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Abstract 7 
Despite recent advancements in adaptive Kriging-based reliability analysis for complex limit states, 8 
estimation of the accuracy of extant techniques when the true failure probability is unknown remains an 9 
important challenge. The present study addresses this gap by developing analytical confidence intervals 10 
(CIs) for failure probability estimates. This is facilitated here by leveraging statistical properties of Poisson 11 
Binomial distribution for the expected number of failure points in the set of candidate design samples in 12 
adaptive Kriging as well as Lindeberg’s condition for central limit theorem. Concerning computational 13 
demands involved in the computation of CIs, a simpler case where Kriging correlations are neglected is 14 
also derived. The performance of the proposed CIs is subsequently analyzed for five examples with 15 
different and varying complexities. Results indicate that the proposed CI with correlations considered offers 16 
the most accurate intervals. Additionally, whereas the CI estimated without Kriging correlation is not 17 
entirely satisfactory at early-stages of adaptive reliability analysis, it converges to accurate bounds at later 18 
stages. The proposed CIs can be used to derive efficient stopping criteria, optimal learning strategies and 19 
derive efficient solutions for high-dimensional problems. 20 
 21 
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1. Introduction 25 
Real-world phenomena either natural or engineered are accompanied with various types and extents of 26 
uncertainties. Characterization and propagation of uncertainties in the analysis of these phenomena is a 27 
challenge and a key research area in many fields of science and engineering. For example, to assist with 28 
treatment decisions for incidental intracranial aneurysm, the risk of aneurysm rupture has been quantified 29 
via computational hemodynamic simulations [1]. In the process of design and manufacturing of various 30 
industrial products such as rockets and their propulsion systems, satellites and unmanned aerial vehicles, it 31 
is necessary to consider extreme requirements of mission success under uncertain conditions [2]. 32 
Uncertainties are ubiquitous in the fields of ecological risk assessment, exposure assessment, occupational 33 
health and safety, and security and defence [3]. Analysis of these phenomena to characterize potential 34 
response modes is often facilitated by establishing quantifiable criteria, here referred to as performance 35 
(also called limit-state) functions, which describe the onset of a particular or a set of response modes [4]. 36 
Using these performance functions in conjunction with characterization and propagation of involved 37 
uncertainties, one can determine the probability of occurrence of response modes of interest.  The estimation 38 
of these probabilities is facilitated by reliability analysis methods. In the analysis of reliability, the failure 39 
probability, 𝑃𝑃𝑓𝑓, can be calculated as: 40 
 41 

𝑃𝑃𝑓𝑓 = � 𝜌𝜌(𝒙𝒙)𝑑𝑑𝒙𝒙
𝑔𝑔(𝒙𝒙)≤0

 (1) 

 42 
where 𝒙𝒙 is the vector of random variables, 𝑔𝑔(𝒙𝒙) is the performance function, 𝜌𝜌(𝒙𝒙) is the joint probability 43 
density function (PDF) of 𝒙𝒙 . In many cases, evaluation of 𝑔𝑔(𝒙𝒙)  requires analysis of sophisticated, 44 
computationally demanding numerical models, making the estimation of 𝑃𝑃𝑓𝑓  a challenging task. This 45 
challenge has been tackled through reliability analysis techniques such as the crude Monte-Carlo simulation 46 
(MCS) [5], [6], first- or second-order reliability analysis methods [7], [8], importance sampling (IS) [9], 47 
and subset simulation (SS) [10], [11]. Apart from techniques above, the state-of-the-art metamodel-based 48 



-2- 
 

approaches [12]–[15] can also provide solutions for Eq. (1) due to its computational efficiency and accuracy 1 
[4], [12], [16].  2 

Since the early developments of Kriging-based reliability analysis methods such as EGRA(Efficient 3 
Global Reliability Analysis) proposed by Bichon et al. [13] and AK-MCS (Adaptive Kriging-based MCS) 4 
proposed by Echard et al. [12], a number of more efficient variants have been proposed. These 5 
advancements typically contribute to learning functions, sampling strategies, stopping criteria and accuracy 6 
measures. For learning functions, aside from the existing EFF and U functions, information entropy-based 7 
H function and least improvement function (LIF) have been proposed by Lv et al. [17] and Sun et al. [18], 8 
respectively. H learning function aims to seek the training point in the vicinity of the limit state, which 9 
follows the same principle as EFF but in a way of information entropy. Moreover, LIF takes advantage of 10 
probability density of each point to highlight the training points with large probability densities. Xiao et al. 11 
[19] combined two learning functions, 𝛙𝛙d  and 𝛙𝛙σ to pick the best training point defined as the one that is 12 
not in the proximity of the existing training points but is close to the limit state, and has high variance.  13 
Moreover, a number of parallel training point-enriching strategies, such as k-means clustering and pseudo-14 
Kriging, have been proposed, respectively, by Lelièvre et al. [20] and Wen et al. [21]. Kriging-based 15 
simulation techniques with IS [12], [22], [23] and SS [24]–[26] have shown promising results in the analysis 16 
of rare-event problems with small number of evaluations to performance function. Furthermore, excluding 17 
unimportant candidate design samples in the analysis of failure probabilities has been found to enhance the 18 
computational efficiency [21], [27]. For sampling strategies, methods proposed by Echard et al. [9], 19 
Balesdent et al. [22] and Dubourg et al. [23] that rely on importance sampling are shown to be 20 
computationally efficient for rare events reliability analysis. Furthermore, in AKOIS, Zhang et al. [28] 21 
optimized the process of searching for importance sampling center, which facilitates the fast identification 22 
of multiple Most Probable Points (MPPs). Moreover, Chen et al. [29] proposed a method that substitutes 23 
the original sample population with multiple equivalent ones, which can be leveraged to enhance the 24 
learning process with sufficiently large sample pool close to the limit state. Other techniques that integrate 25 
the subset simulation with Kriging surrogate model can be found in [24],[25] [30]. By not considering the 26 
point with small probability density, Wen et al. [21], Yang et al. [27] and Wang and Shafieezadeh [4] 27 
proposed sampling strategies that focus on samples with large contributions to probability of failure. 28 
Moreover, Kriging surrogate model can be leveraged to improve the computational efficiency of system 29 
reliability problems [27], [31], [32]. Gaspar et al. [33] assess the computation efficiency for Kriging-based 30 
structural reliability methods. As the advancement of sensors and monitoring techniques for civil 31 
infrastructure among other systems is gaining more momentum, it is shown that Kriging surrogate models 32 
can facilitate real-time reliability updating[34]. The Kriging model can also be integrated with structural 33 
reliability analysis for p-boxes considering both aleatory and epistemic uncertainty [35]. Aside from 34 
aforementioned topics, Kriging surrogate models can also be applied to reliability-based design 35 
optimization [36]–[38] and other uncertainty quantification (UQ) techniques such as Bayesian updating 36 
[39], [40]. 37 

