
ChemStor : Using Formal Methods

to Guarantee Safe Storage

and Disposal of Chemicals

Jason Ott,† Daniel Tan,† Tyson Loveless,† William H. Grover,∗,‡ and Philip Brisk∗,†

†Department of Computer Science and Engineering, Winston Chung Hall, Room 351,

University of California, Riverside, Riverside, CA, 92521 USA

‡Department of Bioengineering, 219 Materials Science and Engineering Building,

University of California, Riverside, Riverside, CA 92521 USA

E-mail: wgrover@engr.ucr.edu; philip@cs.ucr.edu

1

wgrover@engr.ucr.edu
philip@cs.ucr.edu

Abstract

While safe chemical storage and disposal are simple in principle—users should read

safety specifications and place chemicals in appropriate cabinets or collection points—

high-profile incidents involving improper storage and disposal of chemicals continue to

occur. This paper introduces ChemStor , an open-source, automated computational

system that can guarantee (mathematically verify a system is correct with respect to

its specification), with regard to prescribed constraints, safe storage and disposal of

chemicals used in academic, industrial, and domestic settings. ChemStor borrows con-

cepts from formal methods—a branch of computer science capable of mathematically

proving a specification or software is correct—to safely store or dispose of chemicals. If

two or more chemicals can be combined in the same cabinet without forming possibly

dangerous combinations of chemicals (while observing cabinet/shelf space constraints),

then ChemStor determines that the storage configuration is safe. Likewise, if chemi-

cals can be added to an existing disposal container without forming possibly dangerous

combinations of chemicals (or exceeding the volume of the container), then ChemStor

determines that the disposal configuration is safe. ChemStor accomplishes this by first

building a chemical interaction graph, a graph that describes which chemicals may in-

teract with each other based on their Reactivity Groups as determined by the United

States Environmental Protection Agency. Next, ChemStor computes the chromatic

number of the graph, the smallest number of colors used to color the graph such that

no two vertices (chemicals) that share an edge (an interaction) share the same color.

ChemStor then assigns all the chemicals of each color to a storage or disposal con-

tainer after confirming that there is enough space in the container. These steps are

encoded into a series of Satisfiability Modulo Theory equations, and ChemStor uses an

industry-standard tool to try to find a valid solution to these equations. The result is

either a solution which dictates exactly where to store or dispose of each chemical, or

an indication that no safe storage or disposal configuration could be found. To demon-

strate the feasibility of ChemStor , we used the tool to analyze ten real-world chemical

2

storage and disposal incidents that led to injuries or destruction of property. In each

case, ChemStor quickly and successfully identified a proper chemical disposal or storage

configuration that would have prevented the incident. In the future, ChemStor may be

integrated with electronic laboratory notebooks, voice assistants, and other emerging

technology to protect users of chemicals in labs, workplaces, and homes.

1 Introduction

Many common chemicals can undergo dangerous reactions when combined with incompatible

chemicals during storage or disposal. For example, millions of tons of nitric acid are pro-

duced every year, making it a ubiquitous chemical in many research and industrial settings.

Likewise, millions of tons of organic solvents are produced every year and used in many

different applications. But when nitric acid is mixed with organic solvents, hazardous chem-

ical products, fires, and explosions can result. While all chemists are (hopefully!) trained to

avoid intentionally mixing nitric acid and organic solvents, accidents sometimes occur when

these chemicals are unintentionally mixed in a chemical storage location or a waste disposal

container.1–4 Furthermore, nitric acid and organic solvents are just a few of the millions of

chemicals that can undergo dangerous reactions when combined during storage or disposal.

Incidents due to improper storage or disposal of chemicals occur with alarming frequency,5–9

with consequences like second-degree burns1 and destroyed laboratories.6

Efforts to improve chemical safety generally fall into two categories—system-based ap-

proaches and behavioral approaches—both of which have limitations in avoiding storage- and

disposal-related incidents:

• System-based solutions focus on building systems (often computer-based) that aid

research labs in managing many different administrative functions involving chemicals.

These functions may include generating various state and federal compliance reports,

automatically issuing a purchase order should inventory of a chemical fall below preset

3

levels, and sharing inventory among collaborating laboratories.10–14 Some Chemical

Inventory Management Systems (CIMS) employ simple safety features, like the ability

to parse a chemical’s Materials Safety Data Sheet (MSDS) to inform the researcher

how to properly store the chemical. Chempliance 14 offers some guidelines on chemical

disposal practices but is lacking any guarantees with respect to safety and does not

track the volumes of chemicals.

• Behavioral systems focus on training and the human aspects of safety. Some of these

systems train employees to focus on “safety first,” 15,16 while others aim to identify dis-

parities between institutional and individual beliefs about safety.17,18 These approaches

focus on systemic issues that, while important, are sometimes relatively abstract and

far removed from the specific day-to-day decisions faced by a researcher, like where to

store a particular new chemical, or where to dispose of a certain waste chemical.

