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Abstract

Copy number variants (CN'Vs), deletions and duplications of segments of DNA, account for at least five times more variable
base pairs in humans than single-nucleotide variants. Several common CNVs were shown to change coding and regulatory
sequences and thus dramatically affect adaptive phenotypes involving immunity, perception, metabolism, skin structure,
among others. Some of these CNVs were also associated with susceptibility to cancer, infection, and metabolic disorders.
These observations raise the possibility that CNVs are a primary contributor to human phenotypic variation and consequently
evolve under selective pressures. Indeed, locus-specific haplotype-level analyses revealed signatures of natural selection on
several CNVs. However, more traditional tests of selection which are often applied to single-nucleotide variation often have
diminished statistical power when applied to CNVs because they often do not show strong linkage disequilibrium with nearby
variants. Recombination-based formation mechanisms of CNVs lead to frequent recurrence and gene conversion events,
breaking the linkage disequilibrium involving CN'Vs. Similar methodological challenges also prevent routine genome-wide
association studies to adequately investigate the impact of CNVs on heritable human disease. Thus, we argue that the full
relevance of CNVs to human health and evolution is yet to be elucidated. We further argue that a holistic investigation of
formation mechanisms within an evolutionary framework would provide a powerful framework to understand the functional
and biomedical impact of CNVs. In this paper, we review several cases where studies reveal diverse evolutionary histories
and unexpected functional consequences of CN'Vs. We hope that this review will encourage further work on CNVs by both
evolutionary and medical geneticists.

Keywords Genomic structural variation - Recurrence - Evolutionary medicine - Genome evolution - Mutational hotspots

Introduction

Copy Number Variants Explain the Majority
of Human Genetic Variation

The majority of human genetic variation is imperfectly
studied (Eichler 2019). One of the least understood types
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of genetic variation is copy number variants (CNVs),
which refer to deletions and duplications of relatively large
genomic segments (Fig. 1, often larger than 1 kb in relevant
studies). Previous approaches to detect common genetic
variation have focused on single-nucleotide polymorphisms.
It is only recently with the advent of array comparative
genomic hybridization and whole-genome sequencing that
we can visualize and appreciate the extent of CN'Vs in the
human genome. CNVs account for at least five times more
variable base pairs compared to single-nucleotide variants
when two human genomes are compared to each other (Con-
rad et al. 2010; Redon et al. 2006; Sudmant et al. 2015a;
Pang et al. 2010). In addition to the extent of their impact
on the landscape of genetic variation, follow-up studies have
linked copy number variation to several important complex
diseases (Girirajan et al. 2011), as well as adaptively relevant
phenotypes (Redon et al. 2006; Iskow et al. 2012). These
initial glimpses hail a promising new avenue to collectively
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Fig. 1 Characteristics of gene copy number variants compared to sin-
gle-nucleotide variants

understand the genetic basis of human health and evolution;
recent studies have linked putatively adaptive CNVs to bio-
medically relevant traits (Iskow et al. 2012; Stankiewicz and
Lupski 2010; Girirajan et al. 2011). This observation is con-
cordant with the notion called antagonistic pleiotropy, which
was first proposed by Williams (1957) that one gene can
control multiple traits with both beneficial and detrimental
effects. Recent genome-wide studies have found suggestive
evidence that genetic variants which affect disease suscep-
tibility are also associated with adaptation to environmen-
tal conditions and longevity (Voskarides 2018; Byars and
Voskarides 2019).

One challenge in studying copy number variation is that
CNVs evolve through different formation mechanisms and
thus vary significantly in their size, genomic location, and
potential functional impact. In other words, CNVs as a cat-
egory should be considered a collection of multiple different
types of variants with different properties. For example, a
large deletion that evolved through nonallelic homologous
recombination has substantially different functional con-
sequences than a smaller gene duplication that occurred
through retrotranscription (i.e., a retrogene) (Abyzov et al.
2013; Hastings et al. 2009). In addition, recurrence, gene
conversion, and methodological identification biases (false
positives/negatives) affect different types of CN'Vs in varied
ways and add to the challenges of studying the evolutionary
and biomedical impacts of CNVs (Fig. 2). In the first part
of this review, we will provide examples of these challenges
within the context of anthropologically relevant CNVs.
Then, to highlight the contributions of CNVs to human phe-
notypic variation, we will discuss examples of evolutionarily
relevant CNVs and their potential health consequences. Last,
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Fig.2 Mechanistic characteristics of copy number variants. a Copy
number variations are often formed in repeat-rich regions, which
makes the haplotype-based analysis challenging. b Gene conversion.
¢ Recurrent formation of copy number variations can break the flank-
ing haplotypes and consequently the linkage disequilibrium, which
reduces the statistical power of GWAS and neutrality tests based on
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we will briefly touch on the broad functional categories that
CNVs have a particular impact. Overall, we hope that this
review will provide a general picture of the current state of
the field.

The Different Mechanisms of Copy Number Variant
Formation Lead to Diversity in Their Evolutionary
and Biomedical Impact

Segmental Duplication-Associated Nonallelic Homologous
Recombination

Copy number variations can be formed by multiple mecha-
nisms. One well-described mechanism through which large
CNVs form is nonallelic homologous recombination. When
two relatively large (generally > 1 kb) repeats exist nearby on
a chromosome, they increase the chances of chromosomal
misalignment during meiosis, leading to unequal crossing
over (Hurles 2004) (Fig. 1a). The result is that one of the
chromosomes may end up losing while the other gaining a
DNA segment. Empirical data show that copy number vari-
ants are significantly enriched in segmental duplication-rich
regions of the genome (Redon et al. 2006). Segmental dupli-
cations are large segments of DNA sequence (1-400 kb)
with high (more than 90%) sequence similarity that occur
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more than one site within the human genome. Segmental
duplications account for 5% of the human genome (Sharp
et al. 2005; Bailey et al. 2001, 2002) and are particularly
prone to the nonallelic homologous recombination, espe-
cially because they are larger than short tandem repeats
and most retrotransposons. It is estimated that about 28%
of copy number variants likely evolved through segmental
duplication-mediated nonallelic homologous recombination
(Kim et al. 2008).

