19 8 05.840 05.760 08.420
GlucoseDetection 00:23.770 00:23.590 00:23.730 00:16.730 10 5 01.470 01.250 01.800
ImageProbeSynth 08:38.960 08:22.860 08:22.780 06:58.860 9 1 00.770 00.530 00.780
i~ OpiateDetection_N2 252:50.400 252:50.100 252:47.500 144:36.540 49 4 06.060 05.030 07.230
= OpiateDetectim‘LILH2 227:04.000 227:03.700 227:01.800 137:01.140 49 4 05.820 04.770 06.870
T: OpiateDetection_P_M2 353:20.700 353:20.200 353:17.100 209:13.700 49 4 08.470 06.890 10.030
3 PCRDropletReplacement 40:44.000 39:17.890 39:17.120 32:55.170 4 2 00.510 00.510 00.350
. | ProbabilisticPCR_early 07:21.000 07:12.420 07:12.390 07:05.430 10 2 07.610 03.920 05.420
g ProbabilisticPCR_full 11:19.000 11:10.600 11:10.550 11:03.610 8 2 00.630 00.530 00.390
© | PCR 11:43.000 11:27.370 11:27.380 11:27.370 8 2 00.870 00.770 00.550
Average Decrease: 1.1% 1.2% 25.0% 77.1% 9.4% 8.6%

N - negative P - positive H - heroin M - morphine

50% 50%

1oy R=0.8922 R = 06992

25%

Percent Decrease in Schedule
Percent Decrease in Schedule

]
0% 18% 26% 3% 52% 65% 0% 13% 26% 30% 52% 65%
Percent of Time Scheduled for Mixing Percent of Time Scheduled for Mixing
(a) 15 x 19 chip (b) 15 x 15 chip
o 9% o 0%
5 =i 15x 19 15x 15 12x12 8x8
B g0, B=0.8983 B oy =1
S 60% g 6% 5
= = £ o
G <] 5 . 4
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£ £ o
% 40% % 40% "GU)
: :
o 9 0
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2 2% 2 20 0 4 3 12 16 2%
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D ¢ Number of Successfully Synthesized )
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Figure 12. Resizing mix operations: we observe a linear correlation between the ratio of time spent mixing and the expected percent
decrease in an assay’s total schedule. The size of the bubbles indicate the ratio of time scheduled for I/O operations. Without resizing, the
8 X 8 chip can only synthesize 2 of the 18 benchmarks. With resizing enabled, we are able to successfully synthesize 11 out of the 18.
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granularity; and (3) mixing operation resizing, which has a
much greater impact on performance than coalescing.

Another approach, which is orthogonal to what we pro-
pose here, is to interpret assays online, rather than compile
them offline [31, 86]. The interpreter JIT-compiles each basic
block in an on-demand fashion, emphasizing compilation
speed over solution quality. To the best of our knowledge,
prior work has not attempted to JIT-compile an assay on the
granularity of the CFG; any such approach could build on the
techniques used here, noting that the runtime overhead of
mix operation resizing may be prohibitive. Further, there is a
complex interplay between coalescing and module resizing,
as resizing may affect interferences across the CFG during
rescheduling; hence, the combination of these optimizations
are not well-suited for online compilation.

7 Conclusion and Future Work

This paper described the framework of an optimizing com-
piler for DMFBs; the key innovations were twofold: the for-
mulation of the placement problem for CFGs that shares
many principle similarities to register allocation [12, 13],
which enabled the adaptation of register coalescing tech-
niques [11, 24] to eliminating otherwise spurious droplet
routes, and a mix operation resizing step to reduce schedule
latency. While there is certainly room to investigate more
effective heuristics that solve the various problems within
the compiler, we believe that the general back-end frame-
work presented here represents the correct way to model
the constituent optimization problems that must be solved,
along with their interactions. Moreover, we believe that the
most important topics for future investigation start at the
programming language level; for example, determining how
to support function calls, fluidic arrays, and fluidic SIMD op-
erations; additionally, there is need to port BioScript (and/or
other similar languages) to a variety of SP-LoC targets in
addition to DMFBs.
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