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ABSTRACT 
The discovery of conserved (repeated) patterns in time series is 
arguably the most important primitive in time series data mining. 
Called time series motifs, these primitive patterns are useful in 
their own right, and are also used as inputs into classification, 
clustering, segmentation, visualization, and anomaly detection 
algorithms. Recently the Matrix Profile has emerged as a 
promising representation to allow the efficient exact computation 
of the top-k motifs in a time series. State-of-the-art algorithms for 
computing the Matrix Profile are fast enough for many tasks. 
However, in a handful of domains, including astronomy and 
seismology, there is an insatiable appetite to consider ever larger 
datasets. In this work we show that with several novel insights we 
can push the motif discovery envelope using a novel scalable 
framework in conjunction with a deployment to commercial GPU 
clusters in the cloud. We demonstrate the utility of our ideas with 
detailed case studies in seismology, demonstrating that the 
efficiency of our algorithm allows us to exhaustively consider 
datasets that are currently only approximately searchable, 
allowing us to find subtle precursor earthquakes that had 
previously escaped attention, and other novel seismic regularities. 
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• Computer systems organization → Cloud	computing;			
• Theory of computation → Data structures and algorithms for 
data management; 	
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1 Introduction 
Time series motifs are approximately repeated subsequences 

of a longer time series. As Figure 1 (and Figure 4) suggest, motifs 
often reveal unexpected regularities in large datasets. In the last 
decade, time series motif discovery has become an increasingly 
important primitive for time series analytics, and is used in 
domains as diverse as seismology [4], astronomy, geology, 
ethology [44], neuroscience [22], medicine [13], consumer 
behavior [41], music [38] and sports analytics. In recent years, 
algorithmic advances (coupled with hardware improvements) 
have greatly expanded the purview of motif discovery. It has 
recently been shown that motif discovery is trivial given a data 
structure called the Matrix Profile (MP), and that the current state-
of-the-art MP batch construction algorithm STOMP, can discover 
motifs efficiently enough for many users [44].  

A survey of the literature suggests that many medical, 
scientific and industrial laboratory analysts rarely deal will 
datasets with more than a few million data points [24]. For such 
datasets, STAMP which is an anytime algorithm, can produce a 
high-quality approximate MP in minutes, which approaches 
“interactive” time for most purposes [43]. “Minutes” may not seem 
impressively fast, until one recalls that many datasets in question 
take days or weeks to collect. For example, in Figure 1 the 
approximate motif discovery for this full-day chicken behavior 
dataset takes well under an hour. The biologist using this tool 
reports that “this is fast enough for what I need.” [24].  

Nevertheless, we argue that there is an insatiable need to scale. 
Domains such as seismology and astronomy have a near-
inexhaustible appetite for ever-larger datasets. For example, a 
recent paper reports that performing (approximate) motif search 
on larger datasets “directly enabled the discovery of 597 new 
earthquakes near the Diablo Canyon nuclear power plant in 
California” [22]. Undoubtedly, exact search of the same dataset (or 
larger) would elucidate further unexpected regularities.  
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Figure 1: top) Twenty-four hours of time series from an 
accelerometer worn by a chicken. bottom-left) A zoom-in 
shows that the data is apparently void of structure; 
however, the top-1 motif (bottom.right) suggests that some 
behaviors are conserved. Inspection of video recorded in 
parallel suggests this a dustbathing behavior [22].  

To meet the needs of domain experts, this paper presents a 
cloud-scale framework called SCAMP (SCAlable Matrix Profile) 
that expands the purview of exact motif discovery. We summarize 
our major contributions below: 

 
1. We provide a general distributed framework for the ultra-

scalable computation of the MP [43]. Both the performance 
and numerical stability are greatly improved via our method 
when dealing with long time series.  

2. Our framework allows us to work with time series data which 
do not fit wholly into GPU memory, allowing MPs to be 
computed which are larger than previously considered. 

3. We introduce novel numerical methods to increase 
performance and improve stability of the MP computation; 
this allows the use of single-precision floating-point 
calculations for some datasets, which allows our methods to 
be applied to larger datasets at a cheaper amortized cost.   

4. We deployed a fault-tolerant framework that is compatible 
with “spot” instances [39], which major cloud providers 
(Amazon, Google, and Microsoft) offer at a major discount, 
making motif discovery more affordable. 

5. We provide a freely available open-source implementation of 
our framework which runs on Amazon Web Services in a 
cluster of instances equipped with Nvidia Tesla V100 GPUs, as 
well as optimized CPU code at [27]. 

 

The rest of this paper is organized as follows. In Section 2, we state 
our assumptions, introduce necessary definitions, and summarize 
related work. Section 3 has a description of our novel scalable 
framework and the improvements we made that allow us to 
further push the boundary of MP calculations. In Section 4, we 
illustrate a few of the use cases for very large MPs through several 
case studies on challenging datasets. In Section 5, we provide a 
detailed empirical analysis of our ideas, before offering 
conclusions in Section 6. 

2 Definitions and Assumptions 
We begin by stating a key assumption; it has been developed 

at length elsewhere [43][44], but we repeat it here.  
 
Key Assumption: Motif discovery under any reasonable 

definition is trivial if given the MP data structure. 
 

That is to say, there are a handful of definitions of time series 
motifs, top-k motifs, range motifs, biased motifs [9], contextual 
motifs [13] etc. Irrespective of the chosen definition, the MP alone 
is all that is needed to extract the motif in linear time and space 
[40][43]. Given this observation, this paper focuses exclusively on 
computing the MP as efficiently as possible; the reader can 
appreciate that this implicitly solves the task at hand. Our key 
assumption actually understates the case. Having the MP in-hand 
is sufficient to solve many additional time series data mining 
tasks, including, discord discovery, chain discovery, snippet 
discovery, segmentation etc. [40][43].  For simplicity we ignore 
these additional uses of the MP here.  

We now formally define the data type of interest, time series: 
Definition 1: A time series T is a sequence of real-valued 

numbers ti: T = t1, t2, ..., tn where n is the length of T. 
We are interested not in global, but local properties of a time 

series. A local region of time series is called a subsequence: 
Definition 2: A subsequence Ti,m of a time series T is a 

continuous subset of the values of T of length m starting from 
position i. Formally, Ti,m = ti, ti+1,…, ti+m-1, where 1 ≤ i ≤  n-m+1. 

Given a query subsequence Ti,m and a time series T, we can 
compute the distance between Ti,m and all the subsequences in T. 
We call this a distance profile: 

Definition 3: A distance profile Di corresponding to query Ti,m  
and time series T is a vector of the Euclidean distances between a 
given query subsequence Ti,m and each subsequence in time series 
T. Formally, Di = [di,1, di,2,…, di,n-m+1], such that di,j (1 ≤  j ≤ n-m+1) 
is the distance between Ti,m and Tj,m. 