 38 
 39 

A critical consideration in adaptive Kriging-based reliability analysis methods is the definition of the 40 
stopping criterion for active learning. Many approaches that use EFF learning functions have prescribed 41 
the stopping criterion as max(EFF) ≤ 0.001. Otherwise, they have used the U learning function primarily 42 
in the form of min(U) ≥ 2 [9], [41], [42]. Similarly, Sun et al. [23] proposed an uncertainty function and 43 
Wang et al. [34] defined cumulative confidence level to measure the expected error in wrong sign estimation 44 
according to the U learning function. Moreover, Gaspar et al. [44] proposed a stopping criterion based on 45 
the uncertainty of the estimated failure probability. Fauriat et al. [31] points out that Kriging models are 46 
often sufficiently accurate if 98% of the candidate design samples satisfy min(U) ≥ 2. Different from 47 
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aforementioned approaches, Wang and Shafieezadeh [45] proposed an efficient stopping criterion that 1 
analytically derives the maximum error for the estimated failure probability. Following the same path, Jiang 2 
et al. [46] proposed the real-time estimation of the maximum error for time-dependent reliability analysis. 3 
Additionally, Schöbi et al. [47] proposed using the difference between the failure probabilities estimated in 4 
current and last iterations in the stopping criterion. However, Wang et al. [48] pointed out that these 5 
accuracy measures can be further improved and they derived the CI of the estimated failure probability via 6 
probabilistic classification-based MCS. In their approach, as the probability distribution of estimated failure 7 
probability was unknown, Chebyshev’s inequality was applied to estimate the corresponding CI. The use 8 
of Chebyshev’s inequality in this approach, however, can lead to over conservative estimates of CI for 9 
failure probability estimates. 10 

In this paper, CIs for failure probability estimates are derived within the framework of adaptive Kriging-11 
based reliability analysis, once with Kriging correlations neglected and another time considering such 12 
correlations. Statistical properties of Poisson Binomial distribution (PBD) and Central Limit Theorem (CLT) 13 
are leveraged here to facilitate the derivations. The proposed CIs considering Kriging correlation are 14 
expected to be tighter than those in [48], as the use of Chebyshev’s inequality in that approach is based on 15 
the assumption that the probabilistic distribution of the failure probability is unknown. The performance of 16 
the proposed CIs are examined for five numerical examples, and results are compared to the approach based 17 
on Chebyshev’s inequality proposed by Wang et al. in [48]. The organization of this paper is as follows. 18 
Section 2 introduces the Kriging model, the probabilistic classification-based MCS and the CIs based on 19 
Chebyshev’s inequality. In Section 3, the CIs with and without considering Kriging correlation are derived. 20 
Section 4 explores the performance of the proposed CIs for five examples with different and varying 21 
complexities. Section 5 draws the conclusions of this study. 22 

 23 
2. Review of Kriging  24 
2.1 Kriging model  25 
Kriging, also known as the Gaussian process regression, has been widely used for deterministic computer-26 
based experiment. In this section, Kriging model with correlated outputs are briefly summarized. The model 27 
for Kriging 𝑔𝑔�(𝒙𝒙) can be presented as: 28 
 29 

𝑔𝑔�(𝒙𝒙) = 𝐹𝐹(𝒙𝒙,𝜷𝜷) +  𝑍𝑍(𝒙𝒙) = 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷 + 𝑍𝑍(𝒙𝒙), (2) 
 30 
where 𝐹𝐹(𝒙𝒙,𝜷𝜷)  is the regression base representing the Kriging trend, which can be a constant or a 31 
polynomial. 𝑔𝑔(𝒙𝒙) can be seen as the realization of the random process defined in Eq.(2). 𝒇𝒇(𝒙𝒙) is the Kriging 32 
basis and 𝜷𝜷 is the regression coefficients. 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷  usually have ordinary (𝛽𝛽0), linear (𝛽𝛽0+∑ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁

𝑛𝑛=1 ) or 33 
quadratic (𝛽𝛽0+∑ 𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛𝑁𝑁

𝑛𝑛=1 +∑ ∑ 𝛽𝛽𝑛𝑛𝑛𝑛𝑥𝑥𝑛𝑛𝑥𝑥𝑘𝑘𝑁𝑁
𝑘𝑘=1

𝑁𝑁
𝑛𝑛=1 ) forms, whereas n is the dimension of the random input 34 

vector, x. The ordinary Kriging model is used in this paper and it is assumed that the data used in training 35 
the Kriging model are not noisy. 𝑍𝑍(𝒙𝒙) is the Kriging interpolation following a stationary Gaussian process 36 
with zero mean and a covariance matrix between two points, 𝒙𝒙𝒊𝒊 and 𝒙𝒙𝒋𝒋, as defined below: 37 
 38 