These nonallelic homologous recombination-based CNVs
have certain commonalities with each other. They cluster in
segmental duplication-rich portions of the genome, which
happen to be gene-rich (Bailey et al. 2002) and can harbor
well-described gene families (Sudmant et al. 2010). Thus,
the majority of CN'Vs that lead to polymorphic gene dele-
tions or duplications form in such areas (Bailey et al. 2002).
This genic nature of segmental duplications is relevant to
human evolution. Earlier studies reported a “burst” of seg-
mental duplications in the great ape lineage (Marques-Bonet
et al. 2009), and moreover, these great ape-specific segmen-
tal duplications harbor genes related to neuronal develop-
ment, potentially explaining the unusual large brains of great
apes and humans in particular (Levchenko et al. 2018). From
a biomedical perspective, the same mutational mechanisms
that lead to gene duplications related to neurological func-
tions may have led a predisposition to higher CNV mutation
rate in these regions. Thus, it is not surprising that nonallelic
homologous recombination underlies a considerable number
of rare de novo CNVs linked with neurological disorders
(Mefford et al. 2010). A last but important point is the for-
mation of new CNVs can further increase the segmental
duplication content in a genome, subsequently leading to
even more CNVs. In fact, some segmental duplication-rich
regions of the primate genomes are hot spots of common
CNVs. Such hot spots were implicated in the maintenance
of functional variation in some immunity-related gene fami-
lies (Gokcumen et al. 2011; Lin and Gokcumen 2019). In
sum, CNVs that evolve through nonallelic homologous
recombination include variants that are more likely to be
larger, genic, and recurrent, and their genomic context often
includes other repetitive sequences. They have been the
major focus of research within the field and remain as the
best-understood type of CNVs.

Retrotransposons and Retrotransposon-Driven CNVs

Retrotransposition is arguably the most important factor
shaping eukaryotic genomes (Kazazian 2004; Deininger
et al. 2003; Cordaux and Batzer 2009). In humans, retro-
transposon activity can affect CNV formation at three levels.
First, some retrotransposons in the human genome are still
active and thus remain polymorphic (Cordaux and Batzer
2009). These can be considered as CNV's themselves. These

retroposons often carry their own regulatory machinery and
as such are discussed as major players in the regulation of
expression (Cordaux and Batzer 2009; Feschotte 2008).
MicroRNAs (miRNAs), a distinct class of ~22 nt single-
stranded noncoding endogenous RNAs, are also related to
retrotransposons. For example, the large, primate specific
miRNA family of mir-548 were derived from Madel min-
iature inverted-repeat transposable elements (Piriyapongsa
and Jordan 2007). The mir-548 family members have high
sequence similarity with each other and are widely spread
across the human genome as slightly different copies from
the same template sequence (Liang et al. 2012).

Second, retrotransposition mechanism can occasionally
lead to the integration of processed mRNAs back into the
genome through retrotranscriptase activity (Trizzino et al.
2017). These “retrogenes” can be polymorphic and often
express an RNA molecule (Abyzov et al. 2013; Chuong et al.
2017). The function of these expressed RNA molecules is
unknown, but anecdotal findings indicated that these retro-
genes can replace the original genes (Ciomborowska et al.
2013) and once retrogenes acquire introns, they can lead
to increase in gene dosage (Fablet et al. 2009). It is also
possible that retrotransposons can facilitate the formation
of large CN'Vs either by facilitating nonallelic homologous
recombination or by generating structural plasticity in the
genomic regions where they are inserted (Hastings et al.
2009). However, this last mechanism has not been defini-
tively shown at a genome-wide level in humans and only
reported in specific cases with major biomedical conse-
quences (Gu et al. 2015). If we consider polymorphic Alu
and LINE elements as CNVs, then the majority of CNVs
by sheer number can be categorized as such, but their size
is generally smaller than segmental duplication-associated
CNVs. The polymorphic retrogenes and retrotransposon
events are much rarer than the fixed ones; however, anec-
dotal findings suggest that CNVs that have evolved through
retrotransposition machinery can contribute significantly to
human biological variation.

Tandem Repeats Smaller than Segmental Duplications

CNVs are often observed with other types of repeats besides
segmental duplications (Repnikova et al. 2013). For exam-
ple, smaller tandem repeats also contribute significantly to
the CNV landscape in various ways. However, the relation-
ship between CNVs and such tandem repeats is multifaceted
as in the relationship between retrotransposition and CNVs.
It is a matter of definition if one considers the variation in
the number of short tandem repeats can be considered CNVs
(e.g., triplets in Huntington region which can be repeated
dozens (healthy) to hundreds (pathogenic) times) (Moncke-
Buchner et al. 2002). In addition to the copy number varia-
tion of these shorter tandem repeats themselves, these arrays
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of repeated sequence can lead to increase in genomic insta-
bility, which in turn can facilitate the formation of larger
CNVs (Nguyen et al. 2006).

A more clear-cut example of how such repeats can con-
tribute to copy number variation landscape of the genome
involves sub-exonic repeats. These repeats can involve mul-
tiple copies of dozens of nucleotides to hundreds of nucleo-
tides, contributing to the coding sequence. The formation of
sub-exonic repeats polymorphism is often thought to occur
through strand-slippage replication (Fan and Chu 2007).
Sub-exonic repeats in mucin genes provide a case example,
where they are often polymorphic and code for highly gly-
cosylated PTS-rich peptides (Dekker et al. 2002). As such,
they contribute to the variation in the glycosylation of these
proteins. Kirby et al. identified an insertion of a C in the
coding repeat region in the MUC]I gene leads the frameshift
which introduces a stop codon shortly beyond the variable
number tandem repeat domain. This variation is thought to
be responsible for medullary cystic kidney disease type 1
(Kirby et al. 2013). In addition to mucins, thousands of other
mammalian genes harbor such subexonic repeats (Schaper
et al. 2014). Thus, the biological relevance of the polymor-
phisms in the copy number of these repeats remains a fasci-
nating area of future study.

Other Mechanisms

Non-homologous end-joining pathway is the key mechanism
to repair DNA double-strand breakage in mammalian cells
(Chang et al. 2017). When double strands are broken, the
related proteins are recruited and ligate the DNA strands
together. If two fragments from different chromosomes
ligate together, it can result in gene deletions and duplica-
tions (Currall et al. 2013; Bickhart and Liu 2014; Weck-
selblatt and Rudd 2015). Korbel et al. (2007) suggest that
56% of the copy number variations are caused by nonho-
mologous end joining (NHEJ). However, the specifics of this
broad mechanistic category remain relatively understudied
among healthy individuals. Generally, CNVs are considered
to evolve through NHEJ if the formation mechanisms can-
not be categorized as nonallelic homologous recombination
or retrotransposition. This broad mechanistic category of
CNVs, which vary widely for their size, functional impact,
chromosomal location, and sequence content, remains the
least understood. With the advent of longer reads and a bet-
ter understanding of these mechanisms, recent studies begin
to tackle these mechanisms more systematically (Zhao et al.
2016; Chaisson et al. 2019).
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A Note on the Evolution of CNVs Through
the Different Formation Mechanisms in the Human
Lineage

