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ABSTRACT  7 
Current state-of-the-art methods for reliability updating with equality information transform this 8 
challenging problem into an inequality one by introducing an auxiliary random variable. However, the joint 9 
event of information and failure in the derived conditional probabilities is typically very rare, and therefore, 10 
very challenging to estimate. Moreover, updating the reliability as new information arrives requires 11 
reevaluation of the probability of the joint event, which involves large numbers of calls to performance 12 
functions. We address these limitations by proposing a new approach to reliability updating called RUAK. 13 
One of the important contributions is the decomposition of the rare joint event of the failure and observed 14 
information into two events both with relatively high probabilities. Moreover, an adaptive Kriging-based 15 
reliability analysis method is proposed for the estimation of the prior failure probability and the conditional 16 
probability of information. This way, reliability updating for new information is conducted using the 17 
efficient Kriging meta-model, which significantly enhances the computational efficiency. Results for four 18 
examples indicate that the computational demand using RUAK is decreased by two orders of magnitude 19 
compared to the state-of-the-art methods, while achieving higher accuracy. This approach facilitates real-20 
time reliability updating for various applications such as health monitoring and warning systems. 21 
 22 
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1. Introduction 26 
As sensing technologies are maturing and becoming more cost efficient, allowing their implementation at 27 
large scales, information about the state of the built and natural environments are becoming more available. 28 
These observations can include, for example, data on external loadings, component- and system-level 29 
responses, and changes in characteristics of the systems. This information can be leveraged to reevaluate 30 
or update forecasts of the performance of these systems. Among many metrics, reliability is one of the most 31 
capable system performance measures that quantifies the probability of meeting a performance objective 32 
considering the set of uncertainties that influence the performance. Updating reliability estimates based on 33 
information provided by sensing systems can enhance confidence in our forecasts of the future performance 34 
of the systems and lead to more effective risk-informed decisions.  35 

Let 𝑿𝑿 denote the vector of random variables with n dimensions, 𝜌𝜌(𝒙𝒙) represent the joint probability 36 
density function of 𝒙𝒙 in X, 𝐸𝐸 denote the events (i.e., failure in reliability analysis) and 𝑍𝑍𝑖𝑖 represent the ith 37 
observation obtained from sensors or monitoring equipment. 𝛺𝛺𝐸𝐸 and 𝛺𝛺𝑍𝑍𝑖𝑖 are the domains corresponding to 38 
the outcome space of 𝑿𝑿 . Concerning information  𝑍𝑍 = {𝑍𝑍1 ∩ 𝑍𝑍2 …∩ 𝑍𝑍𝑚𝑚} , where m is the number of 39 
information pieces, the conditional probability Pr(𝐸𝐸|𝑍𝑍) can be defined as: 40 

 41 

Pr(𝐸𝐸|𝑍𝑍) =
Pr(𝐸𝐸 ∩ 𝑍𝑍)

Pr(𝑍𝑍) =
∫ 𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙𝒙𝒙∈�𝛺𝛺𝐸𝐸∩𝛺𝛺𝑍𝑍1∩…∩𝛺𝛺𝑍𝑍𝑚𝑚�

∫ 𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙𝒙𝒙∈�𝛺𝛺𝑍𝑍1∩…∩𝛺𝛺𝑍𝑍𝑚𝑚�

 (1) 

 42 
Moreover, let the vector of random variables, 𝑿𝑿 in Eq. (1) be partitioned into two groups of random 43 
variables 𝑿𝑿𝑔𝑔 and 𝑿𝑿ℎ. Here, 𝑿𝑿ℎ denotes the random variables that appear in the information, 𝑍𝑍𝑖𝑖, exclusively 44 
and 𝑿𝑿𝑔𝑔 represents the remaining variables in 𝑿𝑿. In reliability analysis, the prior probability of the failure 45 
event, denoted as Pr(𝐸𝐸) or 𝑃𝑃𝑓𝑓 can be determined as: 46 
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 1 

𝑃𝑃𝑓𝑓 = 𝑃𝑃�𝑔𝑔�𝑿𝑿𝑔𝑔� ≤ 0� = � 𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙
𝒙𝒙𝑔𝑔∈𝛺𝛺𝐸𝐸

 (2) 

 2 
Methods for computing the prior failure probability include but are not limited to: crude Monte Carlo 3 

simulations (MCS) [1], [2], First and Second Order Reliability Methods (FORM & SORM) [3], [4], 4 
Importance Sampling [5], Subset Simulation [6], [7], and surrogate model-based approaches [8]–[14]. 5 
Among these methods, two Kriging-based approaches, AK-MCS proposed by Echard et al. [8] and EGRA 6 
proposed by Bichon et al. [15], have shown great computational efficiency and hence attracted considerable 7 
attention. To further enhance Kriging-based reliability analysis, improvements to active learning functions, 8 
learning stopping criteria, and sampling strategies have been proposed. With regard to active learning 9 
functions, the expected feasible function (EFF) is proposed by Bichon et al. [15], which prioritizes points 10 
with large uncertainty and those that are close to the limit state. On the other hand, the ‘U’ learning function 11 
proposed by Echard et al. [8] aims to quantify the probability of wrong sign estimation, which has been 12 
adopted in recent publications [5], [16], [17]. Similar to ‘EFF’, an information entropy-based learning 13 
function ‘H’, is developed by Lv et al. [18]. Moreover, Sun et al. [19] proposed the Least Improvement 14 
Function ‘LIF’, which improves the learning process by searching for next best training points with high 15 
probability of wrong sign estimation in the vicinity of the limit state, and gives higher priority to points 16 
with high probability density. Other state-of-the-art learning functions are also shown to be very efficient 17 
in strategically searching for training samples[20], [21]. However, aforementioned active learning methods 18 
can just select one training point upon each iteration. A number of parallel training strategies, such as k-19 
means clustering and pseudo-Kriging, have been investigated in [12], [22]–[24]. For stopping criteria, 20 
Bichon et al. [15] and Wen et al. [23] set the maximum EFF smaller than a prescribed threshold (e.g.,  21 
𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸𝐸𝐸) ≤ 0.001) as the indication of convergence. Additionally, the stopping criterion 𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈) ≥22 
2 has been used in many studies [5], [8], [16], [17], [25]. It is shown that both stopping criteria 23 
𝑚𝑚𝑚𝑚𝑚𝑚(𝐸𝐸𝐸𝐸𝐸𝐸) ≤ 0.001 and 𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈) ≥ 2 may lead to a relatively large number of unnecessary trainings of 24 
the surrogate model [8], [26]–[28]. Gaspar et al. [27] proposed a new stopping criterion based on the 25 
stability of the estimated failure probability. Fauriat et al. [26] points out that the Kriging model is 26 
sufficiently accurate if 98% of the candidate design samples satisfy 𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈) ≥ 2. By deriving the maximum 27 
error of estimated probability of failure, Wang and Shafieezadeh [29] proposed an efficient stopping 28 
criterion for the Kriging-based reliability analysis. An approach for real-time estimation of the maximum 29 
error for time-dependent reliability analysis was developed by Jiang et al [30]. For sampling strategies, 30 
Echard et al. [5], Balesdent et al. [31] and Dubourg et al. [32] used importance sampling techniques in 31 
association with the adaptive Kriging model, which facilitates reliability analysis for rare events. Moreover, 32 
Zhang et al. proposed the AKOIS method to optimize the procedure of searching for importance sampling 33 
center, which is an efficient technique for circumstances with multiple Most Probable Points (MPPs) [33]. 34 
Chen et al. [34] developed a strategy that replaces the original sample population with multiple equivalent 35 
ones. Such a strategy enhances the learning process with sufficient candidate deign samples in the vicinity 36 
of the limit state. Additionally, subset simulation techniques are used with Kriging-based reliability analysis 37 
in [16],[35] [36]. For example, Zhang et al. [37] proposed that the failure region can be better explored by 38 
combining the Kriging meta-model with subset simulation. Wen et al. [23], Yang et al. [20] and Wang and 39 
Shafieezadeh [38] proposed truncated candidate samples regions, which cut off candidate samples with 40 
small values of probability density. Through this approach, the number of evaluations of the performance 41 
function can be significantly reduced. To enable the Kriging-based reliability analysis for high-dimensional 42 
problems, several strategies have been proposed including sensitivity analysis-based methods [28], [39], 43 
[40] and dimension reduction-based techniques [41]. These methods have also been extended to efficiently 44 
solve time-variant reliability analysis problems by transforming these limit state function into time-45 
invariant ones. The method subsequently takes the minimum value of all the responses at all time 46 
discretizations [17], [42], [43]. Moreover, the system reliability analysis has been improved significantly 47 
using Kriging surrogate models [20], [26], [44]. It is shown that Kriging can be integrated in the reliability 48 
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sensitivity analysis [45], reliability-based design optimization [46], [47] and other uncertainty 1 
quantification (UQ) techniques such as Bayesian updating [48], [49]. 2 
 3 

While various approaches for estimating the prior failure probability have been proposed, methods for 4 
computing the posterior failure probability, denoted as𝑃𝑃𝑓𝑓′ hereby, are still under-developed. It is known that 5 
the computational complexity of estimating 𝑃𝑃𝑓𝑓′  depends primarily on the category of information [50]: 6 
inequality or equality. The information 𝑍𝑍𝑖𝑖 can be categorized as inequality, if it can be expressed as: 7 
 8 

𝛺𝛺𝑍𝑍𝑖𝑖 = {ℎ𝑖𝑖(𝒙𝒙) ≤ 0} (3) 
 9 
where ℎ𝑖𝑖(𝒙𝒙) denotes the 𝑖𝑖th information function. On the other hand, information is classified into the 10 
equality group, if it can be represented as: 11 
 12 

𝛺𝛺𝑍𝑍𝑖𝑖 = {ℎ𝑖𝑖(𝒙𝒙) = 0} (4) 
 13 
The reliability analysis methods for estimating 𝑃𝑃𝑓𝑓 in Eq. (2) can also be used to solve reliability updating 14 
with inequality information in Eq. (3). However, reliability updating with equality information is relatively 15 
intractable because the integrals in Eq. (1) result in zero probability, which cannot be treated as the 16 
denominator. To overcome this challenge, integrals in Eq. (1) can currently only be solved using the surface 17 
integral technique [50], which, however, is challenging to implement and cannot take advantage of the well-18 
developed reliability analysis methods.  19 

To address these limitations, a number of techniques have been proposed that leverage existing 20 
reliability analysis procedures to solve reliability updating with equality information. Gollwitzer et al. [51] 21 
integrated the surface integral method with FORM & SORM techniques, which offers acceptable efficiency 22 
and accuracy for linear reliability problems. However, the performance of this approach is not satisfactory 23 
when the problem is non-linear, as the identification of the Most Probable Point (MPP) in such problems 24 
using FORM/SORM may not be accurate. Alternatively, 𝑃𝑃𝑓𝑓′ can be estimated as a partial derivative by 25 
introducing a dummy variable ∆ as follows [50]: 26 

 27 

𝑃𝑃𝑓𝑓′  = Pr�𝑔𝑔�𝑿𝑿𝑔𝑔� ≤ 0�ℎ(𝑿𝑿) = 0� =
Pr�𝑔𝑔�𝑿𝑿𝑔𝑔� ≤ 0 ∩ ℎ(𝑿𝑿) = 0�

Pr[ℎ(𝑿𝑿) = 0]

=
lim
∆→0

𝜕𝜕
𝜕𝜕∆Pr�𝑔𝑔�𝑿𝑿𝑔𝑔� ≤ 0 ∩ ℎ(𝑿𝑿) − ∆≤ 0�

lim
∆→0

𝜕𝜕
𝜕𝜕∆Pr[ℎ(𝑿𝑿) − ∆≤ 0]

 
(5) 

