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Real-Time High-Fidelity Reliability Updating with Equality Information using Adaptive
Kriging
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ABSTRACT

Current state-of-the-art methods for reliability updating with equality information transform this
challenging problem into an inequality one by introducing an auxiliary random variable. However, the joint
event of information and failure in the derived conditional probabilities is typically very rare, and therefore,
very challenging to estimate. Moreover, updating the reliability as new information arrives requires
reevaluation of the probability of the joint event, which involves large numbers of calls to performance
functions. We address these limitations by proposing a new approach to reliability updating called RUAK.
One of the important contributions is the decomposition of the rare joint event of the failure and observed
information into two events both with relatively high probabilities. Moreover, an adaptive Kriging-based
reliability analysis method is proposed for the estimation of the prior failure probability and the conditional
probability of information. This way, reliability updating for new information is conducted using the
efficient Kriging meta-model, which significantly enhances the computational efficiency. Results for four
examples indicate that the computational demand using RUAK is decreased by two orders of magnitude
compared to the state-of-the-art methods, while achieving higher accuracy. This approach facilitates real-
time reliability updating for various applications such as health monitoring and warning systems.

Key words: Reliability updating; reliability analysis; surrogate model; adaptive Kriging; Poisson
Binomial distribution; measurement errors, monitoring

1. Introduction

As sensing technologies are maturing and becoming more cost efficient, allowing their implementation at
large scales, information about the state of the built and natural environments are becoming more available.
These observations can include, for example, data on external loadings, component- and system-level
responses, and changes in characteristics of the systems. This information can be leveraged to reevaluate
or update forecasts of the performance of these systems. Among many metrics, reliability is one of the most
capable system performance measures that quantifies the probability of meeting a performance objective
considering the set of uncertainties that influence the performance. Updating reliability estimates based on
information provided by sensing systems can enhance confidence in our forecasts of the future performance
of the systems and lead to more effective risk-informed decisions.

Let X denote the vector of random variables with » dimensions, p(x) represent the joint probability
density function of x in X, E denote the events (i.e., failure in reliability analysis) and Z; represent the ith
observation obtained from sensors or monitoring equipment. 2z and {2, are the domains corresponding to
the outcome space of X. Concerning information Z = {Z; N Z, ...N Z,;;}, where m is the number of
information pieces, the conditional probability Pr(E|Z) can be defined as:

PI'(E n Z) _ fxE{.(ZEn_QZln,,,n_QZm}p(x)dx
Pr(z)

Pr(E|Z) = ¢Y)

fxe{nzln...nnzm} p(x)dx

Moreover, let the vector of random variables, X in Eq. (1) be partitioned into two groups of random
variables X; and X},. Here, Xj, denotes the random variables that appear in the information, Z;, exclusively
and X, represents the remaining variables in X. In reliability analysis, the prior probability of the failure
event, denoted as Pr(E) or Py can be determined as:



P, =P(g(X;) <0) =f p(x,)dx (2)

xgEQE

Methods for computing the prior failure probability include but are not limited to: crude Monte Carlo
simulations (MCS) [1], [2], First and Second Order Reliability Methods (FORM & SORM) [3], [4],
Importance Sampling [5], Subset Simulation [6], [7], and surrogate model-based approaches [8]-[14].
Among these methods, two Kriging-based approaches, AK-MCS proposed by Echard et al. [8] and EGRA
proposed by Bichon et al. [15], have shown great computational efficiency and hence attracted considerable
attention. To further enhance Kriging-based reliability analysis, improvements to active learning functions,
learning stopping criteria, and sampling strategies have been proposed. With regard to active learning
functions, the expected feasible function (EFF) is proposed by Bichon et al. [15], which prioritizes points
with large uncertainty and those that are close to the limit state. On the other hand, the ‘U’ learning function
proposed by Echard et al. [8] aims to quantify the probability of wrong sign estimation, which has been
adopted in recent publications [5], [16], [17]. Similar to ‘EFF’, an information entropy-based learning
function ‘H’, is developed by Lv et al. [18]. Moreover, Sun et al. [19] proposed the Least Improvement
Function ‘LIF’, which improves the learning process by searching for next best training points with high
probability of wrong sign estimation in the vicinity of the limit state, and gives higher priority to points
with high probability density. Other state-of-the-art learning functions are also shown to be very efficient
in strategically searching for training samples[20], [21]. However, aforementioned active learning methods
can just select one training point upon each iteration. A number of parallel training strategies, such as k-
means clustering and pseudo-Kriging, have been investigated in [12], [22]-[24]. For stopping criteria,
Bichon et al. [15] and Wen et al. [23] set the maximum EFF smaller than a prescribed threshold (e.g.,
max(EFF) < 0.001) as the indication of convergence. Additionally, the stopping criterion min(U) >
2 has been used in many studies [5], [8], [16], [17], [25]. It is shown that both stopping criteria
max(EFF) < 0.001 and min(U) = 2 may lead to a relatively large number of unnecessary trainings of
the surrogate model [8], [26]-[28]. Gaspar et al. [27] proposed a new stopping criterion based on the
stability of the estimated failure probability. Fauriat et al. [26] points out that the Kriging model is
sufficiently accurate if 98% of the candidate design samples satisfy min(U) = 2. By deriving the maximum
error of estimated probability of failure, Wang and Shafieezadeh [29] proposed an efficient stopping
criterion for the Kriging-based reliability analysis. An approach for real-time estimation of the maximum
error for time-dependent reliability analysis was developed by Jiang et al [30]. For sampling strategies,
Echard et al. [5], Balesdent et al. [31] and Dubourg et al. [32] used importance sampling techniques in
association with the adaptive Kriging model, which facilitates reliability analysis for rare events. Moreover,
Zhang et al. proposed the AKOIS method to optimize the procedure of searching for importance sampling
center, which is an efficient technique for circumstances with multiple Most Probable Points (MPPs) [33].
Chen et al. [34] developed a strategy that replaces the original sample population with multiple equivalent
ones. Such a strategy enhances the learning process with sufficient candidate deign samples in the vicinity
of the limit state. Additionally, subset simulation techniques are used with Kriging-based reliability analysis
in [16],[35] [36]. For example, Zhang et al. [37] proposed that the failure region can be better explored by
combining the Kriging meta-model with subset simulation. Wen et al. [23], Yang et al. [20] and Wang and
Shafieezadeh [38] proposed truncated candidate samples regions, which cut off candidate samples with
small values of probability density. Through this approach, the number of evaluations of the performance
function can be significantly reduced. To enable the Kriging-based reliability analysis for high-dimensional
problems, several strategies have been proposed including sensitivity analysis-based methods [28], [39],
[40] and dimension reduction-based techniques [41]. These methods have also been extended to efficiently
solve time-variant reliability analysis problems by transforming these limit state function into time-
invariant ones. The method subsequently takes the minimum value of all the responses at all time
discretizations [17], [42], [43]. Moreover, the system reliability analysis has been improved significantly
using Kriging surrogate models [20], [26], [44]. It is shown that Kriging can be integrated in the reliability
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sensitivity analysis [45], reliability-based design optimization [46], [47] and other uncertainty
quantification (UQ) techniques such as Bayesian updating [48], [49].