The genome evolution is led by different mechanisms
between lineages. For example, there are many more gene
loss and gene gain events in the primate lineage as compared
to other mammalian lineages (Hahn et al. 2007). Moreover,
a “burst” of segmental duplications documented in the great
ape lineage distinguishes their genomes from other primates
(Marques-Bonet et al. 2009). These major shifts in genome
evolution trends are likely due to the change in the rate of
nonallelic homologous recombination-based events (Gokc-
umen et al. 2013). Indeed, there is a significantly higher
proportion of large CNVs, which likely evolved through
recombination-based mechanisms, within great ape species
as compared to those found within rhesus macaques (Gokcu-
men et al. 2013). Moreover, the recombination trends (e.g.,
the localization of recombination hot spots) evolve rapidly
between primate species, further contributing to the notion
that shifts in recombination-based formation mechanisms
may explain the differences noted in the CNV landscape
within different primate species (Stevison et al. 2016).
Another major contributor to the differences in CNV
landscapes across primate species is the rate of retrotranspo-
sition-based mechanisms (Hedges and Batzer 2005). Com-
parative genomics revealed that Alu-mediated formation of
copy number variation was the predominant mechanism 40
million years ago. Indeed, polymorphic Alu elements are the
predominant type of CNVs within rhesus macaque individu-
als, but their rate of new Alu insertions is significantly lower
within great ape species (Gokcumen et al. 2013). To study
the underlying factors that determine the extent of polymor-
phic and active retrotransposition in a given species is not
a trivial task. The rate and maintenance of retrotransposi-
tion depend on multiple factors: the demographic history
of the species (e.g., effective population size (Gurdasani
et al. 2019)), the selection acting on the genome as a whole
(Enard et al. 2010), the multiple defense mechanisms that
work to dampen retrotransposition activity [e.g., APOBEC3
gene activity, piwi RNAs, etc. (Stenglein and Harris 2006;
Yang and Kazazian 2006)]. Thus, the mechanistic bases and
the potentially widespread (Chuong et al. 2017) functional
impact of polymorphic retrotransposons in different species
remain mostly unknown. However, it is clear that the primate
genomes evolve differently than those of other mammals and
from each other when it comes to CNVs (Derti et al. 2006).
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Examples

Several CNVs have been thoroughly studied within the con-
text of human evolution and disease. Deletions or duplica-
tions of exonic sequences have been a particular interest.
However, because there are multiple mechanisms to form
CNVs as we discussed above, studying the evolutionary and
functional impact of these exonic CNVs can be challenging.
Specifically, recurrence and gene conversion lead to some-
times unexpected methodological complications. Here, we
provide a relatively comprehensive list of common exonic
CNVs (Table S1). Further, we summarize recent work on
some of these variants to highlight the diverse evolutionary
histories of CNVs and also to show how researchers tackle
unique methodological challenges in each case.

Lack of Linkage Disequilibrium with Nearby
Variants: APOBEC3B and UGT2B17 Deletions

Linkage disequilibrium (LD) is one of the most relevant
properties of genetic variation for evolutionary and pheno-
typic analyses (Slatkin 2008). It refers to the non-random
co-occurrence of two or more variants in a given popula-
tion. This is primarily because physically close alleles are
inherited together and only rarely separated by the action of
recombination. Most of the genome-wide association stud-
ies, which are critical for investigating the genetic basis of
human traits, including diseases, depend on the LD archi-
tecture of the genome in their experimental design (Visscher
et al. 2017). Similarly, the majority of the modern population
genetics analysis uses different ramifications of LD across
the genome to reconstruct evolutionary history and identify
potentially adaptive sections of the genome (Slatkin 2008).
However, only 73% of CNVs with > 1% frequency are in LD
with nearby single-nucleotide polymorphisms even when
relatively modest LD threshold is used (r*>0.6) (Sudmant
et al. 2015b). Thus, the contribution of the majority of the
CNVs to the genetic basis of human traits remains unex-
plored in genome-wide association studies (Wellcome Trust
Case Control Consortium et al. 2010). Two of the best exam-
ples for this phenomenon are the deletion polymorphisms
of APOBEC3B and UGT2B17 genes, both of which have
been shown to have important evolutionary and biomedical
consequences, but their impact was missed in genome-wide
single-nucleotide variant-based interrogations.

The APOBEC3B deletion: The APOBEC3 (Apolipopro-
tein B mRNA editing enzyme, catalytic polypeptide-like)
gene family plays a key role in innate cellular immunity
against retroviral infection (Cullen 2006). Moreover, it
was argued to be a major suppressor of active retrotrans-
position (Kinomoto et al. 2007). One of the best-studied
members of this family is APOBEC3B, being linked to

HIV resistance, regulation of retrotransposons in soma, and
other innate immunity functions (Cullen 2006). Despite its
important functions, APOBEC3B is deleted in millions of
human genomes, with allele frequencies of 0.9% in Afri-
can, 6% in European, 36.9% in East Asian, and 57.7% in
American populations (Kidd et al. 2007; Redon et al. 2006;
Sharp et al. 2005). This common deletion of APOBEC3B
gene spans 29.5 kb from the fifth exon of APOBEC3A to
the eighth exon of APOBEC3B (Kidd et al. 2007; Redon
et al. 2006; Sharp et al. 2005). This deletion essentially
eliminates APOBEC3B, while replacing the 3" UTR of
APOBEC3A with the 5' UTR of APOBEC3B. It was shown
that APOBEC3B deletion is associated with susceptibility to
HBYV infection (An et al. 2009; Zhang et al. 2013) (but see
Itaya et al. 2010; Imahashi et al. 2014), malaria (Jha et al.
2012), and hepatocellular carcinoma (Zhang et al. 2013).
The exact mechanisms underlying these associations are not
known.