We assume that the distance is measured by Euclidean 
distance between z-normalized subsequences [43][44]. Once we 
obtain Di, we can extract the nearest neighbor of Ti,m in T. Note 
that if the query Ti,m is a subsequence of  T, the ith location of 
distance profile Di is zero (i.e., di,i = 0) and close to zero just to the 
left and right of i. This is called a trivial match. We avoid such 
matches by ignoring an “exclusion” zone of length m/k before and 
after i, the location of the query, where 1 < k < m-1. 

What should the value of k be set to? In more than a dozen 
works considering hundreds of diverse datasets it has been shown 
to be inconsequential [9][43][44]. There is one possible case that 
would require more careful introspection. It is best explained by 
an analogy to text motifs in the presence of anadiplosis. Consider 
this line of wordplay from a Monty Python sketch “.. the very 
meaning of life itselfish bastard…”. Here the string “self’ belongs 
to both ‘itself’ and to ‘selfish’. Something similar can happen with 
time series data. For example, in a motion captured ASL 
performance, the end of one signed word can overlap the 
beginning of the next word. In such a case the user needs to decide 
if he is willing to allow such overlapping by setting k to a smaller 
value; however, given the relative unimportance of k, in this paper 
we set k=4 and ignore the exclusion zone by setting di,j = ∞ (i-m/4 
≤  j ≤ i+m/4). The nearest neighbor of Ti,m can thus be found by 
evaluating min(Di). 

We wish to find the nearest neighbor of every subsequence in 
T. The nearest neighbor information is stored in two meta time 
series, the Matrix Profile (MP) and the Matrix Profile Index. 

Definition 4: A Matrix Profile P of time series T is a vector of 
the Euclidean distances between every subsequence of T and its 
nearest neighbor in T. Formally, P = [min(D1), min(D2),…, min(Dn-

m+1)], where Di (1 ≤ i ≤  n-m+1) is the distance profile Di 
corresponding to query Ti,m and time series T. 
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The ith element in the MP tells us the Euclidean distance from 
subsequence Ti,m to its nearest neighbor in time series T. However, 
it does not tell us the location of that nearest neighbor; this 
information is stored in the companion MP index: 

Definition 5: A Matrix Profile Index I of time series T is an 
integer vector: I=[I1, I2, … In-m+1], where Ii=j if di,j = min(Di). 

Figure 2 depicts the relationship between the distance matrix, 
distance profile (Definition 3) and MP (Definition 4). Each distance 
matrix element di,j is the distance between Ti,m and Tj,m (1 ≤ i, j ≤ 
n-m+1) of time series T. Figure 3 illustrates a distance profile and 
a MP created from the same time series. 

As presented, the MP is a self-join: for every subsequence in a 
time series T, we find its (non-trivial-match) nearest neighbor 
within the same time series. However, we can trivially generalize 
the MP to be an AB-join: for every subsequence in a time series A, 
record information about its nearest neighbor in time series B 
[44][41]. Note that A and B can be of different lengths, and 
generally, AB-join ≠ BA-join.  

2.1 Observations on Precision 
Several independent research groups have noted that for some 

time series retrieval tasks, 64-bit precision is unnecessarily precise 
[3][40]. Researchers have shown that reduced precision can be 
exploited to have significant performance benefits with minimal 
observable difference in quality of results [40][15]. This 
observation has been heavily exploited in deep learning [14][15]; 
however, it is rarely exploited for time series, except for allowing 
the use of Minimal Description Length to score and rank models 
[3], which is orthogonal to scalability considerations. Figure 4 
shows an MP computed on some insect electrical penetration 
graph (EPG) data using 64-bit precision.   

This plot suggests that the difference between MPs computed 
at 64 and 32-bit precision is so small it does not affect the motifs 
discovered, and is not visible unless we multiply the difference by 
a large constant; however, we must consider two caveats: 

  
• The time series shown in Figure 4 is relatively short. To address 

ever longer time series, there is more potential for accumulated 
floating-point error to impact the result [18]. Even in this 
example we can see that the difference vector gets larger as we 
scan from left to right (Figure 4.third-row). We address this issue 
with our tiling scheme in Section 3.2. 

• The information contained in the time series in Figure 4 is 
contained within a small range. This is true for some types of 
data, such as ECGs, accelerometer and gyroscope readings; 
however, there are also a handful of domains for which this is 
not true, such as seismology. A “great” earthquake has a 
magnitude of 8 or greater, but humans can feel earthquakes with 
magnitudes as low as 2.5, a difference of more than five orders 
of magnitude. Processing raw data with a large dynamic range 
is non-trivial (see Sections 3.2, 3.3, and 4.2).  

Before proceeding, we note that this illustration offers another 
example of the utility of motif discovery. The time series in Figure 
4 is a fraction of an entomologist’s data archive [23]. The 2nd motif 
represents ingestion of xylem sap behavior [35], which is common 
and immediately recognizable by an entomologist; however, the 
1st motif was unexpected: there is a “missed beat” during the 
xylem sap ingestion cycle.  

 

Figure 2: The relationship between the distance matrix, 
distance profile and MP. A distance profile is a column (also 
a row) of the distance matrix. The MP stores the minimum 
(off-diagonal) value of each distance matrix column; the MP 
Index stores the location of the minimum value within each 
column. 

 
Figure 3: top) A distance profile Di created from Ti,m shows 
the distance between Ti,m and all the subsequences in T. 
Values in the exclusion zone are ignored to avoid trivial 
matches. bottom) The MP P is the element-wise minimum 
of all the distance profiles. Note that the two lowest values 
in P are at the location of the 1st motif in T. 

 
Figure 4: top-row) A snippet of whitefly insect EPG data. 
second-row) The MP computed with 64-bit precision. third-
row) Because the 64-bit and 32-bit MPs are visually identical 
at this scale, we subtracted them, and multiplied the 
difference by 5,000.  bottom-row) The whitefly is tiny, yet it 
produces well conserved motifs. 
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If we had observed a single example, we could attribute it to 
chance or noise; however, motif discovery shows us that there are 
at least two strongly conserved examples. This suggests that there 
exists some semantic meaning to this motif, which entomologists 
are currently exploring [23]. To support scientific efforts to identify 
unexpected regularities in huge time-series archives, we introduce a 
GPU cloud system to compute large MPs. 