In summary, existing methods for improving chemical safety can inform researchers about

general best practices, but fail to provide real-time guidance on specific storage and disposal

decisions.

This paper introduces ChemStor , an open-source, automated chemical storage and dis-

posal system that is provably safe with respect to proper laboratory safety protocols. For a

given set of chemicals and containers, ChemStor either provides a specific storage or disposal

configuration that is safe, or informs the user that no safe storage/disposal configuration is

possible. Specifically, ChemStor informs users which specific cabinet or bin should be used

to store or dispose of each chemical, thereby easing the burden of safety protocols that users

must keep in their minds, while simultaneously minimizing the space required for chemical

storage and disposal. ChemStor can be integrated with electronic laboratory notebooks,

voice assistant tools, and many other existing and emerging technologies. Finally, ChemStor

can enhance safety in a wide range of settings, not only research laboratories and industrial

facilities, but also homes (where each year, mixing incompatible pool cleaning chemicals leads

to an estimated 4,500 injuries alone19).

4

2 Overview of ChemStor

In this section, we summarize the operation of ChemStor in the context of a specific safety

incident. In 1997, while one of the authors (WHG) was a student at the University of

Tennessee, Knoxville, students in an undergraduate chemistry laboratory performed the

Belousov-Zhabotinsky (BZ) reaction:

3CH2(CO2H)2 + 4BrO3
− Ce2+−−−→ 4Br− + 9CO2 + 6H2O (1)

The BZ reaction is commonly studied in laboratory classes due to its unusual oscillatory

nature. As is typically done, the students at UT Knoxville combined aqueous solutions of

malonic acid and potassium bromate along with a cerium ammonium nitrate catalyst. When

the reactants are combined as aqueous solutions, the reaction is benign, and the laboratory

class concluded without incident. However, during post-lab cleanup, spilled reactants in

dry form were swept from around the laboratory balances and into a waste container. This

container was subsequently placed beneath a leaky sink, which began adding drops of water

to the mixture of dry reactants after the laboratory was empty. The resulting reaction was

extremely exothermic and caused a fire that resulted in significant damage to the laboratory.5

How could ChemStor have prevented this incident? More specifically, at the end of the

laboratory class, after the dry reagents used in the BZ reaction were combined into the same

waste container, how could ChemStor warn the teaching assistants that they should avoid

any situation that might add water to this container (like placing the container beneath a

leaky sink)?

The first step involves defining which chemicals are currently in which storage contain-

ers. Fig. 1A depicts the chemical storage situation at the end of the class, with the three

dry reagents used in the BZ reaction (malonic acid, potassium bromate, and cerium ammo-

nium nitrate) combined in a single chemical storage container, and the teaching assistant

contemplating placing this container beneath a sink where water might be added to it.

5

Container 1

Cerium
Ammonium
Nitrate

Malonic
Acid

Potassium
Bromate

(A)

Cerium
Ammonium
Nitrate

Water

Malonic
Acid

Potassium
Bromate

Malonic
Acid

(B)

Cerium
Ammonium
Nitrate

Water

Malonic
Acid

Potassium
Bromate

Malonic
Acid

(C)

Water

Container 2

Cerium
Ammonium
Nitrate

Malonic
Acid

Potassium
Bromate

Container 1

(D)

Figure 1: Using ChemStor to safely dispose of leftover reactants from performing the
Belousov-Zhabotinsky (BZ) reaction. This simple scenario (based on real-life events that
culminated in a lab-destroying fire5) begins with three reactants (cerium ammonium ni-
trate, malonic acid, and potassium bromate) combined in dry form in a single container
(A). A teaching assistant considers placing this container beneath a leaky sink drain, which
will add water to the mixture. At this point, ChemStor constructs a chemical interaction
graph (B) containing vertices for each chemical in the proposed mixture. In this graph,
chemicals that may react with each other are linked with solid lines, and chemicals that are
identical and can be combined are linked with dotted lines. After ChemStor calculates the
chromatic number of the graph and colors the graph (C), the chemicals can be safely added
to different containers based on their vertex colors (D). At this point, ChemStor would
notify the teaching assistant that water should not be added to the container with the BZ
reactants, the teaching assistant would avoid placing the container in a wet location, and a
significant laboratory accident would have been avoided.

6

Next, ChemStor builds a chemical interaction graph G (Fig. 1B) containing 3 sets: a set

of vertices, V ; and two different sets of edges, E and A:

• The vertices, V , are the individual chemicals in this scenario. Specifically, we can

define the vertices v = cerium ammonium nitrate, u = malonic acid, w = potassium

bromate, and z = water. We can furthermore say that v ∈ V , u ∈ V , w ∈ V , and

z ∈ V , or that v, u, w, z are members of, or are “in,” the set of vertices V . (The “∈”

symbol, as well as the other standard Boolean logic and set theory symbols used in

this work, are defined in Table 1.)