The high allele frequency with population structure and
important immune functions presents APOBEC3 deletion as
a potential target for natural selection to act on. Indeed, hap-
lotype-level analyses of the single-nucleotide variants flank-
ing the deletion polymorphism suggested weak signals of
selection, particularly in the Yoruba population (Kidd et al.
2007). However, this observation is not consistent with allele
frequency distribution and the expectation would be that the
deletion is selected in Eurasian populations where the allele
frequency is much higher. One plausible reason as to why
the haplotype-based analyses failed to detect any selection
in Eurasian populations is that the single-nucleotide variants
around the deletion did not have strong LD (¥*>0.8) with
the deletion variant. In other words, the lack of signal of
selection on this exonic deletion was not necessarily because
there was no selection, but the tests of selection had con-
siderably diminished power because of the lack of LD. The
lack of LD between the deletion and nearby variants cannot
be explained by recurrence given the exact breakpoints of
this deletion shared by many individuals point that the dele-
tion variants in humans are identical by descent (Kidd et al.
2007). Instead, a more likely scenario to explain the lack of
LD in this locus is gene conversion events (Fig. 2b), which
are common in gene families with similar sequence content
where homologous sequences can be swapped between chro-
mosomes without changing the copy number. To this day,
the adaptive role of APOBEC3B deletion, if any, and the
details of its evolutionary history remain mostly unknown.

UGT2B17 Deletion
UDP-glucuronosyltransferase (UGT) is a group of enzymes
that contribute significantly to the metabolism of several

xenobiotic molecules and are as such studied within the
context of pharmacogenomics (Oda et al. 2015; Burchell
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etal. 1997). The entire UGT2B17 gene, which codes one of
these UGT enzymes, is commonly deleted in human popula-
tions. This deletion has been associated with prostate cancer
and endometrial cancer (Karypidis et al. 2008; Hirata et al.
2010). Thus, similar to the APOBEC3B deletion described
above, an immediate question is why this common deletion
polymorphism was not eliminated from the population by
the action of negative selection. In other words, would there
be a fitness benefit to this deletion to maintain its presence
in the human population? Suggesting non-neutral evolution,
UGT2B17 deletion shows unusual population differentiation:
Non-deleted allele is extremely common in Africa, Europe,
and the Middle East (~75% allele frequency), but relatively
rare in Asia and Oceania (~20% allele frequency) (Xue et al.
2008). Moreover, this gene showed an expression difference
between different human populations (Spielman et al. 2007).

Similar to APOBEC3B deletion, the LD architecture of
the UGT2B17 is complicated. Specifically, the UGT2BI17
gene is flanked by two segmental duplications and it is
assumed that nonallelic homologous recombination formed
this gene deletion (Xue et al. 2008). Moreover, none of the
downstream single-nucleotide variants are found to be in LD
with the deletion polymorphism, which indicates past gene
conversion events similar to the observations in APOBEC3
locus (Xue et al. 2008). However, Xue et al. (2008) found
strong LD between the deletion and some upstream sin-
gle-nucleotide variants only after the close, locus-specific
inspection. By studying the upstream haplotypic variation
linked to the deletion variant, Xue et al. (2008) documented
signatures of balancing and positive selection in Europe and
East Asia, respectively. Again, the exact evolutionary his-
tory and the underlying adaptive reasons for these signatures
of non-neutral evolution observed for UGT2B17 deletion
remain unknown. However, we argue that UGT2B17 dele-
tion provides a strong case for locus-specific analysis of
CNVs where it is possible to resolve the haplotype architec-
ture of the locus and, by doing so, to better understand the
evolutionary history of the variant. Intriguingly, later studies
have found that UGT2B17 is also polymorphically deleted in
chimpanzees—raising the possibility that complex adaptive
pressures have been shaping this locus in different species
(Saitou et al. 2018a). This brings us to the next challenge in
studying CNVs recurrence.

Recurrent Formations of Structural Variations: HP
and GSTM1

Unlike single-nucleotide variants, CNVs tend to recur in
the same loci because of mechanistic predispositions. This
is primarily due to the fact that certain repeat content,
such as segmental duplications, predispose certain loci for
rapid CNV formation (van Ommen 2005). Such loci were
implicated in the formation of rare, congenital CNVs with
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dire medical consequences. However, common CNVs can
also show recurrence either within or between species,
both breaking the expected LD patterns in the locus and
also posing interesting questions of evolutionary impact of
recurrence.

Glutathione Transferases

GSTMI1 belongs to a superfamily of metabolic enzymes,
called glutathione transferases (Hayes et al. 2005). This par-
ticular gene metabolizes cancer chemotherapeutic agents,
carcinogens, and by-products of oxidative stress (Hayes et al.
2005). It has been known that the GSTM 1 deletion allele
is commonly observed in human populations (~50%) (Xu
et al. 1998) and the deletion allele is associated with blad-
der cancer (Rothman et al. 2010). As one of the most com-
mon polymorphic deletions in the human lineage and also
because of its reported functional relevance, this gene dele-
tion is also a potential target for natural selection. However,
careful dissection of the haplotypic variation in this locus
revealed an extremely complicated evolutionary picture, rid-
dled with gene conversions and recurrent mutations (Saitou
et al. 2018b; Khrunin et al. 2016). As a result, no strong LD
could be observed between the deletion and the nearby sin-
gle-nucleotide variants and traditional population genetics
approaches based on haplotypic variation are underpowered
to detect any selective pressure in this locus with any level
of definitiveness.

To complicate the picture further, Saitou et al. (2018a)
found that chimpanzees have the same gene deleted poly-
morphically with very similar breakpoints. Genome-wide
analysis revealed that GSTM1 is not alone, and another
metabolism gene UGT2B17, which we described above,
is also polymorphically deleted in chimpanzees. This is
a rather remarkable observation. To put it in context, in a
breakthrough paper, Leffler et al. showed that a number of
shared single-nucleotide polymorphisms between chimpan-
zee and human populations in the HLA locus are identical by
descent, and thus they invoked inter-species balancing selec-
tion to explain this observation. This is one of the very few
best-established cases for such selection in the human—chim-
panzee lineage (Leffler et al. 2013). In a similar manner, the
crucial question is whether UGT2B17 and GSTM deletions
are polymorphic in these two species because they are iden-
tical by descent—a very strong case for inter-specific bal-
ancing selection, or because they were recurrently evolved
in these two species. After several experimental and bioin-
formatic analyses, Saitou et al. (2018b) provided evidence
that the GSTM 1 deletion evolved recurrently in chimpanzee
and human lineages. However, the evolutionary history of
UGT2B17 with regard to allele sharing between humans and
chimpanzees remains unexplored.
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Globins

Free hemoglobins in human plasma can be toxic. Haptoglob-
ins bind to these free hemoglobins and perturb their toxic-
ity (Schaer et al. 2014). It has been reported that deletion
polymorphisms overlap with parts of the haptoglobin gene
and alter the structure of the coded proteins (Langlois and
Delanghe 1996; Smithies and Walker 1955; Wejman et al.
1984). Moreover, locus-specific analysis of these deletions
linked them with diabetes (MacKellar and Vigerust 2016).
However, haptoglobin locus is repeat-rich and similar to the
APOBEC3, GSTM1, and UGT2B17 loci described above in
that it presents complex LD patterns. Not only that the dele-
tion variants in this locus do not show strong LD with the
nearby single-nucleotide variants, but it was not clear until
recently whether these variants are recurrent or the lack of
LD is due to gene conversion events.