3 The SCAMP Framework 
To compute large MPs, we introduce a framework that can be 

used by a cluster with a host and one or more workers. A host 
can be a local machine, or a master server. A worker can be a 
CPU-based system or an accelerator (e.g., a GPU), following the 
host’s direction. A cluster refers to the combination of a host and 
all of its associated workers. This can be the typical group of co-
located nodes in a cloud, or a single node with accelerators 
attached (e.g. a server equipped with several GPUs).  

3.1 A Brief Overview of GPU-STOMPOPT 
GPU-STOMPOPT [41] is the current state of the art for 

computing MPs on the GPU. The SCAMP algorithm can best be 
described in terms of a set of modifications and extensions to 
GPU-STOMPOPT. Thus, for completeness, we include a brief 
description of the GPU-STOMPOPT algorithm below. The reader 
familiar with this material can skip to Section 3.2. An illustration 
of the GPU-STOMPOPT algorithm is shown in Figure 5.left.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In GPU-STOMPOPT, each thread computes a diagonal of the 
distance matrix shown in Figure 2 by updating the dot product, 
QT, at each point along the diagonal using Equation 1 and then 
computing the distance, di,j, via Equation 2. 

 
𝑄𝑇!,# = 𝑄𝑇!$%,#$% − 𝑡!$%𝑡#$% + 𝑡!&'$%𝑡#&'$% (1) 

 
  

𝑑!,# = (2𝑚+1 −
𝑄𝑇!,# −𝑚𝜇!𝜇#

𝑚𝜎!𝜎#
/ (2) 

 
Each GPU thread block computes the distances in a 

parallelogram-shaped tile along a ‘meta’-diagonal, and maintains 
a local copy of the MP (i.e., the column-wise and row-wise 
minimum of the tile) in the shared memory. When a tile 
computation completes, each thread compares the thread-block-
local copy of the MP with the MP stored in global memory; if a 
smaller value is found, the thread updates the global MP via an 
atomic access. SCAMP improves several aspects of GPU-
STOMPOPT, yielding a several-fold improvement in performance 
and allows efficient exploitation of newer GPU hardware. We 
explain these improvements in detail in the following sections. 

  

  
 
Figure 5: left) The GPU-STOMPOPT execution pattern, which is shared with the SCAMP_tile algorithm. right) The SCAMP 
tiling scheme using 4 GPUs. The illustration of the tiling scheme is for self-joins only; the lower triangular tile is 
computed with the same implementation, but with the inputs transposed. 
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3.2 Tiling Scheme 
Rather than computing the entire distance matrix in one 

operation, we split it into tiles. Each tile independently computes 
an AB-join between two segments of the input time series. This 
allows the computation to scale to very large input sizes and 
distribute the work to many independent machines, as depicted in 
Figure 5.right. The host maintains information about its workers, 
such as the number and type of available GPUs, the memory 
capacity, and the CPU speed, to determine a tile width that can 
saturate its workers. The host generates tiles of this width and 
delegates them among the workers. For simplicity, this paper 
assumes that all of the workers are homogeneous (V100 GPUs) 
and that the most effective tile size (~1 million) fully saturates each 
worker during execution. This tile width is currently discovered 
empirically, but could be hard-coded once it is known a given 
system configuration.  

3.2.1 Host Algorithm. The host executes the SCAMP_host 
algorithm, which employs multiple asynchronous workers, which 
could be threads or other nodes in a cluster (see Table 1).  Line 1 
determines the appropriate tile size for the problem instance and 
the relative tile execution order. Line 2 precomputes all necessary 
statistics of T needed to compute distances between subsequences. 
Lines 3-5 initialize a data structure containing all information 
necessary to compute the result for each tile in our problem 
instance, and insert the tile into a global work queue. Line 6, 
initializes asynchronous workers, who extract work from the 
queue. Line 7 retrieves and merges and the tile result and Line 8 
outputs the result. 

3.2.2 Tile Computation. All workers execute the SCAMP_tile 
algorithm to compute each tile’s intermediate result (see Table 2), 
while unprocessed tiles remain in the global work queue. Line 2-
6 extracts a tile from the work queue, along with its relevant 
information from the tile structure. Line 7 computes initial dot 
product values associated with the upper triangular tile. Line 8 
executes an architecture-optimized kernel to compute the local 
MP and Index for that tile. Lines 9 and 10 compute the initial dot 
product values associated with the lower triangular tile and the 
result associated with that tile. The tile’s computation similar to 
GPU-STOMPOPT [13][41], with additional optimizations, 
described in the rest of this section. 

3.2.3 Optimizations. The host may run out of memory if tiles 
are sufficiently small and too many are pre-allocated; however, 
this can be overcome via optimization. For example, in a single 
node deployment, each worker, rather than the host, can construct 
the full tile upon its execution. In a distributed deployment, the 
maximum number of tiles in the queue can be limited, and more 
work can be added as each tile’s processing completes. Further, it 
is possible to cache the best-so-far MPvalues as tiles computed by 
workers, enabling subsequent tiles to be initialized with more up-
do-date MP values. These optimizations reduce the number of 
memory accesses during computation, but have been omitted 
from Table 1 and Error! Reference source not found. for 
simplicity of presentation. 

Prior work established that the self-join problem exhibits 
symmetry in the distance matrix [41][44]; here, we note that the 
memory access pattern and the order of distance computations in 
SCAMP and GPU-STOMPOPT are similarly symmetric. The lower-
triangular portion of the distance matrix (Figure 2) can be 
computed using the same subroutine as the upper-triangular 
portion simply by transposing the input. The SCAMP framework 
exploits this property to implement joins. 

Table 1: The SCAMP_host Algorithm. 
Procedure SCAMP_host() 
Input: User provided time series T, window length w, tile size s 
Output: Matrix Profile P and Matrix Profile Index I, of T 
1 
2 
3 
4 
5 
6 
7 
8 

tiling ← GetTiling() 
stats ← PrecomputeTileStats(T, w) 
for row, col in tiling: 
  tile ← CreateTile(T, w, stats, row, col, s) 
  globalWorkQueue.add(tile) 
StartAsyncronousWorkers() 
P, I ← WaitForWorkerResults() 
return P, I 

 
Table 2: SCAMP Tile Computation 

Procedure SCAMP_tile() 
Input: Thread safe work queue of tiles workQueue 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

while workQueue is not empty: 
  tile = workQueue.GetItem() 
  if tile is null: 
    return 
  A = tile.A, B = tile.B, 
  mp = tile.mp, mpi = tile.mpi, stats = tile.stats 
  QT ← SlidingDotProducts(A,B) 
  mp, mpi ← DoTriangularTile(A, B, stats, QT, mp, mpi) 
  QT ← SlidingDotProducts (B,A) 
  mp, mpi ← DoTriangularTile (B,A, stats, QT, mp, mpi) 
  ReturnTileToHost(mp, mpi) 
return 

 
3.2.4 Comparison to GPU-STOMPOPT. Beyond the scope of the 

preceding discussion, SCAMP offers several distinct advantages 
over GPU-STOMPOPT: 

Extensibility: Since tiles are computed independently, 
SCAMP can provide different options for each tile’s computation, 
which offers a pathway to run SCAMP on a heterogeneous 
compute infrastructure.  