• The set E is the set of edges that represent unsafe combinations of chemicals, or “in-

terference” edges. Because mixing v, u, and w without z will not result in a dangerous

reaction, it can be said that (v, u) /∈ E; or that there is no edge between v and u.

Similarly, there is no edge between the other combinations of the dry BZ reactants, so

(u,w) /∈ E and (v, w) /∈ E. Interference edges are denoted as solid lines between ver-

tices in Fig. 1B. In this example the teaching assistant is considering possibly adding

water to a container that already contains the dry BZ reagents (z and z ∈ V). Be-

cause z (water) will lead to a dangerous reaction when added to the combined dry BZ

reagents, there are edges between each of the BZ reactants and water, so (v, z) ∈ E,

(u, z) ∈ E, and (w, z) ∈ E, as shown in Fig. 1B.

• The set A is the set of edges that represent instances of the same chemical, properly

defined as “affine” edges. The dotted line in Fig. 1B represents an affine edge. In this

scenario, the edge represents some additional malonic acid (a) that requires disposal.

Thus, a ∈ V , and (u, a) ∈ A because both u and a are malonic acid and are chemically

identical. The set of affine edges enables ChemStor to save chemical storage volume

space by combining u and v, assuming the container for u or v has enough space.

ChemStor represents this as ∀(u, v) ∈ A (∀ reads “for all”).

Now that the chemical interaction graph G has been built, ChemStor can calculate the

7

Table 1: Common notation in set theory and Boolean logic.

Notation Plain English Example Outcome

|A| Cardinality |A| Number of elements in the set A
∈ Set membership 1 ∈ N Statement of fact — 1 is a mem-

ber of the set of natural num-
bers

⊆ Subset or equal A ⊆ B Determines whether all the el-
ements in set A are also in set
B

A\B Set difference A\B Returns the elements in B that
are not in A

∧ Boolean AND X ∧ Y Evaluates true if and only if
both predicates X and Y are
true

∨ Boolean OR X ∨ Y Evaluates true if either/and
both predicates X, Y are true

¬ Boolean NOT ¬X Negates the predicateX. IfX is
true, then ¬X evaluates to false

∀ For all ∀a(a > 1) Definition of the natural num-
bers

∃ There exists ∀(m ∈ N)∃(n ∈ N)(n > m) The set of natural numbers con-
tinues ad infinitum

smallest number of containers required for safe disposal of the chemicals in G. ChemStor

accomplishes this by calculating the graph’s chromatic number, χ(G), a step in “coloring”

the graph. Graph coloring is a mathematical problem that aims to color a graph’s vertices

with the minimal number of different colors, while guaranteeing that no two vertices that

share an edge also share the same color. For safe disposal or storage of chemicals, the

only edges that are of consequence are the interference edges, or the solid edges in Fig. 1B.

This graph is trivially small and can be colored by hand using two colors, as shown in

Fig. 1C. However, graph coloring belongs to a class of problems that are incredibly difficult

to solve efficiently, the so-called NP-complete problems, so as more chemicals are added to

the graph, the computational effort required to color the graph grows astronomically. The

computational effort required to solve the graph coloring problem is proportional to 2n, where

n is the number of colors in the graph.

8

Finally, the graph’s chromatic number (the number of different colors on the colored

graph) denotes the minimum number of containers required to safely dispose of the chem-

icals in the graph. In this example, ChemStor recommends placing water in a separate

container, not in the container with the dry BZ reagents (Fig. 1D). If this information was

then communicated to the teaching assistant, they might avoid placing the container in a

location where water could be added, thereby avoiding a significant laboratory accident.

3 Methods

In this section, we present details on the necessary data structures, algorithms, and con-

straints used by ChemStor to determine the safe disposal and storage of chemicals.

3.1 Chemical Compatibility

To obtain information about which types of chemicals are compatible or incompatible with

each other, ChemStor relies on a chemical classification system created jointly by the US

Environmental Protection Agency (EPA) and National Oceanic and Atmospheric Adminis-

tration (NOAA).20 This system categorizes over 9,800 chemicals into 68 reactivity groups

that have similar properties. Mixing materials from certain reactivity groups can produce

materials from other reactivity groups; for example mixing acids and bases induces a strong

reaction that produces salt and water. The EPA/NOAA categorization assigns one of three

outcomes to the combination of chemicals: Incompatible, Compatible, or Caution. We write

interact(x, y) = if chemicals x and y cause an adverse reaction () when mixed, or are In-

compatible. Chemical combinations that result in Caution are either deferred to the expert

user or treated as Incompatible. Finally, if either x or y (or both) are not classified with a

reactivity group (in other words, they do not appear in the EPA/NOAA classification list),

then the chemicals are marked as Unknown and ChemStor notifies the user that any possible

storage or disposal solution would require review by an expert.