Unlike SNVs, CNVs are often formed recurrently due
to genomic architecture. Recurrently formed CNVs can be
verified when different breakpoints overlapping CNVs are
identified (Fig. 2). However, to identify the breakpoint is not
straightforward in most cases. For example, in the GSTM ]
case above, the GSTM1 deletion is formed by the recombi-
nation of two highly similar flanking sequences (Xu et al.
1998); thus, the two highly similar sequences in the original
allele and the fused sequence of the two sequences in the
deletion allele are similar to each other. As such, it was not
possible to identify where the exact breakpoints were located
at the nucleotide level (Saitou et al. 2018a). Haptoglobin
locus presents a similar repeat richness. As such, Boettger
et al. (2016) devised a more indirect strategy. To resolve the
complex haplotype architecture in this locus in humans, they
analyzed the 20 kb flanking sequences of this locus from
264 human samples. They deduced that gene conversion or
similar recombination-based mechanism would break the
LD, not only between the deletion and the nearby single-
nucleotide variants but also between the single-nucleotide
variants on both sides of the deletion. In contrast, in the case
of recurrence, the LD patterns between the single-nucleotide
variants on each side of the deletion remain intact. Indeed,
they observed highly preserved linkage disequilibrium
between single-nucleotide variants across the deletion, even
though the deletion(s) itself is not in strong LD with these
variants. They concluded the recurrence is the major force
in breaking the LD in this locus. Not only that this strategy
helped resolve an evolutionary puzzle, but it allowed the
authors to identify the haplotypes that harbor specific recur-
rent deletion variants. They then conducted a meta-analysis
of genome-wide association studies with the newly resolved
haplotypes and found that haplotypes harboring the dele-
tions are associated with lower blood cholesterol levels as
compared to controls (Boettger et al. 2016). This analysis is
representative of both the difficulties in studying CNVs but

also highlights that many CNVs may be underappreciated
when it comes to their evolutionary and biomedical impact.

Multiple Structural Variants at the Same Locus:
DMBT1

There are hot spots and deserts of CNVs across the genome
shaped by mechanistic forces along with adaptive constraints
that shape their distribution (Perry et al. 2006; Fu et al.
2010; Lin and Gokcumen 2019) Interestingly, some genic
hot spots of CNV formation were linked to human pheno-
types. For example, immune-related loci such as HLA, glo-
bin, defensin gene families are CN'V hot spots and balancing
and diversifying selection were implied in the maintenance
of the unusually high number of common CNVs in these loci
(Lin and Gokcumen 2019). The functional and evolutionary
impact of such recurrent CNV loci (Fig. 2¢) can be difficult
to resolve because the recurrence, combined with overall
excess single-nucleotide variation in these loci, can hinder
both direct genotyping and indirect resolution of haplotypes
harboring the individual CNVs. However, as in the case of
Boettger et al (2016), recent studies have scrutinized some
of these loci and identify complex and fascinating evolution-
ary stories.

DMBT1

The variation affecting the DMBTI gene exemplifies the
complexity of studying loci where multiple multiallelic
CNVs frequently and recurrently form. DMBTI codes for
a salivary agglutinin gene, which belongs to a superfam-
ily of glycoproteins. This family is defined by ~ 100 amino
acid long scavenger receptor cysteine-rich (SRCR) domains
(Mollenhauer et al. 1997). These SRCR domains are repeti-
tive, and dozens of CNVs were reported affecting these
domains in the DMBTI. These CNVs were scrutinized
further using a combination of bioinformatics, quantitative
PCR, long-range traditional PCR, and fiber-FISH (Polley
et al. 2015). This study was able to characterize two of the
most common CNVs, one of which involves diploid copy
number variation ranging from 0 to 5 of a segment encom-
passing four SRCR repeats spanning SRCR3 to SRCR6.
The second involves diploid copy number variation ranging
from O to 11 copies of a segment encompassing three SRCR
repeats spanning SRCR9 to SRCR11 (Polley et al. 2015).
This study further showed that the primary source of the fre-
quent structural variation within this locus is unusually high
mutation rate (~5% of the gametes were estimated to have
de novo copy number gain or loss involving the DMBTI
SRCR domains).

DMBT] binds bacteria and viruses and acts as a pattern
recognition receptor in innate immunity, and these func-
tions are thought to be facilitated by the SRCR domain
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(Ligtenberg et al. 2010; Mollenhauer et al. 2000). One
question is then whether the CN'Vs that change the number
of the SRCR domains are adaptively maintained in human
populations. One clue comes from the same study where
Polley et al. (2015) were able to show that human popula-
tions that are historically agricultural have more copies of
SRCR domains as compared to those that are not. Another
clue comes from the observation that particular SRCR
domains bind to oral bacterium Streptococcus mutans and
hydroxyapatite (Ambatipudi et al. 2010). Thus, it is plausi-
ble that the higher copy number of SRCR domains in the
DMBTI gene may confer some advantage in agricultural
diets protecting against particular oral pathogens. It is also
possible that the actual number of these domains are not that
crucial for fitness and the observed variation is just the effect
of genetic drift. These questions are hard to answer, espe-
cially given the pleiotropic functions of DMBTI (e.g., it is
also involved in epithelial differentiation (Mollenhauer et al.
2000). Regardless, CNVs of the SRCR domains in DMBT1
likely contribute to human phenotypic variation and exem-
plify the diverse ways in which multi-allelic CNVs evolve,
highlighting the multiple challenges in fully resolving the
evolutionary history of such loci.

Discovery Bias: AMY and MUC7

The capabilities of different CNV detection methods vary
depending on the type of CNV (Pirooznia et al. 2015). There
is a fine methodological balance between sensitivity (i.e.,
low false-negative rates) and accuracy (low false-positive
rates). Thus, it is not uncommon for even well-designed
comprehensive studies to miss otherwise well-described
and common copy number variations. Here, we give two
examples of evolutionarily important CNVs affecting amyl-
ase (AMY) and mucin 7 (MUC7) genes.

