Matrix Profile XIV: Scaling Time Series Motif Discovery with
GPUs to Break a Quintillion Pairwise Comparisons a Day and
Beyond

Zachary Zimmerman, Kaveh Kamgar, Nader Shakibay Senobari,
Brian Crites, Gareth Funning, Philip Brisk and Eamonn Keogh

University of California, Riverside
{zzimm001, kkamg001, nshak006, bcrit001, gareth}@ucr.edu {philip, eamonn}@cs.ucr.edu

ABSTRACT

The discovery of conserved (repeated) patterns in time series is
arguably the most important primitive in time series data mining.
Called time series motifs, these primitive patterns are useful in
their own right, and are also used as inputs into classification,
clustering, segmentation, visualization, and anomaly detection
algorithms. Recently the Matrix Profile has emerged as a
promising representation to allow the efficient exact computation
of the top-k motifs in a time series. State-of-the-art algorithms for
computing the Matrix Profile are fast enough for many tasks.
However, in a handful of domains, including astronomy and
seismology, there is an insatiable appetite to consider ever larger
datasets. In this work we show that with several novel insights we
can push the motif discovery envelope using a novel scalable
framework in conjunction with a deployment to commercial GPU
clusters in the cloud. We demonstrate the utility of our ideas with
detailed case studies in seismology, demonstrating that the
efficiency of our algorithm allows us to exhaustively consider
datasets that are currently only approximately searchable,
allowing us to find subtle precursor earthquakes that had
previously escaped attention, and other novel seismic regularities.

CCS CONCEPTS

- Computer systems organization — Cloud computing;
« Theory of computation — Data structures and algorithms for
data management;

KEYWORDS

Time Series, Matrix Profile, SCAMP, Self-Join, AB-Join, Cloud
Computing, Spot Instance, GPU, Tiling, Fault-Tolerance,
Numerical Optimization, Seismology, Entomology.

1 Introduction

Time series motifs are approximately repeated subsequences
of a longer time series. As Figure 1 (and Figure 4) suggest, motifs
often reveal unexpected regularities in large datasets. In the last
decade, time series motif discovery has become an increasingly
important primitive for time series analytics, and is used in
domains as diverse as seismology [4], astronomy, geology,
ethology [44], neuroscience [22], medicine [13], consumer
behavior [41], music [38] and sports analytics. In recent years,
algorithmic advances (coupled with hardware improvements)
have greatly expanded the purview of motif discovery. It has
recently been shown that motif discovery is trivial given a data
structure called the Matrix Profile (MP), and that the current state-
of-the-art MP batch construction algorithm STOMP, can discover
motifs efficiently enough for many users [44].

A survey of the literature suggests that many medical,
scientific and industrial laboratory analysts rarely deal will
datasets with more than a few million data points [24]. For such
datasets, STAMP which is an anytime algorithm, can produce a
high-quality approximate MP in minutes, which approaches
“interactive” time for most purposes [43]. “Minutes” may not seem
impressively fast, until one recalls that many datasets in question
take days or weeks to collect. For example, in Figure 1 the
approximate motif discovery for this full-day chicken behavior
dataset takes well under an hour. The biologist using this tool
reports that “this is fast enough for what I need.” [24].

Nevertheless, we argue that there is an insatiable need to scale.
Domains such as seismology and astronomy have a near-
inexhaustible appetite for ever-larger datasets. For example, a
recent paper reports that performing (approximate) motif search
on larger datasets “directly enabled the discovery of 597 new
earthquakes near the Diablo Canyon nuclear power plant in
California” [22]. Undoubtedly, exact search of the same dataset (or
larger) would elucidate further unexpected regularities.

SoCC’19, November, 2019, Santa Cruz, California USA

10

X-axis acceleration
TR} ‘ \'
0 PR ”l ‘ T"‘
night day night

10
0 Twenty-four hours 8,000,000
0

TN

0 One and a half seconds 15

One minute 6000
Figure 1: top) Twenty-four hours of time series from an
accelerometer worn by a chicken. bottom-left) A zoom-in
shows that the data is apparently void of structure;
however, the top-1 motif (bottom.right) suggests that some
behaviors are conserved. Inspection of video recorded in

parallel suggests this a dustbathing behavior [22].

To meet the needs of domain experts, this paper presents a
cloud-scale framework called SCAMP (SCAlable Matrix Profile)
that expands the purview of exact motif discovery. We summarize
our major contributions below:

1. We provide a general distributed framework for the ultra-
scalable computation of the MP [43]. Both the performance
and numerical stability are greatly improved via our method
when dealing with long time series.

2. Our framework allows us to work with time series data which
do not fit wholly into GPU memory, allowing MPs to be
computed which are larger than previously considered.

3. We introduce novel numerical methods to increase
performance and improve stability of the MP computation;
this allows the use of single-precision floating-point
calculations for some datasets, which allows our methods to
be applied to larger datasets at a cheaper amortized cost.

4. We deployed a fault-tolerant framework that is compatible
with “spot” instances [39], which major cloud providers
(Amazon, Google, and Microsoft) offer at a major discount,
making motif discovery more affordable.

5. We provide a freely available open-source implementation of
our framework which runs on Amazon Web Services in a
cluster of instances equipped with Nvidia Tesla V100 GPUs, as
well as optimized CPU code at [27].

The rest of this paper is organized as follows. In Section 2, we state
our assumptions, introduce necessary definitions, and summarize
related work. Section 3 has a description of our novel scalable
framework and the improvements we made that allow us to
further push the boundary of MP calculations. In Section 4, we
illustrate a few of the use cases for very large MPs through several
case studies on challenging datasets. In Section 5, we provide a
detailed empirical analysis of our ideas, before offering
conclusions in Section 6.

2 Definitions and Assumptions
We begin by stating a key assumption; it has been developed
at length elsewhere [43][44], but we repeat it here.

Key Assumption: Motif discovery under any reasonable
definition is trivial if given the MP data structure.

Z. Zimmerman et al.

That is to say, there are a handful of definitions of time series
motifs, top-k motifs, range motifs, biased motifs [9], contextual
motifs [13] etc. Irrespective of the chosen definition, the MP alone
is all that is needed to extract the motif in linear time and space
[40][43]. Given this observation, this paper focuses exclusively on
computing the MP as efficiently as possible; the reader can
appreciate that this implicitly solves the task at hand. Our key
assumption actually understates the case. Having the MP in-hand
is sufficient to solve many additional time series data mining
tasks, including, discord discovery, chain discovery, snippet
discovery, segmentation etc. [40][43]. For simplicity we ignore
these additional uses of the MP here.

We now formally define the data type of interest, time series:

Definition 1: A time series T is a sequence of real-valued
numbers ti: T = 1, tz, ..., In where n is the length of T.

We are interested not in global, but local properties of a time
series. A local region of time series is called a subsequence:

Definition 2: A subsequence Tim of a time series T is a
continuous subset of the values of T of length m starting from
position i. Formally, Tim = ti, ti+1,..., tism-1, Where 1 < i < n-m+1.

Given a query subsequence Tim and a time series T, we can
compute the distance between Tim and all the subsequences in T.
We call this a distance profile:

Definition 3: A distance profile Di corresponding to query Tim
and time series T'is a vector of the Euclidean distances between a
given query subsequence Tim and each subsequence in time series
T. Formally, Di = [di1, diz,..., din-m+1], such that dij (1 < j < n-m+1)
is the distance between Tim and Tjm.

We assume that the distance is measured by Euclidean
distance between z-normalized subsequences [43][44]. Once we
obtain D;, we can extract the nearest neighbor of Tim in T. Note
that if the query Tim is a subsequence of T, the i location of
distance profile Diis zero (i.e., dii= 0) and close to zero just to the
left and right of i. This is called a trivial match. We avoid such
matches by ignoring an “exclusion” zone of length m/k before and
after i, the location of the query, where 1 < k < m-1.