COV �𝑍𝑍(𝒙𝒙𝑖𝑖),𝑍𝑍�𝒙𝒙𝑗𝑗�� =  𝜎𝜎2𝑅𝑅�𝒙𝒙𝒊𝒊,𝒙𝒙𝒋𝒋;𝜽𝜽� (3) 
 39 
where 𝜎𝜎2 is the process variance or the generalized mean square error from the regression part, based on 40 
the best linear unbiased predictor. 𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽�  is the correlation function or the kernel function, 41 
representing the correlation function of the process with hyper-parameter 𝜽𝜽. The correlation functions 42 
implemented in Kriging include linear, exponential, Gaussian, and Matérn models, among others [49]. In 43 
this paper, the Gaussian kernel function is implemented based on the assumption that the correlations 44 
between samples are smooth: 45 

𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� = � exp �−𝜃𝜃{𝑛𝑛} �𝑥𝑥𝑖𝑖
{𝑛𝑛} − 𝑥𝑥𝑗𝑗

{𝑛𝑛}�
2
�

𝑁𝑁

𝑛𝑛=1

 (4) 
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 1 
where N is the dimension of the random input vector, 𝒙𝒙𝑖𝑖 or 𝒙𝒙𝑗𝑗 and 𝑥𝑥𝑖𝑖

{𝑛𝑛} and 𝜃𝜃{𝑛𝑛} are the elements of 𝒙𝒙𝑖𝑖 and 2 
𝜽𝜽 in the nth dimension, respectively. The hyper-parameter 𝜽𝜽 can be estimated via maximum likelihood 3 
estimation (MLE) or cross-validation [49]. 𝜽𝜽 has a significant impact on Kriging performance [21], [48], 4 
[50]. The MLE can be represented as: 5 
 6 

𝜽𝜽∗ =  argmin
𝜽𝜽

��𝑹𝑹�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽��
1
𝑚𝑚 𝜎𝜎2�, (5) 

 7 
where m is the number of known training points or design-of-experiment (DoE) points. Thus, for a number 8 
of DoE points, 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷 = [𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑚𝑚] , with associated responses 𝒀𝒀 = [𝑔𝑔(𝒙𝒙1),𝑔𝑔(𝒙𝒙2), … ,𝑔𝑔(𝒙𝒙𝑚𝑚)] , the 9 
Kriging-estimated response at candidate design points follow a multivariate normal distribution, which can 10 
be represented as [48], [51]–[53]: 11 
 12 

𝑔𝑔�(𝒙𝒙)~ 𝑁𝑁�𝝁𝝁𝑔𝑔� ,𝚺𝚺𝑔𝑔��, 𝒙𝒙 ∈ 𝑆𝑆, (6) 
 13 
 14 
where 𝑆𝑆 denotes the set of candidate design samples and 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is the size of 𝑆𝑆. Therefore, the mean values 15 
are represented in a matrix form: 16 
 17 

𝝁𝝁𝑔𝑔� = 𝑭𝑭𝑭𝑭 + 𝒓𝒓𝑇𝑇𝑹𝑹−1(𝒀𝒀− 𝑭𝑭𝑭𝑭), (7) 
 18 
and the covariance matrix is: 19 
 20 

𝚺𝚺𝑔𝑔� = 𝜎𝜎2�𝑹𝑹 + 𝒖𝒖𝑔𝑔�𝑇𝑇(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝝁𝝁𝑔𝑔� − 𝒓𝒓𝑇𝑇𝑹𝑹−1𝒓𝒓�, (8) 
 21 
where 22 
 23 

𝑹𝑹 = �𝑹𝑹�𝒙𝒙𝑝𝑝,𝒙𝒙𝑞𝑞;𝜽𝜽��
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀×𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑇𝑇
,𝒙𝒙𝑝𝑝 ,𝒙𝒙𝑞𝑞 ∈  𝑆𝑆, 

𝒓𝒓 = �𝑹𝑹�𝒙𝒙𝑙𝑙 ,𝒙𝒙𝑝𝑝;𝜽𝜽��
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀×𝑚𝑚

𝑇𝑇
,𝒙𝒙𝑙𝑙 ∈ 𝑆𝑆𝐷𝐷𝐷𝐷𝐷𝐷 , 

𝝁𝝁𝑔𝑔� =  𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓 − 𝑭𝑭𝑇𝑇 , 
𝑭𝑭(𝒙𝒙) =  �𝑓𝑓(𝒙𝒙1),𝑓𝑓(𝒙𝒙2), …𝑓𝑓�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀��

𝑇𝑇 . 
 

(9) 

Let 𝝈𝝈𝑔𝑔�2  denote the diagonal elements of 𝚺𝚺𝑔𝑔� , thus, the responses of unknown points without considering 24 
Kriging correlation can be represented as: 25 
 26 

𝑔𝑔�(𝒙𝒙)~ 𝑁𝑁�𝝁𝝁𝑔𝑔� ,𝝈𝝈𝑔𝑔�2�, 𝒙𝒙 ∈ 𝑆𝑆 (10) 
 27 
2.2 Probabilistic Classification-based MCS (PC-MCS) 28 
In reliability analysis, the true failure probability, 𝑃𝑃𝑓𝑓, is computationally unavailable, an estimation based 29 
on probabilistic simulation techniques is preferred. Crude MCS with sufficiently large number of samples 30 
is often considered as a benchmark. In the Kriging model with MCS, there are two indicator functions: 31 
deterministic classification [12], [54] and the probabilistic classification [23], [48]. For deterministic 32 
classification, the crude MCS can be represented as: 33 
 34 
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𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� 𝐼𝐼𝜇𝜇𝑔𝑔�

𝑑𝑑𝑑𝑑(𝒙𝒙𝑖𝑖)
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, 𝒙𝒙 ∈ 𝑆𝑆 (11) 

 1 
where 𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 is the estimated failure probability with deterministic classification on the Kriging model. 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 2 
is the number of sampling realizations, 𝒙𝒙𝑖𝑖  , from the probabilistic distribution of random variables and 𝐼𝐼𝜇𝜇𝑔𝑔�

𝑑𝑑𝑑𝑑 3 
is the corresponding indicator for deterministic classifications: 4 
 5 

𝐼𝐼𝜇𝜇𝑔𝑔�
𝑑𝑑𝑑𝑑(𝒙𝒙𝑖𝑖) = �

1, 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0
0, 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) > 0 , 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 (12) 

 6 
where 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖) is the mean value of 𝑔𝑔�(𝒙𝒙). The coefficient of variation of 𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 can be calculated as: 7 
 8 

𝐶𝐶𝐶𝐶𝐶𝐶
𝑃𝑃�𝑓𝑓
𝑑𝑑𝑑𝑑 = �

1 − 𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑
 (13) 

 9 
The failure probability based on probabilistic classification can be estimated as:  10 
 11 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑐𝑐 = 𝐸𝐸�𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝� =
1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝐸𝐸[𝕌𝕌] =

1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

� 𝛷𝛷�
− 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 (14) 

 12 

𝕌𝕌 = � 𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖)

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆 (15) 

 13 
where 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 is the augmented stochastic estimator and 𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 is the mean value of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝. 𝐸𝐸[∙] is the expectation 14 
operator, 𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)  denote the standard deviation of 𝒙𝒙𝑖𝑖  according to Eq. (10) and 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖)  denotes the 15 
probabilistic classification-based indicator: 16 
 17 

𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖) =

⎩
⎪
⎨

⎪
⎧1,                𝑤𝑤.𝑝𝑝  𝛷𝛷�

−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�

0, 𝑤𝑤.𝑝𝑝 1 −𝛷𝛷�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

�
, 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 (16) 

 18 
where  𝛷𝛷(𝑥𝑥) is the cumulative distribution function (CDF) of the univariate standard normal distribution 19 
and 𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)  and 𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)  are the mean and standard deviation, respectively, of Kriging predictors. The 20 
performance of probability classification-based MCS is equivalent to the deterministic classification-based 21 
approach [48]. Note that 𝕌𝕌 is a random variable, thus, 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 is the mean value of 𝕌𝕌
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

 according to Eq. (14). 22 
The purpose of using probability classification-based MCS in this paper is to facilitate the derivation of the 23 
CIs for 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 . The probabilistic classification estimates the failure probability considering uncertainties 24 
associated with Kriging-based classification. The coefficient of variation of failure probability estimate can 25 
be represented as [23]: 26 
 27 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 =
1

�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝑃𝑃�𝑓𝑓
𝑑𝑑𝑑𝑑
�∑ Φ2 �

−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝐾𝐾(𝒙𝒙𝑖𝑖)

�𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑖𝑖=1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
− 𝑃𝑃�𝑓𝑓

𝑑𝑑𝑑𝑑2
, 𝒙𝒙𝑖𝑖 ∈ 𝑆𝑆 

(17) 

 1 
 2 
2.3 CI Based on Chebyshev’s inequality 3 
Recently, Wang et al. [48] derived 𝜎𝜎𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝

2  considering Kriging correlation, as shown in Eq. (6). In that study, 4 

𝜎𝜎�𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝
2  was derived as below [48]: 5 

 6 

𝜎𝜎𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝
2 =

1
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀2

⎣
⎢
⎢
⎢
⎢
⎡

� Φ�𝑈𝑈(𝒙𝒙𝑖𝑖)�Φ�−𝑈𝑈(𝒙𝒙𝑖𝑖)�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

+

� �𝑃𝑃�𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0,𝑔𝑔��𝒙𝒙𝑗𝑗� ≤ 0� − 𝑃𝑃(𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0) ∙ 𝑃𝑃�𝑔𝑔��𝒙𝒙𝑗𝑗� ≤ 0��
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 ⎦
⎥
⎥
⎥
⎥
⎤

, (18) 

 7 
 where Φ�−𝑈𝑈(𝒙𝒙𝑖𝑖)� is the probability that the sign of the limit state function at 𝒙𝒙𝑖𝑖 is incorrectly estimated 8 
by the Kriging model, and 𝑃𝑃�𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0,𝑔𝑔��𝒙𝒙𝑗𝑗� ≤ 0� is the bivariate normal distribution with the mean and 9 
covariance matrix given in Eq. (6). Because the probabilistic distribution of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝  was unknown, the 10 
Chebyshev’s inequality was applied in [48] to find the CI of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝, as shown below: 11 
 12 

𝑃𝑃 ��𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 − 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 � < 𝑒𝑒𝜎𝜎�𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝� ≥ 1 −

1
𝑒𝑒2

, (19) 

 13 
where 𝜎𝜎�𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 is the standard deviation of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝, and 𝑒𝑒 is a constant. Therefore, per this inequality, the 95% 14 

confidence level CI (i.e. α = 0.05, 1 − 1
𝑒𝑒2

= 1 − α, 𝑒𝑒 = 4.472, where α denotes the significance level) for 15 
𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 can be represented as: 16 

 17 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝  ∈ �𝜇𝜇𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 − 𝑒𝑒𝜎𝜎�𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 ,   𝜇𝜇𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 + 𝑒𝑒𝜎𝜎�𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  � ,   α = 0.05, e = 4.472. (20) 