 28 
This way, the equality information {ℎ(𝒙𝒙) = 0} is transformed into an inequality, which means that existing 29 
reliability analysis techniques can be applied. However, this approach in conjunction with FORM & SORM 30 
can potentially result in significant errors in estimates of 𝑃𝑃𝑓𝑓′ , as the use of partial derivatives can amplify 31 
the error estimated by the FORM & SORM. Another powerful tool called Bayesian Networks (BNs) is 32 
widely used for reliability updating purposes. Straub and Luque [52], [53] integrated a Dynamic Bayesian 33 
Network (DBN) and successfully applied it to time-invariant and time-variant deterioration problems. 34 
DBNs are successfully applied in tunnel excavation [54], life-cycle analysis [55] and bridge condition 35 
prediction [56]. However, generating the conditional probability tables (potentials), which are a crucial part 36 
in BNs-based reliability updating, is very computationally demanding. To address this challenge, Straub 37 
and Der Kiureghian [57], [58] proposed an enhanced BN framework denoted as eBN/rBN. In this approach, 38 
the potentials are generated based on the reduced BNs (rBNs) with only discrete nodes by defining the 39 
Markov envelop and strategically eliminating all the continuous nodes in eBN. Existing exact inference 40 
algorithms can then be applied to update reliability based on the produced potentials table. The eBN/rBN 41 
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are used in post-earthquake risk analysis and decision making [59]. A number of other investigations have 1 
also used BNs for reliability updating [60]–[63]. However, BN-based approaches for reliability updating 2 
have a number of limitations. First, the number of evaluations of the performance function 𝑔𝑔(𝑿𝑿), which is 3 
typically time-consuming e.g. for the case of high-fidelity Finite Element Models (FEMs), is still very large; 4 
this limitation hampers the application of eBN/rBN for engineering and science problems. Furthermore, the 5 
procedure for constructing the eBN/rBN is very complex and cannot be conducted by non-experts, as it 6 
requires empirical knowledge of the process for node elimination and discretization. In contrast to the BN-7 
based reliability updating methods, Straub [50] proposed a new solution by reformulating the equality 8 
information {ℎ𝑖𝑖(𝒙𝒙) = 0} into an inequality information {ℎ𝑖𝑖(𝒙𝒙∗) ≤ 0} with an additional auxiliary standard 9 
normal random variable. By solving two structural reliability problems, this method enables reliability 10 
updating without discretizing the outcome space of the information. This newly developed method has been 11 
implemented in a number of practical engineering problems including fatigue-induced crack growth [50], 12 
geotechnical engineering [64], [65], and system reliability updating [66]. However, this approach has two 13 
shortcomings. The joint event in the numerator of the equation of conditional probability is very often a 14 
rare event, which makes the conventional reliability analysis methods such as FORM or SORM inefficient 15 
and inaccurate. Moreover, when new information becomes available, reliability analyses need to be 16 
repeated in order to estimate the new probability of the joint event of observed information and failure. 17 
These unavoidably increase the number of evaluations of the performance function and reduce the accuracy 18 
of the reliability updating outcomes.   19 

To overcome the aforementioned limitations, a new reliability updating method based on surrogate 20 
models called Reliability Updating using Adaptive Kriging (RUAK) is proposed. A key contribution here 21 
that facilitates computationally efficient reliability updating is the decomposition of 𝑃𝑃𝑓𝑓′  into three parts 22 
using the Bayes’ theorem: prior failure probability Pr(𝐸𝐸) = 𝑃𝑃𝑓𝑓 , probability of information Pr(𝑍𝑍), and 23 
conditional probability of information Pr(𝑍𝑍|𝐸𝐸). Unlike calculating the joint probability Pr(𝐸𝐸 ∩ 𝑍𝑍) in [50], 24 
which is typically a rare event, Pr(𝐸𝐸) and Pr(𝑍𝑍|𝐸𝐸) are proposed to be estimated separately by surrogate 25 
model-based reliability analysis methods, since these events have considerably higher likelihood. A general  26 
approach based on surrogate models is then proposed to accurately and efficiently estimate the prior failure 27 
probability 𝑃𝑃𝑓𝑓. This is achieved by generating a well-trained surrogate model that substitutes the original 28 
time-consuming performance model and therefore allows the estimation of the failure probability using 29 
crude MCS or Markov Chain Monte Carlo (MCMC). Another important feature of RUAK is that it 30 
leverages the generated surrogate model to estimate Pr(𝑍𝑍|𝐸𝐸) by introducing an auxiliary uniform random 31 
variable. Later in the article, an adaptive Kriging-based reliability analysis method [8], [15] enhanced with 32 
a new training stopping criterion called ESC is proposed as the surrogate model. RUAK offers several 33 
advantages compared with conventional and state-of-the-art approaches. First, the reliability updating 34 
problem involves estimation of 𝑃𝑃𝑓𝑓, which is rather straightforward. Second, only one reliability analysis for 35 
𝑃𝑃𝑓𝑓 and 𝑃𝑃𝑓𝑓′ is needed throughout the updating process when new information becomes available. This feature 36 
dramatically reduces the number of evaluations of the performance function. It should be noted that this 37 
paper only investigates the feasibility of applying the surrogate model in reliability updating, thus, the 38 
optimal surrogate model and other strategies for accuracy improvements are not discussed in this paper.  39 

A brief review of reliability updating with equality information is provided in Section 2. A new 40 
approach for reliability updating with equality information using surrogate models is introduced in Section 41 
3. In Section 4, the proposed method RUAK is presented. This method is applied to four numerical 42 
examples in Section 5. Finally, conclusions are presented in Section 6. 43 

 44 
2. Reliability updating 45 
According to Eq. (1), reliability updating is the process of estimating the posterior failure probability i.e., 46 
denoted as Pr(𝐸𝐸|𝑍𝑍)  or 𝑃𝑃𝑓𝑓′  where 𝑃𝑃𝑓𝑓′ = Pr(𝐸𝐸 ∩ 𝑍𝑍)/Pr(𝑍𝑍)  and 𝐸𝐸  represents the failure event, based on 47 
existing information, 𝑍𝑍. To accurately estimate 𝑃𝑃𝑓𝑓′ based on equality information without discretizing the 48 
information space, Straub [50] proposed an innovative approach by transforming the equality information 49 
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into an equivalent inequality function. In this section, the method used in [50] is briefly described, then a 1 
new method based on surrogate models is proposed in the following section. 2 

For information obtained for a system, there exists a likelihood function 𝐿𝐿(𝒙𝒙) with the following 3 
property [50], [67]: 4 

 5 
𝐿𝐿�𝒙𝒙𝑔𝑔� ∝ 𝑃𝑃𝑃𝑃�𝑍𝑍�𝑿𝑿𝑔𝑔 = 𝒙𝒙𝑔𝑔� (6) 

 6 
where 𝒙𝒙𝑔𝑔  is the realization of the random vector 𝑿𝑿𝑔𝑔 . To further elaborate the above formulation, let’s 7 
consider a case where 𝑍𝑍 represents the measurement 𝑠𝑠𝑚𝑚 of a property of the system 𝑠𝑠(𝒙𝒙) with measurement 8 
error 𝜀𝜀. Thus, the likelihood function can be represented as 𝐿𝐿�𝒙𝒙𝑔𝑔� = 𝑓𝑓𝜀𝜀�𝑠𝑠𝑚𝑚 − 𝑠𝑠�𝒙𝒙𝑔𝑔��, with 𝑓𝑓𝜀𝜀 being the 9 
probability density function (PDF) of 𝜀𝜀, and 𝑿𝑿𝑔𝑔 denotes all variables in 𝑿𝑿 except 𝜀𝜀. For this case, 𝒙𝒙ℎ = 𝜀𝜀 10 
and ℎ𝑖𝑖(𝒙𝒙) = 0 can be represented in the form of ℎ�𝒙𝒙𝑔𝑔, 𝜀𝜀� = 𝑠𝑠�𝒙𝒙𝑔𝑔� − 𝑠𝑠𝑚𝑚 + 𝜀𝜀. Based on this likelihood 11 
function, the following equation always holds: 12 
 13 

𝐿𝐿�𝒙𝒙𝑔𝑔� =
1
𝑐𝑐

Pr�𝒩𝒩 − 𝛷𝛷−1�𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔�� ≤ 0� (7) 
 14 
where 𝒩𝒩  is a standard normal random variable, 𝛷𝛷−1  is the inverse of the standard normal cumulative 15 
distribution function (CDF) and 𝑐𝑐  is a constant satisfying 0 ≤ 𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔� ≤ 1 . Note that 1

𝑐𝑐
Pr�𝒩𝒩 −16 

𝛷𝛷−1�𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔�� ≤ 0� = 1
𝑐𝑐
𝛷𝛷�𝛷𝛷−1�𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔��� = 𝐿𝐿�𝒙𝒙𝑔𝑔� . Therefore, with Eq. (7), the formulation of the 17 

likelihood function 𝐿𝐿�𝒙𝒙𝑔𝑔� is transformed into a reliability analysis problem with the limit state function 18 
represented as: 19 
 20 

ℎ�𝓃𝓃,𝒙𝒙𝑔𝑔� = 𝓃𝓃 −𝛷𝛷−1�𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔�� (8) 
 21 
with the acceptable domain defined as 𝛺𝛺𝑍𝑍� = �𝒩𝒩 −𝛷𝛷−1�𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔�� ≤ 0�. Considering Eq. (8), it can be 22 
shown that: 23 
 24 

Pr�𝑍𝑍�𝑿𝑿𝑔𝑔 = 𝒙𝒙𝑔𝑔� =
𝑎𝑎
𝑐𝑐
� 𝜑𝜑(𝓃𝓃)
𝒙𝒙𝑔𝑔,𝓃𝓃∈𝛺𝛺𝑍𝑍�

𝑑𝑑𝑑𝑑 (9) 

 25 
where 𝜑𝜑(∙) is the probability density function of the standard normal distribution and 𝑎𝑎 is a constant for 26 
considering the proportional relation in Eq. (6). Thus, the probability of the evidence can be derived as: 27 
 28 

Pr(𝑍𝑍) =  � Pr�𝑍𝑍�𝑿𝑿𝑔𝑔 = 𝒙𝒙𝑔𝑔�𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙𝑔𝑔
𝒙𝒙𝑔𝑔∈𝛺𝛺

 

=
𝑎𝑎
𝑐𝑐
� 𝜑𝜑(𝓃𝓃)𝜌𝜌�𝒙𝒙𝑔𝑔�
𝒙𝒙𝑔𝑔,𝓃𝓃∈𝛺𝛺𝑍𝑍�

𝑑𝑑𝑑𝑑 𝑑𝑑𝒙𝒙𝑔𝑔 
(10) 

 29 
where 𝛺𝛺 is the output space of the random variable 𝑿𝑿𝑔𝑔. Accordingly, the probability of the joint event 30 
Pr(𝐸𝐸 ∩ 𝑍𝑍) can be derived as: 31 
 32 
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Pr(𝐸𝐸 ∩ 𝑍𝑍) = � Pr�𝐸𝐸�𝑿𝑿𝑔𝑔 = 𝒙𝒙𝑔𝑔�Pr�𝑍𝑍�𝑿𝑿𝑔𝑔 = 𝒙𝒙𝑔𝑔�𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙𝑔𝑔
𝒙𝒙𝑔𝑔∈𝛺𝛺

=
𝑎𝑎
𝑐𝑐
� 𝜑𝜑(𝓃𝓃)𝜌𝜌�𝒙𝒙𝑔𝑔�
𝒙𝒙𝑔𝑔,𝓃𝓃∈�𝛺𝛺𝑍𝑍�∩𝛺𝛺𝐸𝐸�

𝑑𝑑𝑑𝑑 𝑑𝑑𝒙𝒙𝑔𝑔 
(11) 

 1 
 2 
Hence, the conditional failure probability in Eq. (1) can be rewritten as: 3 
 4 

Pr(𝐸𝐸|𝑍𝑍) =
Pr(𝐸𝐸 ∩ 𝑍𝑍)

Pr(𝑍𝑍) =
∫ 𝜑𝜑(𝓃𝓃)𝜌𝜌�𝒙𝒙𝑔𝑔�𝒙𝒙𝑔𝑔,𝓃𝓃∈�𝛺𝛺𝑍𝑍�∩𝛺𝛺𝐸𝐸�

𝑑𝑑𝑑𝑑 𝑑𝑑𝒙𝒙𝑔𝑔

∫ 𝜑𝜑(𝓃𝓃)𝜌𝜌�𝒙𝒙𝑔𝑔�𝒙𝒙𝑔𝑔,𝓃𝓃∈𝛺𝛺𝑍𝑍�
𝑑𝑑𝑑𝑑 𝑑𝑑𝒙𝒙𝑔𝑔

 (12) 

 5 
Denoting the random variables �𝒙𝒙𝑔𝑔,𝓃𝓃� as 𝒙𝒙∗, the above equation can be represented as: 6 
 7 
 8 

Pr(𝐸𝐸|𝑍𝑍) =
∫ 𝜌𝜌∗(𝒙𝒙∗)𝒙𝒙∈�𝛺𝛺𝑍𝑍�∩𝛺𝛺𝐸𝐸�

𝑑𝑑𝒙𝒙∗

∫ 𝜌𝜌∗(𝒙𝒙∗)𝒙𝒙∈𝛺𝛺𝑍𝑍�
𝑑𝑑𝒙𝒙∗

 (13) 