Numerical Stability: Each new tile introduces a ‘reset’ point 
for SCAMP’s extrapolation. When a new tile computation begins, 
SCAMP directly computes high-precision initial dot products of 
the distance matrix at that row and column. This reduces the 
likelihood that rounding errors propagate along diagonals. In 
contrast, GPU-STOMPOPT extrapolates the diagonals of the 
distance matrix from a single initial value. 

Fault-Tolerance: SCAMP_tile independently issues and 
completes processing for each tile; as a result, it is inherently 
preemptable, which increases the fault-tolerance of our 
framework. If a worker executing a tile “dies” or otherwise fails to 
complete its work, the host can simply reissue a new instance of 
the incomplete tile into the work queue. As mentioned in Section 
1, many commercial cloud providers allow users to purchase spot 
instances at discounted prices. Spot instances are only useable by 
fault-tolerant applications because the cloud provider can kill the 
instance at any time. Thus, SCAMP provides a pathway for lower-
cost cloud-based MP computation, which GPU-STOMPOPT cannot 
provide. SCAMP users can increase the number of compute 
resources purchased at a fixed cost point, which increases the size 
of the time series datasets they can process using SCAMP.  
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3.3 Numerical Optimization and Unrolling 
To improve performance and numerical stability, SCAMP 

reorders GPU-STOMPOPT’s floating-point computations and 
replaces its sliding dot product update (Equation 1) with a 
centered-sum-of-products formula (Equations 3-7). These 
transformations reduce each thread’s demand for shared memory; 
at the same time, increasing the amount of shared memory 
allocated to each thread, allows each worker to compute four 
separate diagonals (Figure 6). 

𝑑𝑓( = 0; 	𝑑𝑓! 	=
𝑇!&'$% − 𝑇!$%

2  (3) 

𝑑𝑔( = 0; 	𝑑𝑔! 	= (𝑇!&'$% −	𝜇!) + (𝑇!$% − 𝜇!$%)   (4) 

𝑄𝑇7777!,# =	𝑄𝑇7777!$%,#$% + 𝑑𝑓!𝑑𝑔# + 𝑑𝑓#𝑑𝑔! (5) 

𝑃!,# =	𝑄𝑇7777!,# ∗
1

:𝑇!,' − 𝜇!:
∗

1
:𝑇#.' −	𝜇#:

 (6) 

𝐷!,# 	= <2𝑚(1 − 𝑃!,#) (7) 

Equations 3 and 4 precompute the terms used in the sum-of-
products update formula of Equation 5, and incorporate 
incremental mean centering into the update. Equations 3, 4, and 5 
are specific to self-joins and are a special case of a more general 
formula for an AB-join [27]. This new formula reduces the 
number of incorrectly rounded bits.  

Equation 6 replaces the Euclidean distance used in previous 
MP computations [43][44][41] with the Pearson Correlation; 
Pearson Correlation can be computed incrementally using fewer 
computations than ED, and can be converted to z-normalized ED 
in O(1) by Equation 7. SCAMP also precomputes the inverse L2-
norms in Equation 6 to eliminate redundant division operations 
from SCAMP’s inner loop.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Unrolling the innermost loop 4x requires each thread to 
compute 16 new distances per iteration (four distances for each of 
four diagonals), while ensuring the per-thread-block register and 
memory usage remains low enough to achieve 50% occupancy on 
a Tesla V100 GPU (see Ref. [11] for details). MP computation on 
the GPU is bound by shared memory loads not compute time. 
Unrolling permits SCAMP to use vectorized shared memory loads 
for dependencies, enabling consolidation of shared memory 
transactions.  

SCAMP tracks the maximum per-row and per-column 
distances and updates the corresponding MP value in shared 
memory when an improvement occurs, resulting in a single 
update per row. In contrast, GPU-STOMPOPT compares every 
newly computed distance to the MP cache.  

3.4 Floating-point Precision Options 
We evaluated SCAMP under two precision modes: 
SCAMPDP performs all computation and stores all 

intermediate shared memory values in double-precision. SCAMP 
DP generated accurate results for all datasets that we tested, 
regardless of size, noise, ill-conditioned regions, etc. 

SCAMPSP performs all computation and stores all 
intermediate shared memory values in single-precision, which 
increasing performance and memory utilization by ~2x. SCAMPSP 
was adequate for highly regular datasets, such as ECG or 
accelerometer data, but may yield incorrect results for ill-
conditioned data (see Section 4.2 for a detailed analysis). Using 
vectorized shared memory loads, SCAMPSP executes two 128-bit 
loads per column dependency and one 128-bit load per row 
dependency. This enabled all intermediate values to be stored in 
registers without spilling. 

 
 

  

 
Figure 6: One iteration of the innermost loop of GPU-STOMPOPT (left) and SCAMP (right). Self-joins require only half 
of the distance matrix, but we must track both the MP value for the columns and for the rows. AB-joins only require 
the columns or the rows.  

 



Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA 
 

 

We tested SCAMP using half-precision (16-bit) floating-point 
operations but found that SCAMP identified incorrect motifs for 
many data sets; we do not consider half-precision any further. 

3.5 Multi-Node AWS Deployment 
We deployed SCAMP on Amazon Web Services (AWS), as 

representative commercially available cloud platform (see Figure 
7). We first partition our time series data set into equal-sized 
chunks ranging from 20 to 100 million elements. There is a 
tradeoff here between the overhead of initiating new jobs, 
intermediate data size, and the risk of a job being preempted and 
losing work. We compress each chunk and store it on the cloud 
(Amazon S3), where it can be read by worker nodes. There is 
existing work on array stores, [54], that might be leveraged in 
providing access to the input array among worker nodes, but for 
simplicity we defer a study on these methods to future work. 

We use AWS batch to set up a job queue backed by a 
compute cluster of p3.16xlarge spot instances. We issue an array 
batch job in which each job computes the MP for one tile. We issue 
one job per worker, and the tile size is specified to ensure full 
saturation of each worker’s compute resources. This maximizes 
throughput of the processing pipeline without risking exorbitant 
progress loss if Amazon preempts a worker.  