What should the value of k be set to? In more than a dozen
works considering hundreds of diverse datasets it has been shown
to be inconsequential [9][43][44]. There is one possible case that
would require more careful introspection. It is best explained by
an analogy to text motifs in the presence of anadiplosis. Consider
this line of wordplay from a Monty Python sketch “. the very
meaning of life itselfish bastard...”. Here the string “self’ belongs
to both ‘itself’ and to ‘selfish’. Something similar can happen with
time series data. For example, in a motion captured ASL
performance, the end of one signed word can overlap the
beginning of the next word. In such a case the user needs to decide
if he is willing to allow such overlapping by setting k to a smaller
value; however, given the relative unimportance of k, in this paper
we set k=4 and ignore the exclusion zone by setting di; = oo (i-m/4
< j < i+m/4). The nearest neighbor of Tim can thus be found by
evaluating min(Dj).

We wish to find the nearest neighbor of every subsequence in
T. The nearest neighbor information is stored in two meta time
series, the Matrix Profile (MP) and the Matrix Profile Index.

Definition 4: A Matrix Profile P of time series T s a vector of
the Euclidean distances between every subsequence of T and its
nearest neighbor in T. Formally, P = [min(D;), min(Dz),..., min(Dn-
m+1)], where Di (I < i = n-m+1) is the distance profile D;
corresponding to query Tim and time series T.

Matrix Profile XIV: Scaling Time Series Motif Discovery ...

The ih element in the MP tells us the Euclidean distance from
subsequence Tjm to its nearest neighbor in time series T. However,
it does not tell us the location of that nearest neighbor; this
information is stored in the companion MP index:

Definition 5: A Matrix Profile Index I of time series T is an
integer vector: I=[I1, Iz, ... In-m+1], where Ii=j if dij = min(Dy).

Figure 2 depicts the relationship between the distance matrix,
distance profile (Definition 3) and MP (Definition 4). Each distance
matrix element d;; is the distance between Tim and Tjm (I s i, j <
n-m+1) of time series T. Figure 3 illustrates a distance profile and
a MP created from the same time series.

As presented, the MP is a self-join: for every subsequence in a
time series T, we find its (non-trivial-match) nearest neighbor
within the same time series. However, we can trivially generalize
the MP to be an AB-join: for every subsequence in a time series A,
record information about its nearest neighbor in time series B
[44][41]. Note that A and B can be of different lengths, and
generally, AB-join # BA-join.

2.1 Observations on Precision

Several independent research groups have noted that for some
time series retrieval tasks, 64-bit precision is unnecessarily precise
[3][40]. Researchers have shown that reduced precision can be
exploited to have significant performance benefits with minimal
observable difference in quality of results [40][15]. This
observation has been heavily exploited in deep learning [14][15];
however, it is rarely exploited for time series, except for allowing
the use of Minimal Description Length to score and rank models
[3], which is orthogonal to scalability considerations. Figure 4
shows an MP computed on some insect electrical penetration
graph (EPG) data using 64-bit precision.

This plot suggests that the difference between MPs computed
at 64 and 32-bit precision is so small it does not affect the motifs
discovered, and is not visible unless we multiply the difference by
a large constant; however, we must consider two caveats:

o The time series shown in Figure 4 is relatively short. To address
ever longer time series, there is more potential for accumulated
floating-point error to impact the result [18]. Even in this
example we can see that the difference vector gets larger as we
scan from left to right (Figure 4.third-row). We address this issue
with our tiling scheme in Section 3.2.

e The information contained in the time series in Figure 4 is
contained within a small range. This is true for some types of
data, such as ECGs, accelerometer and gyroscope readings;
however, there are also a handful of domains for which this is
not true, such as seismology. A “great” earthquake has a
magnitude of 8 or greater, but humans can feel earthquakes with
magnitudes as low as 2.5, a difference of more than five orders
of magnitude. Processing raw data with a large dynamic range
is non-trivial (see Sections 3.2, 3.3, and 4.2).

Before proceeding, we note that this illustration offers another
example of the utility of motif discovery. The time series in Figure
4is a fraction of an entomologist’s data archive [23]. The 22 motif
represents ingestion of xylem sap behavior [35], which is common
and immediately recognizable by an entomologist; however, the
15t motif was unexpected: there is a “missed beat” during the
xylem sap ingestion cycle.

SoCC’19, November, 2019, Santa Cruz, California USA

D, D, Dyoms
Dl dl,l dl,z dl,n-m+1
D, dz,l dz,z dZ,n—m+l
Dn-m+1 dn-m+1,1 dn-m+1,2 dn-m+l,r|-m+1
v v v
p | mind,) | min(D,) | [minD,..) |

Figure 2: The relationship between the distance matrix,
distance profile and MP. A distance profile is a column (also
a row) of the distance matrix. The MP stores the minimum
(off-diagonal) value of each distance matrix column; the MP
Index stores the location of the minimum value within each
column.

im time series T

PRV SRS IV i ol

distance profile D;

/Dy/=|T|-m+1

time series T

matrix profile P

WVM_,#

1P|=/T)-m+1

0 250 500

Figure 3: top) A distance profile Di created from Tim shows
the distance between Tim and all the subsequences in T.
Values in the exclusion zone are ignored to avoid trivial
matches. bottom) The MP P is the element-wise minimum
of all the distance profiles. Note that the two lowest values
in P are at the location of the 15t motif in T.

Whitefly EPG data

Matrix Profile (64-bits)

Wt vl A

(M atrix Profile 64-bits - Matrix Profile 32-bits) times 5,000

L o A Bl N ook

L f Pty Alrpina e o ronghbing
L J

! 5.5 minutes 20,000

Missed “beat”

Whitefly / .]
(Bemisia tabaci) 15 motif
Zoomrin

1
1.3 seconds ®

Figure 4: top-row) A snippet of whitefly insect EPG data.
second-row) The MP computed with 64-bit precision. third-
row) Because the 64-bit and 32-bit MPs are visually identical
at this scale, we subtracted them, and multiplied the
difference by 5,000. bottom-row) The whitefly is tiny, yet it
produces well conserved motifs.

SoCC’19, November, 2019, Santa Cruz, California USA

If we had observed a single example, we could attribute it to
chance or noise; however, motif discovery shows us that there are
at least two strongly conserved examples. This suggests that there
exists some semantic meaning to this motif, which entomologists
are currently exploring [23]. To support scientific efforts to identify
unexpected regularities in huge time-series archives, we introduce a
GPU cloud system to compute large MPs.

3 The SCAMP Framework

To compute large MPs, we introduce a framework that can be
used by a cluster with a host and one or more workers. A host
can be a local machine, or a master server. A worker can be a
CPU-based system or an accelerator (e.g., a GPU), following the
host’s direction. A cluster refers to the combination of a host and
all of its associated workers. This can be the typical group of co-
located nodes in a cloud, or a single node with accelerators
attached (e.g. a server equipped with several GPUs).

3.1 A Brief Overview of GPU-STOMPopt

GPU-STOMPopr [41] is the current state of the art for
computing MPs on the GPU. The SCAMP algorithm can best be
described in terms of a set of modifications and extensions to
GPU-STOMPort. Thus, for completeness, we include a brief
description of the GPU-STOMPorr algorithm below. The reader
familiar with this material can skip to Section 3.2. An illustration
of the GPU-STOMPopr algorithm is shown in Figure 5.left.

Thread Block 1 Thread Block 2 Thread Block N

I A A A
[Vo \ i

Thread Block

Synchronization ——

Z. Zimmerman et al.

In GPU-STOMPorr, each thread computes a diagonal of the
distance matrix shown in Figure 2 by updating the dot product,
QT, at each point along the diagonal using Equation 1 and then
computing the distance, dij, via Equation 2.

QT;; = QTi—1j—1 — timatjiog + tigmeitjym—r (1)

(2)

T, : — mu;U;
d; = Zm(l_u>

mo;o;

Each GPU thread block computes the distances in a
parallelogram-shaped tile along a ‘meta’-diagonal, and maintains
a local copy of the MP (ie. the column-wise and row-wise
minimum of the tile) in the shared memory. When a tile
computation completes, each thread compares the thread-block-
local copy of the MP with the MP stored in global memory; if a
smaller value is found, the thread updates the global MP via an
atomic access. SCAMP improves several aspects of GPU-
STOMPorr, yielding a several-fold improvement in performance
and allows efficient exploitation of newer GPU hardware. We
explain these improvements in detail in the following sections.