 9 
where 𝜌𝜌∗(𝒙𝒙∗) = 𝜑𝜑(𝓃𝓃)𝜌𝜌�𝒙𝒙𝑔𝑔� is the PDF of the new random variable 𝒙𝒙∗. The method derived in Eq. (13) 10 
enables updating reliability without any assumption or approximation just by solving two reliability 11 
problems. It achieves sufficient accuracy and efficiency with MCS-based approaches as shown in [50]. 12 
However, there are still some drawbacks in this approach. Obviously, in the numerator of Eq. (13), two 13 
limit state functions need to be investigated including the performance function 𝑔𝑔�𝑿𝑿𝑔𝑔� and the limit state 14 
function in Eq. (8). Additionally, the numerator of Eq. (13) is concerned with the analysis of a series system 15 
reliability problem with two limit state functions, which is typically a rare event with very small probability. 16 
Non-MCS-based reliability analysis techniques such as FORM or SORM are not reliable for such 17 
circumstances. Moreover, it is necessary to reevaluate the numerator in Eq. (13) whenever new information 18 
become available, which unavoidably increases the number of evaluations of the performance function 19 
𝑔𝑔�𝑿𝑿𝑔𝑔�. This process becomes very time-consuming when the performance function 𝑔𝑔�𝑿𝑿𝑔𝑔� involves a 20 
complex numerical model such as a high-fidelity FEM. To overcome the aforementioned limitations, an 21 
efficient surrogated-based reliability updating algorithm called RUAK is proposed in the next section.  22 
 23 
3. Reliability updating using surrogate models 24 
Here we propose decomposing the posterior failure probability 𝑃𝑃𝑓𝑓′ into three parts using Bayes’ theorem: 25 
prior failure probability 𝑃𝑃𝑓𝑓, probability of information Pr(𝑍𝑍), and conditional probability of information 26 
Pr(𝑍𝑍|𝐸𝐸):  27 
 28 

𝑃𝑃𝑓𝑓′ = Pr(𝐸𝐸|𝑍𝑍) =
Pr(𝑍𝑍|𝐸𝐸) ∙ Pr(𝐸𝐸)

Pr(𝑍𝑍) =
Pr(𝑍𝑍|𝐸𝐸) ∙ 𝑃𝑃𝑓𝑓

Pr(𝑍𝑍)  (14) 

 29 
Note that the formulation of reliability updating through Bayes’ theorem in Eq. (14) is different from the 30 
approach presented in Eq. (1), which is based on the joint event i.e., 𝑃𝑃𝑓𝑓′ = Pr(𝐸𝐸 ∩ 𝑍𝑍)/Pr(𝑍𝑍). Derivations 31 
and computational details of  𝑃𝑃𝑓𝑓 (Eq. (16)-(17)) and Pr(𝑍𝑍|𝐸𝐸) (Eq. (18)-(21)) are presented in the rest of this 32 
section. First, Pr(𝑍𝑍) can be determined in a similar fashion to that in [50] using Equation (7)-(10). The 33 
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problem in Eq. (7) can be reformulated in a simpler way using an auxiliary standard uniform distribution 1 
instead of a normal distribution:  2 
 3 

𝐿𝐿�𝒙𝒙𝑔𝑔� =
1
𝑐𝑐1

Pr�𝑃𝑃 − 𝑐𝑐1𝐿𝐿�𝒙𝒙𝑔𝑔� ≤ 0� (15) 
 4 
where 𝑃𝑃 is a standard uniform random variable, 𝑐𝑐1  is a constant satisfying 0 ≤ 𝑐𝑐1𝐿𝐿�𝒙𝒙𝑔𝑔� ≤ 1, and it is 5 
recommended that 𝑐𝑐1 = 1

𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿�𝒙𝒙𝑔𝑔��
. Note that both normal and uniform auxiliary variables are able to 6 

transfer the equality information to inequality information. To make the derivation of reliability updating 7 
with equality information mathematically simpler, a uniform auxiliary random variable is used in this article. 8 
Estimation of Pr(𝑍𝑍)  follows the process presented in Eq. (10), but based on the limit state function 9 
ℎ+�𝑝𝑝,𝒙𝒙𝑔𝑔� = 𝑝𝑝 − 𝑐𝑐1𝐿𝐿�𝒙𝒙𝑔𝑔�. 10 

The prior probability of failure, 𝑃𝑃𝑓𝑓, can be estimated using MCS:  11 
 12 

𝑃𝑃𝑓𝑓 =  
∑ 𝐼𝐼𝑔𝑔 �𝒙𝒙𝑔𝑔𝑖𝑖�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑖𝑖=1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
, 𝒙𝒙𝑔𝑔𝑖𝑖 ∈ 𝑆𝑆 (16) 

where 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is the number of the samples for MCS, 𝒙𝒙𝑔𝑔𝑖𝑖denotes the realizations of random variable 𝑿𝑿𝑔𝑔, 𝑆𝑆 13 
represents all the samples for MCS, and 𝐼𝐼𝑔𝑔(∙)  is the indicator function for the responses from the 14 

performance function 𝑔𝑔 �𝒙𝒙𝑔𝑔𝑖𝑖�: 15 
 16 

𝐼𝐼𝑔𝑔 �𝒙𝒙𝑔𝑔𝑖𝑖� = �
1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑔𝑔(𝒙𝒙𝑔𝑔𝑖𝑖) ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑔𝑔(𝒙𝒙𝑔𝑔𝑖𝑖) > 0  (17) 

 17 
The proposed reliability updating formulation in Equation (14) involves the new term Pr(𝑍𝑍|𝐸𝐸). This 18 
probability can be derived as: 19 
 20 

Pr(𝑍𝑍|𝐸𝐸) =  � Pr(𝑍𝑍|𝑿𝑿′ = 𝒙𝒙′)𝜌𝜌′�𝒙𝒙′�𝑑𝑑𝒙𝒙′
𝒙𝒙′∈𝛺𝛺𝑓𝑓

 

=
𝑎𝑎
𝑐𝑐2
� 𝜓𝜓(𝑝𝑝)𝜌𝜌′(𝒙𝒙′)
𝒙𝒙′,𝑝𝑝∈𝛺𝛺𝑍𝑍++

𝑑𝑑𝑑𝑑 𝑑𝑑𝒙𝒙′ =
𝑎𝑎
𝑐𝑐2
� 𝜌𝜌′(𝒙𝒙′)
𝒙𝒙′,𝑝𝑝∈𝛺𝛺𝑍𝑍++

𝑑𝑑𝑑𝑑 𝑑𝑑𝒙𝒙′ 
(18) 

 21 
where 𝑿𝑿′ is the random variable with the posterior distribution of 𝑿𝑿𝑔𝑔 in the failure domain 𝛺𝛺𝑓𝑓, 𝒙𝒙′ is the 22 
realization of 𝑿𝑿′, 𝜓𝜓(∙) is the PDF of the standard uniform distribution, 𝜌𝜌′ is the PDF of 𝑿𝑿′,  𝑐𝑐2 is a constant 23 
satisfying 0 ≤ 𝑐𝑐2𝐿𝐿(𝒙𝒙′) ≤ 1, and is determined as 𝑐𝑐2 = 1

𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿(𝒙𝒙′)�
. Note that 𝑐𝑐2, which is a function of 𝒙𝒙′, 24 

is not equal to 𝑐𝑐1 which is a function of 𝒙𝒙𝑔𝑔 in Eq. (15). 𝛺𝛺𝑍𝑍++ is the acceptable domain corresponding to the 25 
following limit state function: 26 
 27 

ℎ++(𝑝𝑝,𝒙𝒙′) = 𝑝𝑝 − 𝑐𝑐2𝐿𝐿(𝒙𝒙′) (19) 
 28 
𝛺𝛺𝑍𝑍++ can be subsequently defined as 𝛺𝛺𝑍𝑍++ = {ℎ++(𝑝𝑝,𝒙𝒙′) ≤ 0}. Let Ω�𝑓𝑓 and Ω�𝑠𝑠 denote the estimated failure 29 
and safe domains in 𝑆𝑆, therefore, Pr(𝑍𝑍|𝐸𝐸) can be calculated using MCS as follows: 30 
 31 

Pr(𝑍𝑍|𝐸𝐸) =
𝑎𝑎
𝑐𝑐2
∙
∑ 𝐼𝐼𝑍𝑍++�𝒙𝒙𝑗𝑗′,𝑝𝑝𝑗𝑗�
𝑁𝑁𝑓𝑓
𝑗𝑗=1

𝑁𝑁𝑓𝑓
, 𝒙𝒙𝑗𝑗′ ∈ Ω�𝑓𝑓 (20) 
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 1 
where 𝑁𝑁𝑓𝑓 denotes the number of samples in 𝑆𝑆𝑓𝑓, and 𝐼𝐼𝑍𝑍++(∙) is the indicator function defined as: 2 
 3 

𝐼𝐼𝑍𝑍++�𝒙𝒙𝑗𝑗′,𝑝𝑝𝑗𝑗� = �
1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ++�𝒙𝒙𝑗𝑗′,𝑝𝑝𝑗𝑗� ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ++�𝒙𝒙𝑗𝑗′,𝑝𝑝𝑗𝑗� > 0 

, 𝒙𝒙𝑗𝑗′ ∈ Ω�𝑓𝑓 (21) 

 4 
Considering that the same unknown constant 𝑎𝑎 appears in both Pr(𝑍𝑍) in Eq. (10) and Pr(𝑍𝑍|𝐸𝐸) in Eq. (20), 5 
it is automatically eliminated in the subsequent computation in Eq. (14).  6 

To implement the new approach most efficiently and accurately, we propose using surrogate model-7 
based reliability analysis methods. Generally, this surrogate model represented by 𝑔𝑔�(𝑿𝑿𝑔𝑔) replaces 𝑔𝑔(𝑿𝑿𝑔𝑔) 8 
in the above equations to arrive at the posterior failure probability 𝑃𝑃�𝑓𝑓′. Different from the approach in [50] 9 
i.e. Eq. (13), in the proposed method, only the computation of 𝑃𝑃�𝑓𝑓 requires the analysis of the performance 10 
function 𝑔𝑔�𝑿𝑿𝑔𝑔�. As the surrogate model-based reliability algorithms are known for their capabilities to 11 
reduce the number of evaluations of the performance function, a well-trained surrogate model can be used 12 
to replace the originally time-consuming computational model. Moreover, with the new information, the 13 
computation of Pr(𝑍𝑍|𝐸𝐸) in Eq. (20) is straightforward with minimal computational demand, as running 14 
only the surrogate model is required. However, in Eq. (13), one needs to reevaluate the performance 15 
function 𝑔𝑔�𝑿𝑿𝑔𝑔� for any new information that becomes available. Therefore, the proposed method derived 16 
from the Bayes’ theorem has two primary advantages over the approach in [50]: (1) estimations of 𝑃𝑃𝑓𝑓 and 17 
Pr(𝑍𝑍|𝐸𝐸) are considerably less challenging than the probability of the joint event in the numerator of Eq. 18 
(13); and (2) once 𝑃𝑃𝑓𝑓 is estimated, reliability updating for new information becomes highly efficient since 19 
the simulations can be conducted entirely on the well-trained surrogate model. 20 

 21 
4. The RUAK algorithm 22 
In this section, the proposed reliability updating method RUAK is presented. RUAK integrates the method 23 
presented in Section 3 with Kriging meta-model, which substitutes the originally time-consuming 24 
performance function 𝑔𝑔�𝑿𝑿𝑔𝑔� with a Kriging-based surrogate model 𝑔𝑔��𝑿𝑿𝑔𝑔�. The implementation of RUAK 25 
is explained step-by-step in the next sub-sections.  26 
 27 
4.1 Kriging model 28 
To estimate the prior failure probability 𝑃𝑃𝑓𝑓 and Pr(𝑍𝑍|𝐸𝐸), a surrogate model 𝑔𝑔��𝑿𝑿𝑔𝑔� for the performance 29 
function 𝑔𝑔�𝑿𝑿𝑔𝑔� is constructed in this paper using the Kriging meta-model. The Kriging meta-model, also 30 
known as the Gaussian Process Regression, has been widely used in computer-based experiment design 31 
[68]. In this model, the estimated responses are mean values and variances following a normal distribution 32 
[39], [68]. An extensive review of the Kriging surrogate model can be found in [68]–[70]. In Kriging, 33 
𝑔𝑔��𝑿𝑿𝑔𝑔� is defined as: 34 
 35 