While various approaches for estimating the prior failure probability have been proposed, methods for
computing the posterior failure probability, denoted ast’ hereby, are still under-developed. It is known that

the computational complexity of estimating P}! depends primarily on the category of information [50]:
inequality or equality. The information Z; can be categorized as inequality, if it can be expressed as:

0z, = {hi(x) < 0} (3)

where h;(x) denotes the ith information function. On the other hand, information is classified into the
equality group, if it can be represented as:

2z, = {h;(x) = 0} 4)

The reliability analysis methods for estimating Pr in Eq. (2) can also be used to solve reliability updating
with inequality information in Eq. (3). However, reliability updating with equality information is relatively
intractable because the integrals in Eq. (1) result in zero probability, which cannot be treated as the
denominator. To overcome this challenge, integrals in Eq. (1) can currently only be solved using the surface
integral technique [50], which, however, is challenging to implement and cannot take advantage of the well-
developed reliability analysis methods.

To address these limitations, a number of techniques have been proposed that leverage existing
reliability analysis procedures to solve reliability updating with equality information. Gollwitzer et al. [51]
integrated the surface integral method with FORM & SORM techniques, which offers acceptable efficiency
and accuracy for linear reliability problems. However, the performance of this approach is not satisfactory
when the problem is non-linear, as the identification of the Most Probable Point (MPP) in such problems
using FORM/SORM may not be accurate. Alternatively, P}! can be estimated as a partial derivative by

introducing a dummy variable A as follows [50]:

| P X, )<0nh(X)=0
P; =Pr(g(Xy) < 0[h(X) =0) = ot lfr)[h(x) = 0] |

_ lAi_r)I(l)%Pr[g(Xg) <0NAhX) —A< 0] ()

.0
lAlir(l)mPr[h(X) — A< 0]

This way, the equality information {h(x) = 0} is transformed into an inequality, which means that existing
reliability analysis techniques can be applied. However, this approach in conjunction with FORM & SORM
can potentially result in significant errors in estimates of Pf’ , as the use of partial derivatives can amplify
the error estimated by the FORM & SORM. Another powerful tool called Bayesian Networks (BNs) is
widely used for reliability updating purposes. Straub and Luque [52], [53] integrated a Dynamic Bayesian
Network (DBN) and successfully applied it to time-invariant and time-variant deterioration problems.
DBNs are successfully applied in tunnel excavation [54], life-cycle analysis [55] and bridge condition
prediction [56]. However, generating the conditional probability tables (potentials), which are a crucial part
in BNs-based reliability updating, is very computationally demanding. To address this challenge, Straub
and Der Kiureghian [57], [58] proposed an enhanced BN framework denoted as eBN/rBN. In this approach,
the potentials are generated based on the reduced BNs (rBNs) with only discrete nodes by defining the
Markov envelop and strategically eliminating all the continuous nodes in eBN. Existing exact inference
algorithms can then be applied to update reliability based on the produced potentials table. The eBN/rBN
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are used in post-earthquake risk analysis and decision making [59]. A number of other investigations have
also used BNs for reliability updating [60]-[63]. However, BN-based approaches for reliability updating
have a number of limitations. First, the number of evaluations of the performance function g(X), which is
typically time-consuming e.g. for the case of high-fidelity Finite Element Models (FEMs), is still very large;
this limitation hampers the application of eBN/rBN for engineering and science problems. Furthermore, the
procedure for constructing the e BN/rBN is very complex and cannot be conducted by non-experts, as it
requires empirical knowledge of the process for node elimination and discretization. In contrast to the BN-
based reliability updating methods, Straub [50] proposed a new solution by reformulating the equality
information {h;(x) = 0} into an inequality information {h;(x*) < 0} with an additional auxiliary standard
normal random variable. By solving two structural reliability problems, this method enables reliability
updating without discretizing the outcome space of the information. This newly developed method has been
implemented in a number of practical engineering problems including fatigue-induced crack growth [50],
geotechnical engineering [64], [65], and system reliability updating [66]. However, this approach has two
shortcomings. The joint event in the numerator of the equation of conditional probability is very often a
rare event, which makes the conventional reliability analysis methods such as FORM or SORM inefficient
and inaccurate. Moreover, when new information becomes available, reliability analyses need to be
repeated in order to estimate the new probability of the joint event of observed information and failure.
These unavoidably increase the number of evaluations of the performance function and reduce the accuracy
of the reliability updating outcomes.

To overcome the aforementioned limitations, a new reliability updating method based on surrogate
models called Reliability Updating using Adaptive Kriging (RUAK) is proposed. A key contribution here
that facilitates computationally efficient reliability updating is the decomposition of P}! into three parts
using the Bayes’ theorem: prior failure probability Pr(E) = Py, probability of information Pr(Z), and
conditional probability of information Pr(Z|E). Unlike calculating the joint probability Pr(E N Z) in [50],
which is typically a rare event, Pr(E) and Pr(Z|E) are proposed to be estimated separately by surrogate
model-based reliability analysis methods, since these events have considerably higher likelihood. A general
approach based on surrogate models is then proposed to accurately and efficiently estimate the prior failure
probability Pr. This is achieved by generating a well-trained surrogate model that substitutes the original
time-consuming performance model and therefore allows the estimation of the failure probability using
crude MCS or Markov Chain Monte Carlo (MCMC). Another important feature of RUAK is that it
leverages the generated surrogate model to estimate Pr(Z|E) by introducing an auxiliary uniform random
variable. Later in the article, an adaptive Kriging-based reliability analysis method [8], [15] enhanced with
a new training stopping criterion called ESC is proposed as the surrogate model. RUAK offers several
advantages compared with conventional and state-of-the-art approaches. First, the reliability updating
problem involves estimation of P, which is rather straightforward. Second, only one reliability analysis for
Pr and P]! is needed throughout the updating process when new information becomes available. This feature
dramatically reduces the number of evaluations of the performance function. It should be noted that this
paper only investigates the feasibility of applying the surrogate model in reliability updating, thus, the
optimal surrogate model and other strategies for accuracy improvements are not discussed in this paper.

A brief review of reliability updating with equality information is provided in Section 2. A new
approach for reliability updating with equality information using surrogate models is introduced in Section
3. In Section 4, the proposed method RUAK is presented. This method is applied to four numerical
examples in Section 5. Finally, conclusions are presented in Section 6.

2. Reliability updating
According to Eq. (1), reliability updating is the process of estimating the posterior failure probability i.e.,
denoted as Pr(E|Z) or P]! where P]! = Pr(E N Z)/Pr(Z) and E represents the failure event, based on

existing information, Z. To accurately estimate P)ﬁ based on equality information without discretizing the
information space, Straub [50] proposed an innovative approach by transforming the equality information
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into an equivalent inequality function. In this section, the method used in [50] is briefly described, then a
new method based on surrogate models is proposed in the following section.