9

3.2 Chemical Interaction Graph

Let G(V,E,A) be the chemical interference graph representing a storage problem. V is the

set of chemicals we desire to store, E is the set of interference edges between incompatible

chemicals, and A is the set of affinity edges between unique instances of identical chemicals.

An interference edge (v, u) is added to E if, for any two chemicals v, u, interact(v, u) = as

noted in § 3.1. An affinity edge (v, w) is added to A if v and w represent distinct instances of

the exact same chemical (i.e., there is more than one container of a certain chemical we wish

to store). The chemical interaction graph may be extended to include a set P ⊆ V of vertices

and Q ⊆ E of edges representing chemicals already in storage and their corresponding edges,

respectively.

3.3 Chemical Storage

Let C = {c1, c2, . . . , ck} be the set of cabinets for chemical storage. Each cabinet contains

a finite set of shelves. Let S(cm) denote the set of shelves within cabinet cm ∈ C, where

smn denotes the nth shelf in cm. Each shelf smn ∈ S(cm) has an immutable capacity, denoted

maxCapacity(smn) with which it can use to store chemicals. The capacity of each cabinet is the

sum of the capacities of its shelves. The capacity of a shelf currently occupied by chemicals

is currCapacity(smn).

Affinity-adjacent chemicals may be combined into the same container. The cost of a

container is orders of magnitude less than the cost of a cabinet; as such, we assume an

infinite supply of containers but a finite supply of cabinets.

Let currVolume(x) denote the current volume chemical x occupies within its container,

and let combine(y, z) be the volume of the combined quantities of chemicals y and z, which

in either case may be less than the volume of their respective containers. Two instances of

the same chemical v and w can be combined by coalescing their respective vertices in G.

10

3.4 Chemical Disposal

Let D = {d1, d2, . . . , dk} be the set of containers for chemical disposal. Each container has

a maximum volume associated with it, denoted maxVolume(dm). The current volume of the

container dm is currVolume(dm).

Thus, if (v, u) ∈ E, then v and u cannot be combined in the same container dm (e.g.,

interact(v, u) =), so a new container must be added: dm+1. If (v, u) /∈ E ∧ vol(v) +

currVolume(dm) ≤ maxVolume(dm), then v can be combined with u in the container dm.

Affinity-adjacent chemicals are assumed to be combined into the same container, assuming

the maximum volume of the container allows it.

3.5 Characterization of a Solution to the Chemical Storage Problem

Given a chemical interference graph G, ChemStor computes a pair of functions f : V →

{1, 2, . . . |C|} and g : V → N+ which assigns each chemical (vertex) to a specific storage

location within a cabinet and on a shelf, or (cabinet, shelf). If (f(v), g(v)) = (m,n), then

chemical v is assigned to shelf smn in cabinet cm, 1 ≤ n ≤ |S(cm)|.

A legal chemical storage solution must satisfy the Chemical Reactivity Constraint, which

states that two interfering chemicals cannot be stored in the same cabinet:

f(v) 6= f(u) ∀(v, u) ∈ E (2)

A more permissive variant of the Chemical Reactivity Constraint allows two interfering

chemicals to be stored in the same cabinet, but on different shelves:

p1 = f(v) 6= f(u)

p2 = f(v) = f(u) ∧ g(v) 6= g(u)

p12 = p1 ∨ p2 ∀(v, u) ∈ E

(3)

11

A legal chemical storage solution must also satisfy the Storage Capacity Constraint, which

states that the sum of the capacities of the containers assigned to each shelf in each cabinet

cannot exceed that shelf’s storage capacity:

∑
v∈V |f(v)=m, g(v)=n

currVolume(v) ≤ maxCapacity(smn)

1 ≤ m ≤ |C|

1 ≤ n ≤ |S(cm)|

(4)

3.6 Satisfiability Modulo Theories

ChemStor uses a class of logical formula solvers, Satisfiability Modulo Theories (SMT), to

solve a given storage or disposal problem instance. An SMT solver determines whether

a problem instance is “decidable”, or can be answered by a simple “true” or “false”. SMT

problems support linear inequalities (e.g., x+5y−2z ≤ 5), equalities involving uninterpreted

terms or functions (e.g., f(u, v) = f(g(v), u)), Boolean logic (e.g., a ∧ b), and in some cases

quantifiers (e.g., ∀a(a ∈ N)(a > 0)).

SMT-based problems are expressed as a series of mathematical constraints. These con-

straints define the valid range of values variables can take for a solution. SMT equations are

very expressive and can take one or many of the form(s) noted above. Once these equations

are defined, they are used as input to an SMT solver. If the solver can find a solution which

satisfies the constraints, it provides a model, or the values of all the variables. If no solution

can be found, the solver simply returns “false”.