𝑔𝑔��𝑿𝑿𝑔𝑔� = 𝐹𝐹�𝜷𝜷,𝒙𝒙𝑔𝑔� +  𝜓𝜓�𝒙𝒙𝑔𝑔� = 𝜷𝜷𝑇𝑇𝑩𝑩�𝒙𝒙𝑔𝑔� + ℊ𝓅𝓅�𝒙𝒙𝑔𝑔� (22) 
 36 
where 𝒙𝒙  is the vector of random variables, 𝐹𝐹�𝜷𝜷,𝒙𝒙𝑔𝑔�  are the regression elements, and ℊ𝓅𝓅�𝒙𝒙𝑔𝑔�  is the 37 
Gaussian process. In 𝐹𝐹�𝜷𝜷,𝒙𝒙𝑔𝑔�, 𝑩𝑩�𝒙𝒙𝑔𝑔� is the Kriging basis and 𝜷𝜷 is the corresponding set of coefficients. 38 
There are multiple formulations of 𝜷𝜷𝑇𝑇𝑩𝑩�𝒙𝒙𝑔𝑔� including ordinary (𝛽𝛽0), linear �𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁

𝑖𝑖=1 �, or quadratic 39 
(𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁

𝑖𝑖=1 +𝛽𝛽0+∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖𝒙𝒙𝑗𝑗𝑖𝑖
𝑗𝑗=1

𝑁𝑁
𝑖𝑖=1 ), where N is the number of dimensions of 𝒙𝒙𝑔𝑔. In this article, the 40 

ordinary Kriging model is used. The Gaussian process ℊ𝓅𝓅�𝒙𝒙𝑔𝑔� has a zero mean and a covariance matrix 41 
that can be represented as: 42 
 43 
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𝐶𝐶𝐶𝐶𝐶𝐶 �ℊ𝓅𝓅(𝒙𝒙𝑖𝑖),ℊ𝓅𝓅�𝒙𝒙𝑗𝑗�� =  𝜎𝜎2𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� (23) 
 1 
where 𝜎𝜎2 is the process variance or the generalized mean square error (MSE) from the regression, 𝒙𝒙𝑖𝑖 and 2 
𝒙𝒙𝑗𝑗  are two observations, and 𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� is known as the kernel function representing the correlation 3 
between observations 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗 parametrized by 𝜽𝜽. The correlation functions implemented in Kriging can 4 
include, among others, linear, exponential, Gaussian, and Matérn functions. The Gaussian kernel function 5 
is used in this paper, which has the following form: 6 
 7 

𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� = � exp �−𝜃𝜃𝑘𝑘�𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�
2�

𝑁𝑁

𝑘𝑘=1

 (24) 

 8 
where 𝑥𝑥𝑖𝑖𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ dimension of 𝒙𝒙𝑖𝑖 and 𝜽𝜽 is estimated via the Maximum Likelihood Estimation (MLE) 9 
method [68]. It is shown that the variation of 𝜽𝜽 has significant impact on the performance of the Kriging 10 
meta-model [23], [71], [72]. To maintain consistency, 𝜃𝜃𝑘𝑘  is searched in (0,10) using the optimization 11 
algorithms in DACE [69], [73] or UQLab [68]. Here, the formulation based on MLE can be presented as: 12 
 13 

𝜽𝜽 =  argmin
𝜽𝜽∗

��𝑹𝑹�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽∗��
1
𝑚𝑚 𝜎𝜎2� (25) 

 14 
where 𝑚𝑚 is the number of training points. Accordingly, the regression coefficient 𝜷𝜷, and the predicted mean 15 
and variance can be determined as follows [68]: 16 
 17 

𝜷𝜷 =  (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑭𝑭𝑇𝑇𝑹𝑹−1𝒀𝒀 
𝜇𝜇𝑔𝑔�(𝒙𝒙𝑔𝑔) = 𝑩𝑩𝑇𝑇�𝒙𝒙𝑔𝑔�𝜷𝜷 + 𝒓𝒓𝑇𝑇�𝒙𝒙𝑔𝑔�𝑹𝑹−1(𝒚𝒚 − 𝑭𝑭𝑭𝑭) 

𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔� = 𝜎𝜎2 �1− 𝒓𝒓𝑇𝑇�𝒙𝒙𝑔𝑔�𝑹𝑹−1𝒓𝒓�𝒙𝒙𝑔𝑔� + �𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓�𝒙𝒙𝑔𝑔� − 𝑩𝑩�𝒙𝒙𝑔𝑔��
𝑇𝑇

(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1 �𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓�𝒙𝒙𝑔𝑔� − 𝑩𝑩�𝒙𝒙𝑔𝑔��� 
(26) 

 18 
where 𝑭𝑭 is the matrix of the basis function 𝑩𝑩�𝒙𝒙𝑔𝑔� evaluated at the training points, i.e., 𝐹𝐹𝑖𝑖𝑖𝑖 =  𝐵𝐵𝑗𝑗(𝒙𝒙𝑖𝑖), 𝑖𝑖 =19 
1, 2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑝𝑝, 𝒓𝒓�𝒙𝒙𝑔𝑔� is the correlation between known training points 𝒙𝒙𝑖𝑖 and an untried point 20 
𝒙𝒙𝑔𝑔: 𝑟𝑟𝑖𝑖 = 𝑅𝑅�𝒙𝒙𝑔𝑔,𝒙𝒙𝑖𝑖,𝜽𝜽�, 𝑖𝑖 = 1,2 …𝑚𝑚, and 𝑹𝑹 is the autocorrelation matrix for known training points: 𝑅𝑅𝑖𝑖𝑖𝑖 =21 
 𝑅𝑅�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗,𝜽𝜽�, 𝑖𝑖 = 1,2, … ,𝑚𝑚; 𝑗𝑗 = 1,2, … ,𝑚𝑚. Therefore, 𝑔𝑔��𝒙𝒙𝑔𝑔� can be presented using the estimated Kriging 22 
mean 𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔� and variance 𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔� as: 23 
 24 

𝑔𝑔��𝒙𝒙𝑔𝑔� ~ 𝑁𝑁 �𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔�,𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔�� (27) 
 25 
It is obvious that the responses from the Kriging model 𝑔𝑔��𝒙𝒙𝑔𝑔� are not deterministic but probabilistic in the 26 
form of a normal distribution with mean 𝜇𝜇𝑔𝑔��𝒙𝒙𝑔𝑔� and variance 𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑔𝑔�. This stochastic property allows 27 
developing strategies for enriching the training points by refining the Kriging model. In the following 28 
subsection, the framework of RUAK and the implementation steps are explained. 29 
 30 
4.2 RUAK 31 
The proposed RUAK algorithm is described in this section, and a flowchart illustrating the process is 32 
presented in Fig 1. The details of each step are summarized below: 33 
 34 
• Step 1: Generating initial candidate design samples. In this step, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 candidate design samples are 35 
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generated by Latin Hypercube Sampling (LHS) and the set of samples is denoted as S.  1 
 2 
• Step 2: Initial training points. Randomly select an initial set of training points denoted as 𝒙𝒙𝑡𝑡𝑡𝑡 from S. 3 
The number of initial training points affects the quality of the initial Kriging model and the computational 4 
demand of the reliability analysis. For similar problems to those considered in this paper, the study in [8] 5 
indicated that 12 initial training points are adequate. Therefore, we have used this number in the studies in 6 
this article. 7 
 8 
• Step 3: Kriging construction. Construct the Kriging meta-model 𝑔𝑔��𝑿𝑿𝑔𝑔� with current training points 𝒙𝒙𝑡𝑡𝑡𝑡. 9 
This construction can be based on available packages such as DACE [69], [73] or UQLab [68]. Here, an 10 
ordinary Kriging basis and Gaussian correlation function are used.  11 
 12 
• Step 4: Kriging prediction. The Kriging responses 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑔𝑔) and variances 𝜎𝜎𝑔𝑔�2(𝒙𝒙𝑔𝑔) are obtained from the 13 
current Kriging model 𝑔𝑔��𝑿𝑿𝑔𝑔� for every point in S. According to responses 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑔𝑔), the failure probability 14 
𝑃𝑃�𝑓𝑓 is estimated by crude MCS. 15 
 16 
• Step 5: Identification of the next training point. In this stage, the popular ‘U’ learning function is 17 
implemented to search for the next best training point. The ‘U’ learning function has the following form: 18 

 19 

𝑈𝑈�𝒙𝒙𝑔𝑔� =  
�𝜇𝜇𝐾𝐾�𝒙𝒙𝑔𝑔��
𝜎𝜎𝐾𝐾�𝒙𝒙𝑔𝑔�

 (28) 

 20 
The ‘U’ learning function estimates the probability that 𝑔𝑔��𝒙𝒙𝑔𝑔� wrongly estimate the sign (+/–) of the 21 
performance function at 𝒙𝒙𝑔𝑔. Thus, the point that minimizes the response of the ‘U’ learning function is 22 
selected as the next best training point: 23 
 24 

𝒙𝒙𝑡𝑡𝑡𝑡∗ = Min
𝒙𝒙𝑔𝑔 ∈ 𝑆𝑆

(𝑈𝑈) (29) 
 25 
• Step 6: Updating the training points. Add the next training point to the set of training points. 26 
 27 
• Step 7: Maximum error estimation of 𝑃𝑃�𝑓𝑓. As stated in the introduction, the conventional stopping criteria 28 
(e.g. 𝑀𝑀𝑀𝑀𝑀𝑀(𝑈𝑈) ≥ 2) are often too conservative and lead to unnecessary over-training of the surrogate models. 29 
To resolve this issue, an efficient stopping criterion developed by the authors in [29] is adopted here. First, 30 
the maximum error 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚  of the estimated prior failure probability is determined. Note that the failure 31 
probability with the Kriging model can be computed as:  32 
 33 

𝑃𝑃�𝑓𝑓 =  
𝑁𝑁�𝑓𝑓
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

 (30) 

 34 
where 𝑁𝑁�𝑓𝑓 is the estimated number of failure points in S. The true failure probability based on crude MCS 35 
is: 36 
 37 

𝑃𝑃𝑓𝑓 =  
𝑁𝑁𝑓𝑓
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

 (31) 

 38 
where 𝑁𝑁𝑓𝑓 is the true number of failure points. Thus the relative error of 𝑃𝑃�𝑓𝑓 can be defined as: 39 
 40 
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𝜖𝜖 =  �
𝑃𝑃�𝑓𝑓
𝑃𝑃𝑓𝑓
− 1� =  �

𝑁𝑁�𝑓𝑓 − 𝑁𝑁𝑓𝑓
𝑁𝑁𝑓𝑓

� (32) 

 1 
The estimated failure domain is denoted as Ω�𝑓𝑓, the safe domain as Ω�𝑠𝑠, the total number of wrong sign 2 
estimations in Ω�𝑓𝑓  as 𝑆̂𝑆𝑓𝑓 , and in Ω�𝑠𝑠  as 𝑆̂𝑆𝑠𝑠 . Note that Ω�𝑓𝑓 ,Ω�𝑠𝑠 ∈ Ω , and Ω�𝑓𝑓 ∩ Ω�𝑠𝑠 = ∅ . In the Kriging 3 
model, 𝑁𝑁𝑓𝑓, 𝑆̂𝑆𝑠𝑠, and 𝑆̂𝑆𝑓𝑓 are not deterministic but follow Poisson binomial distributions as shown in [29]. 𝑁𝑁𝑓𝑓 4 
can therefore be estimated as: 5 
 6 

𝑁𝑁𝑓𝑓 =  𝑁𝑁�𝑓𝑓  +  𝑆𝑆𝑠𝑠� −  𝑆̂𝑆𝑓𝑓 (33) 
 7 
Here, both 𝑆̂𝑆𝑠𝑠 and 𝑆̂𝑆𝑓𝑓 follow a Poisson binomial distribution with mean and variance shown below [29]: 8 
 9 

𝑆̂𝑆𝑠𝑠~𝑃𝑃𝑃𝑃��𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 
𝑁𝑁�𝑠𝑠

𝑖𝑖=1

,�𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 (1 − 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 )
𝑁𝑁�𝑠𝑠 

𝑖𝑖=1

� , 𝑥𝑥𝑖𝑖 ∈  Ω�𝑠𝑠 (34) 

  

𝑆̂𝑆𝑓𝑓~𝑃𝑃𝑃𝑃��𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 

𝑁𝑁�𝑓𝑓

𝑖𝑖=1

,�𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 (1 − 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 )