 18 
The CI in Eq. (20) is conservatively estimated, because the distribution of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 is treated as an unknown. 19 
However, as shown in the next section, 𝕌𝕌 follows a Poisson binomial distribution if the Kriging correlation 20 
is not considered.  21 
 22 
3. The proposed CIs for 𝑷𝑷�𝒇𝒇

𝒑𝒑𝒑𝒑 23 
3.1 CI for 𝑷𝑷�𝒇𝒇

𝒑𝒑𝒑𝒑 without considering Kriging correlation 24 
Let’s consider 𝑆𝑆 as the set of candidate design samples. 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 and 𝑁𝑁𝑓𝑓 denote the total number of samples 25 
and the true number of failure points in 𝑆𝑆, respectively. Thus, 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 can be estimated as: 26 
 27 

𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =  
𝑁𝑁𝑓𝑓
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

, (21) 

 28 
Similarly, the probability of failure via PC-MCS can be estimated as: 29 
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 1 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 =  

𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
, (22) 

 2 
where 𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝  is the expected number of failure points in 𝑆𝑆. In this approach, for each candidate design sample, 3 
𝒙𝒙𝑖𝑖, the outcome of the probabilistic classification-based indicator function, 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖), defined in Eq. (16), 4 
follows a Bernoulli distribution: 5 
 6 

𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖)~𝐵𝐵�𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆, (23) 

 7 

where B is the Bernoulli distribution, 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖) is the Bernoulli mean with 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖) =  𝛷𝛷 �
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

� and 𝜎𝜎𝑏𝑏2 is 8 

the variance of the Bernoulli distribution, 𝜎𝜎𝑏𝑏2 =  𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�1 − 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�. It can be inferred that 𝑁𝑁�𝑓𝑓
𝑝𝑝𝑝𝑝  is the 9 

expected value of  𝕌𝕌 in Eq. (14), where each 𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖) follows a Bernoulli distribution. In probability theory 10 

and statistics, a random variable, 𝑃𝑃𝑃𝑃, is considered to follow Poisson Binomial distribution if it can be 11 
represented as [55]: 12 

𝑃𝑃𝑃𝑃 = �𝐵𝐵𝑖𝑖

𝑁𝑁𝐵𝐵

𝑖𝑖=1

 (24) 

 13 
where 𝐵𝐵𝑖𝑖s denote random variables with mutually independent Bernoulli distribution. Note that 𝐵𝐵𝑖𝑖s are not 14 
identically distributed. Based on this definition, it follows that 𝕌𝕌 has a Poisson binomial distribution, if the 15 
Kriging correlations are not considered. Subsequently, 𝕌𝕌 can be defined as:  16 
 17 

𝕌𝕌~𝑃𝑃𝑃𝑃�𝜇𝜇𝕌𝕌,𝜎𝜎𝕌𝕌2�,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆, (25) 
 18 
where 𝜇𝜇𝕌𝕌 and 𝜎𝜎𝕌𝕌2 are the mean value and variance of 𝕌𝕌. According to the probabilistic properties of PBD, 19 
𝜇𝜇𝕌𝕌 =  ∑ 𝜇𝜇𝑃𝑃𝑓𝑓(𝒙𝒙𝑖𝑖) 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1 and 𝜎𝜎𝕌𝕌2 = ∑ 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�1 − 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 
𝑖𝑖=1 . Note that 𝑁𝑁�𝑓𝑓

𝑝𝑝𝑝𝑝 = 𝜇𝜇𝕌𝕌 .Consequently, the CI 20 
for 𝕌𝕌 with confidence level 𝛼𝛼 can be calculated as:  21 
 22 

𝕌𝕌 ∈ �𝜣𝜣𝕌𝕌
−1 �

𝛼𝛼
2
� ,𝜣𝜣𝕌𝕌

−1 �1 −
𝛼𝛼
2
��, (26) 

 23 
where 𝜣𝜣𝕌𝕌

−1(∙) is the inverse CDF of PBD with mean 𝜇𝜇𝕌𝕌 and variance 𝜎𝜎𝕌𝕌2. 𝛼𝛼 is the confidence level (e.g. 24 
𝛼𝛼 = 0.05 ). Analytical solutions for the above CIs are typically not available. Therefore, numerical 25 
approaches or approximate analytical methods can be pursued. Sampling techniques can be used to 26 
numerically determine the inverse CDF of PBDs. In most cases, 𝑁𝑁𝑀𝑀𝑀𝑀𝑆𝑆 is sufficiently large so that the CI of 27 
𝕌𝕌 can be approximately determined using the Central Limit Theorem (CLT) [45]. As Lindeberg’s condition 28 
for the central limit theorem for the sum of independent, not identically distributed random variables [56] 29 
is satisfied for sufficiently large 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀: 30 
 31 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀→∞

� 𝑚𝑚𝑚𝑚𝑚𝑚
𝑖𝑖=1,…,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑉𝑉𝑉𝑉𝑉𝑉 �𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖)�

𝑉𝑉𝑉𝑉𝑉𝑉[𝕌𝕌] � = 0,   𝒙𝒙𝑖𝑖 ∈  𝑆𝑆 (27) 

 32 
it can be shown that 𝕌𝕌 in distribution converges to a normal distribution:  33 
 34 
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𝕌𝕌  ~ 𝑁𝑁�𝜇𝜇𝕌𝕌,𝜎𝜎𝕌𝕌2�,        𝒙𝒙𝑖𝑖 ∈   𝑆𝑆. (28) 
 1 
The CI of 𝕌𝕌 can then be obtained as: 2 
 3 