Tile Number {GPU)

4(4)

Figure 5: left) The GPU-STOMPort execution pattern, which is shared with the SCAMP _tile algorithm. right) The SCAMP
tiling scheme using 4 GPUs. The illustration of the tiling scheme is for self-joins only; the lower triangular tile is
computed with the same implementation, but with the inputs transposed.

Matrix Profile XIV: Scaling Time Series Motif Discovery ...

3.2 Tiling Scheme

Rather than computing the entire distance matrix in one
operation, we split it into tiles. Each tile independently computes
an AB-join between two segments of the input time series. This
allows the computation to scale to very large input sizes and
distribute the work to many independent machines, as depicted in
Figure 5.right. The host maintains information about its workers,
such as the number and type of available GPUs, the memory
capacity, and the CPU speed, to determine a tile width that can
saturate its workers. The host generates tiles of this width and
delegates them among the workers. For simplicity, this paper
assumes that all of the workers are homogeneous (V100 GPUs)
and that the most effective tile size (~1 million) fully saturates each
worker during execution. This tile width is currently discovered
empirically, but could be hard-coded once it is known a given
system configuration.

3.2.1 Host Algorithm. The host executes the SCAMP_host
algorithm, which employs multiple asynchronous workers, which
could be threads or other nodes in a cluster (see Table 1). Line 1
determines the appropriate tile size for the problem instance and
the relative tile execution order. Line 2 precomputes all necessary
statistics of T needed to compute distances between subsequences.
Lines 3-5 initialize a data structure containing all information
necessary to compute the result for each tile in our problem
instance, and insert the tile into a global work queue. Line 6,
initializes asynchronous workers, who extract work from the
queue. Line 7 retrieves and merges and the tile result and Line 8
outputs the result.

3.2.2 Tile Computation. All workers execute the SCAMP_tile
algorithm to compute each tile’s intermediate result (see Table 2),
while unprocessed tiles remain in the global work queue. Line 2-
6 extracts a tile from the work queue, along with its relevant
information from the tile structure. Line 7 computes initial dot
product values associated with the upper triangular tile. Line 8
executes an architecture-optimized kernel to compute the local
MP and Index for that tile. Lines 9 and 10 compute the initial dot
product values associated with the lower triangular tile and the
result associated with that tile. The tile’s computation similar to
GPU-STOMPorr [13][41], with additional optimizations,
described in the rest of this section.

3.2.3 Optimizations. The host may run out of memory if tiles
are sufficiently small and too many are pre-allocated; however,
this can be overcome via optimization. For example, in a single
node deployment, each worker, rather than the host, can construct
the full tile upon its execution. In a distributed deployment, the
maximum number of tiles in the queue can be limited, and more
work can be added as each tile’s processing completes. Further, it
is possible to cache the best-so-far MPvalues as tiles computed by
workers, enabling subsequent tiles to be initialized with more up-
do-date MP values. These optimizations reduce the number of
memory accesses during computation, but have been omitted
from Table 1 and Error! Reference source not found. for
simplicity of presentation.

Prior work established that the self-join problem exhibits
symmetry in the distance matrix [41][44]; here, we note that the
memory access pattern and the order of distance computations in
SCAMP and GPU-STOMPopr are similarly symmetric. The lower-
triangular portion of the distance matrix (Figure 2) can be
computed using the same subroutine as the upper-triangular
portion simply by transposing the input. The SCAMP framework
exploits this property to implement joins.

SoCC’19, November, 2019, Santa Cruz, California USA

Table 1: The SCAMP_host Algorithm.

Procedure SCAMP_host()
Input: User provided time series T, window length w, tile size s
Output: Matrix Profile P and Matrix Profile Index I, of T
tiling «— GetTiling()
stats «<— PrecomputeTileStats(T, w)
for row, col in tiling:
tile «— CreateTile(T, w, stats, row, col, s)
globalWorkQueue.add(tile)
StartAsyncronousWorkers()
P, I «— WaitForWorkerResults()
return P, I

0 N N W N =

Table 2: SCAMP Tile Computation

Procedure SCAMP_tile()
Input: Thread safe work queue of tiles workQueue

while workQueue is not empty:
tile = workQueue.GetItem()
if tile is null:
return
A =tile.A, B = tile.B,
mp = tile.mp, mpi = tile.mpi, stats = tile.stats
QT « SlidingDotProducts(A,B)
mp, mpi <— DoTriangularTile(A, B, stats, QT, mp, mpi)
QT « SlidingDotProducts (B,A)
mp, mpi <— DoTriangularTile (B,A, stats, QT, mp, mpi)
ReturnTileToHost(mp, mpi)
return

O 0 N N U R W N =

_ =
=]

s
Do

3.2.4 Comparison to GPU-STOMPorr. Beyond the scope of the
preceding discussion, SCAMP offers several distinct advantages
over GPU-STOMPopr:

Extensibility: Since tiles are computed independently,
SCAMP can provide different options for each tile’s computation,
which offers a pathway to run SCAMP on a heterogeneous
compute infrastructure.

Numerical Stability: Each new tile introduces a ‘reset’ point
for SCAMP’s extrapolation. When a new tile computation begins,
SCAMP directly computes high-precision initial dot products of
the distance matrix at that row and column. This reduces the
likelihood that rounding errors propagate along diagonals. In
contrast, GPU-STOMPopt extrapolates the diagonals of the
distance matrix from a single initial value.

Fault-Tolerance: SCAMP_tile independently issues and
completes processing for each tile; as a result, it is inherently
preemptable, which increases the fault-tolerance of our
framework. If a worker executing a tile “dies” or otherwise fails to
complete its work, the host can simply reissue a new instance of
the incomplete tile into the work queue. As mentioned in Section
1, many commercial cloud providers allow users to purchase spot
instances at discounted prices. Spot instances are only useable by
fault-tolerant applications because the cloud provider can kill the
instance at any time. Thus, SCAMP provides a pathway for lower-
cost cloud-based MP computation, which GPU-STOMPopt cannot
provide. SCAMP users can increase the number of compute
resources purchased at a fixed cost point, which increases the size
of the time series datasets they can process using SCAMP.

SoCC’19, November, 2019, Santa Cruz, California USA

3.3 Numerical Optimization and Unrolling

To improve performance and numerical stability, SCAMP
reorders GPU-STOMPopr’s floating-point computations and
replaces its sliding dot product update (Equation 1) with a
centered-sum-of-products formula (Equations 3-7). These
transformations reduce each thread’s demand for shared memory;
at the same time, increasing the amount of shared memory
allocated to each thread, allows each worker to compute four
separate diagonals (Figure 6).

Tomos —Ti
df, = 0; df; = % 3)
dgo =0; dg; i(THm—l =)+ Tioy — i) @
QT;j = QTj—1j—1 + dfidg; + df;dg; ©)

__ 1 1
(6)

P .= OT: :
b= O T T =]

D;; = /Zm(l_Pi,j) 7)

Equations 3 and 4 precompute the terms used in the sum-of-
products update formula of Equation 5, and incorporate
incremental mean centering into the update. Equations 3, 4, and 5
are specific to self-joins and are a special case of a more general
formula for an AB-join [27]. This new formula reduces the
number of incorrectly rounded bits.

Equation 6 replaces the Euclidean distance used in previous
MP computations [43][44][41] with the Pearson Correlation;
Pearson Correlation can be computed incrementally using fewer
computations than ED, and can be converted to z-normalized ED
in O(1) by Equation 7. SCAMP also precomputes the inverse L2-
norms in Equation 6 to eliminate redundant division operations
from SCAMP’s inner loop.

s 5 3

Di+;,_i+3

0ld Method:

* One load per dependancy per cell
* 32 MP updates: 2 per cell

+ Meta-diagonals are shorter

Z. Zimmerman et al.

Unrolling the innermost loop 4x requires each thread to
compute 16 new distances per iteration (four distances for each of
four diagonals), while ensuring the per-thread-block register and
memory usage remains low enough to achieve 50% occupancy on
a Tesla V100 GPU (see Ref. [11] for details). MP computation on
the GPU is bound by shared memory loads not compute time.
Unrolling permits SCAMP to use vectorized shared memory loads
for dependencies, enabling consolidation of shared memory
transactions.