Each worker first copies and decompresses its input 
segments corresponding to the row and column of its tile. Each 
tile has two inputs: a segment corresponding to the tile-row, and 
another corresponding to the tile-column; each job computes an 
AB-join on the inputs. Next, the worker executes SCAMP_host 
on the input, further subdividing the tile among its GPUs. Once 
the worker computes the MP and index associated with the tile, 
the result is compressed and written back to Amazon S3. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Each job dequeues after it terminates. After all jobs 
terminate, another job decompresses and merges each tile’s MP 
into the final result; as long as intermediate data growth is limited, 
this is relatively simple. In a 1 billion datapoint experiment, we 
merged 196 GB of intermediate results in ~1 hour using one AWS 
machine. The merging step could be further parallelized using a 
framework such as MapReduce [10]. 

Intermediate output data volumes can grow to tens or 
hundreds of gigabytes for input sizes up to 1 billion elements. 
Small tile sizes produce too much local information to reasonably 
store. SCAMP’s space requirement is O(RN) where R is the number 
of tile rows, and N is the length of the final MP. If the tile size is 1, 
then R = N and processing one billion elements necessitates 
storing the distance matrix (~1 quintillion values). If each 
intermediate value is eight bytes compressed on disk, the total 
storage requirement would be ~8 exabytes, the estimated 
aggregate storage capacity of Google’s datacenters in 2014 [42].  

4 Experimental Evaluation 
All experiments reported here are reproducible. All code and 

data (and additional experiments omitted for brevity) are archived 
in perpetuity [27]. 

4.1 Performance Comparison 
4.1.1 Comparison to GPU-STOMPOPT. Table 3 reports the result 

of a direct comparison of SCAMP to GPU-STOMPOPT using 
random walk datasets of various lengths. The first column reports 
the performance of GPU-STOMPOPT using the code from Ref. [41] 
on an Nvidia Tesla K80 GPU. The results here are similar, but vary 
slightly due to a change in the timing of the experiment to 
improve precision. 
 

 
 
 

 
 

 
 

 
 
 
 
 
 
 

  

 
 
Figure 7: Illustration of how to distribute SCAMP in a cluster of GPU instances on AWS. 
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Table 3: SCAMP Runtime Evaluation 

Algorithm STOMP-GPUOPT SCAMP 

Architecture K80 V100 V100 V100 

Precision DP DP DP SP 

218 3.04s 0.34s (8.9x) 0.28s (10.9x) 0.24s (12.7x) 

219 11.4s 1.24s (9.2x) 0.68s (16.8x) 0.57s (20.1x) 

220 44.1s 4.81s (9.2x) 2.05s (21.5x) 1.42s (31.1x) 

221 174s 19.0s (9.2x) 6.99s (24.9x) 4.38s (39.8x) 

222 629s 69.2s (9.1x) 25.8s (24.4x) 15.5s (40.7x) 

223 2514s 277s (9.1x) 96.8s (26.0x) 52.5s (47.9x) 

 
The second column reports the execution time of the same 

code (still GPU-STOMPOPT) running on a single Nvidia Tesla V100 
SXM2 on Amazon EC2. The reported speedup is due to the V100’s 
higher instruction throughput compared to the K80, which is 
bottlenecked by the latency of atomic updates to shared memory. 
Nvidia implemented shared memory atomics in hardware and 
included them in their instruction set architecture (ISA) starting 
with the Maxwell GPU family [30]; they are no longer a 
performance bottleneck on newer GPU architectures. The third 
and fourth columns report the execution time and speedups 
(relative to Column 1) of SCAMPDP and SCAMPSP running on the 
V100 GPU. The reported speedups are due to the optimizations 
described in Sections 3.2 and 3.4 (SCAMPDP) and the conversion 
from double to single precision (SCAMPSP); SCAMPSP does not 
always produce the same result as SCAMPDP. 

4.1.2 Scalability. Figure 8 depicts an analytical performance 
model for SCAMP’s execution time under ideal conditions. Given 
the runtime of SCAMP (To) on one GPU on a dataset of a size (No) 
which sufficiently saturates compute performance, we construct 
an analytical model (Equation 8) to estimate SCAMP’s execution 
time across G GPUs on a time series of length N under ideal 
assumptions (e.g., no communication overhead).  

N = 𝑁*(
𝑇𝐺
𝑇*	

 (8) 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

No and To are initialization parameters provided by one trial run 
on a single V100 GPU. We use this equation and the SCAMPDP 
runtime for input size 223 (Table 3) to construct the model: 

Each data point in Figure 8 corresponds to an experiment we 
ran, which demonstrates that the empirical model is highly 
accurate. The data for our distributed workloads in the next 
section also align well was this plot but were not included due to 
space and readability constraints. More detail is available on our 
supporting webpage [27]. Under this model, the cost of a problem 
remains constant if there is no distributed overhead. For example, 
to compute a join of 530 million using double-precision, one can 
either use 8 GPUs for 8 hours, or 64 GPUs for 1 hour. The cost is 
identical as long as there is no difference in the cost per hour for 
GPU compute time. 

4.1.3 Distributed Performance: p3 spot instances. Next, we 
evaluate SCAMP’s performance on two very large earthquake 
datasets. Both experiments ran on 40 V100 GPUs, each in a 
different configuration, on an AWS EC2 spot instance fleet. A spot 
instance fleet automatically provisions a consistent number of 
spot instances for the job queue. If one instance is preempted, 
AWS provisions another for the fleet as long as there are available 
instances. A spot instance user accesses compute resources not 
sold to customers who pay full price for non-preemptable 
instances. Spot instance prices increase when demand is high; 
when demand is low, the provider loses money, but mitigates 
losses by selling preemptable access to the highest bidder.  

The Parkfield dataset ran on a five p3.16xlarge spot instance 
fleet, where each instance is equipped with eight V100 GPUs. The 
p3.16xlarge instances were in high demand at the time of the 
experiment: many jobs remained queued at times that AWS could 
not provide capacity to execute; we were only charged for active 
GPU compute time. The Cascadia Subduction Zone dataset ran on 
ten Amazon EC2 p3.8xlarge instances each equipped with four 
V100 GPUs. These instances were in lower demand than those 
used for the Parkfield data set experiments, allowing faster job 
completion time with less queuing overhead. The spot price of 
Amazon spot instances is dynamic and demand-driven [39], and 
we were charged a higher spot price. Table 4 reports the results of 
these experiments.  