𝕌𝕌 ∈ [𝜇𝜇𝕌𝕌 −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌,   𝜇𝜇𝕌𝕌 +  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌],, 𝒙𝒙 ∈ 𝑆𝑆, (29) 
 4 
where  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96  for the confidence level   𝛼𝛼 = 0.05 . As 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  is large in Kriging-based reliability 5 
analysis problems, the above confidence bounds for 𝕌𝕌  are accurate. However, the CLT cannot be 6 
appropriately applied in cases where 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is small. According to Le cam’s theorem [45], [55], [57], the CI 7 
of 𝕌𝕌 without considering Kriging correlation can be approximately obtained using Poisson distribution: 8 
 9 

��𝑃𝑃𝑃𝑃(𝕌𝕌 = 𝑘𝑘) −
𝜇𝜇𝕌𝕌𝑘𝑘𝑒𝑒−𝜇𝜇𝕌𝕌
𝑘𝑘!

� < 2 � � 𝛷𝛷�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

��
2𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

∞

𝑘𝑘=0

,   𝒙𝒙𝑖𝑖 ∈  𝑆𝑆 (30) 

 10 
which indicates that the distribution of 𝕌𝕌 can be approximately represented as a Poisson distribution: 11 
 12 

𝑃𝑃𝑃𝑃(𝕌𝕌 = 𝑘𝑘) ≈
𝜇𝜇𝕌𝕌𝑘𝑘𝑒𝑒−𝜇𝜇𝕌𝕌
𝑘𝑘!

,𝑘𝑘 = 0,1, … ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 (31) 

 13 
Therefore, the CI of 𝕌𝕌 can be determined as: 14 
 15 

𝕌𝕌 ∈ �𝜞𝜞𝕌𝕌−1 �
𝛼𝛼
2
� ,𝜞𝜞𝕌𝕌−1 �1 −

𝛼𝛼
2
�� (32) 

 16 
where 𝜞𝜞𝕌𝕌−1(∙) is the inverse CDF of the Poisson distribution with both mean and variance equal to 𝜇𝜇𝕌𝕌 17 
defined in Eq. (25), and 𝛼𝛼 is the confidence level. According to Eq. (22), the CI of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 can be obtained by: 18 
 19 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 ∈  �

𝜇𝜇𝕌𝕌 −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

,   
𝜇𝜇𝕌𝕌 + 𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

� ,   𝛼𝛼 = 0.05,  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96. (33) 

 20 
For Kriging-based reliability analysis methods, there is a prior assumption that all the responses for 21 

training and testing points are mutually and normally (correlated) distributed. There are two groups of 22 
uncertainty in the stochastic estimator. The first group can be defined as the one that the training samples 23 
are not sufficient but the Gaussian Process is satisfied and the second group stems from the fact the prior 24 
assumption for Gaussian process is not satisfied. For the first case, the difference between 𝑔𝑔 and 𝑔𝑔� already 25 
exists in the stochastic estimator of 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖). The stochastic indicator takes the value of 1 or 0 according to 26 
the probability that the sample is classified as failure or safe. The Confidence interval are derived in our 27 
manuscript based on the first case. For the second group of uncertainty that is related the GP uncertainty, it 28 
is not investigated in this manuscript. This GP uncertainty commonly exists in many Kriging-based 29 
reliability analysis algorithm. 30 
 31 
3.2 CI for 𝑷𝑷�𝒇𝒇

𝒑𝒑𝒑𝒑 considering Kriging correlation 32 
The CI derived above is based on the assumption that responses from the Kriging model follow independent 33 
normal distributions. However, these responses follow a multivariate normal distribution, as stated in 34 
Section 2.1. Let 𝕌𝕌𝑐𝑐denote ∑ 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖)
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝑖𝑖=1 ,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆, where 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖) are mutually correlated indicators in this 35 
subsection. The covariance matrix in Eq. (6) for the responses of the Kriging model can be represented as: 36 
 37 
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𝜮𝜮𝑔𝑔� =

⎣
⎢
⎢
⎢
⎡  𝜮𝜮1,1 = 𝜎𝜎𝑔𝑔�2(𝒙𝒙1) 𝜮𝜮1,2

𝜮𝜮2,1 𝜮𝜮2,2 = 𝜎𝜎𝑔𝑔�2(𝒙𝒙2)
⋯

𝜮𝜮1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝜮𝜮2,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

⋮ ⋱ ⋮
𝜮𝜮𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,1                   𝜮𝜮𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,2 ⋯ 𝜮𝜮𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�⎦

⎥
⎥
⎥
⎤
, (34) 

 1 
where 𝒙𝒙𝑖𝑖 is a candidate sample from  𝑆𝑆 = [𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀] whose true value of the performance function 2 
is not known, 𝜎𝜎𝑔𝑔�2(𝒙𝒙𝑖𝑖) is the variance defined in Eq. (10), and 𝜌𝜌𝑖𝑖,𝑗𝑗 is the correlation coefficient between any 3 
two Kriging responses, 𝑔𝑔�(𝒙𝒙𝑖𝑖)  and 𝑔𝑔��𝒙𝒙𝑗𝑗�. According to the definition of Pearson’s correlation coefficient 4 
and Eq. (34), the correlation 𝜌𝜌𝑖𝑖,𝑗𝑗 between 𝑔𝑔�(𝒙𝒙𝑖𝑖)  and 𝑔𝑔��𝒙𝒙𝑗𝑗� can be calculated as follows: 5 
 6 

𝜌𝜌𝑖𝑖,𝑗𝑗 =
𝜮𝜮𝑖𝑖,𝑗𝑗

𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)𝜎𝜎𝑔𝑔��𝒙𝒙𝑗𝑗�
. (35) 