3.7 SMT Constraints

To use a SMT solver to solve a ChemStor problem instance, we first convert the Chemical

Storage Problem, described in § 3.5, into a set of SMT equations. Each chemical v must be

assigned to exactly one shelf smv
nv

in exactly one cabinet cmv . We accomplish this using the

12

following constraints:

mv ∈ Z, 1 ≤ mv ≤ |C| (5)

nv ∈ Z, 1 ≤ nv ≤ |S(ck)| ∧ k == mv (6)

If v is a previously stored chemical, then the values for mv and nv are known a priori and

are encoded as SMT constants.

The second constraint, the Chemical Reactivity Constraint, guarantees that no pair of

chemicals stored in the same cabinet can interact dangerously, and can be expressed as an

SMT constraint as follows:

∀u, v ∈ V |mu == mv interact(u, v) 6= . (7)

The more permissive variant of this constraint, Eq. (3), guarantees that no pair of chemicals

stored in the same shelf in the same cabinet can interact dangerously, and can be expressed

as an SMT constraint as follows:

∀u, v ∈ V |mu == mv ∧ nu == nv, interact(u, v) 6= . (8)

Finally, the Storage Capacity Constraint (Eq. (4)) expresses the Storage Capacity Con-

straint in a form that is already SMT-compatible.

3.8 Coalescing Strategy

As defined in § 3.2, an affinity edge (u, v) ∈ A represents two containers that store identical

chemicals. Let t(u) denote the chemical “type” of u. In ChemStor ’s case, the reactivity

groups described in § 3.1 comprise the different “types” to which chemicals may belong, like

13

“acid” and “base.” In Eq. (4), maxVolume(v) represents the volume of the container that

holds chemical v. Let currVolume(v) ≤ maxVolume(v) denote the volume of the chemical

held in the container. To reduce demands on limited storage space, it may be possible to

consolidate multiple instances of the same chemical (u and v) into u’s container if

currVolume(u) + currVolume(v) ≤ maxVolume(u). (9)

Here, the user no longer needs to store v’s container, and ChemStor can eliminate all of v’s

associated SMT constraints.

We implement this feature as a coalescing (vertex merging) operation applied to the chem-

ical interference graph prior to calling the SMT solver; in practice, coalescing opportunities

could be incorporated directly into the SMT formulation as well.

Fig. 2 illustrates coalescing. Here u represents 150 mL of hydrochloric acid in a 300 mL

container and v represents 150 mL of hydrochloric acid in a 300 mL container. Without

coalescing, the shelves would use a combined 600 mL of volume to store u and v. How-

ever, with coalescing, ChemStor combines them into a single container, reducing the storage

requirement to 300 mL.

Hydrochloric
Acid

Volume: 150mL
Max: 300mL

v

Hydrochloric
Acid

Volume: 150mL
Max: 300mL

v’

Acetonitrile
Volume: 100mL
Max: 300mL

u

(A)

Hydrochloric
Acid

Volume: 300mL
Max: 300mL

v

Acetonitrile
Volume: 100mL
Max: 300mL

u

(B)

Figure 2: Demonstrating the coalescing strategy. The affine edge (dotted line) in (A) allows
ChemStor to combine those chemicals into one vertex as shown in (B), as long as the volumes
v + v′ ≤ maxVolume(v, v′).

14

3.9 De-Coalescing Strategy

In some cases, it may be necessary to split one chemical container into two or more containers;

ChemStor addresses this behavior through de-coalescing. As a motivating example, suppose

that a user tries to store 300 mL of hydrocholoric acid in a cabinet with three shelves, as

shown in Fig. 3. Due to pre-existing chemicals allocated to storage, only 100 mL of space is

available on each shelf. In this case, it makes sense to split the hydrochloric acid into three

100 mL containers; otherwise, a legal storage solution cannot be found. We implement this

strategy using de-coalescing (vertex splitting).

ChemStor is allowed to de-coalesce a vertex v into a given number of p parts, each having

a volume no more than vol(v)/p. This is expressed using conditional notation within our

solver; due to the inherent complexity of this constraint, we describe it conceptually here. If

there are q shelves that do not interact negatively with v whose combined available capacity

is greater than vol(v), but whose individual available capacities are smaller than vol(v), then

we can split v into an equal number of p parts, where p is vol(v) divided by the greatest

common divisor of the available capacities of the available capacities of the q shelves. We

can then de-coalesce as described above, and the resulting p instances of chemical v can be

stored on the q shelves either directly or after further coalescing.