SCAMP tracks the maximum per-row and per-column
distances and updates the corresponding MP value in shared
memory when an improvement occurs, resulting in a single
update per row. In contrast, GPU-STOMPoprT compares every
newly computed distance to the MP cache.

3.4 Floating-point Precision Options

We evaluated SCAMP under two precision modes:

SCAMPpr performs all computation and stores all
intermediate shared memory values in double-precision. SCAMP
DP generated accurate results for all datasets that we tested,
regardless of size, noise, ill-conditioned regions, etc.

SCAMPsp performs all computation and stores all
intermediate shared memory values in single-precision, which
increasing performance and memory utilization by ~2x. SCAMPsp
was adequate for highly regular datasets, such as ECG or
accelerometer data, but may vyield incorrect results for ill-
conditioned data (see Section 4.2 for a detailed analysis). Using
vectorized shared memory loads, SCAMPsp executes two 128-bit
loads per column dependency and one 128-bit load per row
dependency. This enabled all intermediate values to be stored in
registers without spilling.

oo Di+1,j+3
Di+2,j Di+2,j+3

Di+3,j Di+3,j+3

New Method:

* One vectorized load per dependancy per row
* 11 MP updates: 4 rows, 7 columns
* Meta-diagonals are 4x larger -> 4x data reuse

Figure 6: One iteration of the innermost loop of GPU-STOMPorr (left) and SCAMP (right). Self-joins require only half
of the distance matrix, but we must track both the MP value for the columns and for the rows. AB-joins only require

the columns or the rows.

Matrix Profile XIV: Scaling Time Series Motif Discovery ...

We tested SCAMP using half-precision (16-bit) floating-point
operations but found that SCAMP identified incorrect motifs for
many data sets; we do not consider half-precision any further.

3.5 Multi-Node AWS Deployment

We deployed SCAMP on Amazon Web Services (AWS), as
representative commercially available cloud platform (see Figure
7). We first partition our time series data set into equal-sized
chunks ranging from 20 to 100 million elements. There is a
tradeoff here between the overhead of initiating new jobs,
intermediate data size, and the risk of a job being preempted and
losing work. We compress each chunk and store it on the cloud
(Amazon S3), where it can be read by worker nodes. There is
existing work on array stores, [54], that might be leveraged in
providing access to the input array among worker nodes, but for
simplicity we defer a study on these methods to future work.

We use AWS batch to set up a job queue backed by a
compute cluster of p3.16xlarge spot instances. We issue an array
batch job in which each job computes the MP for one tile. We issue
one job per worker, and the tile size is specified to ensure full
saturation of each worker’s compute resources. This maximizes
throughput of the processing pipeline without risking exorbitant
progress loss if Amazon preempts a worker.

Each worker first copies and decompresses its input
segments corresponding to the row and column of its tile. Each
tile has two inputs: a segment corresponding to the tile-row, and
another corresponding to the tile-column; each job computes an
AB-join on the inputs. Next, the worker executes SCAMP_host
on the input, further subdividing the tile among its GPUs. Once
the worker computes the MP and index associated with the tile,
the result is compressed and written back to Amazon S3.

SoCC’19, November, 2019, Santa Cruz, California USA

Each job dequeues after it terminates. After all jobs
terminate, another job decompresses and merges each tile’s MP
into the final result; as long as intermediate data growth is limited,
this is relatively simple. In a 1 billion datapoint experiment, we
merged 196 GB of intermediate results in ~1 hour using one AWS
machine. The merging step could be further parallelized using a
framework such as MapReduce [10].

Intermediate output data volumes can grow to tens or
hundreds of gigabytes for input sizes up to 1 billion elements.
Small tile sizes produce too much local information to reasonably
store. SCAMP’s space requirement is O(RN) where R is the number
of tile rows, and N is the length of the final MP. If the tile size is 1,
then R = N and processing one billion elements necessitates
storing the distance matrix (~1 quintillion values). If each
intermediate value is eight bytes compressed on disk, the total
storage requirement would be ~8 exabytes, the estimated
aggregate storage capacity of Google’s datacenters in 2014 [42].

4 Experimental Evaluation

All experiments reported here are reproducible. All code and
data (and additional experiments omitted for brevity) are archived
in perpetuity [27].

4.1 Performance Comparison

4.1.1 Comparison to GPU-STOMPopr. Table 3 reports the result
of a direct comparison of SCAMP to GPU-STOMPopr using
random walk datasets of various lengths. The first column reports
the performance of GPU-STOMPopt using the code from Ref. [41]
on an Nvidia Tesla K80 GPU. The results here are similar, but vary
slightly due to a change in the timing of the experiment to
improve precision.

e < —
Cloud Store (Amazon $3) Segment1 Segment2 i SegmentN

‘ ‘\i/ N u/ . *u’
Compute Cluster (Amazon EC2) GPU GPU S
Instance Instance Instance

Cloud Store (Amazon S3) Result 2,N
— |

Final Matrix
Profile and
Index

Network
Optimized
Instance

Figure 7: Illustration of how to distribute SCAMP in a cluster of GPU instances on AWS.

SoCC’19, November, 2019, Santa Cruz, California USA

Table 3: SCAMP Runtime Evaluation

Algorithm STOMP-GPUopr SCAMP
Architecture K80 V100 V100 V100
Precision DP DP DP SP

218 3.04s | 0.34s(8.9x) 0.28s(10.9x) = 0.24s (12.7x)
210 114s 1.24s(9.2x) = 0.68s (16.8x) = 0.57s (20.1x)
220 441s | 481s(9.2x) 2.05s (21.5x) = 1.42s (31.1x)
221 174s 19.0s (9.2x) = 6.99s (24.9x) = 4.38s (39.8x)
222 629s | 69.2s(9.1x) 25.8s (24.4x) = 15.5s (40.7x)
2% 2514s | 277s(9.1x) = 96.8s(26.0x) = 52.5s (47.9x)

The second column reports the execution time of the same
code (still GPU-STOMPopt) running on a single Nvidia Tesla V100
SXM2 on Amazon EC2. The reported speedup is due to the V100’s
higher instruction throughput compared to the K80, which is
bottlenecked by the latency of atomic updates to shared memory.
Nvidia implemented shared memory atomics in hardware and
included them in their instruction set architecture (ISA) starting
with the Maxwell GPU family [30]; they are no longer a
performance bottleneck on newer GPU architectures. The third
and fourth columns report the execution time and speedups
(relative to Column 1) of SCAMPpp and SCAMPsp running on the
V100 GPU. The reported speedups are due to the optimizations
described in Sections 3.2 and 3.4 (SCAMPpp) and the conversion
from double to single precision (SCAMPsp); SCAMPsp does not
always produce the same result as SCAMPpp.

4.1.2 Scalability. Figure 8 depicts an analytical performance
model for SCAMP’s execution time under ideal conditions. Given
the runtime of SCAMP (T,) on one GPU on a dataset of a size (No)
which sufficiently saturates compute performance, we construct
an analytical model (Equation 8) to estimate SCAMP’s execution
time across G GPUs on a time series of length N under ideal
assumptions (e.g., no communication overhead).

TG

NU = 223
To = 96.8s

Z. Zimmerman et al.

No and T, are initialization parameters provided by one trial run
on a single V100 GPU. We use this equation and the SCAMPpp
runtime for input size 223 (Table 3) to construct the model:

Each data point in Figure 8 corresponds to an experiment we
ran, which demonstrates that the empirical model is highly
accurate. The data for our distributed workloads in the next
section also align well was this plot but were not included due to
space and readability constraints. More detail is available on our
supporting webpage [27]. Under this model, the cost of a problem
remains constant if there is no distributed overhead. For example,
to compute a join of 530 million using double-precision, one can
either use 8 GPUs for 8 hours, or 64 GPUs for 1 hour. The cost is
identical as long as there is no difference in the cost per hour for
GPU compute time.