 
  

 
Figure 8: Equation 8 plotted using No and To from Table 3, the V100 double precision result for a dataset with 223 data 
points. Dots correspond to values measured during experiments reported in this paper. Results are for a single non-
preemptable instance equipped with G GPUs. Equation 8 also generalizes to multi-instance distributed workloads.  
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Table 4: Summary of various distributed runs on AWS spot 
instances 

Dataset Parkfield Cascadia  
Size 1 Billion 1 Billion 

Tile Size ~52M (1 month) ~ 25M (2 weeks) 

Total GPU time 375.2 hours 375.3 hours 

Spot Job Time 2.5 days 10hours 3min 

Approximate Spot Cost 480 USD 620 USD 

Intermediate Data Size 102.2 GB 196.4 GB 

 
Table 5: Optimized CPU and GPU SCAMPDP cost on a single 
AWS spot instance 
         Instance Type 
 
Input Size 

c5.18xlarge 
72 cores 
3.06 USD/hr     
Seconds 

p3.2xlarge  
1 Tesla V100 
3.06 USD/hr  
Sec/speedup 

218 7    0.28 (25x) 
219 14   0.68 (20x) 
220 32   2.0  (16x) 
221   76   7.0  (11x) 
222 252 25.8  (9.8x) 
223 933 96.8  (9.6x) 

 
4.1.4 CPU Comparison. Table 5 compares the performance of 

our GPU implementation of SCAMPDP to a CPU implementation 
running on a 72-core c5 18xlarge spot instance (Intel Skylake 
CPU). The CPU implementation saturates performance at an input 
size of 221, after which its runtime scales quadratically, as 
expected. At the time of writing, the c5.18xlarge has the same on-
demand price on AWS as a p3.2xlarge which employs one V100 
GPU. While it is difficult to compare cross-architecture 
performance, we can and do compare price per performance, 
which is shown in bold as a factor of improvement of the GPU 
over the CPU. In this case, the GPU is approximately one order of 
magnitude more cost-efficient. The price per performance for 
smaller input sizes is an imperfect basis for comparison: we could 
have used a smaller spot instance type to achieve better price per 
performance on a CPU when small input data sizes fail to saturate 
the 72 available cores on the c5 18xlarge instance.  

4.2 Precision Evaluation 
Consider the three data snippets shown in Figure 9. Each has 

a constant region longer than the chosen motif length m. Constant 
regions are a source of numerical instability. Many scientists are 
interested in the similarity of z-normalized subsequences. Z-
normalization divides each data point by the standard deviation 
of the entire subsequence. For a constant region, the standard 
deviation is 0. Near-constant subsequences are also problematic, 
because they pass a bit-level test for two distinct values but result 
in division by a number very close to 0.  

 Constant regions are common. For example, in medical 
datasets, we have observed constant regions caused by: 

Disconnection Artifacts: These may occur due to 
disconnection of a monitoring lead, e.g., during a bed change. 

Hard-Limit Artifacts: Some devices have a minimum and/or 
maximum threshold defined by a physical limit of the technology. 
If the true value exceeds the limit for a period of time, a constant 
value occurs for the duration (Figure 9.center). 

 
Figure 9: Three time series containing a constant region 
caused by different issue [9]. left) An ECG (heart) with a 
disconnection artifact. center) An EOG (eye movement) 
with a hard-limit artifact. right) An ECoG (finger flexion) 
with constant region caused by low precision recording.  

 
Low Precision Artifacts: Many devices record at low-

precision fixed-point; observed constant values may not be 
constant at a higher precision. 

In most cases, disconnection artifacts saturate to a Pearson 
Correlation of 1 or a z-normalized Euclidean Distance of 0, and 
are removed later via a post processing step. If small peaks and 
valleys are important in a low-precision artifact scenario, the MP 
can be computed and stored in double-precision. 

4.2.1 Comparison with Previous Update Method. Figure 10, 
compares SCAMP’s update method (Equations 3-7) with the prior 
method implemented in GPU-STOMPOPT. We compute the result 
first in double precision, then plot the absolute error in computed 
Pearson Correlation between the double and single precision for 
both SCAMP and GPU-STOMPOPT.  

The bottom and middle of Figure 10 elucidate how Equations 
1 and 2 (GPU-STOMPOPT’s update method), completely fail in 
single precision on this dataset.  We capped the error at 1 for GPU-
STOMPOPT, which is half of the range of Pearson Correlation. The 
actual values reported by GPU-STOMPOPT were many times larger 
than the entire range of Pearson Correlation.   

In contrast, SCAMP only exhibits error in constant regions 
that arise due to disconnection artifacts. Here, a domain expert 
can easily clean up SCAMP’s results with minimal effort by 
omitting these regions from consideration when analyzing the 
output of SCAMP. In contrast, GPU-STOMPOPT fails to produce a 
meaningful result across almost most of the dataset. 

4.2.2 General Considerations for Precision. Next, we analyze the 
effect of reducing precision on various datasets of different 
lengths. We use a tile size of 1 million for SCAMP while GPU-
STOMPOPT computes across the entire length of the input in one 
go, as it does not perform tiling. We generate the MP using 
SCAMPDP, SCAMPSP and GPU-STOMPOPT with single and double 
precision. We used a window length longer than the longest flat 
artifact region in the data, to allow us to isolate errors caused by 
the update formula from the inherent loss of information from 
artifacts that cannot be represented in lower precision. 

Table 6 presents the results of the experiment. Altogether 
SCAMP was three or more orders of magnitude more accurate 
than STOMP on these datasets. Each entry in Table 6  is the 
maximum absolute error found between the double and single-
precision MP calculations. We highlight absolute errors that 
exceed 0.01 in red to emphasize that a domain scientist would not 
consider these results sufficiently accurate to use or report.  

SCAMPSP suffers a substantial accuracy loss compared to 
SCAMPDP but achieves much higher performance.  If a user’s 
dataset and application can tolerate the loss of accuracy, there is 
much to be gained in terms of efficiency. We observe that 
SCAMPSP works well on data that is highly regular with a small 
min-max range, exemplified by ECG data.  
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Figure 10: Single precision error comparison between GPU-
STOMPOPT and SCAMP on White Fly EPG dataset. top) 
original data. middle) SCAMP absolute error. bottom) GPU-
STOMP absolute error.  