For information obtained for a system, there exists a likelihood function L(x) with the following
property [50], [67]:

L(x,) x Pr(Z|X, = x;) (6)

where x4 is the realization of the random vector X,;. To further elaborate the above formulation, let’s
consider a case where Z represents the measurement s, of a property of the system s(x) with measurement
error €. Thus, the likelihood function can be represented as L(xg) = fs[sm — s(xg)], with f; being the
probability density function (PDF) of €, and X; denotes all variables in X except €. For this case, x, = €
and h;(x) = 0 can be represented in the form of h(xg, s) = S(xg) — S;, + €. Based on this likelihood
function, the following equation always holds:

L(xy) = 2Pr{¥ — &~1[cL(x,)] < 0} %

where IV is a standard normal random variable, @1 is the inverse of the standard normal cumulative
distribution function (CDF) and c is a constant satisfying 0 < CL(xg) < 1. Note that %Pr{]\f -
<D_1[CL(xg)] < O} = %q){q)‘l[cL(xg)]} = L(xg) . Therefore, with Eq. (7), the formulation of the
likelihood function L(xg) is transformed into a reliability analysis problem with the limit state function
represented as:

h(n,x;) =n— & cL(x,)] (8)

with the acceptable domain defined as 2; = {N — Cb_l[cL(xg)] < O}. Considering Eq. (8), it can be
shown that:

Pr(Z|X, =x,) = % f p(n)dn 9

xg,’}’LE.QZ

where @(+) is the probability density function of the standard normal distribution and a is a constant for
considering the proportional relation in Eq. (6). Thus, the probability of the evidence can be derived as:

Pr(2) = f nPr(Zng=xg)p(xg)dxg

4 (10)
= EJ p(n)p(x,) dn dx,

xg,nenz

where (2 is the output space of the random variable X ;. Accordingly, the probability of the joint event
Pr(E N Z) can be derived as:
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Pr(ENZ) = f ﬂPr(E|Xg = x,)Pr(Z|X, = x,)p(x4)dx,

xge (11)
a
= —f p(n)p(x,) dn dx,
€ Jxgme{nzn0g)
Hence, the conditional failure probability in Eq. (1) can be rewritten as:
pr(g|2) = TRENZ) Jxyne(agnog) 9 (P (%) dn dxg (12)
r = =
Pr(Z) fxg,nenz p(n)p(x,)dn dx,
Denoting the random variables [xg, /n,] as x*, the above equation can be represented as:
Jectomnga P (x") dx*
Pr(E|Z) = —<t22n%) (13)
freg, ") dx

where p*(x*) = (p(/n)p(xg) is the PDF of the new random variable x*. The method derived in Eq. (13)
enables updating reliability without any assumption or approximation just by solving two reliability
problems. It achieves sufficient accuracy and efficiency with MCS-based approaches as shown in [50].
However, there are still some drawbacks in this approach. Obviously, in the numerator of Eq. (13), two
limit state functions need to be investigated including the performance function g(X g) and the limit state
function in Eq. (8). Additionally, the numerator of Eq. (13) is concerned with the analysis of a series system
reliability problem with two limit state functions, which is typically a rare event with very small probability.
Non-MCS-based reliability analysis techniques such as FORM or SORM are not reliable for such
circumstances. Moreover, it is necessary to reevaluate the numerator in Eq. (13) whenever new information
become available, which unavoidably increases the number of evaluations of the performance function
g(X g). This process becomes very time-consuming when the performance function g(X g) involves a
complex numerical model such as a high-fidelity FEM. To overcome the aforementioned limitations, an
efficient surrogated-based reliability updating algorithm called RUAK is proposed in the next section.

3. Reliability updating using surrogate models

Here we propose decomposing the posterior failure probability P}! into three parts using Bayes’ theorem:
prior failure probability Pf, probability of information Pr(Z), and conditional probability of information
Pr(Z|E):

Pr(Z|E) - Pr(E) _Pr(Z|E)- P

b =PrEl2) =—5 o ="

(14)

Note that the formulation of reliability updating through Bayes’ theorem in Eq. (14) is different from the
approach presented in Eq. (1), which is based on the joint event i.e., Pf = Pr(E N Z)/Pr(Z). Derivations
and computational details of Py (Eq. (16)-(17)) and Pr(Z|E) (Eq. (18)-(21)) are presented in the rest of this
section. First, Pr(Z) can be determined in a similar fashion to that in [50] using Equation (7)-(10). The
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problem in Eq. (7) can be reformulated in a simpler way using an auxiliary standard uniform distribution
instead of a normal distribution:

L(x,) = %Pr{P — ¢ L(x,) < 0} (15)

where P is a standard uniform random variable, c; is a constant satisfying 0 < clL(xg) <1, and it is

recommended that ¢; = ) Note that both normal and uniform auxiliary variables are able to

max(L(xg)
transfer the equality information to inequality information. To make the derivation of reliability updating
with equality information mathematically simpler, a uniform auxiliary random variable is used in this article.
Estimation of Pr(Z) follows the process presented in Eq. (10), but based on the limit state function
h*(p,xg) = p — c1L(xg).

The prior probability of failure, Py, can be estimated using MCS:

Npmcs
oo B ) 6
f N 9
McS
where Nycs is the number of the samples for MCS, xgidenotes the realizations of random variable X, S

represents all the samples for MCS, and I, (") is the indicator function for the responses from the

performance function g (xgi):

, B 1, when g(xgi) <0 L7
g (xgi) 0 wheng(xg) >0 a”n

The proposed reliability updating formulation in Equation (14) involves the new term Pr(Z|E). This
probability can be derived as:

Pr(Z|E) = f Pr(Z|X' = x)p'*ax’
x’E.(Zf
(18)

a a
=2 werwaa=S[  p@dpar
XI,pEN y++

C2 2 X1 pEN 4+

where X' is the random variable with the posterior distribution of X, in the failure domain (¢, x" is the
realization of X', Y (+) is the PDF of the standard uniform distribution, p’ is the PDF of X', ¢, is a constant

satisfying 0 < ¢,L(x") < 1, and is determined as ¢, = Note that c,, which is a function of x',

1
max(L(x1))
is not equal to ¢; which is a function of x4 in Eq. (15). £2++ is the acceptable domain corresponding to the
following limit state function:

h**(p,x) = p — ¢, L(x") (19)

4++ can be subsequently defined as 2,++ = {h**(p,x") < 0}. Let {f and Q; denote the estimated failure
and safe domains in S, therefore, Pr(Z|E) can be calculated using MCS as follows:

N
Z_f L,++ (x5, p; R
otz (%) P1) x € Oy (20)

a
Pr(Z|E) = —- ,
ZIE) = - N ,
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where Ny denotes the number of samples in S, and I7++ () is the indicator function defined as:

1,  whenh*™*(x},p;) <0 -
I Lpi) = , e 21
Z++(x p}) {0, when h++(x'-,pj) >0 x; € ()f (21)

Considering that the same unknown constant a appears in both Pr(Z) in Eq. (10) and Pr(Z|E) in Eq. (20),
it is automatically eliminated in the subsequent computation in Eq. (14).

To implement the new approach most efficiently and accurately, we propose using surrogate model-
based reliability analysis methods. Generally, this surrogate model represented by §(X,) replaces g(Xy)
in the above equations to arrive at the posterior failure probability 13}!. Different from the approach in [50]
i.e. Eq. (13), in the proposed method, only the computation of I3f requires the analysis of the performance
function g(X g). As the surrogate model-based reliability algorithms are known for their capabilities to
reduce the number of evaluations of the performance function, a well-trained surrogate model can be used
to replace the originally time-consuming computational model. Moreover, with the new information, the
computation of Pr(Z|E) in Eq. (20) is straightforward with minimal computational demand, as running
only the surrogate model is required. However, in Eq. (13), one needs to reevaluate the performance
function g(X g) for any new information that becomes available. Therefore, the proposed method derived
from the Bayes’ theorem has two primary advantages over the approach in [50]: (1) estimations of Py and
Pr(Z|E) are considerably less challenging than the probability of the joint event in the numerator of Eq.
(13); and (2) once Py is estimated, reliability updating for new information becomes highly efficient since
the simulations can be conducted entirely on the well-trained surrogate model.