4.1.3 Distributed Performance: p3 spot instances. Next, we
evaluate SCAMP’s performance on two very large earthquake
datasets. Both experiments ran on 40 V100 GPUs, each in a
different configuration, on an AWS EC2 spot instance fleet. A spot
instance fleet automatically provisions a consistent number of
spot instances for the job queue. If one instance is preempted,
AWS provisions another for the fleet as long as there are available
instances. A spot instance user accesses compute resources not
sold to customers who pay full price for non-preemptable
instances. Spot instance prices increase when demand is high;
when demand is low, the provider loses money, but mitigates
losses by selling preemptable access to the highest bidder.

The Parkfield dataset ran on a five p3.16xlarge spot instance
fleet, where each instance is equipped with eight V100 GPUs. The
p3.16xlarge instances were in high demand at the time of the
experiment: many jobs remained queued at times that AWS could
not provide capacity to execute; we were only charged for active
GPU compute time. The Cascadia Subduction Zone dataset ran on
ten Amazon EC2 p3.8xlarge instances each equipped with four
V100 GPUs. These instances were in lower demand than those
used for the Parkfield data set experiments, allowing faster job
completion time with less queuing overhead. The spot price of
Amazon spot instances is dynamic and demand-driven [39], and
we were charged a higher spot price. Table 4 reports the results of
these experiments.

Analytic Execution Model vs. Measured Execution Time

- e Direct Execution

Number of V100 GPUs (G)

Figure 8: Equation 8 plotted using No and To from Table 3, the V100 double precision result for a dataset with 223 data
points. Dots correspond to values measured during experiments reported in this paper. Results are for a single non-
preemptable instance equipped with G GPUs. Equation 8 also generalizes to multi-instance distributed workloads.

Matrix Profile XIV: Scaling Time Series Motif Discovery ...

Table 4: Summary of various distributed runs on AWS spot
instances

Dataset Parkfield Cascadia
Size 1 Billion 1 Billion
Tile Size ~52M (1 month) ~25M (2 weeks)
Total GPU time 375.2 hours 375.3 hours
Spot Job Time 2.5 days 10hours 3min
Approximate Spot Cost 480 USD 620 USD
Intermediate Data Size 102.2 GB 196.4 GB

Table 5: Optimized CPU and GPU SCAMPbp cost on a single
AWS spot instance

Instance Type (c5.18xlarge p3.2xlarge

72 cores 1 Tesla V100

Input Size 3.06 USD/hr 3.06 USD/hr

Seconds Sec/speedup

218 7 0.28 (25x)

219 14 0.68 (20x)

220 32 2.0 (16x)

221 76 7.0 (11x)

222 252 25.8 (9.8x)

223 933 96.8 (9.6x)

4.1.4 CPU Comparison. Table 5 compares the performance of
our GPU implementation of SCAMPpp to a CPU implementation
running on a 72-core c5 18xlarge spot instance (Intel Skylake
CPU). The CPU implementation saturates performance at an input
size of 2%1, after which its runtime scales quadratically, as
expected. At the time of writing, the c5.18xlarge has the same on-
demand price on AWS as a p3.2xlarge which employs one V100
GPU. While it is difficult to compare cross-architecture
performance, we can and do compare price per performance,
which is shown in bold as a factor of improvement of the GPU
over the CPU. In this case, the GPU is approximately one order of
magnitude more cost-efficient. The price per performance for
smaller input sizes is an imperfect basis for comparison: we could
have used a smaller spot instance type to achieve better price per
performance on a CPU when small input data sizes fail to saturate
the 72 available cores on the c5 18xlarge instance.

4.2 Precision Evaluation

Consider the three data snippets shown in Figure 9. Each has
a constant region longer than the chosen motif length m. Constant
regions are a source of numerical instability. Many scientists are
interested in the similarity of z-normalized subsequences. Z-
normalization divides each data point by the standard deviation
of the entire subsequence. For a constant region, the standard
deviation is 0. Near-constant subsequences are also problematic,
because they pass a bit-level test for two distinct values but result
in division by a number very close to 0.

Constant regions are common. For example, in medical
datasets, we have observed constant regions caused by:

Disconnection Artifacts: These may occur due to
disconnection of a monitoring lead, e.g., during a bed change.

Hard-Limit Artifacts: Some devices have a minimum and/or
maximum threshold defined by a physical limit of the technology.
If the true value exceeds the limit for a period of time, a constant
value occurs for the duration (Figure 9.center).

SoCC’19, November, 2019, Santa Cruz, California USA

200 0
50
02
100 m
o 04
o -50 m 06

1850 2350 1000 1500 2100 2450

Electrocardiogram (ECG) Electrooculogram (EOG) Electrocorticogram (ECoG)

Figure 9: Three time series containing a constant region
caused by different issue [9]. leff) An ECG (heart) with a
disconnection artifact. center) An EOG (eye movement)
with a hard-limit artifact. right) An ECoG (finger flexion)
with constant region caused ﬁy low precision recording.

Low Precision Artifacts: Many devices record at low-
precision fixed-point; observed constant values may not be
constant at a higher precision.

In most cases, disconnection artifacts saturate to a Pearson
Correlation of 1 or a z-normalized Euclidean Distance of 0, and
are removed later via a post processing step. If small peaks and
valleys are important in a low-precision artifact scenario, the MP
can be computed and stored in double-precision.

4.2.1 Comparison with Previous Update Method. Figure 10,
compares SCAMP’s update method (Equations 3-7) with the prior
method implemented in GPU-STOMPopt. We compute the result
first in double precision, then plot the absolute error in computed
Pearson Correlation between the double and single precision for
both SCAMP and GPU-STOMPopr.

The bottom and middle of Figure 10 elucidate how Equations
1 and 2 (GPU-STOMPoptr’s update method), completely fail in
single precision on this dataset. We capped the error at 1 for GPU-
STOMPorr, which is half of the range of Pearson Correlation. The
actual values reported by GPU-STOMPopt were many times larger
than the entire range of Pearson Correlation.

In contrast, SCAMP only exhibits error in constant regions
that arise due to disconnection artifacts. Here, a domain expert
can easily clean up SCAMP’s results with minimal effort by
omitting these regions from consideration when analyzing the
output of SCAMP. In contrast, GPU-STOMPorr fails to produce a
meaningful result across almost most of the dataset.

4.2.2 General Considerations for Precision. Next, we analyze the
effect of reducing precision on various datasets of different
lengths. We use a tile size of 1 million for SCAMP while GPU-
STOMPort computes across the entire length of the input in one
go, as it does not perform tiling. We generate the MP using
SCAMPpp, SCAMPsp and GPU-STOMPort with single and double
precision. We used a window length longer than the longest flat
artifact region in the data, to allow us to isolate errors caused by
the update formula from the inherent loss of information from
artifacts that cannot be represented in lower precision.

Table 6 presents the results of the experiment. Altogether
SCAMP was three or more orders of magnitude more accurate
than STOMP on these datasets. Each entry in Table 6 is the
maximum absolute error found between the double and single-
precision MP calculations. We highlight absolute errors that
exceed 0.01 in red to emphasize that a domain scientist would not
consider these results sufficiently accurate to use or report.

SCAMPsp suffers a substantial accuracy loss compared to
SCAMPpp but achieves much higher performance. If a user’s
dataset and application can tolerate the loss of accuracy, there is
much to be gained in terms of efficiency. We observe that
SCAMPsp works well on data that is highly regular with a small
min-max range, exemplified by ECG data.

SoCC’19, November, 2019, Santa Cruz, California USA

iwmeny EPG I.' ' “ . " I
0 : “

!]STOMPcrror “ l |” ||H || ||

0
0 2,500,000

[SENINNICY

1
} SCAMP error

Figure 10: Single precision error comparison between GPU-
STOMPorr and SCAMP on White Fly EPG dataset. top)
original data. middle) SCAMP absolute error. bottom) GPU-
STOMP absolute error.