Mucins

Mucins are a functional category of proteins that are abun-
dantly observed in epithelial tissues and confer the mucusy
properties of several bodily fluids, interact with microbes,
and are even involved in signaling (Fabian et al. 2012).
Mucins are defined by their O-glycosylation potential deter-
mined by tandem-repeated proline-, threonine-, and serine-
rich domains (PTS domains). These domains can often be
polymorphic (Table S1), and this variation is associated with
differences in susceptibility to certain pathogens and other
diseases (Kumar et al. 2017; Behera et al. 2015). One of
the best-studied polymorphic mucin repeats is the salivary
MUC?7 with regard to its evolutionary history (Kirkbride
et al. 2001). It has been shown that MUC?7 has evolved in
the ancestor of placental mammals and since then retains its
69-base-pair-long PTS domain repeats in different numbers
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across lineages (Xu et al. 2016). Indeed, the amino acid
content of these PTS domains has evolved under nega-
tive selection, while their copy number showed signatures
of lineage-specific adaptive pressures. One explanation is
that the number of these repeats fine-tunes the glycosyla-
tion potential of the protein, perhaps to adjust to specific
pathogenic pressures.

In humans, MUC7 PTS domains are repeated five and six
(Kirkbride et al. 2001). It was shown that the minor five-
repeat allele has evolved at least twice in the human lineage
(Xu et al. 2017). Moreover, the same study showed that one
of the haplotypes carrying the five-repeat allele splits more
than 2 million years before presenting from the other MUC7
haplotypes. Based on the empirical and simulation-based
investigation, the authors argued that this haplotype was
introgressed into ancestors of modern humans ago from an
archaic “ghost” hominin population in sub-Saharan Africa.
In sum, MUC?, in particular, and mucins, in general, provide
a fascinating glimpse into a rapid evolution of subexonic
repeats and their functional consequences.

Despite the potential relevance to biological processes,
the PTS repeat copy number variation of mucins is notori-
ously difficult to discover and genotype within conventional
methods, such as array comparative genomic hybridization
or short-read sequencing-based approaches. Specifically, it
is difficult to design unique probes to target individual repeat
sequences for array-based approaches and the mapping of
the short sequence reads to the tandem repeats is often not
specific enough to discover variations with enough statisti-
cal power. As such, it is not surprising that 1000 Genomes
did not report the common variation involving MUC7
PTS-repeat copy number, even though this project docu-
mented common CNVs involving three other mucin genes
(Table S1).

As well as MUC7, as we noted above, MUCI has a
frameshift variation in its exonic repeat structure due to one-
nucleotide insertion (Kirby et al. 2013). The MUC1 variation
they found by molecular cloning and capillary sequencing
is likely to be causal to kidney disease, and the variation has
been difficult to resolve by massively parallel sequencing
(next-generation sequencing) (Kirby et al. 2013). To resolve
the repeat architecture of this loci, several approaches have
been presented, such as Pac-bio sequencing and illumina
sequencing paired with dedicated bioinformatic analyses
(Zivna et al. 2018; Wenzel et al. 2018). To highlight the
underappreciated importance of mucins at a more genome-
wide manner, it is also important to touch on the results
from a recent study of Pan-African genomes (Sherman et al.
2018). This study identified close to 50 genic insertions (i.e.,
genic sequences that are not present in the current version
of the human reference genome). These sequences are likely
variably present in extant human genomes, and three of these
involve mucin genes with unknown functional implications.
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Thus, mucin genes and their PTS domains exemplify yet
another subtype of copy number variations that are likely
evolutionarily and biomedically relevant but underappre-
ciated due to technical challenges. In addition to mucins,
thousands of other mammalian genes harbor such subexonic
repeats (Schaper et al. 2014). Thus, the biological relevance
of the polymorphisms in the copy number of these repeats
remains a fascinating area of future study.

Amylase

Dissecting the evolutionary history of the amylase copy
number variation has been a major focus area for biology
and anthropology. Amylase digests dietary starch and gly-
cogen. Amylase is present in multiple copies in humans,
and some of these copies are expressed in the pancreas and
others are expressed in salivary glands (Duane et al. 1972;
Robyt and French 1967; Hagenbiichle et al. 1980; Merritt
et al. 1973). The copy number of the amylase gene varies
extensively between different human populations (Perry
etal. 2007; Yang et al. 2015; Bank et al. 1992; Santos et al.
2012; Mandel et al. 2010) and between different mammalian
species (Boehlke et al. 2015; Paudel et al. 2013; Pezer et al.
2015; Pajic et al. 2019). This copy number variation contrib-
utes to the dosage of its expression (Atkinson et al. 2018)
in both pancreas and in salivary gland (Pajic et al. 2019).

It has been shown that duplication from the ancestral pan-
creatic amylase (f-amylase) in the ancestor of great apes
leads to an almost identical copy of this gene that is spe-
cifically expressed in the salivary glands, independent from
mouse (Meisler and Ting 1993). Furthermore, this salivary
amylase (a-amylase) further increased in copy number in the
human lineage, increasing the dosage of salivary expression
of this enzyme (Perry et al. 2007). This recent increase was
considered a likely adaptation to higher-starch consumption
among modern human ancestors. In fact, even very recent
change in the human diet with the advent of agriculture was
linked to a further increase in copy number of a-amylase.
Given that the majority of starch digestion happens in the
gastrointestinal tract, many studies investigate the functional
impact of a-amylase on human phenotypes, linking the copy
number of this gene to starch perception, microbiome com-
position from the oral cavity all the way to anus, immunity,
and metabolic disorders (Santos et al. 2012; Poole et al.
2019; Pruimboom et al. 2014; Falchi et al. 2014). There are
also reports that AMY copy number variations are associated
with body mass index (Viljakainen et al. 2015) and obe-
sity (Marcovecchio et al. 2016; Falchi et al. 2014). In sum,
AMY locus is one of the most fascinating loci in the human
genome when it comes to recent human evolution and its
consequences for human health (Varki et al. 2008). However,
the variation in this locus is invisible to most genome-wide
association studies and even to comprehensive catalogs of

human genetic variation such as 1000 Genomes variation
database.

The amylase locus is shaped by segmental duplications
and near-identical lineage-specific retrotransposons. Thus,
the sequence homology complicates mapping of short
sequencing reads to this locus to the extent that even single-
nucleotide variant discovery in this locus proves difficult.
On top of this complication, copy number variation in this
locus is extensive. It has been reported that f-amylase can
range in copy number from 2 to 8 and the a-amylase can
range in copy number from 2 to 17 (Usher et al. 2015).
Further complicating the investigation of this locus is the
likely recurrence of gene copy number mutations and gene
conversion events, both of which disrupt the expected LD
patterns (Popadi¢ and Anderson 1995; Gumucio et al. 1988;
Pajic et al. 2019). Indeed, careful dissection of the haplotype
architecture of this locus using digital PCR estimation of the
copy number and imputation of the CNVs with the nearby
smaller variants reveals a complex structure in this locus
(Usher et al. 2015). In sum, although amylase locus is a
poster child that highlights the biomedical and evolutionary
relevance of CNVs, it also presents some of the most diffi-
cult methodological challenges involving CNVs. Now, with
the advent of long-read sequence technologies, it is likely
that a better and more direct picture of the variation will
emerge. This will allow investigating the extent and timing
of the selection on the copy number variation in this locus as
well as statistically robust associations with different traits.