100mL of
Space

Hydrochloric
Acid

Volume: 300mL
Max: 300mL

v

(A)

Hydrochloric
Acid

Volume: 100mL
Max: 300mL

v’

Hydrochloric
Acid

Volume: 100mL
Max: 300mL

v

Hydrochloric
Acid

Volume: 100mL
Max: 300mL

v’’

(B)

Figure 3: Demonstrating the de-coalescing strategy. To store a chemical whose volume
exceeds the capacity of any one shelf (A), ChemStor de-coalesces vertices and splits the
chemical into p parts to derive a feasible storage configuration (B).

15

3.10 No Solutions

There are instances when ChemStor might not converge to a legal solution (in this context, a

“legal solution” is one whose constraints have been met, e.g., all chemicals stored in a cabinet

have no adverse reaction should they interact). In some cases, this may be in part due to

constraints imposed by the set of chemicals pre-assigned to storage locations. One possibility

is to unassign all of these vertices and generate a new SMT problem instance. If this second

instance is successfully solved, then a legal storage solution has been found, albeit one that

may require a significant rearrangement of chemicals stored in the cabinets. If the second

instance cannot be solved, then the user is informed that no legal storage solution is possible

using the existing resources.

4 Results

We implemented ChemStor using the Python programming language and z321 as our SMT

solver. All experiments were performed on a 64-bit Windows 10 Dell Laptop with an Intel(R)

Core(TM) i5-7200U CPU @ 2.50 GHz with 8.00 GB of RAM. The code is available at

https://github.com/lilott8/BioScript.

To test the efficacy of ChemStor , we used it to reproduce a number of real-world destruc-

tive chemical storage and disposal incidents. In some cases, details regarding the storage

resources were sparse or non-existent; in these examples, we made reasonable assumptions

about common storage cabinet sizes and quantities, chemical volumes, and chemical tax-

onomies. For each real-world incident in Table 2, we averaged run times across 100 runs.

In each case, ChemStor is able to derive a safe and valid storage or disposal solution in a

fraction of a second.

Table 3 reports the ability of ChemStor to handle storage problems which necessitate

the use of our coalescing and de-coalescing strategies (i.e., valid solutions are unable to be

found without combining or splitting containers of chemicals). ChemStor was able to find a

16

https://github.com/lilott8/BioScript

Table 2: Results from using ChemStor to solve chemical storage and disposal problems from
real-life incidents. In these incidents, faulty storage or disposal configurations caused lab
fires, explosions, or human harm and incurred significant damages to lab spaces. All run
times were averaged across 100 tests. ChemStor was able to find a safe chemical storage or
disposal configuration for each incident in a few milliseconds.

Incident Avg. Run No. of No. of No. of Solution
Time(ms) Chemicals Cabinets Shelves Found

Tetracholorethylene+Nitric Acid22 5.523 2 1 4 Yes
Hexane Explosion9 2.105 7 1 7 Yes
Methanol+Nitric Acid22 2.386 2 1 2 Yes
Benzene+Urea+Benzotrichloride22 4.450 3 1 3 Yes
Lithium Aluminum Hydride Fire7 7.043 3 1 3 Yes
H2O2+Sulfuric Acid + Acetone22 10.086 3 1 4 Yes
Formaldehyde+Benzene22 11.338 3 1 4 Yes
Univ. of Tennessee, Knoxville Fire5 23.177 4 1 4 Yes
Broken Beaker of Barium Oxide8 1.272 11 3 3 Yes
Lab Fire at Ohio State University6 1.241 9 2 3 Yes

safe storage configuration for all the synthetic storage problems where one exists, denoted by

“Yes” in the Valid Solution Found column. In the case of the two synthetic failures, ChemStor

was unable to find a safe storage configuration, as was expected. The two failing test cases

demonstrate problem instances where a valid solution is impossible and the likelihood of an

unsafe incident is significant. In these two cases, the coalescing and de-coalescing strategies

would not prove helpful as the volume constraint on a shelf prevents a chemical from being

safely stored. As in Table 2, we average run times over 100 runs, and note that every test

returns in a few milliseconds.

5 Conclusions

ChemStor generates safe storage and disposal configurations that are provably safe, given

the chemicals have assigned EPA/NOAA reactivity groups. In all of our test cases, ranging

from real-world to synthetic, ChemStor converged in less than one second, which indicates

that realistic storage/disposal problem instances yield SMT problem instances that can be

17

Table 3: Synthetic tests demonstrating the efficacy of ChemStor ’s coalescing and de-
coalescing strategies. All run times were averaged across 100 tests. We crafted tests for
the edges case: restrictive placement, relaxed placement, coalescing success or failure, and
decoalescing success or failure. If a solution could not be found, the corresponding column
is marked with a “No”.