4. The RUAK algorithm

In this section, the proposed reliability updating method RUAK is presented. RUAK integrates the method
presented in Section 3 with Kriging meta-model, which substitutes the originally time-consuming
performance function g(X g) with a Kriging-based surrogate model § (X g). The implementation of RUAK
is explained step-by-step in the next sub-sections.

4.1 Kriging model

To estimate the prior failure probability Pr and Pr(Z|E), a surrogate model § (X g) for the performance
function g(X g) is constructed in this paper using the Kriging meta-model. The Kriging meta-model, also
known as the Gaussian Process Regression, has been widely used in computer-based experiment design
[68]. In this model, the estimated responses are mean values and variances following a normal distribution
[39], [68]. An extensive review of the Kriging surrogate model can be found in [68]-[70]. In Kriging,
g(xg) is defined as:

9(Xg) = F(B.xg) + ¥(x5) = B"B(xg) + gp(x,) (22)

where x is the vector of random variables, F (B, xg) are the regression elements, and gp(xg) is the
Gaussian process. In F (B, xg), B(xg) is the Kriging basis and B is the corresponding set of coefficients.
There are multiple formulations of BTB(xg) including ordinary (f3,), linear (,80 +3¥N, ﬁixi), or quadratic
BotEN, Bixi+Bo+YN, Zj'-:lﬂijxixj), where N is the number of dimensions of x,. In this article, the
ordinary Kriging model is used. The Gaussian process g,;?(xg) has a zero mean and a covariance matrix
that can be represented as:
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cov (gp(x),9(x;)) = 0?R(x; % 6) (23)

where o2 is the process variance or the generalized mean square error (MSE) from the regression, x; and
X; are two observations, and R(xi, xj; 9) is known as the kernel function representing the correlation
between observations x; and x; parametrized by 8. The correlation functions implemented in Kriging can
include, among others, linear, exponential, Gaussian, and Matérn functions. The Gaussian kernel function
is used in this paper, which has the following form:

N
R(x;x;;0) = 1_[ exp (_gk(x;c - x}c)z) (24)
k=1

where xf‘ is the k;;, dimension of x; and 0 is estimated via the Maximum Likelihood Estimation (MLE)
method [68]. It is shown that the variation of 8 has significant impact on the performance of the Kriging
meta-model [23], [71], [72]. To maintain consistency, 6% is searched in (0,10) using the optimization
algorithms in DACE [69], [73] or UQLab [68]. Here, the formulation based on MLE can be presented as:

1
6 = argmin <|R(xi, Xj; 0*)|m 0'2> (25)
9+

where m is the number of training points. Accordingly, the regression coefficient 8, and the predicted mean
and variance can be determined as follows [68]:

B= (FFR'F)"'F'R'Y
ug(xg) = BT (x4)B + 1" (xy )R (y — FB)

02(x,) = o? (1 = ()R (xg) + (FTR M (x,) — B(x,)) (FTRF)™ (FTR r(x,) - B(xg))>
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where F is the matrix of the basis function B (xg) evaluated at the training points, i.e., F;j = Bj(x;), i =
1,2,..mj=12,..,p, r(xg) is the correlation between known training points x; and an untried point
Xg: 1 = R(xg,xi, 0), i =1,2..m, and R is the autocorrelation matrix for known training points: R;; =
R(xi,xj, 0), i=12,..,mj=12,..,m Therefore, g(xg) can be presented using the estimated Kriging
mean g (xg) and variance 05 (xg) as:

g(xg) ~ N (”é(xg)’ ag(xg)) (27)

It is obvious that the responses from the Kriging model g (xg) are not deterministic but probabilistic in the
form of a normal distribution with mean ug (xg) and variance Ug (xg). This stochastic property allows

developing strategies for enriching the training points by refining the Kriging model. In the following
subsection, the framework of RUAK and the implementation steps are explained.

4.2 RUAK
The proposed RUAK algorithm is described in this section, and a flowchart illustrating the process is
presented in Fig 1. The details of each step are summarized below:

o Step 1: Generating initial candidate design samples. In this step, Ny s candidate design samples are

(26)
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generated by Latin Hypercube Sampling (LHS) and the set of samples is denoted as S.

o Step 2: Initial training points. Randomly select an initial set of training points denoted as x;,- from S.
The number of initial training points affects the quality of the initial Kriging model and the computational
demand of the reliability analysis. For similar problems to those considered in this paper, the study in [§]
indicated that 12 initial training points are adequate. Therefore, we have used this number in the studies in
this article.

o Step 3: Kriging construction. Construct the Kriging meta-model § (X g) with current training points X¢,-.
This construction can be based on available packages such as DACE [69], [73] or UQLab [68]. Here, an
ordinary Kriging basis and Gaussian correlation function are used.

e Step 4: Kriging prediction. The Kriging responses f5(x4) and variances 05 (x4) are obtained from the
current Kriging model § (X g) for every point in S. According to responses f5(x,), the failure probability
ﬁf is estimated by crude MCS.

o Step 5: Identification of the next training point. In this stage, the popular ‘U’ learning function is
implemented to search for the next best training point. The ‘U’ learning function has the following form:

e (%)

ax (%)

U(xy) = (28)

The ‘U’ learning function estimates the probability that § (xg) wrongly estimate the sign (+/-) of the
performance function at x;. Thus, the point that minimizes the response of the ‘U’ learning function is
selected as the next best training point:

X = xlzllens(U) (29)
o Step 6: Updating the training points. Add the next training point to the set of training points.

o Step 7: Maximum error estimation of ﬁf_ As stated in the introduction, the conventional stopping criteria
(e.g. Min(U) = 2) are often too conservative and lead to unnecessary over-training of the surrogate models.
To resolve this issue, an efficient stopping criterion developed by the authors in [29] is adopted here. First,
the maximum error &,,,, of the estimated prior failure probability is determined. Note that the failure
probability with the Kriging model can be computed as:
N,

%) f
f chs
where IVf is the estimated number of failure points in S. The true failure probability based on crude MCS
is:

N¢

chs

where Ny is the true number of failure points. Thus the relative error of I3f can be defined as:

10
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32
P, N, (32)

€E =

The estimated failure domain is denoted as ﬁf, the safe domain as {, the total number of wrong sign
estimations in ﬁf as S'f , and in Qg as S;. Note that ﬁf,ﬁs €Q, and ﬁf NQ; =@. In the Kriging
model, Ny, S,, and §f are not deterministic but follow Poisson binomial distributions as shown in [29]. N¢
can therefore be estimated as:

Ne= Ny + 55— S (33)

Here, both $ and §f follow a Poisson binomial distribution with mean and variance shown below [29]:

A, A,

So-p( Y Brse S pese 1o pree ) x € 0 (39)
i=1 i=1
Ny Ny

$;~PB Zpiwse ,Zpiwse (1—P¥e) |,x €y (35)
i=1 i=1

where PB denotes the Poison Binomial distribution and P;**¢ denotes the probability of wrong sign
estimation for x;, which can be computed as P;**¢ = @ (—U (xi g)). Therefore, with a confidence level

the upper and lower bounds of S, and §f can be found as:

s.e (037 (5) 057 (1)) @)
= <0§f1 ()05 (1- %)) 37)

where @551 and @Efl are the inverse CDF of the Poisson binomial distribution. According to Eq. (33), the

upper and lower bounds of the total number of failure points can be derived as:
Ny € [N, —$% Ny +8%] (38)

where S }‘and S¥ are the upper bounds of S ¢ and S, respectively, thus, the maximum error can be estimated
as:

—~

Ny 1‘ ‘ Ny 1|> 2 (39)
= . Yy == = €
N — S} Ny + S¥ max

—~

N
E=’—f—1
Ny

Smax(

where §;‘ = @;fl (1 - %) and S* = @551 (1 - %) More details for the computation of €,,,, can be found
in [29].
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o Step 8: Checking the stopping criterion based on the maximum error. Check the stopping criterion:

émax < €thr (40)

where €y, is the error threshold set by researchers. If the stopping criterion is not satisfied, then the process
moves to step 3; otherwise, to step 9. It is expected that the true error (denoted as €), with confidence level
a, should be smaller than é,,,,. The relationships among €, €4, and €5, is:

€< émax < €thr (41)

It is shown that this error-based stopping criterion successfully solves the unnecessary training problems
associated with surrogate-based reliability analysis methods, as their stopping criteria are not directly linked
to the extent of error in the estimated failure probability.

o Step 9: Checking the coefficient of variation of the failure probability. In this step, the sufficiency of the
population of S is checked using:

COVp, = |5—L < COVyy (42)
rNucs

where COVp ; is the coefficient of variation of Pf and COVy,, is the corresponding threshold, which is
typically adopted as 0.05 [8]. If Eq. (42) is satisfied, then the process moves to step 10. If not, it means that
the number of Ny s is insufficient and an additional number Ny of candidate design samples Ag should be
added to S, and the process should move back to step 4.

o Step 10: Obtain the output of the prior failure probability Pf. The estimate of the prior failure probability
is final.

o Step 11: Estimate Pr(Z) and Pr(Z|E). In this step, the probability of evidence Pr(Z) and the conditional
probability of Pr(Z|E) are computed based on the well-trained surrogate model § (X g) using Eq. (20). Note
that the failed samples should be drawn sufficiently based on g (X g) for the purpose of accurate estimate
of Pr(Z|E).

o Step 12: Output of the posterior failure probability ﬁ'f. Estimate the posterior failure probability using
Eq. (14).

Note that the steps 1-6 in RUAK correspond to similar steps in AK-MCS [8]. In AK-MCS, the inner
loop adaptively trains the Kriging model until the stopping criterion (Max(EFF) < 0.001 or Min(U) = 2)
is satisfied based on the current candidate design sample, S. However, the size of S (i.e. Ny ¢s) has influence
on the accuracy of the limit state of § (xg), thus, the size of S should be well defined. In the outer loop, a
proper number of samples Ny s is selected first. This number may adaptively increase until the stopping
criterion in Eq. (42) is satisfied. If the two stopping criteria are satisfied, the Kriging model is regarded as
well trained. In RUAK, the stopping criterion for the outer loop is the same as that in AK-MCS. However,
the stopping criterion for the inner loop is set based on an upper bound derived in [29] for the error in failure
probability estimate given the size of samples in S.

12
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RUAK offers two major advantages compared with conventional reliability updating approaches. First,
reliability updating is transformed into three independent regular reliability analysis problems, which can
be efficiently analyzed using surrogated-model based reliability analysis methods. Particularly, the
numerator in Eq. (13) involves a series system reliability problem and such a problem is typically very rare.
In such cases, non-simulation based reliability analysis methods such as FORM and SORM may not offer
reliable results. The second important feature of the proposed method is its high efficiency in reliability
updating since it does not require investigating the performance function as new information becomes
available. It should be noted that two viewpoints can be followed for the estimation of P}!. The first approach

is introduced in this paper, which is the direct application of the Bayes’ theorem to reliability updating
problem as shown in Eq. (14). Another viewpoint is to first update the distribution of random vector X,

using Bayesian updating procedures based on new information and then estimate P}! for the system with

updated model variables using classical or advanced reliability analysis methods. The latter approach is of
course computationally very demanding.
In the Appendix, it is proved that these two general approaches lead to the same estimate of P}ﬁ. In the

first approach, which is the basis of the proposed method, the accuracy of the estimated posterior probability
of failure mainly relies on the construction of the limit state function. First, it should be noted that there is
no error in Pr(Z) since the computations of Pr(Z) in both pure MCS and Kriging-based MCS are the same.

Therefore, the error in the estimate of Pf/ can stem from the computation of Py and Pr(Z|E). Second,
based on Fig.2 (a), it can be inferred that the estimated limit state, § (Xg), is very close to the true limit,
g(X g), as the stopping criterion is set appropriately. It can be further inferred that the failure probability
estimated by the Kriging-based MCS closely approximates the one estimated through the pure MCS. Thus,
the error of Py can be negligible. Furthermore, as the stopping criterion is set appropriately so that § (X g) =
g(X g), the error of Pr(Z|E) becomes negligible. As shown in Fig.2 (a) and (b), let S denote the set of
candidate samples. If the responses of these points are examined by the true performance function g(Xj),
S can be classified into two groups of points S; and S¢. Here, Sy means the set of points that are truly safe
and Sy denotes the set of points that are truly failure. Then Pr(Z|E) is calculated based on Sy using the
approach for computing the probability of equality information. If the aforementioned process is
implemented using the Kriging surrogate model, S should be classified into two groups of points S S/ and
Sf/ . Here, S S/ and Sf/ denote the set of points that are estimated through the Kriging surrogate model as
safe and failure, respectively. Therefore, Sf/ can be accurately estimated so that Sf/ = §; when the
stopping criterion becomes very tight indicating that the limit state is accurately estimated. This process
can also ensure the accuracy of Pr(Z|E) as its estimation relies on Sf/ (Fig.2 (b)).

14



SwooONOOTULITE WN -

=
=

12
13
14
15
16
17

18
19
20

21
22
23

‘ Old candidate DOE A

o|_Candidate DOE / L New added candidate r‘}hp o )
A—poE alx ) v'o,\ 0|0
X Y P AN a7 : A Uo \vav) O
g 1
o —Fhexm ]l 0.0 o o
___________ i o
EACT) jo 94 ° \
] A= ) o o le) o)
o [¢] o A =~ il o o
o o) o) # A
@ o 9 O ®o %, 00 o o/
o o Afino ) 0 .
o (e} H 7 le) 0 o .
° 0 0A g o i ®o0~-0 o o s
o oOoO o N o .O. (e} o ©O ‘—~O.,__. o
(o] .
6 © 0000950 9%jo ; ) o © o/o © o
OC?O 0 A% /o /O 00 o o i
000 9%3009 2 < . o O o o %o ©
00 oBHEK® © 0 0 0 o o0 I~ o o
%0 o / o o 0 o: o
o o o % 5
Q o o Sf S Ol o o
f A
Sso 17 o2 o :
7N \
(a) (b)

Fig. 2 Illustration of the proposed method: (a) candidate design samples and the true and estimated
limit state functions for the estimation of Py and (b) candidate design samples and the limit state
functions for the estimation of Pr(Z|E)

5. Numerical examples

In this section, four numerical examples representing different levels of complexities, various probabilistic
distributions, and different number of dimensions are implemented to explore the efficiency and accuracy
of RUAK.