A Note on Function, Evolutionary Relevance,
and Disease Impact

There are several reviews on the functional and biomedical
impact of CNVs (Girirajan et al. 2011; Schrider and Hahn
2010; Stankiewicz and Lupski 2010; Iskow et al. 2012).
They often focus on large, rare, and common gene deletions
and duplications. Common CNV's among healthy individuals
are ontologically enriched for perception, skin barrier func-
tion, immunity, and metabolism (Table S1). In this section,
we briefly discuss the roles of CNVs in shaping variation in
these functional categories.

Perception

Chemosensory receptor genes and their pseudogenes have
an enormous variation in their copy numbers among ani-
mal species. This variation is explained by a combination of
evolutionary arguments, including genetic drift, adaptation
to different environments, and variation in diets (Nei et al.
2008; Hayden et al. 2014). For example, primates have a
significantly higher copy number variation in affecting
their olfactory receptor genes and harbor significantly more
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pseudogenes as compared to other mammals (Niimura et al.
2018; Liman 2006; Go and Niimura 2008; Kawamura and
Melin 2017). It is also reported that primates have under-
gone acceleration of gene loss of olfactory receptors dur-
ing their evolution (Niimura et al. 2018; Liman 2006; Go
and Niimura 2008; Kawamura and Melin 2017) including
specific gene losses in the human lineage (Go and Niimura
2008). This general reduction and variability in functional
olfactory repertoire due to copy number variation within and
between species may indicate a general lack of selection act-
ing on these genes. In fact, one evolutionary explanation was
that the acquisition of full trichromatic vision in primates led
to a reduction in the strength of selection on olfactory recep-
tor genes (Gilad et al. 2004). Other researchers emphasized
shifts in diets in primates as a more important driver of the
olfactory receptor variation (Gilad et al. 2004; Matsui et al.
2010).

Given the copy number variation in olfactory receptor
genes within and across primate species, it is not surpris-
ing that there is also an enormous variation in copy number
of olfactory receptors between human individuals (Young
et al. 2008). Even though this variation likely has very lit-
tle fitness effect in present-day human populations (but see
Hoover et al. 2015), CNVs overlapping olfactory receptor
genes undoubtedly contribute to phenotypic variation. It is
known that some of the CN Vs that affect olfactory receptors
are associated with odor perception sensitivity (Keller et al.
2007; Turner 2014; Reed and Knaapila 2010). For example,
there are 16 common CNVs in the 1KGP phase 3 dataset that
overlap with olfactory receptors (Table S1). Moreover, the
recently published pan-genome from 910 African individu-
als mentioned above also highlights three new, non-reference
insertions affecting olfactory receptor genes (Sherman et al.
2018). Putting these together and given that most of the
ligands of olfactory receptors are yet to be determined, it is
perceivable a considerable portion of inherited variation in
smell perception is due to CNVs.

Immune System

Dozens of immune genes including major histocompatibility
complex genes, defensins, KIRs, and immunoglobulins are
copy number variable in humans (Table S1). These varia-
tions have been discussed within the context of response to
pathogens and autoimmune disorders (Hollox and Armour
2008; Jiang et al. 2012; Bournazos et al. 2009; Wellcome
Trust Case Control Consortium et al. 2010). One well-
resolved evolutionary example of copy number variation
affecting the immune system in an adaptive manner is the
case of the chemokine receptor CCR-5. This gene acts as a
co-receptor for HIV-1 (Samson et al. 1996a). A 32-base-
pair deletion within the coding region (CCR5A432), which
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is commonly observed in Northern European populations,
generates a non-functional receptor and thus prevents infec-
tion by some HIV-1 strains (Samson et al. 1996b). Since
the geographic distribution of this variant is unusual and it
affects the disease susceptibility, this deletion polymorphism
has been extensively studied by evolutionary anthropologists
as well as medical scientists (de Silva and Stumpf 2004;
Novembre et al. 2005; Galvani and Novembre 2005).

Although its frequency and distribution suggest natu-
ral selection on the CCR5A32 allele in Northern European
populations, there was no clear evidence from linkage-
disequilibrium-based neutrality tests (Sabeti et al. 2005).
Oleksyk et al. (2010) argued that multiple variants in this
locus that was reported to be evolving under balancing selec-
tion (Bamshad et al. 2002) may have disrupted the linkage
disequilibrium in this region. Recently, using the 409,693
British cohort dataset, Wei and Nielsen (2019) estimated
a 21% increase in the all-cause mortality rate in individu-
als with the homozygous A32 alleles, suggesting a strong
fitness cost. Thus, it follows that there has to be a fitness
advantage, likely protection against certain retroviruses, that
balances this fitness cost. To generalize this observation, it
is our opinion that CNVs that affect immune system gene
families likely evolve rapidly as a response to fast-evolv-
ing pathogenic pressures as was documented for single-
nucleotide variants (Daugherty and Malik 2012). It is not
surprising that immune system-related CNVs were shown
in a case-by-case basis to confer to biomedically relevant
phenotypes involving resistance to infectious diseases (Hol-
lox and Armour 2008) and autoimmune disorders (Schaschl
et al. 2009).

Skin-Related Genes

Hair and skin protect organisms from physical stimuli, tem-
perature change, and ultraviolet radiation and thus have
adaptively evolved to different environments (Jablonski
2008). For example, human skin color varies around the
world and is associated with the adaptation to ultraviolet
(Jablonski and Chaplin 2000; Relethford 2002; Quillen et al.
2019). In addition to skin color, hair keratin structure shows
different patterns between human populations and between
primate species (Hrdy and Baden 1973). There are several
gene families involved in skin structure and copy number
variable, including filaggrins (Eaaswarkhanth et al. 2016),
keratins (Table S1), and late cornified envelope genes (Pajic
et al. 2016).