𝑁𝑁�𝑓𝑓 

𝑖𝑖=1

� , 𝑥𝑥𝑖𝑖 ∈ Ω�𝑓𝑓 (35) 

  
where 𝑃𝑃𝑃𝑃  denotes the Poison Binomial distribution and 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤  denotes the probability of wrong sign 10 

estimation for 𝑥𝑥𝑖𝑖, which can be computed as 𝑃𝑃𝑖𝑖𝑤𝑤𝑤𝑤𝑤𝑤 = 𝛷𝛷 �−𝑈𝑈 �𝑥𝑥𝑖𝑖𝑔𝑔��. Therefore, with a confidence level 𝛼𝛼, 11 

the upper and lower bounds of 𝑆̂𝑆𝑠𝑠 and 𝑆̂𝑆𝑓𝑓 can be found as: 12 
 13 

𝑆̂𝑆𝑠𝑠 ∈ �𝜣𝜣𝑆̂𝑆𝑠𝑠
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝑆̂𝑆𝑠𝑠

−1 �1 −
𝛼𝛼
2
�� (36) 

  

𝑆̂𝑆𝑓𝑓 ∈ �𝜣𝜣𝑆̂𝑆𝑓𝑓
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝑆̂𝑆𝑓𝑓

−1 �1 −
𝛼𝛼
2
�� (37) 

  
where 𝜣𝜣𝑆̂𝑆𝑠𝑠

−1 and 𝜣𝜣𝑆̂𝑆𝑓𝑓
−1 are the inverse CDF of the Poisson binomial distribution. According to Eq. (33), the 14 

upper and lower bounds of the total number of failure points can be derived as: 15 
 16 

𝑁𝑁𝑓𝑓 ∈ �𝑁𝑁�𝑓𝑓 − 𝑆̂𝑆𝑓𝑓𝑢𝑢,    𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢 � (38) 
  

where 𝑆̂𝑆𝑓𝑓𝑢𝑢and 𝑆̂𝑆𝑠𝑠𝑢𝑢 are the upper bounds of 𝑆̂𝑆𝑓𝑓 and 𝑆̂𝑆𝑠𝑠, respectively, thus, the maximum error can be estimated 17 
as: 18 
 19 

𝜖𝜖 = �
𝑁𝑁�𝑓𝑓
𝑁𝑁𝑓𝑓

− 1� ≤ 𝑚𝑚𝑚𝑚𝑚𝑚 ��
𝑁𝑁�𝑓𝑓

𝑁𝑁�𝑓𝑓 − 𝑆̂𝑆𝑓𝑓𝑢𝑢
− 1� , �

𝑁𝑁�𝑓𝑓
𝑁𝑁�𝑓𝑓 + 𝑆̂𝑆𝑠𝑠𝑢𝑢 

− 1�� = 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 (39) 

  
where 𝑆̂𝑆𝑓𝑓𝑢𝑢 =  𝜣𝜣𝑆̂𝑆𝑓𝑓

−1 �1 − 𝛼𝛼
2
� and 𝑆̂𝑆𝑠𝑠𝑢𝑢 =  𝜣𝜣𝑆̂𝑆𝑠𝑠

−1 �1 − 𝛼𝛼
2
�. More details for the computation of 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 can be found 20 

in [29]. 21 
 22 
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• Step 8: Checking the stopping criterion based on the maximum error. Check the stopping criterion: 1 
 2 

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 (40) 
  

where 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 is the error threshold set by researchers. If the stopping criterion is not satisfied, then the process 3 
moves to step 3; otherwise, to step 9. It is expected that the true error (denoted as 𝜖𝜖), with confidence level 4 
α, should be smaller than 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚. The relationships among 𝜖𝜖, 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚, and 𝜖𝜖𝑡𝑡ℎ𝑟𝑟, is: 5 
 6 

𝜖𝜖 ≤ 𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 (41) 
  

It is shown that this error-based stopping criterion successfully solves the unnecessary training problems 7 
associated with surrogate-based reliability analysis methods, as their stopping criteria are not directly linked 8 
to the extent of error in the estimated failure probability.  9 
 10 
• Step 9: Checking the coefficient of variation of the failure probability. In this step, the sufficiency of the 11 
population of S is checked using: 12 
 13 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 = �
1 − 𝑃𝑃�𝑓𝑓
𝑃𝑃�𝑓𝑓𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 (42) 

  
where 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓  is the coefficient of variation of 𝑃𝑃�𝑓𝑓  and 𝐶𝐶𝐶𝐶𝐶𝐶thr  is the corresponding threshold, which is 14 
typically adopted as 0.05 [8]. If Eq. (42) is satisfied, then the process moves to step 10. If not, it means that 15 
the number of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is insufficient and an additional number 𝑁𝑁∆𝑆𝑆 of candidate design samples ∆𝑆𝑆 should be 16 
added to S, and the process should move back to step 4. 17 
 18 
• Step 10: Obtain the output of the prior failure probability 𝑃𝑃�𝑓𝑓. The estimate of the prior failure probability 19 
is final.  20 
 21 
• Step 11: Estimate Pr(𝑍𝑍) and Pr(𝑍𝑍|𝐸𝐸). In this step, the probability of evidence Pr(𝑍𝑍) and the conditional 22 
probability of Pr(𝑍𝑍|𝐸𝐸) are computed based on the well-trained surrogate model 𝑔𝑔��𝑿𝑿𝑔𝑔� using Eq. (20). Note 23 
that the failed samples should be drawn sufficiently based on 𝑔𝑔��𝑿𝑿𝑔𝑔� for the purpose of accurate estimate 24 
of Pr(𝑍𝑍|𝐸𝐸). 25 
 26 
• Step 12: Output of the posterior failure probability 𝑃𝑃′�𝑓𝑓. Estimate the posterior failure probability using 27 
Eq. (14). 28 
 29 

Note that the steps 1-6 in RUAK correspond to similar steps in AK-MCS [8]. In AK-MCS, the inner 30 
loop adaptively trains the Kriging model until the stopping criterion (𝑀𝑀𝑀𝑀𝑀𝑀(𝐸𝐸𝐸𝐸𝐸𝐸) ≤ 0.001 or 𝑀𝑀𝑀𝑀𝑀𝑀(𝑈𝑈) ≥ 2) 31 
is satisfied  based on the current candidate design sample, S. However, the size of S (i.e. 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀) has influence 32 
on the accuracy of the limit state of 𝑔𝑔��𝒙𝒙𝑔𝑔�, thus, the size of S should be well defined. In the outer loop, a 33 
proper number of samples 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is selected first. This number may adaptively increase until the stopping 34 
criterion in Eq. (42) is satisfied. If the two stopping criteria are satisfied, the Kriging model is regarded as 35 
well trained. In RUAK, the stopping criterion for the outer loop is the same as that in AK-MCS. However, 36 
the stopping criterion for the inner loop is set based on an upper bound derived in [29] for the error in failure 37 
probability estimate given the size of samples in S. 38 

 39 
 40 
  41 
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 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
  25 

Generate S with LHS 

Select initial training points 𝒙𝒙𝑡𝑡𝑡𝑡, 
and evaluate responses  𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡) 

Fig 1. Flowchart of RUAK 

 

Construct Kriging model 𝑔𝑔��𝑿𝑿𝑔𝑔� 
based on current 𝒙𝒙𝑡𝑡𝑡𝑡 

Estimate the 𝜇𝜇𝐾𝐾(𝒙𝒙𝑔𝑔), 𝜎𝜎𝐾𝐾(𝒙𝒙𝑔𝑔) and 
𝑃𝑃�𝑓𝑓  on S 

Search for the next best point 𝒙𝒙𝑡𝑡𝑡𝑡∗  

Update the training points 𝒙𝒙𝑡𝑡𝑡𝑡 

Estimate the maximum error rate 
𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚  

𝜖𝜖𝑚̂𝑚𝑚𝑚𝑚𝑚 ≤ 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶thr 
Update S by adding 𝑁𝑁∆𝑆𝑆 
candidate design points 

Evaluate 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡∗  )    

Estimate  𝑃𝑃�𝑓𝑓 

Estimate  Pr(𝑍𝑍) and 
Pr(𝑍𝑍|𝐸𝐸) 

Output the posterior failure probability   
𝑃𝑃�𝑓𝑓′ 

Observations and 
information 

End 
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RUAK offers two major advantages compared with conventional reliability updating approaches. First, 1 
reliability updating is transformed into three independent regular reliability analysis problems, which can 2 
be efficiently analyzed using surrogated-model based reliability analysis methods. Particularly, the 3 
numerator in Eq. (13) involves a series system reliability problem and such a problem is typically very rare. 4 
In such cases, non-simulation based reliability analysis methods such as FORM and SORM may not offer 5 
reliable results. The second important feature of the proposed method is its high efficiency in reliability 6 
updating since it does not require investigating the performance function as new information becomes 7 
available. It should be noted that two viewpoints can be followed for the estimation of 𝑃𝑃𝑓𝑓′. The first approach 8 
is introduced in this paper, which is the direct application of the Bayes’ theorem to reliability updating 9 
problem as shown in Eq. (14). Another viewpoint is to first update the distribution of random vector 𝑿𝑿𝑔𝑔 10 
using Bayesian updating procedures based on new information and then estimate 𝑃𝑃𝑓𝑓′ for the system with 11 
updated model variables using classical or advanced reliability analysis methods. The latter approach is of 12 
course computationally very demanding.  13 

In the Appendix, it is proved that these two general approaches lead to the same estimate of 𝑃𝑃𝑓𝑓′. In the 14 
first approach, which is the basis of the proposed method, the accuracy of the estimated posterior probability 15 
of failure mainly relies on the construction of the limit state function. First, it should be noted that there is 16 
no error in 𝑃𝑃𝑃𝑃(𝑍𝑍) since the computations of 𝑃𝑃𝑃𝑃(𝑍𝑍) in both pure MCS and Kriging-based MCS are the same. 17 
Therefore, the error in the estimate of 𝑃𝑃𝑓𝑓′ can stem from the computation of 𝑃𝑃𝑓𝑓  and 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸). Second, 18 
based on Fig.2 (a), it can be inferred that the estimated limit state, 𝑔𝑔��𝑿𝑿𝑔𝑔�, is very close to the true limit, 19 
𝑔𝑔�𝑿𝑿𝑔𝑔�, as the stopping criterion is set appropriately. It can be further inferred that the failure probability 20 
estimated by the Kriging-based MCS closely approximates the one estimated through the pure MCS. Thus, 21 
the error of  𝑃𝑃𝑓𝑓 can be negligible. Furthermore, as the stopping criterion is set appropriately so that 𝑔𝑔��𝑿𝑿𝑔𝑔� ≅22 
𝑔𝑔�𝑿𝑿𝑔𝑔�, the error of 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) becomes negligible. As shown in Fig.2 (a) and (b), let S denote the set of 23 
candidate samples. If the responses of these points are examined by the true performance function 𝑔𝑔(𝑿𝑿𝑔𝑔), 24 
S can be classified into two groups of points 𝑆𝑆𝑠𝑠 and 𝑆𝑆𝑓𝑓. Here, 𝑆𝑆𝑠𝑠 means the set of points that are truly safe 25 
and 𝑆𝑆𝑓𝑓 denotes the set of points that are truly failure. Then 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) is calculated based on 𝑆𝑆𝑓𝑓 using the 26 
approach for computing the probability of equality information. If the aforementioned process is 27 
implemented using the Kriging surrogate model, S should be classified into two groups of points 𝑆𝑆𝑠𝑠′ and 28 
𝑆𝑆𝑓𝑓′. Here, 𝑆𝑆𝑠𝑠′ and 𝑆𝑆𝑓𝑓′ denote the set of points that are estimated through the Kriging surrogate model as 29 
safe and failure, respectively. Therefore, 𝑆𝑆𝑓𝑓′  can be accurately estimated so that 𝑆𝑆𝑓𝑓′ ≅ 𝑆𝑆𝑓𝑓  when the 30 
stopping criterion becomes very tight indicating that the limit state is accurately estimated. This process 31 
can also ensure the accuracy of 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) as its estimation relies on 𝑆𝑆𝑓𝑓′ (Fig.2 (b)). 32 
 33 
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(a) (b) 

Fig. 2 Illustration of the proposed method: (a) candidate design samples and the true and estimated 
limit state functions for the estimation of 𝑃𝑃𝑓𝑓 and (b) candidate design samples and the limit state 

functions for the estimation of 𝑃𝑃𝑃𝑃(𝑍𝑍|𝐸𝐸) 
 1 
5. Numerical examples 2 
In this section, four numerical examples representing different levels of complexities, various probabilistic 3 
distributions, and different number of dimensions are implemented to explore the efficiency and accuracy 4 
of RUAK.  5 
 6 
5.1. Low-dimensional example 7 
The first example is two-dimensional and is designed to graphically illustrate the process of the proposed 8 
RUAK algorithm. This problem describes the relation between load and load-bearing capacity in the 9 
following form [50]: 10 
 11 