5.1. Low-dimensional example

The first example is two-dimensional and is designed to graphically illustrate the process of the proposed
RUAK algorithm. This problem describes the relation between load and load-bearing capacity in the
following form [50]:

gR)=R-S (43)

where the load S = 2.0 is a constant and the capacity R follows the Weibull distribution with the shape
parameter k = 3.0 and scale parameter v = 10. The event E is defined as the set of outcomes in the failure
domain 0¢(r) = {g(r) < 0}. A measurement of the capacity 7;, is available as 7, = 6.0 with the
associated measurement error &,,, which follows standard normal distribution. Thus, the likelihood function
can be represented as:

L(r, 1) = @y — 1) (44)

where r are the samples from R. In the computation of pf, the threshold of the stopping criterion is set to
€tnr = 0.05, the coefficient of variation of Pf is also set to COVp ;= 0.05, the number of training samples
is initially set as 12, and the initial number of candidate design points for RUAK is Ng = 10° with Ny, =

105. The results for prior failure probability with MCS and RUAK are presented in Table 1. Moreover, the
limit state function for Pr(Z) can be formulated as:

h*(p,1) =p — c1L(r, 1) (45)
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where L(r,1;,) is the likelihood of the error with L(r,7;,) = @©(&,;,), @(*) is the PDF of the standard normal
! ,7; € S. Fig.3 (a) illustrates the limit state in h* (p, 7). Note that Pr(Z) =

distribution and c1 = m
T'm

N
1 X1 I+ (i)

,1; € S with:
C1 Nmcs
1, when h*(p;, 1) <0
I LT = ,T; ES 46
7+ o) {O, when h* (p;,1;) > 0 i (46)
The limit state function for the conditional probability of the evidence Pr(Z|E) can be presented as:

h**(p,r") =p — ¢ L(r', 1) (47)

1

where 1’ are the samples with posterior distribution of R in 27 and ¢; = ————-
max(L(rj,rm))

,rj' € S¢. Moreover,

N
vl piT]
Pr(Z|E) = é%;(f)

,rj' € §f with:
1, when h**(p;,1/) <0 .
Ip++(pi1i) = { / ,T] €S (48)
_— 0, when h++(pi, rj') >0/ !
The limit state function h**(p, ") is illustrated in Fig. 3 (b). It is shown that only the points estimated as
failure in g(r) remain in estimating the conditional probability Pr(Z|E). Because of the difference between
constants ¢; and ¢,, the limit states in h*(p,r) and h**(p, ') are different.

Tp Accepted domain in h* - Accepted domain in AT ;\‘r&;ﬁ.:‘»g
Rejected domain in h* Bt el
0.8 . 08 [ AL
061 06 | -
& i ¥
0.4 4 04 |
0.2 18 02 |
o8 o 0
0 5 10 15 20 2 0
T r/
(a) Limit state of h* (p, ) (b) Limit state of h** (p, ")

Fig. 3 Illustration of h* (p,r) and h** (p, ")
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Table 1. Reliability updating results for Example 1 based on 10 simulations. For the purpose of comparison,
results from [50] including the Axis-Parallel Importance Sampling (APIS), FORM/SORM are also
summarized here. Note that N,;; denotes the number of calls to the performance function and N;; (N5 =

1 ! 1s the number of calls for one line search in APIS.

Methodology Pf Pf Computational demand
MCS [3.49,3.70] x 107¢ [7.86,8.10] x 1073 Nogu = 1x 108
(DACE ;gtAhK: 0.05) [3.36,3.87] x 107¢ [7.75,8.21] x 1073 Negy =12
r .
RUAK
(DACE &[Ejth = 0.01) [3.42,3.81] x 107¢ [7.79,8.20] x 1073 Negu = 12
r .
(UQLab EEZK — 0.05) [3.21,3.96] x 107¢ [7.62,8.42] x 1073 Negy =12
r .
(UQLab EiiK — 0.01) [3.45,3.76] x 107° [7.79,8.17] x 1073 Negn = 12~14
r .
APIS [50] [2.95,3.91] x 107¢ - Nean = 500 X Ny
FORM [50] 1.37 x 107 - -
SORM [50] 2.11x 107 - -

Two toolboxes for Kriging including DACE [69], [73] and UQLab [68] are investigated to explore the
performance of RUAK. When implementing these two toolboxes, the Gaussian kernel function and

ordinary Kriging are chosen. Moreover, the gradient algorithm is implemented for the global optimization
in UQLab toolbox. To satisty COVp ;= COVyp, = 0.05 as mentioned in step 9 of RUAK, the final number

of candidate design samples is determined as 1 X 10°(i.e. Ny = 1 X 10%). The results in Table 1
showcase that the proposed algorithm RUAK outperforms other methods in terms of accuracy and
efficiency. As the stopping criterion for training the Kriging surrogate model becomes tight (i.e. €¢p,
changes from 0.05 to 0.01), the estimated prior and posterior failure probability become closer to the results
obtained by the MCS. When €;,- = 0.01, the results estimated using UQlab toolbox is more accurate than
DACE even though implementation using UQLab requires fewer number of evaluations of the performance
function. The performance of FORM/SORM based on Eq. (13) is not satisfactory because Pr(E N Z) is a
very rare joint event for which it is very difficult to find the MPP. Moreover, even though the sample-based
approach APIS can reach acceptable results, it requires a relatively large number of evaluations of g(R).
Compared with the approaches above, the proposed RUAK algorithm needs only 6 evaluations of g(R)
and also achieves very high accuracy in both prior and posterior failure probabilities.

5.2. Linear and normal case

The second example is selected to investigate the performance of reliability updating methods for a problem
involving multiple random variables [50]. The performance function is defined as:

9(X,) = 2X; + 3X, + 6X3 + 4X, — X5 — 2Xs — 4X; — 4Xg (49)
where X, = [X;, ..., Xg] are identically distributed independent normal random variables with mean py =

10 and standard deviation oy = 2. Three observations are made in this example with three measurement
CITOTS €1, Em2» and &,3. All of those are identical independent standard normal random variables.

3 3
1@ = | [LiGrxn = | [o@0 - x =) (50)
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where x;,x,,x3, and x, are samples from X;,X,, X3, and X, . In the implementation of RUAK for
computing Pf, the threshold of the stopping criterion is set to €y, = 0.05, the coefficient of variation of I3f
is also set to COVp ;= 0.05, the number of initial training samples is set to 12, and the initial number of

candidate design points for RUAK is Ng = 10* with Ny, = 10*. The results obtained using RUAK are
presented in Table 2. Note that the limit state function h* (p, xg) for the probability of evidence Pr(Z) is:

h*(p,x5) =p — c1L(x,) (51)

where the likelihood function L(xg) = @(em1) " @(emz) * @(gm3) and ¢; = x; € S. Similarly,

max(L(xy)’
the limit state function for the conditional probability of the evidence Pr(Z|E) can be represented as:

h**(p,x) = p — c,L(x") (52)

where x's are the samples from the posterior distribution of X in ¢ and ¢, = ,X; € ff.

1
max(L(x;-))

Table 2. Reliability updating results for Example 2 based on 10 simulations. For the purpose of comparison,
results from [50] including APIS and FORM/SORM are also summarized here.