Test Avg Run No. of No. of No. of Solution Solution
Time (ms) Chemicals Cabinets Shelves Exists Found

Full Cabinet 0.64 5 1 4 Yes Yes
Compatible Chemicals 39.54 5 3 4 Yes Yes
Combine Two Tests 142.96 8 4 4 Yes Yes
Pass Coalescing 4.94 1 1 1 Yes Yes
Pass Decoalescing 10.60 1 1 3 Yes Yes
Fail Coalescing 3.14 1 1 1 No No
Fail Decoalesce 4.77 1 1 2 No No

solved rapidly. This is important, as it enables ChemStor to provide real-time advice to

users before dangerous storage and disposal mistakes are made.

In its current form, ChemStor has some significant limitations. For example, as noted

earlier, ChemStor ’s problem instance is difficult to solve; and because of the difficulty of the

graph coloring problem, parallelization is of little help. While ChemStor is capable of accept-

ing a problem instance containing millions of chemicals, problems of that magnitude might

not converge on a solution quickly. Additionally, ChemStor doesn’t account for chemical

properties like concentrations or temperatures; obviously these properties heavily influence

the reactivity of the chemicals. Also, the notion of a “cabinet” in ChemStor is abstract, and

differentiating between, say, a refrigerator and a room-temperature shelf is an important

distinction when storing a chemical with a flash point near room temperature. Finally, the

ChemStor “container” is an abstract volume and does not capture the real-world container

dimensions that dictate shelf or cabinet capacity. Future versions of ChemStor should ad-

dress these shortcomings, and since ChemStor is an open-source project, we welcome others

to add additional capabilities to the software and use it in their own projects.

In the near future, ChemStor can be incorporated into the various technological assistants

that are gaining popularity in workplaces and homes. For example, by including ChemStor

18

in an electronic laboratory notebook, the notebook software could automatically suggest

chemical disposal strategies after each experiment. Cameras in augmented reality systems

could actively scan the workplace and use ChemStor to identify unsafe chemical storage

situations before accidents occur, and microphones could listen for employees’ questions

about storage and disposal. These scenarios are not that far-fetched—software developers

are already working on voice-based assistants for chemists,23 and integrating ChemStor into

these tools seems relatively straightforward. Finally, including ChemStor ’s recommendations

in home voice assistants like Apple’s Siri and Amazon’s Alexa could significantly reduce the

number of chemical-related injuries and accidents that occur in homes.

Acknowledgement

This work was supported by the National Science Foundation under grants 1910878, 1740052,

1545097, 1536026, and 1351115.

References

(1) AIHA, internet, Accessed on 2019-06-29; https://www.aiha.org/

get-involved/VolunteerGroups/LabHSCommittee/Incident%20Pages/

Lab-Safety-Chemical-Exposures-Incidents.aspx.

(2) Texas Tech University, E. o. H.; Safety, internet, Accessed on 2019-05-24; https://

www.depts.ttu.edu/research/integrity/lessons-learned/February-2015.php.

(3) University of Illinois, D. o. R. S. internet, Accessed on 2019-05-28; https://www.drs.

illinois.edu/News/Nitric-Acid-Alert.

(4) Washington University in St. Louis, E. H.; Safety, internet, Accessed on 2019-05-21;

https://wustl.box.com/s/my0l7melrkpzgdfneu7dcscnvve773l4.

19

https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Incident%20Pages/Lab-Safety-Chemical-Exposures-Incidents.aspx
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Incident%20Pages/Lab-Safety-Chemical-Exposures-Incidents.aspx
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Incident%20Pages/Lab-Safety-Chemical-Exposures-Incidents.aspx
https://www.depts.ttu.edu/research/integrity/lessons-learned/February-2015.php
https://www.depts.ttu.edu/research/integrity/lessons-learned/February-2015.php
https://www.drs.illinois.edu/News/Nitric-Acid-Alert
https://www.drs.illinois.edu/News/Nitric-Acid-Alert
https://wustl.box.com/s/my0l7melrkpzgdfneu7dcscnvve773l4

(5) LETTERS. Chemical & Engineering News Archive 1998, 76, 4.

(6) Schulz, W. G. internet, 2005; http://www.ehs.ucsb.edu/files/docs/ls/Ohio_

fire.pdf.

(7) AIHA, internet, Accessed on 2018-03-14; https://www.aiha.org/get-involved/

VolunteerGroups/LabHSCommittee/Pages/Lithium-Aluminum-Hydride-Fire.

aspx.

(8) University of California, C. f. L. S. internet, Accessed on 2018-03-22; https://ucla.

in/2BAL5Gq.

(9) AIHA, internet, Accessed on 2018-03-15; https://www.aiha.

org/get-involved/VolunteerGroups/LabHSCommittee/Pages/

Shelf-Collapse-Causes-Spill-and-Fire.aspx.

(10) Gibbs, L. ChemTracker consortium–The Higher Education Collaboration for Chemical

Inventory Management and Regulatory Reporting. J. Chem. Health Saf. 2005, 12,

9–14.