Table 6: Maximum absolute error (Pearson Correlation) for
various datasets/algorithms. Red denote high error

Maximum Size (m) SCAMP STOMP SP
absolute error SP

Whitefly EPG 2.5M (1000) 3.75*102 1.89%101
ECG 8.4M (100) 3.14*104 2.07*10°3
Earthquake 1.7M (200) 6.35*10°1 3.17°103
Power Demand | 10M (4000) 4.85*10°2 2.22*101
Chicken 9M (1000) 4.92*102 2.27*10!
99.9 percentile | Size (m) SCAMP STOMP SP
absolute error SP

Whitefly EPG 2.5M (1000) 3.00*103 1.55%101
ECG 8.4M (100) 4.40*10°5 4.02*104
Earthquake 1.7M (200) 6.08*10°1 1.94%10%
Power Demand 10M (4000) 8.52*10°3 1.29*101
Chicken 9M (1000) 1.96*10°3 1.70*10!

SCAMPsp completely fails on the Earthquake dataset in Table
6. This is because the large earthquake’s signal has a magnitude
greater than 107, which cannot be represented precisely by single-
precision floats. It may be possible to reduce the error of SCAMPsp
for more types of data, but we leave this task for future work.

5 Case Studies in Seismology

Figures 1 and 4 suggest that motifs are important to many
domains. Due to space limitations, we limit our case studies
reported in this paper to seismic data, which provide information
about Earth’s interior structure and processes. We define seismic
data to be any recorded motion (e.g., displacement, velocity,
acceleration) measured using seismic instruments at the Earth’s
surface. Detected and located seismic events (i.e. earthquakes) can
be used for studying earthquake source processes and source
physics, fault behavior and interactions, for determining Earth’s
velocity structure, and to constrain seismic hazard [12]. Many of
these applications benefit from detection of smaller events, which
can be missed due to insensitive detection algorithms, or human
analyst error [48]. Improvements to seismic data instruments,
networking and data management, and reductions in cost, have
resulted in a power law increase in seismic data volume [19].
Probing this huge volume of data is an ongoing challenge.

Performing query searches for seismic data can increase the
detectability of seismic events by one order of magnitude [29][36].
However, this method requires a priori known queries (often
referred to as ‘waveform templates’ in seismology) as input.

Z. Zimmerman et al.

Although waveforms of events in a local earthquake catalog
can be used, this relies on suitable events being present in the
catalog. While an ‘autocorrelation’ motif discovery method can
identify suitable queries, it is expensive computationally in terms
of memory and time [6][34]. The analysis in [6] was restricted to
one hour of data, which limited the number of discoverable motifs.

Other studies have performed motif discovery by converting
seismic time series to small and dense proxies, and computing a
Locality-Sensitive Hash (LSH) [4][7][32], an approximate and
reduced-dimension nearest neighbor search. This approach was
~143x faster than autocorrelation for one week of continuous data,
but produced false positive and false negative results [7]. In
addition, LSH requires the careful selection of multiple, data set-
specific tuning parameters, a process that requires visual
inspection and validation against the results of other methods.

In contrast, SCAMP can exactly search datasets that can only
be searched approximately using current methods. We consider
the milestone of one billion data points (~579 days, ~1.5 years) of
seismic data with a 20 Hz sample rate. In two examples, we
demonstrate how and why transitioning motif discovery
timescales from hours of data to years of data is a potential game
changer for the field of seismic data mining.

5.1 Detecting Foreshocks and Aftershocks

The town of Parkfield, located on the San Andreas fault in
central California, experienced four magnitude ~6 earthquakes in
the 20th Century: 1901, 1922, 1934 and 1966 [45]. A repeat event
was predicted to occur between 1985 and 1993, spurring the
‘Parkfield Earthquake Prediction Experiment’, which tried to
capture the earthquake with the best available instrumentation.
The actual event (the ‘mainshock’) occurred ‘late’ in 2004, and was
recorded in extraordinary detail by the low-noise, borehole
seismometers of the Parkfield High Resolution Seismic Network
(HRSN) [45][47]. Many of these earthquakes were detected and
cataloged in real-time at the Northern California Earthquake Data
Center (NCEDC) by an automated procedure, and quality checked
for false positives by human analysts. We use this catalog as a
reference. To investigate i) whether the HRSN data contain
information on any aftershocks that were not included in the
NCEDC catalog, and ii) whether there was any change in behavior
before the mainshock, we ran SCAMP on 580 days (1,002,240,008
points) of data from Parkfield We use 20 Hz horizontal
component seismic data (from 28-11-03 to 9-7-05) from the HRSN
station VCAB, centered on the 2004 Parkfield mainshock time (i.e.
28-9-04). We set the query length at 100 samples (5 seconds). We
band-pass filtered the data between 2 and 8 Hz, a frequency range
that can detect low signal-to-noise ratio earthquakes.

Figure 11 shows a zoom-in of two sections of the waveform
and their corresponding MPs. The motifs for aftershocks of the
Parkfield earthquake have a very characteristic shape. The MP
drops abruptly as the query window begins to capture the
beginning of the earthquake waveforms, followed by a gradual
increase back to the background noise level, indicating that the
two waveforms being compared have similar shapes at their
beginnings, and dissimilar shapes at their ends.

Matrix Profile XIV: Scaling Time Series Motif Discovery ...

. L.

@QB Small aftershock of the Q@Q Large aftershock of the
g | LParkﬂeld earthquake. N | i Parkfield earthquake.
= 0 0
3 'r r
E S (note the units) Q@“ (note the units)

S s

o ° Five Secands ® Five Secands
g
o 8
x 6 s
: ’ W
s ;

0 600 1200 1800 0 600 1200 1800

Figure 11: Examples of a waveform snippet (fop) and
corresponding MP shape (bottom) for aftershocks of the
Parkfield earthquake. left) a small aftershock. right) a
larger aftershock with a waveform amplitude that is three
orders of magnitude larger.

The first arrivals (first motions) of seismic waves have
polarities (either up or down) that reflect both the mechanism of
the earthquakes that generated them and their location relative to
the station. The initial drop in the MP indicates the waveforms
have the same first motion polarity. The next few seconds of
arrivals to the station include reflections, refractions and
reverberations of seismic waves — collectively referred to as the
seismic ‘coda’ — which are much more sensitive to differences in
earthquake location, and therefore much less similar between
pairs of events [1]. The duration of the gradual increase in the MP
is longer for the larger event (Figure 11.right), consistent with the
empirical relationships of signal duration (and coda length) with
event magnitude [21][8]. We propose two important applications
of MP results to seismology: ii) The abrupt initial drop of the MP
can select the first motions of seismic events, which is an ongoing
challenge in seismology [26][33]. (ii) The length of the MP valley
from the sudden drop to its recovery can help to measure the coda
length, which correlates with earthquake magnitude [8][21].

Next, we performed an event-detection experiment using a
MP containing the Pearson Correlation Coefficient (MPCC, for
short). Pearson correlation is bounded in the range [-1,+1], can be
trivially converted to Euclidean Distance, and is widely used in
seismology studies [31][25][37]. We count the number of MPCC
peaks separated by at least 100 samples (5 seconds) to prevent
overcounting the same earthquake when multiple peaks are
present for one event. Long traces of seismograph data often
contain repeated patterns corresponding to special types of sensor
noise; these are easy to filter, as they create near perfect motifs.
We count the number of MPCC peaks in the range [0.90, 0.99].

Figure 12 shows the number of MPCC motifs per day for our
580 days of VCAB data. Although we targeted the Parkfield
earthquake, we detected other nearby earthquakes and their
aftershocks, notably the 2003 Mw 6.5 San Simeon event, and two
other moderate (Mw 4.0-4.5) earthquakes nearby. A series of motif
peaks in the lead-up to the Parkfield mainshock (around 04/07/01)
do not correspond to events in the regional earthquake catalog,
and may represent previously undetected foreshock activity; we
have reported them to collaborators in seismology to investigate.