Methodology ﬁ} I3f Computational demand
MCS [0.82,1.08] x 1073 [2.36,2.40] x 1072 Nogu = 1x 108
RUAK _3 -2 —
(DACE & €, = 0.05) [0.79,1.21] x 10 [2.21,2.52] x 10 N,q;, = 69~88
RUAK
(DACE &Sm = 0.01) [0.81,1.14] x 1073 [2.32,2.44] x 1072 N,gy = 115~158
r .
(UQLab SI:[éfhK = 0.05) [0.81,1.17] x 1073 [2.26,2.48] x 1072 Neau = 39~54
r .
RUAK _3 -2 —
(UQLab & €4y = 0.01) [0.83,1.12] x 10 [2.35,2.43] x 10 N = 75~93
APIS [50] [1.00,1.30] x 1073 - Nogy = 1x10%
FORM [50] 0.22 x 1073 - -
SORM [50] 1.60 x 1073 - -

The performance of RUAK is summarized in Table 2, which examines its implementation with two Kriging
toolboxes including DACE [69], [73] and UQLab [68]. In this case, the final number of candidate design
samples is determined as 2 X 10* (i.e., N,,os = 2 X 10%). It is shown that N.,;; when using DACE is
significantly larger than that for UQLab. Specifically, N.,;; ranges from 69 to 88 for DACE, while it ranges
from 39 to 54 for UQLab for €, of 0.05. Moreover, N, is in the range of 115-158 for DACE with 10
simulations, while it ranges from 75 to 93 using UQLab for €;,- of 0.01. Generally, the estimated posterior
probability of failure, p}!, appears to be close to the results obtained using MCS as €;j,- becomes tighter.
When €y, is equal to 0.05 and 0.01, the estimates of 13}! are in the range [0.81,1.14] x 10™3 and
[0.83,1.10] X 1073 | respectively using UQLab. For DACE, these estimates are in the range
[0.79,1.21] x 1072 and [0.81,1.14] X 1073, respectively for €., 0f 0.05 and 0.01. The estimates Py using

MCS are in the range [0.82,1.08] x 1073, These results indicate that UQLab toolbox is more accurate,
robust and efficient than DACE. This is due to the fact that UQLab uses global optimization to determine
the hyper-parameters, while the DACE toolbox uses a local optimization method. The estimated posterior
failure probability using FORM and SORM generates an error of nearly 50% compared with MCS. This
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demonstrates that FORM and SORM are not appropriate for this problem. Additionally, APIS requires
approximately 10* evaluations of the performance function g(X g). However, the proposed RUAK method
can achieve both high accuracy and efficiency compared with those approaches with maximum of 88
evaluations of the performance function.

5.3. Structural system case

The third example is a classical structural system studied by many researchers [58], [74]. As shown in Fig.
4, this elastoplastic frame is subjected to both horizontal load H and vertical load V. The plastic-moment
capacities of this structure are denoted by Rq, R, ..., Rs. This example investigates a series system
reliability problem because of three failure mechanisms including sway, beam, and combined mechanisms.
Thus, the response of the performance function can be defined as the minimum of three corresponding
responses as follows:

T +1y+1,+715—5h
g, h,r) =min r,+2r;+ 1, —5v (53)
r+ 2r;3+ 21, + 15— 5h —5v

where H follows the Gumbel distribution, V' follows the Gamma distribution and Rq,R», ..., R5 are
correlated and lognormally distributed. The probabilistic information of random variables is summarized

in Table 3.

Table 3. Random variables in Example 3.

Random variable Distribution type Mean C.0.V Correlation
R;,i=1,..,5(kN.m) Joint lognormal 150 0.2 Pinr = 0.3
H(kN) Gumbel 50 0.4 Independent

V (kN) Gamma 60 0.2 Independent

Two measurements for R, and Rz, denoted as M, and Ms, are available with measuring errors &,,; and
&m2 following independent normal distributions with mean 0 and standard deviation of 15 kN. m. Thus, the
likelihood function can be represented as:

L(r) = " (Mg —14) - 9" (M5 — 75) (54)

where r, and 5 are samples from R, and Rs, and ¢* is the PDF of normal distribution with mean 0 and
standard deviation of 15 kN. m. In the implementation of RUAK, the number of initial training samples is
set to 12 and the initial number of candidate design points is Ng = 10* with Npg = 10%. The results of this
case are presented in Table 4.
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Fig. 4 Ductile structural frame with three failure mechanisms

The limit state function h* (p, r) for the probability of evidence Pr(Z) is:
h*(p,1) =p — 1 L(1) (55)

where the likelihood function L(r) = @(&,1) - @(&2) and ¢; = r; € S. Similarly, the limit

1
max(L(r))’
state function for the conditional probability of evidence Pr(Z|E) can be presented as:

h**(p,7") =p — c,L(1") (56)

where 7's are the samples with a posterior distribution of R in 2 and ¢, = ,Ti € ff.

max(L(r;-))

As shown in Table 4, the proposed RUAK algorithm is very efficient in reducing the computational
demand compared with the e BN/rBN approach. For computing the potential tables in the reduced BNs, 441
times of structural reliability analyses are needed, each requiring often more than tens of calls to the
performance function. In terms of accuracy of ﬁ;, both eBN/rBN and RUAK have good performance. The

discretization of continuous points in reduced BNs and construction of the potential table are among reasons
for the large number of N,;;;. Moreover, the eBN/rBN approach requires expert knowledge to construct an
efficient BN. However, this process is completely avoided in the proposed RUAK algorithm. In this
example, two Kriging toolboxes including DACE [69], [73] and UQLab [68] are implemented. The final
number of candidate design samples is determined as 2 X 10* (i.e., Nypes = 2 X 10%). As shown in Table
4, DACE toolbox requires a larger number of calls to the performance function compared to UQLab. For
this example, one should note that three groups of information (i.e., M, = 50 and M5 = 100, M, = 150
and M; = 100, and M, = 150 and M5 = 200) are used to update the reliability. For conventional
reliability updating methods such as the eBN/rBN method in [50], the total number of calls to the
performance function increases corresponding to the number of different groups of information. However,
this is not the case in RUAK because of the well-trained surrogate model and the independent estimation
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of the prior probability of failure. These features can greatly benefit real-time health monitoring and
warning systems that need to investigate sophisticated models rapidly.

Table 4. Reliability updating results for Example 3 based on 10 simulations. For the purpose of comparison,
results from eBN/rBN in [58] are also summarized here. Note that Ngp4(Nggq = 1) is the number of

evaluations of the Berformance function for one structural reliabilitz analzsis in eBN/rBN.

' '
~ ~

P P P
f f f .
Methodology (My=50 (M,=150 M, =150 B Computational
M, =100) Mg =100) M = 200 demand
MCS 5.135:12.72] £<3.1501L23.68] 26.1501%7.75] E(z.fgizz.m N = 1% 10°
RUAK [2.19,2.98] [3.28,3.82] [6.28,7.96] [2.39,2.91] N = 94144
(DACE & €45, = 0.05) x 107! x 1072 x 10~3 x 1072 call
RUAK [2.23,2.84] [3.33,3.78] [6.33,7.81] [2.57,2.85] N = 295975
(DACE & €4 = 0.01)  x 1071 X 1072 x 1073 x 1072 call =
RUAK [2.19,2.94] [3.31,3.79] [6.29,7.95] [2.38,2.87] N eno3
(UQLab & €., = 0.05) x 107! x 1072 x 10~3 x 1072 call
RUAK [2.27,2.82] [3.38,3.75] [6.38,7.78] [2.55,2.81] N = 187~214
(UQLab & €,y = 0.01)  x 1071 x 1072 x 1073 x 102 catt =
eBN/fBN [58] 24%10°1 36x107% 71x107% 26%x102 Ny = 441 X Ngp,