(11) Cournoyer, M. E.; Maestas, M. M.; Porterfield, D. R.; Spink, P. Chemical Inventory

Management: The Key to Controlling Hazardous Materials. J. Chem. Health Saf. 2005,

12, 15–20.

(12) Santos, J. E. R.; Alfonso, F. N. N.; Mendizabal Jr, F. C.; Dayrit, F. M. Developing

a Chemical and Hazardous Waste Inventory System. J. Chem. Health Saf. 2011, 18,

15–18.

(13) Foster, B. L. The Chemical Inventory Management System in Academia. J. Chem.

Health Saf. 2005, 12, 21–25.

(14) Rappaport, J.; Lichtman, J. Ongoing Development of a Chemical/Biological Inventory

20

http://www.ehs.ucsb.edu/files/docs/ls/Ohio_fire.pdf
http://www.ehs.ucsb.edu/files/docs/ls/Ohio_fire.pdf
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Pages/Lithium-Aluminum-Hydride-Fire.aspx
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Pages/Lithium-Aluminum-Hydride-Fire.aspx
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Pages/Lithium-Aluminum-Hydride-Fire.aspx
https://ucla.in/2BAL5Gq
https://ucla.in/2BAL5Gq
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Pages/Shelf-Collapse-Causes-Spill-and-Fire.aspx
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Pages/Shelf-Collapse-Causes-Spill-and-Fire.aspx
https://www.aiha.org/get-involved/VolunteerGroups/LabHSCommittee/Pages/Shelf-Collapse-Causes-Spill-and-Fire.aspx

and Safety Management Solution for Temple University. J. Chem. Health Saf. 2005, 5,

4–8.

(15) Khan, F. I.; Amyotte, P. R. How to Make Inherent Safety Practice a Reality. Can. J.

Chem. Eng. 2003, 81, 2–16.

(16) Cournoyer, M. E.; Maestas, M. M. Addressing Safety Requirements Through Manage-

ment Walkarounds. J. Chem. Health Saf. 2004, 11, 12–16.

(17) Silva, S.; Lima, M. L.; Baptista, C. OSCI: an Organisational and Safety Climate In-

ventory. Safety science 2004, 42, 205–220.

(18) Cournoyer, M. E. A Risk Determining Model for Hazardous Material Operations: Part

II. Probabilistic Safety Assessment and Management. 2004; pp 1534–1540.

(19) Pool Chemical Injuries Lead to Over 4,500 Emergency Department Visits Each

Year. internet, Accessed on 2019-04-22; https://www.cdc.gov/media/releases/

2019/p0515-pool-chemical-injuries.html.

(20) Environmental Protection Agency & National Oceanic and Atmospheric Administra-

tion, internet, Accessed on 2016-09-12; https://cameochemicals.noaa.gov/.

(21) Bjørner, N.; de Moura, L. Z3: An Efficient SMT Solver. Tools and Algorithms for the

Construction and Analysis of Systems,(TACAS’08) 2008,

(22) Ott, J.; Loveless, T.; Curtis, C.; Lesani, M.; Brisk, P. BioScript: Programming Safe

Chemistry on laboratories-on-a-Chip. Proceedings of the ACM on Programming Lan-

guages 2018, 2, 128.

(23) Mullin, R. Alexa and your Phone are Getting Schooled in Chemistry. Chemical &

Engineering News 2019, 97 .

21

https://www.cdc.gov/media/releases/2019/p0515-pool-chemical-injuries.html
https://www.cdc.gov/media/releases/2019/p0515-pool-chemical-injuries.html
https://cameochemicals.noaa.gov/

Graphical TOC Entry

Acetone

Safety
First

Nitric
Acid Acetone

Nitric
Acid

Waste Waste 2Waste 1

Contents
1 Introduction 3

2 Overview of ChemStor 5

3 Methods 9

4 Results 16

5 Conclusions 17

Acknowledgement 19

References 19
Some journals require a graphical entry for the Table of Contents. This
should be laid out “print ready” so that the sizing of the text is correct.
Inside the tocentry environment, the font used is Helvetica 8 pt, as
required by Journal of the American Chemical Society.
The surrounding frame is 9 cm by 3.5 cm, which is the maximum per-
mitted for Journal of the American Chemical Society graphical table of
content entries. The box will not resize if the content is too big: instead
it will overflow the edge of the box.
This box and the associated title will always be printed on a separate
page at the end of the document.

22

	Introduction
	Overview of ChemStor
	Methods
	Chemical Compatibility
	Chemical Interaction Graph
	Chemical Storage
	Chemical Disposal
	Characterization of a Solution to the Chemical Storage Problem
	Satisfiability Modulo Theories
	SMT Constraints
	Coalescing Strategy
	De-Coalescing Strategy
	No Solutions

	Results
	Conclusions
	Acknowledgement
	References