Figure 13 compares the total number of motifs in the MPCC
range [0.9, 0.99] over the first 90 days of the Parkfield aftershock
sequence with the number of catalog aftershocks reported in the
NCEDC catalog. This analysis reports ~16x more detections than
those reported by the NCEDC. Some of these thresholding-based
detections may be station artifacts, but visual inspection suggests
that they account for less than 5% of the events.

SoCC’19, November, 2019, Santa Cruz, California USA

We also fit the Omori-Utsu aftershock rate equation [46] to
the detected and catalogued aftershocks of the Parkfield
earthquake. Figure 14 shows that the number of motifs per day fit
the Omori-Utsu law almost perfectly. Values retrieved from the
Omori-Utsu rate equation can provide information about the
physics of the mainshock [16] and also even can be used for
forecasting large aftershocks [28].

5.2 Detecting Subtle Seismic Motifs

Low frequency earthquakes (LFEs) are seismic events that
occur deep in the crust and typically have very low signal-to-noise
ratio signals. LFE recurrence is a proxy for movements at the roots
of fault zones, and may be useful in short-term earthquake
forecasting [51][52][53]. LFEs have been observed in the Cascadia
subduction zone, where the Juan de Fuca plate subducts beneath
the North American plate, from coastal Northern California to
Vancouver Island. This ‘megathrust’ fault has the potential to
produce great (magnitude ~9) earthquakes [2], motivating LFE
detection in this region. Their low signal-to-noise ratios make
detecting them challenging and time consuming (e.g., requiring
sophisticated methods and visual inspection; [49][[50][6]).

In order to see if we can detect these novel events in this
region, we ran SCAMP on 579 days of data (start date 2006/03/01)
for the vertical component of station I02A, located near Mapleton,
OR. We band-pass filter these data at 2-8 Hz and resample them
to 20 Hz. We set the query length to 200 (10 seconds), based on
the length of LFE templates used in previous studies [49].

Figure 15 shows the motif density over time for this
experiment. The number of motifs starts to increase around
August 2006 and decrease in November 2006, and again increase
in June 2007 and start to decrease around October 2007. We
visually inspected some of these motifs (in both time and
frequency domain) and classified them in four categories: i)
regular earthquakes (less frequent, Figure 16. left.) ii) weather or
human related signals (frequent), iii) Station artifact (less
frequent), iv) LFE-like signals (frequent, Figure 16.right).
Confirming a signal to be LFE is not easy, typically requiring
detection at several stations and visual inspection of its frequency
spectrum. In Figure 16 we show a discovered motif that was
confirmed as a true LFE in [49]. Note that the MP for the LFE is
not as low as regular earthquake but much lower than the
background noise (Figure 16).

In general, we detect fewer than 150 motifs per day in this
dataset. This means that in order to discover LFEs a seismologist
needs to inspect fewer than 150 sub-windows per day of data, a
task that would take minutes to perform. In contrast, the
traditional visual inspection method for detecting LFEs (e.g., brute
force checking [50]) requires inspection of thousands of sub-
windows (e.g., 17280 sub windows with a 5 second skip),
potentially taking hours for each day of seismic data. Running
SCAMP before searching for these subtle and important motifs
could potentially provide a large time savings for seismologists
and make their discovery much easier in this domain.

SoCC’19, November, 2019, Santa Cruz, California USA

Z. Zimmerman et al.

20007 2003 Mw 6.5 San Simeon earfhquake

> q < ——— 2004 Mw 6.0 Parkfield earthquake
©

1]

& / 2004.03.17 M 4.5 2004 Mw 6.0 Parkfield

0 earthquake aftershock

2 5 warm 2005-05-23 Mw 4.1

2 ; Unknown

‘S A \
bt] !

a :

z k“\% | J \%

5 - J

* | Jﬁw} J Aon gt MMU T s TN P W\M

04/01/01 04/04/01 04/07/01 04/10/01 05/01/01 05/04/01
Date (yy/mm/dd)

Figure 12: Daily number of discovered motifs for 580 days of data centered on the Parkfield earthquake (04/09/28),
measured on the horizontal component of station VCAB, located ~10 km from the epicenter. Motifs are selected based

on the peak MPCC values.

N
o
o
S

4—Number of MP peaks

NCSN catalog

of detected seismic events

0

2004/10/01 2004/11/01 2004/12/01

Figure 13: The number of events in the USGS NCSN Catalog
(green line) and the number of motifs detected using
SCAMP (red line) for the Parkfield earthquake aftershock
sequence. For the catalog events we considered all events in
a box with length ~200 km centered on the Parkfield
mainshock epicenter. The start of seismicity in this plot is
4 days prior to the Parkfield earthquake

~MP peaks per day vs. days after e%rthquake
~ Omori-Utsu Model f(X) = a/(X”)

Coefficients (with 95% confidence bounds)
a= 2424 (2332,2516)
b= 0.746 {0.7174,0.7745)

Goodness of fit:
SSE: 7.0 9e+04, R-square; 0.988, RMSE: 50.33

of MPCC peaks per day %

<

o 5 o 15 26 % 30
Days after 2004 Parkfield earthquake

Figure 14: A fit of an Omori-Utsu relationship [46] (i.e. the
law that describes aftershock rate behavior) to the number
of motifs per day for the first 30 days after the Parkfield
mainshock. The R-squared of 0.988 indicates a very good fit
and shows how the number of motifs can describe the
expected aftershock behavior almost perfectly.

These results were obtained by post-processing an MP
produced by SCAMP; possibilities for further refinement remain
open. These results show that SCAMP can detect LFEs, and has
the potential to more generally explore the seismicity of the
southern Cascadia subduction zone and other similar regions. We
believe that SCAMP has a rich future in seismic data mining — a
discipline that traditionally suffers from false negatives — and
other domains that produce time series.

#of MPCC
peaks per day

150
MWWNM MWWMW
- e

2006/04/01 2006/10/01 2007/04/01 2007/10/01

Figure 15: Discovered motifs for 579 days of seismic data
recorded on the vertical channel of station I02A, located
near Mapleton, OR. The number of discovered motifs based
on MPCC thresholding method shows two six-month
periods were detected motifs gradually increase, that start
in mid-2006 and mid-2007. We believe many of these motifs
are low frequency earthquakes (see Figure 16).

— Y

&

T

0% 00 1600 00 500 1600

Matrix Profie amplitude

Figure 16: leff) An example of an earthquake waveform
snippet (top) and MP shape (bottom) in the vicinity of a
discovered motif for a ‘regular’ earthquake. right) A
waveform snippet and corresponding MP from a confirmed
LFE (identified by [49]).

6 Conclusion

SCAMP exactly searches for motifs in time series at the data-
center scale. To the best of our knowledge, this work is the first
time any research effort has reported performing a quintillion
exact pairwise comparisons on a single time series dataset.
Likewise, we believe this to be the first work to do exact motif
search on more than one year (1.59 years to be precise) of
continuous earthquake data. All code has been made freely
available to the general public [27], whom we invite to confirm,
extend, and exploit our efforts.

ACKNOWLEDGMENTS
This work was supported in part by NSF Awards #1161997,
#1528181, and #1763795.

Matrix Profile XIV: Scaling Time Series Motif Discovery ...

REFERENCES

(]
(2]
(3]

(4]

(5]

(6]

(8]

&)
[10]
(11]

(12]

(13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

K. Aki and B. Chouet. Origin of coda waves: source, attenuation, and scattering
effects. Geophysical Research, 80(23): 3322-3342, 1975.

B. Atwater, et al. Summary of coastal geologic evidence for past great earthquakes
at the Cascadia subduction zone. Earthquake spectra, 11(1): 1-18, 1995.

N. Begum, B. Hu, T. Rakthanmanon, and E.]. Keogh. Towards a minimum
description length-based stopping criterion for semi-supervised time series
classification. IRI, 333-340, 2013.