𝑔𝑔(𝑅𝑅) = 𝑅𝑅 − 𝑆𝑆 (43) 
  

where the load 𝑆𝑆 = 2.0 is a constant and the capacity 𝑅𝑅 follows the Weibull distribution with the shape 12 
parameter 𝑘𝑘 = 3.0 and scale parameter 𝑣𝑣 = 10. The event E is defined as the set of outcomes in the failure 13 
domain 𝛺𝛺𝑓𝑓(𝑟𝑟) = {𝑔𝑔(𝑟𝑟) ≤ 0} . A measurement of the capacity 𝑟𝑟𝑚𝑚  is available as 𝑟𝑟𝑚𝑚 = 6.0  with the 14 
associated measurement error 𝜀𝜀𝑚𝑚, which follows standard normal distribution. Thus, the likelihood function 15 
can be represented as: 16 
 17 

𝐿𝐿(𝑟𝑟, 𝑟𝑟𝑚𝑚) = 𝜑𝜑(𝑟𝑟𝑚𝑚 − 𝑟𝑟) (44) 
  

where 𝑟𝑟 are the samples from R. In the computation of 𝑃𝑃�𝑓𝑓 , the threshold of the stopping criterion is set to 18 
𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05, the coefficient of variation of 𝑃𝑃�𝑓𝑓 is also set to 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 = 0.05, the number of training samples 19 
is initially set as 12, and the initial number of candidate design points for RUAK is 𝑁𝑁𝑆𝑆 = 105 with 𝑁𝑁∆𝑆𝑆 =20 
105. The results for prior failure probability with MCS and RUAK are presented in Table 1. Moreover, the 21 
limit state function for Pr(𝑍𝑍) can be formulated as: 22 
 23 

ℎ+(𝑝𝑝, 𝑟𝑟) = 𝑝𝑝 − 𝑐𝑐1𝐿𝐿(𝑟𝑟, 𝑟𝑟𝑚𝑚) (45) 
  

Candidate DOE  
DOE  

𝑔𝑔�𝑿𝑿𝑔𝑔� 
𝑔𝑔��𝑿𝑿𝑔𝑔� 

Old candidate DOE  

New added candidate DOE  

𝑔𝑔��𝑿𝑿𝑔𝑔� 

𝑆𝑆𝑓𝑓 
𝑆𝑆𝑠𝑠 

𝑆𝑆𝑓𝑓 

ℎ�𝑝𝑝,𝑿𝑿𝑔𝑔� 
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where 𝐿𝐿(𝑟𝑟, 𝑟𝑟𝑚𝑚) is the likelihood of the error with 𝐿𝐿(𝑟𝑟, 𝑟𝑟𝑚𝑚) = φ(𝜀𝜀𝑚𝑚), φ(∙) is the PDF of the standard normal 1 
distribution and 𝑐𝑐1 = 1

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝑟𝑟𝑖𝑖,𝑟𝑟𝑚𝑚))
, 𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆. Fig.3 (a) illustrates the limit state in ℎ+(𝑝𝑝, 𝑟𝑟). Note that Pr(𝑍𝑍) =2 

1
𝑐𝑐1
∙
∑ 𝐼𝐼𝑍𝑍+(𝑝𝑝𝑖𝑖,𝑟𝑟𝑖𝑖)
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
, 𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆 with: 3 

 4 

𝐼𝐼𝑍𝑍+(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) = �1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ+(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ+(𝑝𝑝𝑖𝑖, 𝑟𝑟𝑖𝑖) > 0 , 𝑟𝑟𝑖𝑖 ∈ 𝑆𝑆 (46) 

  
The limit state function for the conditional probability of the evidence Pr(𝑍𝑍|𝐸𝐸) can be presented as: 5 
 6 

ℎ++(𝑝𝑝, 𝑟𝑟′) = 𝑝𝑝 − 𝑐𝑐2𝐿𝐿(𝑟𝑟′, 𝑟𝑟𝑚𝑚) (47) 
  

where 𝑟𝑟′ are the samples with posterior distribution of 𝑅𝑅 in 𝛺𝛺𝑓𝑓 and 𝑐𝑐2 = 1
𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿�𝑟𝑟𝑗𝑗

′,𝑟𝑟𝑚𝑚�)
, 𝑟𝑟𝑗𝑗′ ∈ 𝑆̂𝑆𝑓𝑓. Moreover, 7 

Pr(𝑍𝑍|𝐸𝐸) = 1
𝑐𝑐2
∙
∑ 𝐼𝐼𝑍𝑍++�𝑝𝑝𝑖𝑖,𝑟𝑟𝑗𝑗

′�
𝑁𝑁�𝑓𝑓
𝑗𝑗=1

𝑁𝑁�𝑓𝑓
, 𝑟𝑟𝑗𝑗′ ∈ 𝑆̂𝑆𝑓𝑓 with: 8 

 9 

𝐼𝐼𝑍𝑍++�𝑝𝑝𝑖𝑖 , 𝑟𝑟𝑗𝑗′� = �
1, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ++�𝑝𝑝𝑖𝑖, 𝑟𝑟𝑗𝑗′� ≤ 0
0, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 ℎ++�𝑝𝑝𝑖𝑖, 𝑟𝑟𝑗𝑗′� > 0 

, 𝑟𝑟𝑗𝑗′ ∈ 𝑆̂𝑆𝑓𝑓 (48) 

  
The limit state function ℎ++(𝑝𝑝, 𝑟𝑟′) is illustrated in Fig. 3 (b). It is shown that only the points estimated as 10 
failure in 𝑔𝑔(𝑟𝑟) remain in estimating the conditional probability Pr(𝑍𝑍|𝐸𝐸). Because of the difference between 11 
constants 𝑐𝑐1 and 𝑐𝑐2, the limit states in ℎ+(𝑝𝑝, 𝑟𝑟) and ℎ++(𝑝𝑝, 𝑟𝑟′) are different. 12 
 13 

  
(a) Limit state of ℎ+(𝑝𝑝, 𝑟𝑟) (b) Limit state of ℎ++(𝑝𝑝, 𝑟𝑟′) 

  
Fig. 3 Illustration of ℎ+(𝑝𝑝, 𝑟𝑟) and ℎ++(𝑝𝑝, 𝑟𝑟′) 14 

 15 
  16 
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Table 1. Reliability updating results for Example 1 based on 10 simulations. For the purpose of comparison, 1 
results from [50] including the Axis-Parallel Importance Sampling (APIS), FORM/SORM are also 2 
summarized here. Note that 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 denotes the number of calls to the performance function and 𝑁𝑁𝑙𝑙𝑙𝑙 (𝑁𝑁𝑙𝑙𝑙𝑙 ≥3 
1) is the number of calls for one line search in APIS. 4 

Methodology 𝑃𝑃�𝑓𝑓
′  𝑃𝑃�𝑓𝑓 Computational demand 

MCS [3.49, 3.70] × 10−6 [7.86, 8.10] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 × 106 
RUAK  

(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) [3.36, 3.87] × 10−6 [7.75, 8.21] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 12 

RUAK  
(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) [3.42, 3.81] × 10−6 [7.79, 8.20] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 12 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) 

[3.21, 3.96] × 10−6 [7.62, 8.42] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 12 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) [3.45, 3.76] × 10−6 [7.79, 8.17] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 12~14 

APIS [50] [2.95, 3.91] × 10−6 - 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 500 × 𝑁𝑁𝑙𝑙𝑙𝑙 

FORM [50] 1.37 × 10−6 - - 
SORM [50] 2.11 × 10−6 - - 

 5 
Two toolboxes for Kriging including DACE [69], [73] and UQLab [68] are investigated to explore the 6 
performance of RUAK. When implementing these two toolboxes, the Gaussian kernel function and 7 
ordinary Kriging are chosen. Moreover, the gradient algorithm is implemented for the global optimization 8 
in UQLab toolbox. To satisfy 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡ℎ𝑟𝑟 = 0.05 as mentioned in step 9 of RUAK, the final number 9 
of candidate design samples is determined as 1 × 105 (i.e. 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 1 × 105 ). The results in Table 1 10 
showcase that the proposed algorithm RUAK outperforms other methods in terms of accuracy and 11 
efficiency. As the stopping criterion for training the Kriging surrogate model becomes tight (i.e. 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 12 
changes from 0.05 to 0.01), the estimated prior and posterior failure probability become closer to the results 13 
obtained by the MCS. When 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01, the results estimated using UQlab toolbox is more accurate than 14 
DACE even though implementation using UQLab requires fewer number of evaluations of the performance 15 
function.  The performance of FORM/SORM based on Eq. (13) is not satisfactory because Pr(𝐸𝐸 ∩ 𝑍𝑍) is a 16 
very rare joint event for which it is very difficult to find the MPP. Moreover, even though the sample-based 17 
approach APIS can reach acceptable results, it requires a relatively large number of evaluations of 𝑔𝑔(𝑅𝑅). 18 
Compared with the approaches above, the proposed RUAK algorithm needs only 6 evaluations of 𝑔𝑔(𝑅𝑅) 19 
and also achieves very high accuracy in both prior and posterior failure probabilities.  20 
 21 
5.2. Linear and normal case 22 
The second example is selected to investigate the performance of reliability updating methods for a problem 23 
involving multiple random variables [50]. The performance function is defined as: 24 
 25 

𝑔𝑔�𝑿𝑿𝑔𝑔� = 2𝑋𝑋1 + 3𝑋𝑋2 + 6𝑋𝑋3 + 4𝑋𝑋4 − 𝑋𝑋5 − 2𝑋𝑋6 − 4𝑋𝑋7 − 4𝑋𝑋8 (49) 
  

where 𝑿𝑿𝑔𝑔 = [𝑋𝑋1, … ,𝑋𝑋8] are identically distributed independent normal random variables with mean 𝜇𝜇𝑋𝑋 =26 
10 and standard deviation 𝜎𝜎𝑋𝑋 = 2. Three observations are made in this example with three measurement 27 
errors 𝜀𝜀𝑚𝑚1, 𝜀𝜀𝑚𝑚2, and 𝜀𝜀𝑚𝑚3. All of those are identical independent standard normal random variables.  28 
 29 

𝐿𝐿(𝒙𝒙) = �𝐿𝐿𝑖𝑖(𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1)
3

𝑖𝑖=1

= �𝜑𝜑(20 − 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖+1)
3

𝑖𝑖=1

 (50) 
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where 𝑥𝑥1,𝑥𝑥2,𝑥𝑥3,  and 𝑥𝑥4  are samples from 𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,  and 𝑋𝑋4 . In the implementation of RUAK for 1 
computing 𝑃𝑃�𝑓𝑓 , the threshold of the stopping criterion is set to 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05, the coefficient of variation of 𝑃𝑃�𝑓𝑓 2 
is also set to 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 = 0.05, the number of initial training samples is set to 12, and the initial number of 3 
candidate design points for RUAK is 𝑁𝑁𝑆𝑆 = 104 with 𝑁𝑁∆𝑆𝑆 = 104. The results obtained using RUAK are 4 
presented in Table 2. Note that the limit state function ℎ+�𝑝𝑝,𝒙𝒙𝑔𝑔� for the probability of evidence Pr(𝑍𝑍) is: 5 
 6 

ℎ+�𝑝𝑝,𝒙𝒙𝑔𝑔� = 𝑝𝑝 − 𝑐𝑐1𝐿𝐿�𝒙𝒙𝑔𝑔� (51) 
  

where the likelihood function 𝐿𝐿�𝒙𝒙𝑔𝑔� = φ(𝜀𝜀𝑚𝑚1) ∙ φ(𝜀𝜀𝑚𝑚2) ∙ φ(𝜀𝜀𝑚𝑚3) and 𝑐𝑐1 = 1
𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒙𝒙𝒊𝒊))

,𝒙𝒙𝒊𝒊 ∈ 𝑆𝑆. Similarly, 7 

the limit state function for the conditional probability of the evidence Pr(𝑍𝑍|𝐸𝐸) can be represented as: 8 
 9 

ℎ++(𝑝𝑝,𝒙𝒙′) = 𝑝𝑝 − 𝑐𝑐2𝐿𝐿(𝒙𝒙′) (52) 
  

where 𝒙𝒙′s are the samples from the posterior distribution of 𝑿𝑿𝑔𝑔 in 𝛺𝛺𝑓𝑓 and 𝑐𝑐2 = 1
𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿�𝒙𝒙𝑗𝑗