 
Table 6: Maximum absolute error (Pearson Correlation) for 
various datasets/algorithms. Red denote high error 

Maximum 
absolute error 

Size (m) SCAMP 
SP 

STOMP SP 

Whitefly EPG 2.5M (1000) 3.75*10-2 1.89*101 
ECG 8.4M (100) 3.14*10-4 2.07*10-3 
Earthquake 1.7M (200) 6.35*10-1 3.17*103 
Power Demand 10M (4000) 4.85*10-2 2.22*10-1 

Chicken 9M (1000) 4.92*10-2 2.27*101 
99.9 percentile 
absolute error 

Size (m) SCAMP 
SP 

STOMP SP 

Whitefly EPG 2.5M (1000) 3.00*10-3 1.55*101 
ECG 8.4M (100) 4.40*10-5 4.02*10-4 
Earthquake 1.7M (200) 6.08*10-1 1.94*103 
Power Demand 10M (4000) 8.52*10-3 1.29*10-1 

Chicken 9M (1000) 1.96*10-3 1.70*101 

 
SCAMPSP completely fails on the Earthquake dataset in Table 

6. This is because the large earthquake’s signal has a magnitude 
greater than 107, which cannot be represented precisely by single-
precision floats. It may be possible to reduce the error of SCAMPSP 
for more types of data, but we leave this task for future work. 

5 Case Studies in Seismology 
Figures 1 and 4 suggest that motifs are important to many 

domains. Due to space limitations, we limit our case studies 
reported in this paper to seismic data, which provide information 
about Earth’s interior structure and processes. We define seismic 
data to be any recorded motion (e.g., displacement, velocity, 
acceleration) measured using seismic instruments at the Earth’s 
surface. Detected and located seismic events (i.e. earthquakes) can 
be used for studying earthquake source processes and source 
physics, fault behavior and interactions, for determining Earth’s 
velocity structure, and to constrain seismic hazard [12]. Many of 
these applications benefit from detection of smaller events, which 
can be missed due to insensitive detection algorithms, or human 
analyst error [48]. Improvements to seismic data instruments, 
networking and data management, and reductions in cost, have 
resulted in a power law increase in seismic data volume [19]. 
Probing this huge volume of data is an ongoing challenge. 

Performing query searches for seismic data can increase the 
detectability of seismic events by one order of magnitude [29][36]. 
However, this method requires a priori known queries (often 
referred to as ‘waveform templates’ in seismology) as input.  

Although waveforms of events in a local earthquake catalog 
can be used, this relies on suitable events being present in the 
catalog. While an ‘autocorrelation’ motif discovery method can 
identify suitable queries, it is expensive computationally in terms 
of memory and time [6][34]. The analysis in [6] was restricted to 
one hour of data, which limited the number of discoverable motifs.  

Other studies have performed motif discovery by converting 
seismic time series to small and dense proxies, and computing a 
Locality-Sensitive Hash (LSH) [4][7][32], an approximate and 
reduced-dimension nearest neighbor search. This approach was 
~143x faster than autocorrelation for one week of continuous data, 
but produced false positive and false negative results [7]. In 
addition, LSH requires the careful selection of multiple, data set-
specific tuning parameters, a process that requires visual 
inspection and validation against the results of other methods.  

In contrast, SCAMP can exactly search datasets that can only 
be searched approximately using current methods. We consider 
the milestone of one billion data points (~579 days, ~1.5 years) of 
seismic data with a 20 Hz sample rate. In two examples, we 
demonstrate how and why transitioning motif discovery 
timescales from hours of data to years of data is a potential game 
changer for the field of seismic data mining. 

5.1 Detecting Foreshocks and Aftershocks 
The town of Parkfield, located on the San Andreas fault in 

central California, experienced four magnitude ~6 earthquakes in 
the 20th Century: 1901, 1922, 1934 and 1966 [45]. A repeat event 
was predicted to occur between 1985 and 1993, spurring the 
‘Parkfield Earthquake Prediction Experiment’, which tried to 
capture the earthquake with the best available instrumentation. 
The actual event (the ‘mainshock’) occurred ‘late’ in 2004, and was 
recorded in extraordinary detail by the low-noise, borehole 
seismometers of the Parkfield High Resolution Seismic Network 
(HRSN) [45][47]. Many of these earthquakes were detected and 
cataloged in real-time at the Northern California Earthquake Data 
Center (NCEDC) by an automated procedure, and quality checked 
for false positives by human analysts. We use this catalog as a 
reference. To investigate i) whether the HRSN data contain 
information on any aftershocks that were not included in the 
NCEDC catalog, and ii) whether there was any change in behavior 
before the mainshock, we ran SCAMP on 580 days (1,002,240,008 
points) of data from Parkfield. We use 20 Hz horizontal 
component seismic data (from 28-11-03 to 9-7-05) from the HRSN 
station VCAB, centered on the 2004 Parkfield mainshock time (i.e. 
28-9-04). We set the query length at 100 samples (5 seconds). We 
band-pass filtered the data between 2 and 8 Hz, a frequency range 
that can detect low signal-to-noise ratio earthquakes.   

Figure 11 shows a zoom-in of two sections of the waveform 
and their corresponding MPs. The motifs for aftershocks of the 
Parkfield earthquake have a very characteristic shape. The MP 
drops abruptly as the query window begins to capture the 
beginning of the earthquake waveforms, followed by a gradual 
increase back to the background noise level, indicating that the 
two waveforms being compared have similar shapes at their 
beginnings, and dissimilar shapes at their ends.  

 

0
2
4
6 White Fly EPG 

0

1

0

1

0 2,500,000

SCAMP error

STOMP error



Matrix Profile XIV: Scaling Time Series Motif Discovery … SoCC’19, November, 2019, Santa Cruz, California USA 
 

 

 
Figure 11: Examples of a waveform snippet (top) and 
corresponding MP shape (bottom) for aftershocks of the 
Parkfield earthquake. left) a small aftershock. right) a 
larger aftershock with a waveform amplitude that is three 
orders of magnitude larger.  

The first arrivals (first motions) of seismic waves have 
polarities (either up or down) that reflect both the mechanism of 
the earthquakes that generated them and their location relative to 
the station. The initial drop in the MP indicates the waveforms 
have the same first motion polarity. The next few seconds of 
arrivals to the station include reflections, refractions and 
reverberations of seismic waves – collectively referred to as the 
seismic ‘coda’ – which are much more sensitive to differences in 
earthquake location, and therefore much less similar between 
pairs of events [1]. The duration of the gradual increase in the MP 
is longer for the larger event (Figure 11.right), consistent with the 
empirical relationships of signal duration (and coda length) with 
event magnitude [21][8]. We propose two important applications 
of MP results to seismology: ii) The abrupt initial drop of the MP 
can select the first motions of seismic events, which is an ongoing 
challenge in seismology [26][33]. (ii) The length of the MP valley 
from the sudden drop to its recovery can help to measure the coda 
length, which correlates with earthquake magnitude [8][21]. 