K. J. Bergen and G. C. Beroza. Detecting earthquakes over a seismic network using
single-station similarity measures. Geophysical Journal International, 213(3): 1984-
1998, 2018.

D. Boyarko, Det al. (2015). Automated detection and location of tectonic tremor
along the entire Cascadia margin from 2005 to 2011. Earth and Planetary Science
Letters, 430, 160-170.

J. Brown, G Beroza, & D. Shelly (2008). An autocorrelation method to detect low
frequency earthquakes within tremor. Geophysical Research Letters, 35(16).

Yoon, C. E, et al. Earthquake detection through computationally efficient
similarity search. Science advances, 1(11): €1501057, 2015.

B. Castello, M. Olivieri, and G. Selvaggi. Local and duration magnitude
determination for the Italian earthquake catalog, 1981-2002. Seismological Society of
America, 97(1B): 128-139, 2007.

H. Dau and E. Keogh. Matrix Profile V: A Generic Technique to Incorporate Domain
Knowledge into Motif Discovery. KDD, 125-134, 2017.

J. Dean and S. Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1): 107-113, 2008.

Nvidia Tesla V100 Whitepaper: http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf
E. H. Field, et al. Uniform California earthquake rupture forecast, version 3

(UCERF3)—The time-independent model. Bulletin of the Seismological Society of
America, 104(3): 1122-1180, 2014.

1 Fox, L. Ang, M. Jaiswal, R. Pop-Busui, and J. Wiens. Contextual motifs: Increasing
the utility of motifs using contextual data. In Proceedings of the 23rd ACM SIGKDD
(2017), pages 155— 164.

Han, S., Mao, H. and Dally, WJ. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. ICLR, 2016

S. Gupta, et al. Deep learning with limited numerical precision. In Proceedings of the
32 JCML, pages. 1737-1746. JMLR, 2015.

S. Hainzl and D. Marsan. (2008). Dependence of the OmoriUtsu law parameters on
main shock magnitude: Observations and modeling. Journal of Geophysical Research:
Solid Earth, 113(B10), 2008.

D. Hill, et al. The 1989 earthquake swarm beneath Mammoth Mountain, California:
An initial look at the 4 May through 30 September activity. Seismological Society of
America, 80(2): 1990.

N. M. Ho and W. F. Wong. Exploiting half precision arithmetic in Nvidia GPUs.
HPEC, 1-7, 2017.

A. Hutko, M. Bahavar, C. Trabant, R. Weekly, M. Fossen, and T. Ahern. Data
products at the IRIS-DMC: Growth and usage. Seismological Research Letters, 83(3):
892-903, 2017.

R. Hyndman and K. Wang, The rupture zone of Cascadia great earthquakes from
current deformation and the thermal regime. Journal of Geophysical Research: Solid
Earth, B11: 22133, 1995.

F. Klein. (2002). User's guide to HYPOINVERSE-2000, a Fortran program to solve for
earthquake locations and magnitudes. US Geological Survey, 02-171(1.0), 2002.

1 Kolb et al. Evidence for long-timescale patterns of synaptic inputs in CA1 of awake
behaving mice. Neuroscience, 1519-17, 2017.

K. Mauck. (2018) Personal communication

A. Murillo (2018). Personal Communication.

R. Nadeau, W. Foxall, and T. McEvilly. Clustering and periodic recurrence of
microearthquakes on the San Andreas fault at Parkfield, California. Science, 267: 503-
7,1995.

S. E. J. Nippress, A. Rietbrock, and A. E. Heath. Optimized automatic pickers:
application to the ANCORP data set. Geophysical Journal International, 181(2): 911-
925, 2010.

SCAMP Supporting Webpage: https://sites.google.com/view/2019scamp

T. Omi, Y. Ogata, Y. Hirata, and K. Aihara. Forecasting large aftershocks within one
day after the main shock. Scientific reports, 3: 2218, 2013.

Z. Peng and P. Zhao. Migration of early aftershocks following the 2004 Parkfield
earthquake. Nature Geoscience, 2(12): 877, 2009.
https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-using-shared-atomics-
maxwell/

G. Poupinet, et al. Monitoring velocity variations in the crust using earthquake
doublets: An application to the Calaveras Fault, California. Geophysical Research:
Solid Earth, 89(B7): 1984.

K. Rong, et al. Locality sensitive hashing for earthquake detection: a case study of
scaling data-driven science. In VLDB 2017.

Z. Ross and Y. Ben-Zion. Automatic picking of direct P, S seismic phases and fault
zone head waves. Geophysical Journal International, 199(1): 368-381, 2014.

[34]

(35]

[45]
[46]
[47]
[48]

[49]

[50]
[51]
[52]

(53]

[54]

SoCC’19, November, 2019, Santa Cruz, California USA

A. Royer and M. Bostock. A comparative study of low frequency earthquake
templates in northern Cascadia. Earth and Planetary Science Letters, 402: 247-256,
2014.

W. Sandanayaka, Y. Jia, and J. G. Charles. EPG technique as a tool to reveal host
plant acceptance by xylem sap-feeding insects. Journal of Applied Entomology, 137:
519-529, 2013.

D. P. Schaff and F. Waldhauser. One magnitude unit reduction in detection threshold
by cross correlation applied to Parkfield (California) and China seismicity. Bulletin
of the Seismological Society of America, 100(6): 3224-3238, 2010.

D. Schaff and F. Waldhauser. Waveform cross-correlation-based differential travel-
time measurements at the Northern California Seismic Network. Seismological
Society of America, 95(6): 2005.

D. Silva, C-C M. Yeh, G. Batista, E. Keogh: SiMPle: Assessing Music Similarity Using
Subsequences Joins. ISMIR 2016: 23-29.

https://aws.amazon.com/ec2/spot/

R. D. Vatavu. Small gestures go a long way: how many bits per gesture do
recognizers actually need? In DIS ‘12, pp 328-337, 2012.

Y. Zhu, et al. Exploiting a novel algorithm and GPUs to break the ten quadrillion
pairwise comparisons barrier for time series motifs and joins. KAIS 1-34, 2018.
What-if. https://what-if xkcd.com/63/.

C. C. M. Yeh, et al. Matrix Profile I: All Pairs Similarity Joins for Time Series: A
Unifying View that Includes Motifs, Discords and Shapelets. In ICDM, pages 1317-
1322. IEEE, 2016.

Y. Zhu, et al. Matrix Profile II: Exploiting a Novel Algorithm and GPUs to Break the
One Hundred Million Barrier for Time Series Motifs and Joins. In ICDM, pages 739-
748. IEEE, 2016.

Bakun, W. H., et al. The Parkfield, California, earthquake prediction
Experiment. Science, 229(4714): 619-624, 1984.

Utsu, T., & Ogata, Y. The centenary of the Omori formula for a decay law of
aftershock activity. Journal of Physics of the Earth, 43(1): 1-33, 1995.

"HRSN (2014), High Resolution Seismic Network. UC Berkeley Seismological
Laboratory. Dataset. doi:10.7932/HRSN."

Brodsky, E. E. (2019). The importance of studying small earthquakes. Science,
364(6442), 736-737.

Boyarko, D. C., & Brudzinski, M. R. (2010). Spatial and temporal patterns of
nonvolcanic tremor along the southern Cascadia subduction zone. Journal of
Geophysical Research: Solid Earth, 115(B8).

Shelly, D. R. (2010). Migrating tremors illuminate complex deformation
beneath the seismogenic San Andreas fault. Nature, 463(7281), 648.

Shelly, D. R., G. C. Beroza, and S. Ide (2007). Non-volcanic tremor and low-
frequency earthquake swarms, Nature 446, no. 7133, 305.

Obara, K., & Kato, A. (2016). Connecting slow earthquakes to huge
earthquakes. Science, 353(6296), 253-257.

Rubinstein, J. L., Shelly, D. R., & Ellsworth, W. L. (2009). Non-volcanic tremor:
A window into the roots of fault zones. In New Frontiers in Integrated Solid
Earth Sciences (pp. 287-314). Springer, Dordrech

The TileDB Array Data Storage Manager, VLDB'16. https://tiledb.io/