′�)
,𝒙𝒙𝑗𝑗′ ∈ 𝑆̂𝑆𝑓𝑓. 10 

 11 
Table 2. Reliability updating results for Example 2 based on 10 simulations. For the purpose of comparison, 12 
results from [50] including APIS and FORM/SORM are also summarized here.  13 

Methodology 𝑃𝑃�𝑓𝑓
′  𝑃𝑃�𝑓𝑓 Computational demand 

MCS [0.82, 1.08] × 10−3 [2.36, 2.40] × 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 × 106 
RUAK  

(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) [0.79, 1.21] × 10−3 [2.21, 2.52] × 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 69~88  

RUAK  
(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) [0.81, 1.14] × 10−3 [2.32, 2.44] × 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 115~158 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) [0.81, 1.17] × 10−3 [2.26, 2.48] × 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 39~54 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) [0.83, 1.12] × 10−3 [2.35, 2.43] × 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 75~93 

APIS [50] [1.00, 1.30] × 10−3 - 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≅ 1 × 104 

FORM [50] 0.22 × 10−3 - - 
SORM [50] 1.60 × 10−3 - - 

 14 
The performance of RUAK is summarized in Table 2, which examines its implementation with two Kriging 15 
toolboxes including DACE [69], [73] and UQLab [68]. In this case, the final number of candidate design 16 
samples is determined as 2 × 104  (i.e., 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 104). It is shown that 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  when using DACE is 17 
significantly larger than that for UQLab. Specifically, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ranges from 69 to 88 for DACE, while it ranges 18 
from 39 to 54 for UQLab for 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 of 0.05. Moreover, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is in the range of 115-158 for DACE with 10 19 
simulations, while it ranges from 75 to 93 using UQLab for 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 of 0.01. Generally, the estimated posterior 20 
probability of failure, 𝑃𝑃�𝑓𝑓′, appears to be close to the results obtained using MCS as 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 becomes tighter. 21 
When 𝜖𝜖𝑡𝑡ℎ𝑟𝑟  is equal to 0.05 and 0.01, the estimates of 𝑃𝑃�𝑓𝑓′  are in the range [0.81,1.14] × 10−3  and 22 
[0.83,1.10] × 10−3 , respectively using UQLab. For DACE, these estimates are in the range 23 
[0.79,1.21] × 10−3 and [0.81,1.14] × 10−3, respectively for 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 of 0.05 and 0.01. The estimates 𝑃𝑃�𝑓𝑓′ using 24 
MCS are in the range [0.82,1.08] × 10−3. These results indicate that UQLab toolbox is more accurate, 25 
robust and efficient than DACE. This is due to the fact that UQLab uses global optimization to determine 26 
the hyper-parameters, while the DACE toolbox uses a local optimization method. The estimated posterior 27 
failure probability using FORM and SORM generates an error of nearly 50% compared with MCS. This 28 
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demonstrates that FORM and SORM are not appropriate for this problem. Additionally, APIS requires 1 
approximately 104 evaluations of the performance function 𝑔𝑔�𝑿𝑿𝑔𝑔�. However, the proposed RUAK method 2 
can achieve both high accuracy and efficiency compared with those approaches with maximum of 88 3 
evaluations of the performance function.  4 
 5 
5.3. Structural system case 6 
The third example is a classical structural system studied by many researchers [58], [74]. As shown in Fig. 7 
4, this elastoplastic frame is subjected to both horizontal load H and vertical load V. The plastic-moment 8 
capacities of this structure are denoted by 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅5 . This example investigates a series system 9 
reliability problem because of three failure mechanisms including sway, beam, and combined mechanisms. 10 
Thus, the response of the performance function can be defined as the minimum of three corresponding 11 
responses as follows:  12 
 13 

𝑔𝑔(𝑣𝑣,ℎ, 𝒓𝒓) = 𝑚𝑚𝑚𝑚𝑚𝑚 �
𝑟𝑟1 + 𝑟𝑟2 + 𝑟𝑟4 + 𝑟𝑟5 − 5ℎ
𝑟𝑟2 + 2𝑟𝑟3 + 𝑟𝑟4 − 5𝑣𝑣

𝑟𝑟1 + 2𝑟𝑟3 + 2𝑟𝑟4 + 𝑟𝑟5 − 5ℎ − 5𝑣𝑣
 (53) 

  
where H follows the Gumbel distribution, V follows the Gamma distribution and 𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅5  are 14 
correlated and lognormally distributed. The probabilistic information of random variables is summarized 15 
in Table 3. 16 
 17 
       Table 3. Random variables in Example 3. 18 

Random variable Distribution type Mean C.O.V Correlation 

𝑅𝑅𝑖𝑖, 𝑖𝑖 = 1, … ,5(𝑘𝑘𝑘𝑘.𝑚𝑚) Joint lognormal 150 0.2 𝜌𝜌ln𝑅𝑅 = 0.3 

𝐻𝐻(𝑘𝑘𝑘𝑘) Gumbel 50 0.4 Independent 

𝑉𝑉 (kN) Gamma 60 0.2 Independent 
 19 
Two measurements for 𝑅𝑅4 and 𝑅𝑅5, denoted as 𝑀𝑀4 and  𝑀𝑀5, are available with measuring errors 𝜀𝜀𝑚𝑚1  and 20 
𝜀𝜀𝑚𝑚2 following independent normal distributions with mean 0 and standard deviation of 15 kN. m. Thus, the 21 
likelihood function can be represented as: 22 
 23 

 𝐿𝐿(𝒓𝒓) = 𝜑𝜑∗(𝑀𝑀4 − 𝑟𝑟4) ∙ 𝜑𝜑∗(𝑀𝑀5 − 𝑟𝑟5) (54) 
  

where 𝑟𝑟4 and 𝑟𝑟5 are samples from 𝑅𝑅4 and 𝑅𝑅5, and 𝜑𝜑∗ is the PDF of normal distribution with mean 0 and 24 
standard deviation of 15 kN. m. In the implementation of RUAK, the number of initial training samples is 25 
set to 12 and the initial number of candidate design points is 𝑁𝑁𝑆𝑆 = 104 with 𝑁𝑁∆𝑆𝑆 = 104. The results of this 26 
case are presented in Table 4.  27 
  28 
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 1 

 2 

   
a. Sway mechanism b. Beam mechanism c. Combined mechanism 

 3 
Fig. 4 Ductile structural frame with three failure mechanisms 4 

 5 
The limit state function ℎ+(𝑝𝑝, 𝒓𝒓) for the probability of evidence Pr(𝑍𝑍) is: 6 
 7 

ℎ+(𝑝𝑝, 𝒓𝒓) = 𝑝𝑝 − 𝑐𝑐1𝐿𝐿(𝒓𝒓) (55) 
  

where the likelihood function 𝐿𝐿(𝒓𝒓) = φ(𝜀𝜀𝑚𝑚1) ∙ φ(𝜀𝜀𝑚𝑚2) and 𝑐𝑐1 = 1
𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒓𝒓𝑖𝑖))

, 𝒓𝒓𝑖𝑖 ∈ 𝑆𝑆. Similarly, the limit 8 

state function for the conditional probability of evidence Pr(𝑍𝑍|𝐸𝐸) can be presented as: 9 
 10 

ℎ++(𝑝𝑝, 𝒓𝒓′) = 𝑝𝑝 − 𝑐𝑐2𝐿𝐿(𝒓𝒓′) (56) 
  

where 𝒓𝒓′s are the samples with a posterior distribution of 𝑹𝑹 in 𝛺𝛺𝑓𝑓 and 𝑐𝑐2 = 1
𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿�𝒓𝒓𝑗𝑗

′�)
, 𝒓𝒓𝑗𝑗′ ∈ 𝑆̂𝑆𝑓𝑓.  11 

As shown in Table 4, the proposed RUAK algorithm is very efficient in reducing the computational 12 
demand compared with the eBN/rBN approach. For computing the potential tables in the reduced BNs, 441 13 
times of structural reliability analyses are needed, each requiring often more than tens of calls to the 14 
performance function. In terms of accuracy of 𝑃𝑃�𝑓𝑓′, both eBN/rBN and RUAK have good performance. The 15 
discretization of continuous points in reduced BNs and construction of the potential table are among reasons 16 
for the large number of 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. Moreover, the eBN/rBN approach requires expert knowledge to construct an 17 
efficient BN. However, this process is completely avoided in the proposed RUAK algorithm. In this 18 
example, two Kriging toolboxes including DACE [69], [73] and UQLab [68] are implemented. The final 19 
number of candidate design samples is determined as 2 × 104 (i.e., 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 2 × 104). As shown in Table 20 
4, DACE toolbox requires a larger number of calls to the performance function compared to UQLab. For 21 
this example, one should note that three groups of information (i.e., 𝑀𝑀4 = 50 and 𝑀𝑀5 = 100, 𝑀𝑀4 = 150 22 
and 𝑀𝑀5 = 100 , and 𝑀𝑀4 = 150  and 𝑀𝑀5 = 200 ) are used to update the reliability. For conventional 23 
reliability updating methods such as the eBN/rBN method in [50], the total number of calls to the 24 
performance function increases corresponding to the number of different groups of information. However, 25 
this is not the case in RUAK because of the well-trained surrogate model and the independent estimation 26 
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of the prior probability of failure. These features can greatly benefit real-time health monitoring and 1 
warning systems that need to investigate sophisticated models rapidly. 2 
 3 
Table 4. Reliability updating results for Example 3 based on 10 simulations. For the purpose of comparison, 4 
results from eBN/rBN in [58] are also summarized here. Note that 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆(𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 ≥ 1) is the number of 5 
evaluations of the performance function for one structural reliability analysis in eBN/rBN. 6 

 
Methodology 

𝑃𝑃�𝑓𝑓
′  

(𝑀𝑀4 = 50 
𝑀𝑀5 = 100) 

𝑃𝑃�𝑓𝑓
′  

(𝑀𝑀4 = 150 
𝑀𝑀5 = 100) 

𝑃𝑃�𝑓𝑓
′  

𝑀𝑀4 = 150 
𝑀𝑀5 = 200 

 
𝑃𝑃�𝑓𝑓 

 
Computational 

demand 

MCS [2.35, 2.72]
× 10−1 

[3.51, 3.68]
× 10−2 

[6.51, 7.75]
× 10−3 

[2.53, 2.75]
× 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 × 106 

RUAK 
(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) 

[2.19, 2.98]
× 10−1 

[3.28, 3.82]
× 10−2 

[6.28, 7.96]
× 10−3 

[2.39, 2.91]
× 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 94~144 

RUAK 
(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) 

[2.23, 2.84]
× 10−1 

[3.33, 3.78]
× 10−2 

[6.33, 7.81]
× 10−3 

[2.57, 2.85]
× 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 225~275 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) 

[2.19, 2.94]
× 10−1 

[3.31, 3.79]
× 10−2 

[6.29, 7.95]
× 10−3 

[2.38, 2.87]
× 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 64~93 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) 

[2.27, 2.82]
× 10−1 

[3.38, 3.75]
× 10−2 

[6.38, 7.78]
× 10−3 

[2.55, 2.81]
× 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 187~214 

eBN/rBN [58] 2.4 × 10−1 3.6 × 10−2 7.1 × 10−3 2.6 × 10−2 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 441 × 𝑁𝑁𝑆𝑆𝑆𝑆𝑆𝑆 
 7 
5.4. Example with 10 dimensions 8 
The fourth example investigates a 23-bar truss with 10 input random variables [9], [72]. This example is 9 
designed here to investigate the capability of the proposed RUAK algorithm in working on multiple 10 
measurements. As shown in Fig. 5, the structure includes 11 horizontal bars and 12 diagonal bars and is 11 
subjected to 6 vertical forces 𝑷𝑷 = [𝑃𝑃1, … ,𝑃𝑃6]. The performance function of this problem is defined as: 12 
 13 