Next, we performed an event-detection experiment using a 
MP containing the Pearson Correlation Coefficient (MPCC, for 
short). Pearson correlation is bounded in the range [-1,+1], can be 
trivially converted to Euclidean Distance, and is widely used in 
seismology studies [31][25][37]. We count the number of MPCC 
peaks separated by at least 100 samples (5 seconds) to prevent 
overcounting the same earthquake when multiple peaks are 
present for one event. Long traces of seismograph data often 
contain repeated patterns corresponding to special types of sensor 
noise; these are easy to filter, as they create near perfect motifs. 
We count the number of MPCC peaks in the range [0.90, 0.99].  

Figure 12 shows the number of MPCC motifs per day for our 
580 days of VCAB data. Although we targeted the Parkfield 
earthquake, we detected other nearby earthquakes and their 
aftershocks, notably the 2003 Mw 6.5 San Simeon event, and two 
other moderate (Mw 4.0–4.5) earthquakes nearby. A series of motif 
peaks in the lead-up to the Parkfield mainshock (around 04/07/01) 
do not correspond to events in the regional earthquake catalog, 
and may represent previously undetected foreshock activity; we 
have reported them to collaborators in seismology to investigate. 

Figure 13 compares the total number of motifs in the MPCC 
range [0.9, 0.99] over the first 90 days of the Parkfield aftershock 
sequence with the number of catalog aftershocks reported in the 
NCEDC catalog. This analysis reports ~16x more detections than 
those reported by the NCEDC. Some of these thresholding-based 
detections may be station artifacts, but visual inspection suggests 
that they account for less than 5% of the events. 

We also fit the Omori-Utsu aftershock rate equation [46] to 
the detected and catalogued aftershocks of the Parkfield 
earthquake. Figure 14 shows that the number of motifs per day fit 
the Omori-Utsu law almost perfectly. Values retrieved from the 
Omori-Utsu rate equation can provide information about the 
physics of the mainshock [16] and also even can be used for 
forecasting large aftershocks [28].  

5.2 Detecting Subtle Seismic Motifs 
Low frequency earthquakes (LFEs) are seismic events that 

occur deep in the crust and typically have very low signal-to-noise 
ratio signals. LFE recurrence is a proxy for movements at the roots 
of fault zones, and may be useful in short-term earthquake 
forecasting [51][52][53]. LFEs have been observed in the Cascadia 
subduction zone, where the Juan de Fuca plate subducts beneath 
the North American plate, from coastal Northern California to 
Vancouver Island. This ‘megathrust’ fault has the potential to 
produce great (magnitude ~9) earthquakes [2], motivating LFE 
detection in this region. Their low signal-to-noise ratios make 
detecting them challenging and time consuming (e.g., requiring 
sophisticated methods and visual inspection; [49][[50][6]). 

In order to see if we can detect these novel events in this 
region, we ran SCAMP on 579 days of data (start date 2006/03/01) 
for the vertical component of station I02A, located near Mapleton, 
OR. We band-pass filter these data at 2–8 Hz and resample them 
to 20 Hz. We set the query length to 200 (10 seconds), based on 
the length of LFE templates used in previous studies [49]. 

Figure 15 shows the motif density over time for this 
experiment. The number of motifs starts to increase around 
August 2006 and decrease in November 2006, and again increase 
in June 2007 and start to decrease around October 2007. We 
visually inspected some of these motifs (in both time and 
frequency domain) and classified them in four categories: i) 
regular earthquakes (less frequent, Figure 16. left.) ii) weather or 
human related signals (frequent), iii) Station artifact (less 
frequent), iv) LFE-like signals (frequent, Figure 16.right). 
Confirming a signal to be LFE is not easy, typically requiring 
detection at several stations and visual inspection of its frequency 
spectrum. In Figure 16 we show a discovered motif that was 
confirmed as a true LFE in [49]. Note that the MP for the LFE is 
not as low as regular earthquake but much lower than the 
background noise (Figure 16).   

In general, we detect fewer than 150 motifs per day in this 
dataset. This means that in order to discover LFEs a seismologist 
needs to inspect fewer than 150 sub-windows per day of data, a 
task that would take minutes to perform. In contrast, the 
traditional visual inspection method for detecting LFEs (e.g., brute 
force checking [50]) requires inspection of thousands of sub-
windows (e.g., 17280 sub windows with a 5 second skip), 
potentially taking hours for each day of seismic data. Running 
SCAMP before searching for these subtle and important motifs 
could potentially provide a large time savings for seismologists 
and make their discovery much easier in this domain. 
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Figure 13: The number of events in the USGS NCSN Catalog 
(green line) and the number of motifs detected using 
SCAMP (red line) for the Parkfield earthquake aftershock 
sequence. For the catalog events we considered all events in 
a box with length ~200 km centered on the Parkfield 
mainshock epicenter. The start of seismicity in this plot is 
4 days prior to the Parkfield earthquake 

 
Figure 14: A fit of an Omori-Utsu relationship [46] (i.e. the 
law that describes aftershock rate behavior) to the number 
of motifs per day for the first 30 days after the Parkfield 
mainshock. The R-squared of 0.988 indicates a very good fit 
and shows how the number of motifs can describe the 
expected aftershock behavior almost perfectly. 

 
These results were obtained by post-processing an MP 

produced by SCAMP; possibilities for further refinement remain 
open. These results show that SCAMP can detect LFEs, and has 
the potential to more generally explore the seismicity of the 
southern Cascadia subduction zone and other similar regions. We 
believe that SCAMP has a rich future in seismic data mining – a 
discipline that traditionally suffers from false negatives – and 
other domains that produce time series. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 15: Discovered motifs for 579 days of seismic data 
recorded on the vertical channel of station I02A, located 
near Mapleton, OR. The number of discovered motifs based 
on MPCC thresholding method shows two six-month 
periods were detected motifs gradually increase, that start 
in mid-2006 and mid-2007. We believe many of these motifs 
are low frequency earthquakes (see Figure 16). 

 
Figure 16: left) An example of an earthquake waveform 
snippet (top) and MP shape (bottom) in the vicinity of a 
discovered motif for a ‘regular’ earthquake. right) A 
waveform snippet and corresponding MP from a confirmed 
LFE (identified by [49]). 

6 Conclusion 
SCAMP exactly searches for motifs in time series at the data-

center scale. To the best of our knowledge, this work is the first 
time any research effort has reported performing a quintillion 
exact pairwise comparisons on a single time series dataset. 
Likewise, we believe this to be the first work to do exact motif 
search on more than one year (1.59 years to be precise) of 
continuous earthquake data. All code has been made freely 
available to the general public [27], whom we invite to confirm, 
extend, and exploit our efforts.  
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Figure 12: Daily number of discovered motifs for 580 days of data centered on the Parkfield earthquake (04/09/28), 
measured on the horizontal component of station VCAB, located ~10 km from the epicenter. Motifs are selected based 
on the peak MPCC values.  
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