5.4. Example with 10 dimensions

The fourth example investigates a 23-bar truss with 10 input random variables [9], [72]. This example is
designed here to investigate the capability of the proposed RUAK algorithm in working on multiple
measurements. As shown in Fig. 5, the structure includes 11 horizontal bars and 12 diagonal bars and is
subjected to 6 vertical forces P = [Py, ..., Pg]. The performance function of this problem is defined as:

g(P, A, A, Eq,E;) = 0.14 — |dis(P, Ay, Ay, Eq, E)| (57)

where dis(P, A1, A;, E1, E;) is the displacement at the midpoint m and can be calculated using structural
analysis methods. The vertical forces P; to Py all follow Gumbel distributions. A; and A, are the cross
section of horizontal and diagonal bars, respectively, and E; and E, are their Young’s moduli. The
probabilistic information of the 10 independent random variables is presented in Table 5. In the
implementation of RUAK, the number of initial training samples is set to 12 and the initial number of
candidate design points for RUAK is Ng = 10* with Npg = 10%. Four measurements of P;, P, A; and A,
are made with errors &1 and &,,,, which follow a normal distribution with mean 0 and standard deviation
0.5 x 10* and &,,,3 and &,,4, which follow a normal distribution with mean 0 and standard deviation
1 X 10~*. Thus, the likelihood function can be represented as:

L(x) = @ (em1) - @ (emz) - @** (em3) - @>* (€ma)
= @b?(8.5x 10* — P)) - ¢¥%(7.5 x 10* — P,) - ¢>*(1.85 x 1073 — 4,) (58)
- @34(0.9x 1073 - 4,)

where @12 is the PDF of normal distribution with mean 0 and standard deviation 0.5 X 10* and ¢@3* is the

PDF of normal distribution with mean 0 and standard deviation 1 X 10~%. The limit state function
ht (p, xg) for the probability of evidence Pr(Z) is:

h*(p,x5) =p — c1L(x,) (59)
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where p are the samples from

1
maxae) i €5

the standard uniform distribution, x4 = [py,pe, a1,a,] and ¢; =

24
1ss with 10 random variables

Fig. 5 Example 4, t

Table 5. Random variables in Example 4.

Random variable  Distribution Mean Standard deviation
P, — Pg Gumbel 6.5 x 10 6.5 x 103
Ay Lognormal 2x1073 2x107*
A, Lognormal 1x1073 1x107*
E; Lognormal 2.1 x 10! 2.1 x 10
E, Lognormal 2.1 x 10! 2.1 x 10!

Similarly, the limit state function for the conditional probability of evidence Pr(Z|E) can be presented as:

h**(p,x) =p — e, L(x") (60)

where x’ are the samples from the posterior distribution of X, in ()¢ and ¢, = X € §f. The

max(L( x;))
simulation results are summarized in Table 6.

In this example, it is shown that the number of evaluations of the Finite Element model using MCS is
quite large. Moreover, the estimates of the prior and posterior failure probabilities using the proposed
method are accurate. The final number of candidate design samples for this example is determined as
5% 10* (i.e. Nppes = 5 X 10%). As shown in Table 6, the UQLab toolbox is more efficient than DACE in
terms of the number of calls to the performance function. In order to achieve even a higher accuracy in
failure probability estimates, the proposed RUAK algorithm offers two options: setting a tighter threshold
for error €y, in Eq. (40) and a tighter threshold for the coefficient of variation COVy,, in Eq. (42).

Table 6. Reliabilitz quatinE results ExamEle 4 using RUAK based on 10 simulations.

Methodology ﬁ} I3f Computational demand
MCS [0.99,1.39] x 1072 [8.38,8.69] x 1073 Nggy = 1x10°
RUAK
(DACE &[EJ — 0.05) [0.87,1.65] x 1072 [8.16,8.92] x 1073 Nogu = 152~188
thr — Y-
RUAK_ [0.93,1.57] x 1072 [8.22,8.84] x 1073 Neguy = 235~275
(DACE & €5 = 0.01)
r .
(UQLab ESAK — 0.05) [0.86,1.63] x 1072 [8.16,8.89] x 1073 Negny = 125~141
thr — Y-
RUAK

(UQLab & €4, = 0.01)

[0.92,1.52] x 102

[8.25,8.82] x 1073

Noau = 194~223
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6. Conclusions

This paper proposes a reliability-updating algorithm named RUAK to estimate the posterior failure
probability with equality information using a surrogate model. Different from the approaches in [50] that
requires estimation of the probability of an often very rare joint event, the proposed algorithm applies the
Bayes’ theorem to decompose the posterior failure probability into three parts: prior failure probability,
probability of information, and conditional probability of information. This decomposition leads to events
with higher probability of occurrence than the joint event in [50]; therefore, decreasing the computational
demand of reliability updating. Another important feature is that RUAK leverages surrogate models in
general and adaptive Kriging algorithms in particular to estimate the prior failure probability. This well-
trained surrogate model in the developed formulation of reliability updating also facilitates estimation of
the conditional probability of equality information. This subsequently results in a highly efficient reliability
updating algorithm that does not require analyzing originally time-demanding performance functions when
new information becomes available. Last but not least, the implementation of RUAK is relatively easy
without any empirical knowledge or expertise. Though the adaptive Kriging approach is implemented in
the proposed RUAK algorithm, other surrogate models such as the Polynomial Chaos Expansion, Response
Surface, and Support Vector Regression are also applicable.

Four numerical examples are investigated to show the advantages of the proposed RUAK algorithm. It
is shown that the number of evaluations of those computational examples is significantly reduced through
the use of RUAK. However, the application of RUAK is currently appropriate for time-independent cases.
Extension of this method for time-dependent reliability updating problems is a future research direction.

Appendix
Two viewpoints toward estimating the posterior probability of failure, P', are illustrated in Fig. 6 and
investigated in this section. It is proved that both methods lead to the same posterior probability of failure.

p(x) , Information 2 + reliability updatingr—1
f
£
(a)
P(xg) / Information Z \p’ (x:q) Reliability analysis
(b)

Fig. 6 Two viewpoints toward estimating the posterior probability of failure with (a) estimating P}!

directly using reliability updating algorithm and (b) updating the probability distribution of random
variables then implementing a reliability analysis method to estimate P)ﬁ

As introduced in this paper, the first approach estimates the probability of information as shown in Eq. (14).

Following the estimation of Pr(Z), Pr(E) and Pr(Z|E) as shown in this paper, the posterior probability can
be found as,

_ fxgenzp(xg)dxg ’ ferEp(xg)dxg

=
fxge_()z p(xg)dxg

(61)

23



~

10

11
12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

The second approach is to update the posterior distribution of x first, then reevaluate the probability of
failure P;.
f

Pr(EXg) = B = Pg(X'y) <0) = | p(xs) dxy 62)

X/ g€ENE

where X', denotes the posterior distribution of x; based on new information. First, the probability density
function of X', can be represented as,

L(x'g)p(x'y)
fx,g L(x'g)p(x'y) dx'g

p'(x'y) = (63)

The Bayesian Updating with Structural reliability method (BUS) can be applied here to estimate p’(x'g)
[67]:

o plx,|x,; € 2
p(xg)= (g g Z)

64
fxgegzp(xg)dxg ( )

where
27 =p <cl(xy)] (65)

Let C; denote the constant outcome of the denominator, fxe nzp(x)dx. Then Eq. (62) can be further
expanded to:

! ! ! ! p X
szf/ P(xg)dxng %dxg
xgE.QE d

XgE[.QEﬂ.Qz]

(66)

fxge[,{)En_QZ]p(xg) dx.g _ fxe[_QEn_QZ]p(xg) dxg _ fxgeﬂzp(xg) dx.g ) fXgE.QE p(xg) dx.g

Cq fxgenzp(xg) dx, fxgenz p(x,) dx,

This result is the same as that in Eq. (61).
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