Keratins are filament proteins of epithelia, skin, hair fol-
licles, and nails with a remarkable diversity of their chemi-
cal nature (Bragulla and Homberger 2009). Heteropolymeric
filaments are formed by pairing of type 1 keratin proteins
(the gene cluster is located on human chromosome 17) and
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type 2 keratin proteins (the gene cluster is located on human
chromosome 12) (Moll et al. 2008). In addition to four ker-
atin-associated proteins, KRT34 has a duplication polymor-
phism (Table S1). The KRT34 duplication polymorphism
has a population differentiation (3% in Eurasian populations
and 13% in African populations) and is linked with flank-
ing variants (R?=0.96), which makes KRT34 duplication a
promising candidate for further evolutionary studies (Saitou
and Gokcumen 2019).

The late cornified envelope (LCE) gene cluster is located
in the epidermal differentiation complex on human chro-
mosome 1. LCE genes respond to environmental stimuli to
skin such as calcium levels and ultraviolet irradiation (Jack-
son et al. 2005). The deletion polymorphism of LCE3B and
LCE3C is commonly observed (56%) in human populations
and reported to affect a psoriasis susceptibility (de Cid et al.
2009). These deletions are also observed in archaic homi-
nins (Lin et al. 2015) and showed the signature of balanc-
ing selection and a strong LD with the neighboring vari-
ants (Pajic et al. 2016). LCEID and IE are also commonly
(20%) deleted (Table S1), and it is an open question why the
LCEID and IE show the polymorphism and whether they
have functional relevance. Considering the diversity of skin
phenotypes between different populations (Jablonski 2008),
at least some CNVs relevant to skin development and func-
tion may have been maintained as a result of adaptation to
local environments and pathogens. This argument is not dis-
similar to the case of CNVs affecting immune system genes.
It is also important to note that skin is one of the most diver-
gent organs in humans as compared to nonhuman primates
(Arakawa et al. 2019). As such, it is plausible that some of
the CNVs related to skin function may have been maintained
in the human population as they were under reduced purify-
ing selection, similar to the case of olfactory receptor CNVs,
as a legacy of the rapid evolutionary transition of human
skin from the ape common ancestor.

Metabolic Genes

Biotransformation of xenobiotics (foreign substances to the
body) to molecules that are safe and readily usable within an
organismal system is a crucial metabolic process relevant to
both fitness and health. As such, the variation in the function
of metabolic enzymes is an interesting area of evolutionary
study. For example, it was recently shown that a particular
haplotype of the arsenic [+3 oxidation state] methyltrans-
ferase (AS3MT) gene shows unusually high allele frequency
among the Argentinean Andes population as compared to
otherwise closely related Peruvian population (Schlebusch
et al. 2015). Most of such enzymes that are involved in

metabolizing often toxic xenobiotics are clustered into four
gene families, namely cytochromes P450s, UDP-glucurono-
syltransferases (UGTs), sulfotransferases (SULTSs), and glu-
tathione S-transferases (GSTs) (Jancova et al. 2010). As you
may have noticed, we have already discussed CNVs affect-
ing two genes belonging to these gene families, UGT2B17
and GSTM . Indeed, several other CNVs are reported affect-
ing other genes in these families as well (Table S1). Thus,
one plausible scenario is that some of these CNVs increase
in allele frequency in certain populations due to local adap-
tation. Of course, it should be noted that these gene families,
which harbor several segmental duplications, have high rates
of CNV formation rates, which may also explain the high
number of copy number variable genes. Regardless, these
CNVs contribute to phenotypic variation in human popula-
tions and are highly relevant to the field of pharmacogenom-
ics (Li and Bluth 2011; Mazaleuskaya et al. 2015).

Conclusion

We argue in this paper that CN'Vs have a considerable but
largely unexplored impact on human disease and adaptive
evolution. We then laid out the methodological challenges
in studying the function of CNVs. We specifically under-
lined the multiple formation mechanisms of CNVs, which
can lead to CNVs with different functional properties. The
various formation mechanisms of CNVs can also lead to
differences in LD structure and complicate discovery and
genotyping. Then, we summarized several examples, where
locus-specific, careful dissection of the haplotypic varia-
tion of CNVs led to resolution of evolutionary history and
functional relevance of these variants, explaining different
phenotypic variations among humans. We then summarized
some functional categories, including immunity, perception,
skin, and metabolism, where CNVs are particularly relevant
to understand phenotypic variation. We hope that our review
serves as a primer for future studies, which will be increas-
ingly more powerful with the advent of long-read sequenc-
ing technologies.

Methods

We used Ensembl human exon information (https://useas
t.ensembl.org/index.html), bedtools v2.27.1 (Quinlan and
Hall 2010) and 1KGP phase 3 dataset (Sudmant et al. 2015b)
to find exonic structural variants (Table S1).
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BOX: The Methods to Detect Copy Number
Variants Using Short-Read Sequences

There are several approaches to detect CNVs, which were
reviewed comprehensively elsewhere (Alkan et al. 2011).
Briefly, the commonly used approaches to detect copy
number variants based on short-read sequences depend
on paired-end mapping and read depth (Zhao et al. 2013;
Mills et al. 2011). Paired-end mapping approach identifies
discordantly mapped paired-read sequences where the dis-
tance between these two sequences are different from the
expected. This method is quite adept at discovering deletion
variations and can detect some of the polymorphic tandem
duplications (Sudmant et al. 2015b). Paired-end mapping-
based approaches can also be modified to detect mobile
element insertions (Lee et al. 2012). This method is highly
prone to false negatives as the short reads often fail to map
to repetitive sequences (Narzisi and Schatz 2015). This
problem is further aggravated by the complexity of a con-
siderable portion of the loci harboring copy number vari-
ants, i.e., they are involved in highly repetitive sequences
(Sudmant et al. 2015b). The more sensitive approaches
depend on read depth, where deviations in the depth of
coverage in a genomic region as compared to genome-
wide expectations can signal copy number gain and loss
of that particular sequence (Alkan et al. 2011). However,
the power of read depth-based approaches depends on read
depth and the size of the variant, and its ability to detect a
CNVs significantly drops for smaller sizes. Large consortia
have used combination of different approaches to optimize
the sensitivity and accuracy of CNV discovery. Even such
sophisticated approaches fail to comprehensively produce
maps of CNVs across the genome as evidenced by the dra-
matic increase in the number of CN'Vs that can be detected
by long-read technologies (Huddleston et al. 2017; Chais-
son et al. 2019). Overall, it is clear that the next generation
of studies on CNVs will be using long-read sequencing
platforms (Eichler 2019) and we argue that such direct dis-
covery of CNVs will significantly improve our understand-
ing of evolutionary and biomedical relevance of CNVs in
the very near future.
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