𝑔𝑔(𝑷𝑷,𝐴𝐴1,𝐴𝐴2,𝐸𝐸1,𝐸𝐸2) = 0.14 − |𝑑𝑑𝑑𝑑𝑑𝑑(𝑷𝑷,𝐴𝐴1,𝐴𝐴2,𝐸𝐸1,𝐸𝐸2)| (57) 
  

where 𝑑𝑑𝑑𝑑𝑑𝑑(𝑷𝑷,𝐴𝐴1,𝐴𝐴2,𝐸𝐸1,𝐸𝐸2) is the displacement at the midpoint m and can be calculated using structural 14 
analysis methods. The vertical forces 𝑃𝑃1 to 𝑃𝑃6 all follow Gumbel distributions. 𝐴𝐴1 and 𝐴𝐴2 are the cross 15 
section of horizontal and diagonal bars, respectively, and 𝐸𝐸1  and 𝐸𝐸2  are their Young’s moduli. The 16 
probabilistic information of the 10 independent random variables is presented in Table 5. In the 17 
implementation of RUAK, the number of initial training samples is set to 12 and the initial number of 18 
candidate design points for RUAK is 𝑁𝑁𝑆𝑆 = 104 with 𝑁𝑁∆𝑆𝑆 = 104. Four measurements of 𝑃𝑃1,𝑃𝑃2,𝐴𝐴1 and 𝐴𝐴2 19 
are made with errors  𝜀𝜀𝑚𝑚1 and  𝜀𝜀𝑚𝑚2, which follow a normal distribution with mean 0 and standard deviation 20 
0.5 × 104  and 𝜀𝜀𝑚𝑚3  and 𝜀𝜀𝑚𝑚4 , which follow a normal distribution with mean 0 and standard deviation 21 
1 × 10−4. Thus, the likelihood function can be represented as: 22 
 23 

𝐿𝐿(𝒙𝒙) = φ1,2(𝜀𝜀𝑚𝑚1) ∙ φ1,2(𝜀𝜀𝑚𝑚2) ∙ φ3,4(𝜀𝜀𝑚𝑚3) ∙ φ3,4(𝜀𝜀𝑚𝑚4) 
= φ1,2(8.5 × 104 − 𝑃𝑃1) ∙ φ1,2(7.5 × 104 − 𝑃𝑃6) ∙ φ3,4(1.85 × 10−3 − 𝐴𝐴1)

∙ φ3,4(0.9 × 10−3 − 𝐴𝐴2) 
(58) 

  
where φ1,2 is the PDF of normal distribution with mean 0 and standard deviation 0.5 × 104 and φ3,4 is the 24 
PDF of normal distribution with mean 0 and standard deviation 1 × 10−4 . The limit state function 25 
ℎ+�𝑝𝑝,𝒙𝒙𝑔𝑔� for the probability of evidence Pr(𝑍𝑍) is: 26 
 27 

ℎ+�𝑝𝑝,𝒙𝒙𝑔𝑔� = 𝑝𝑝 − 𝑐𝑐1𝐿𝐿�𝒙𝒙𝑔𝑔� (59) 
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where 𝑝𝑝  are the samples from the standard uniform distribution, 𝒙𝒙𝑔𝑔 = [𝑝𝑝1,𝑝𝑝6,𝑎𝑎1,𝑎𝑎2] and 𝑐𝑐1 =1 
1

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿(𝒙𝒙𝑖𝑖))
,𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆. 2 

 3 

 4 
Fig. 5 Example 4, truss with 10 random variables 5 

 6 
Table 5. Random variables in Example 4. 7 

Random variable Distribution Mean Standard deviation 
𝑃𝑃1 − 𝑃𝑃6 Gumbel 6.5 × 104 6.5 × 103 
𝐴𝐴1 Lognormal 2 × 10−3 2 × 10−4 
𝐴𝐴2 Lognormal 1 × 10−3 1 × 10−4 
𝐸𝐸1 Lognormal 2.1 × 1011 2.1 × 1011 
𝐸𝐸2 Lognormal 2.1 × 1011 2.1 × 1011 

 8 
Similarly, the limit state function for the conditional probability of evidence Pr(𝑍𝑍|𝐸𝐸) can be presented as: 9 
 10 

ℎ++(𝑝𝑝,𝒙𝒙′) = 𝑝𝑝 − 𝑐𝑐2𝐿𝐿(𝒙𝒙′) (60) 
  

where 𝒙𝒙′ are the samples from the posterior distribution of 𝑿𝑿𝑔𝑔  in 𝛺𝛺𝑓𝑓  and 𝑐𝑐2 = 1

𝑚𝑚𝑚𝑚𝑚𝑚 (𝐿𝐿� 𝒙𝒙𝒋𝒋
′
�)

,𝒙𝒙𝒋𝒋
′ ∈ 𝑆̂𝑆𝑓𝑓 . The 11 

simulation results are summarized in Table 6. 12 
 13 

In this example, it is shown that the number of evaluations of the Finite Element model using MCS is 14 
quite large. Moreover, the estimates of the prior and posterior failure probabilities using the proposed 15 
method are accurate. The final number of candidate design samples for this example is determined as 16 
5 × 104 (i.e. 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 = 5 × 104). As shown in Table 6, the UQLab toolbox is more efficient than DACE in 17 
terms of the number of calls to the performance function. In order to achieve even a higher accuracy in 18 
failure probability estimates, the proposed RUAK algorithm offers two options: setting a tighter threshold 19 
for error 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 in Eq. (40) and a tighter threshold for the coefficient of variation 𝐶𝐶𝐶𝐶𝐶𝐶thr in Eq. (42).  20 
 21 
Table 6. Reliability updating results Example 4 using RUAK based on 10 simulations.  22 

Methodology 𝑃𝑃�𝑓𝑓
′  𝑃𝑃�𝑓𝑓 Computational demand 

MCS [0.99, 1.39] × 10−2 [8.38, 8.69] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 × 106 
RUAK  

(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) [0.87, 1.65] × 10−2 [8.16, 8.92] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 152~188 

RUAK  
(DACE & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) 

[0.93, 1.57] × 10−2 [8.22, 8.84] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 235~275 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.05) [0.86, 1.63] × 10−2 [8.16, 8.89] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 125~141 

RUAK  
(UQLab & 𝜖𝜖𝑡𝑡ℎ𝑟𝑟 = 0.01) [0.92, 1.52] × 10−2 [8.25, 8.82] × 10−3 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 194~223 
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 1 
6. Conclusions 2 
This paper proposes a reliability-updating algorithm named RUAK to estimate the posterior failure 3 
probability with equality information using a surrogate model. Different from the approaches in [50] that 4 
requires estimation of the probability of an often very rare joint event, the proposed algorithm applies the 5 
Bayes’ theorem to decompose the posterior failure probability into three parts: prior failure probability, 6 
probability of information, and conditional probability of information. This decomposition leads to events 7 
with higher probability of occurrence than the joint event in [50]; therefore, decreasing the computational 8 
demand of reliability updating. Another important feature is that RUAK leverages surrogate models in 9 
general and adaptive Kriging algorithms in particular to estimate the prior failure probability. This well-10 
trained surrogate model in the developed formulation of reliability updating also facilitates estimation of 11 
the conditional probability of equality information. This subsequently results in a highly efficient reliability 12 
updating algorithm that does not require analyzing originally time-demanding performance functions when 13 
new information becomes available. Last but not least, the implementation of RUAK is relatively easy 14 
without any empirical knowledge or expertise. Though the adaptive Kriging approach is implemented in 15 
the proposed RUAK algorithm, other surrogate models such as the Polynomial Chaos Expansion, Response 16 
Surface, and Support Vector Regression are also applicable.   17 

Four numerical examples are investigated to show the advantages of the proposed RUAK algorithm. It 18 
is shown that the number of evaluations of those computational examples is significantly reduced through 19 
the use of RUAK. However, the application of RUAK is currently appropriate for time-independent cases. 20 
Extension of this method for time-dependent reliability updating problems is a future research direction. 21 
 22 
Appendix 23 
Two viewpoints toward estimating the posterior probability of failure, 𝑃𝑃′𝑓𝑓, are illustrated in Fig. 6 and 24 
investigated in this section. It is proved that both methods lead to the same posterior probability of failure.  25 
 26 

 
(a) 

 
(b)  

 27 
Fig. 6 Two viewpoints toward estimating the posterior probability of failure with (a) estimating 𝑃𝑃𝑓𝑓′ 28 
directly using reliability updating algorithm and (b) updating the probability distribution of random 29 

variables then implementing a reliability analysis method to estimate 𝑃𝑃𝑓𝑓′ 30 
 31 
As introduced in this paper, the first approach estimates the probability of information as shown in Eq. (14). 32 
Following the estimation of Pr(𝑍𝑍), Pr(𝐸𝐸) and Pr(𝑍𝑍|𝐸𝐸) as shown in this paper, the posterior probability can 33 
be found as, 34 
 35 

𝑃𝑃𝑓𝑓′ =
∫ 𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝑍𝑍

∙ ∫ 𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙∈𝛺𝛺𝐸𝐸

∫ 𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝑍𝑍

 (61) 

  

𝜌𝜌�𝒙𝒙𝑔𝑔� 
𝑃𝑃𝑓𝑓′ 

Information Z + reliability updating 

𝑃𝑃𝑓𝑓′ 
𝜌𝜌�𝒙𝒙𝑔𝑔� Information Z  Reliability analysis  𝜌𝜌′�𝒙𝒙𝑔𝑔′ � 
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The second approach is to update the posterior distribution of 𝒙𝒙 first, then reevaluate the probability of 1 
failure 𝑃𝑃𝑓𝑓′. 2 

Pr�𝐸𝐸�𝑿𝑿′𝑔𝑔� = 𝑃𝑃𝑓𝑓′ = 𝑃𝑃�𝑔𝑔�𝑿𝑿′𝑔𝑔� ≤ 0� = � 𝜌𝜌′�𝒙𝒙′𝑔𝑔� 𝑑𝑑𝒙𝒙′𝑔𝑔
𝒙𝒙′𝑔𝑔∈𝛺𝛺𝐸𝐸

 (62) 

  
where 𝑿𝑿′𝑔𝑔 denotes the posterior distribution of 𝒙𝒙𝑔𝑔 based on new information. First, the probability density 3 
function of 𝑿𝑿′𝑔𝑔 can be represented as, 4 
 5 

𝜌𝜌′�𝒙𝒙′𝑔𝑔� =
𝐿𝐿�𝒙𝒙′𝑔𝑔�𝜌𝜌�𝒙𝒙′𝑔𝑔�

∫ 𝐿𝐿�𝒙𝒙′𝑔𝑔�𝜌𝜌�𝒙𝒙′𝑔𝑔� 𝑑𝑑𝒙𝒙′𝑔𝑔𝑿𝑿′𝑔𝑔

 (63) 

  
The Bayesian Updating with Structural reliability method (BUS) can be applied here to estimate 𝜌𝜌′�𝒙𝒙′𝑔𝑔� 6 
[67]: 7 
 8 

𝜌𝜌′�𝒙𝒙′𝑔𝑔� =
𝜌𝜌�𝒙𝒙𝑔𝑔|𝒙𝒙𝑔𝑔 ∈ 𝛺𝛺𝑍𝑍�

∫ 𝜌𝜌�𝒙𝒙𝑔𝑔�𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝑍𝑍

 (64) 

  
where 9 

𝛺𝛺𝑍𝑍 = �𝑝𝑝 ≤ 𝑐𝑐𝑐𝑐�𝒙𝒙𝑔𝑔�� (65) 
  

Let 𝐶𝐶𝑑𝑑  denote the constant outcome of the denominator, ∫ 𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙𝒙𝒙∈𝛺𝛺𝑍𝑍
. Then Eq. (62) can be further 10 

expanded to: 11 
 12 

𝑃𝑃𝑓𝑓′ = � 𝜌𝜌′�𝒙𝒙′𝑔𝑔� 𝑑𝑑𝒙𝒙′𝑔𝑔
𝒙𝒙𝑔𝑔

′
∈𝛺𝛺𝐸𝐸

= �
𝜌𝜌�𝒙𝒙𝑔𝑔�
𝐶𝐶𝑑𝑑

𝑑𝑑𝒙𝒙𝑔𝑔
𝒙𝒙𝑔𝑔∈[𝛺𝛺𝐸𝐸∩𝛺𝛺𝑍𝑍]

 

 

=
∫ 𝜌𝜌�𝒙𝒙𝑔𝑔� 𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈[𝛺𝛺𝐸𝐸∩𝛺𝛺𝑍𝑍]

𝐶𝐶𝑑𝑑
=
∫ 𝜌𝜌�𝒙𝒙𝑔𝑔� 𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙∈[𝛺𝛺𝐸𝐸∩𝛺𝛺𝑍𝑍]

∫ 𝜌𝜌�𝒙𝒙𝑔𝑔� 𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝑍𝑍

=
∫ 𝜌𝜌�𝒙𝒙𝑔𝑔� 𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝑍𝑍

∙ ∫ 𝜌𝜌�𝒙𝒙𝑔𝑔� 𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝐸𝐸

∫ 𝜌𝜌�𝒙𝒙𝑔𝑔� 𝑑𝑑𝒙𝒙𝑔𝑔𝒙𝒙𝑔𝑔∈𝛺𝛺𝑍𝑍

 

(66) 

  
This result is the same as that in Eq. (61).  13 
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