 7 
It should be noted that the true correlation form between 𝑔𝑔�(𝒙𝒙𝑖𝑖)  and 𝑔𝑔��𝒙𝒙𝑗𝑗� can have a nonlinear form. Here, 8 
the use of Pearson’s correlation model have an underlying assumption that this form is linear. While as later 9 
presented, this approach provides satisfactory results, further investigations are needed to examine this 10 
assumption. Moreover, let 𝑃𝑃𝑖𝑖,𝑗𝑗𝐵𝐵  denote the probability that two correlated Bernoulli random variables 11 
𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖) and 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝�𝒙𝒙𝑗𝑗� are both estimated as failure(i.e., 𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖) = 1 and𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝�𝒙𝒙𝑗𝑗� = 1). Subsequently, 𝑃𝑃𝑖𝑖,𝑗𝑗𝐵𝐵  12 
can be calculated as: 13 
 14 

𝑃𝑃𝑖𝑖,𝑗𝑗𝐵𝐵 = � � 𝜓𝜓𝑖𝑖,𝑗𝑗�[𝑥𝑥,𝑦𝑦];𝝁𝝁𝑔𝑔� ,𝜮𝜮𝑔𝑔��𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
0

−∞

0

−∞
, (36) 

 15 
where 𝜓𝜓𝑖𝑖,𝑗𝑗(𝑥𝑥,𝑦𝑦) is the PDF of the multivariate normal distribution with mean 𝝁𝝁𝑔𝑔� = [𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)  𝜇𝜇𝑔𝑔��𝒙𝒙𝑗𝑗�] and 16 

the covariance matrix 𝚺𝚺𝑔𝑔� = �
𝜎𝜎𝑔𝑔�2(𝒙𝒙𝑖𝑖) 𝜌𝜌𝑖𝑖,𝑗𝑗𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)𝜎𝜎𝑔𝑔��𝒙𝒙𝑗𝑗�

𝜌𝜌𝑖𝑖,𝑗𝑗𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)𝜎𝜎𝑔𝑔��𝒙𝒙𝑗𝑗� 𝜎𝜎𝑔𝑔�2�𝒙𝒙𝑗𝑗�
� in Eq. (6). The covariance between two 17 

correlated Bernoulli random variables can be represented as: 18 
 19 

𝐶𝐶𝐶𝐶𝐶𝐶 �𝐼𝐼𝑔𝑔�
𝑝𝑝𝑝𝑝(𝒙𝒙𝑖𝑖), 𝐼𝐼𝑔𝑔�

𝑝𝑝𝑝𝑝�𝒙𝒙𝑗𝑗�� = 𝜌𝜌𝑖𝑖,𝑗𝑗𝑏𝑏 ∙ 𝜎𝜎𝑏𝑏(𝒙𝒙𝑖𝑖) ∙ 𝜎𝜎𝑏𝑏�𝒙𝒙𝑗𝑗�, (37) 
 20 
where 𝜌𝜌𝑖𝑖,𝑗𝑗𝑏𝑏  ∈ [−1,1] is the unknown correlation coefficient of two correlated Bernoulli distributions, 𝐼𝐼𝑔𝑔(𝒙𝒙𝑖𝑖) 21 

and 𝐼𝐼𝑔𝑔�𝒙𝒙𝑗𝑗�. 𝜎𝜎𝑏𝑏(𝒙𝒙𝑖𝑖) and 𝜎𝜎𝑏𝑏�𝒙𝒙𝑗𝑗� are the standard deviations (𝜎𝜎𝑏𝑏(𝒙𝒙𝑖𝑖) =  �𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�1 − 𝜇𝜇𝑏𝑏(𝒙𝒙𝑖𝑖)�). When 𝜌𝜌𝑖𝑖,𝑗𝑗𝑏𝑏 =22 

0, it means that the failure probabilities of two points, 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗, are uncorrelated, which can further infer 23 
that 𝜌𝜌𝑖𝑖,𝑗𝑗 = 0 (i.e. 𝑃𝑃𝑖𝑖,𝑗𝑗𝐵𝐵 = 𝑃𝑃�𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0,𝑔𝑔��𝒙𝒙𝑗𝑗� ≤ 0� = 𝑃𝑃(𝑔𝑔�(𝒙𝒙𝑖𝑖) ≤ 0) ∙ 𝑃𝑃�𝑔𝑔��𝒙𝒙𝑗𝑗� ≤ 0�). When 𝜌𝜌𝑖𝑖,𝑗𝑗𝑏𝑏 = 1 or −24 
1, it means that the two responses are positively or negatively, linearly correlated. It also means that 𝜌𝜌𝑖𝑖,𝑗𝑗 =25 
1 or − 1. Because the correlated Bernoulli distribution in Eq. (36) is actually a linear integration form of 26 
bivariate normal distribution, the covariance matrix for the points with Bernoulli distributions can be 27 
expressed as: 28 
 29 
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𝚺𝚺𝑝𝑝𝑝𝑝

=

⎣
⎢
⎢
⎢
⎡ 𝜎𝜎𝑏𝑏2(𝒙𝒙1) 𝜌𝜌1,2𝜎𝜎𝑏𝑏(𝒙𝒙1)𝜎𝜎𝑏𝑏(𝒙𝒙2)

𝜌𝜌2,1𝜎𝜎𝑏𝑏(𝒙𝒙2)𝜎𝜎𝑏𝑏(𝒙𝒙1) 𝜎𝜎𝑏𝑏2(𝒙𝒙2) ⋯
𝜌𝜌1,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝜎𝜎𝑏𝑏(𝒙𝒙1)𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�
𝜌𝜌2,𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀𝜎𝜎𝑏𝑏(𝒙𝒙2)𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�

⋮ ⋱ ⋮
𝜌𝜌𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,1𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�𝜎𝜎𝑏𝑏(𝒙𝒙1) 𝜌𝜌𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀,2𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀�𝜎𝜎𝑏𝑏(𝒙𝒙2) ⋯ 𝜎𝜎𝑏𝑏2�𝒙𝒙𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀� ⎦

⎥
⎥
⎥
⎤
, 

(38) 

 1 
 2 
where 𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖) is the Bernoulli variance, and can be calculated as: 3 
 4 

𝜎𝜎𝑏𝑏2(𝒙𝒙𝑖𝑖)  =  Φ�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

� ∙ Φ�
𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

� ,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆. (39) 

 5 
Construction of the correlation coefficient for every pair of points in 𝑆𝑆 is computationally highly demanding. 6 
Therefore, the strategy in [48] for points satisfying 𝑈𝑈(𝒙𝒙𝑖𝑖) ≤ 2 can be applied here. Thus, the covariance 7 
corresponding to 𝑈𝑈(𝒙𝒙𝑖𝑖) ≤ 2 can be represented as: 8 
 9 
𝚺𝚺𝑝𝑝𝑝𝑝𝑢𝑢≤2

=

⎣
⎢
⎢
⎢
⎡ 𝜎𝜎𝑏𝑏2(𝒙𝒙1𝑢𝑢≤2) 𝜌𝜌1,2𝜎𝜎𝑏𝑏(𝒙𝒙1𝑢𝑢≤2)𝜎𝜎𝑏𝑏(𝒙𝒙2𝑢𝑢≤2)

𝜌𝜌2,1𝜎𝜎𝑏𝑏(𝒙𝒙2𝑢𝑢≤2)𝜎𝜎𝑏𝑏(𝒙𝒙1𝑢𝑢≤2) 𝜎𝜎𝑏𝑏2(𝒙𝒙2𝑢𝑢≤2)
⋯

𝜌𝜌1,𝑁𝑁𝑢𝑢𝜎𝜎𝑏𝑏(𝒙𝒙1𝑢𝑢≤2)𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑢𝑢≤2
𝑢𝑢≤2 �

𝜌𝜌2,𝑁𝑁𝑢𝑢𝜎𝜎𝑏𝑏(𝒙𝒙2𝑢𝑢≤2)𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑢𝑢≤2
𝑢𝑢≤2 �

⋮ ⋱ ⋮
𝜌𝜌𝑁𝑁𝑢𝑢≤2,1𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑢𝑢≤2

𝑢𝑢≤2 �𝜎𝜎𝑏𝑏(𝒙𝒙1𝑢𝑢≤2) 𝜌𝜌𝑁𝑁𝑢𝑢≤2,2𝜎𝜎𝑏𝑏�𝒙𝒙𝑁𝑁𝑢𝑢≤2
𝑢𝑢≤2 �𝜎𝜎𝑏𝑏(𝒙𝒙2𝑢𝑢≤2) ⋯ 𝜎𝜎𝑏𝑏2�𝒙𝒙𝑁𝑁𝑢𝑢≤2

𝑢𝑢≤2 � ⎦
⎥
⎥
⎥
⎤
, 

(40) 

 10 
where 𝒙𝒙𝑖𝑖𝑢𝑢≤2 is a point in 𝑆𝑆𝑈𝑈≤2 with size 𝑁𝑁𝑢𝑢≤2, which is defined as: 11 
 12 

𝑆𝑆𝑈𝑈≤2 = [𝑎𝑎𝑎𝑎𝑎𝑎 𝒙𝒙𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈(𝒙𝒙𝑖𝑖𝑢𝑢) ≤ 2 | 𝒙𝒙𝑖𝑖 𝜖𝜖 𝑆𝑆]. (41) 
 13 
Earlier, it was shown that the summation of uncorrelated Bernoulli random variables follow a PBD. 14 
However, as the number of candidate design samples is very large, the Central Limit theorem for dependent 15 
random variables is applicable here [58]. Thus, 𝕌𝕌𝑐𝑐 can be approximated as a normal distribution when 16 
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 → ∞. Thus, the distribution of 𝕌𝕌𝑐𝑐 can be represented as: 17 
 18 

𝕌𝕌𝑐𝑐~𝑁𝑁�𝜇𝜇𝕌𝕌𝑐𝑐 ,𝜎𝜎𝕌𝕌𝑐𝑐
2 �, (42) 

 19 

𝜇𝜇𝕌𝕌𝑐𝑐 =  � 𝛷𝛷�
−𝜇𝜇𝑔𝑔�(𝒙𝒙𝑖𝑖)
𝜎𝜎𝑔𝑔�(𝒙𝒙𝑖𝑖)

� ,𝒙𝒙𝑖𝑖 ∈  𝑆𝑆
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

, (43) 

 20 

𝜎𝜎𝕌𝕌𝑐𝑐
2 =  � � 𝜮𝜮𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑗𝑗=1

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

𝑖𝑖=1

= � � 𝜮𝜮𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗
𝑢𝑢≤2

𝑁𝑁𝑢𝑢≤2

𝑗𝑗=1

𝑁𝑁𝑢𝑢≤2

𝑖𝑖=1

+ � � 𝜮𝜮𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗
𝑢𝑢>2

𝑁𝑁𝑢𝑢>2

𝑗𝑗=1

𝑁𝑁𝑢𝑢>2

𝑖𝑖=1

≈ � � 𝜮𝜮𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗
𝑢𝑢≤2

𝑁𝑁𝑢𝑢≤2

𝑗𝑗=1

𝑁𝑁𝑢𝑢≤2

𝑖𝑖=1

, (44) 

 21 
where 𝜮𝜮𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗 are the elements of the covariance matrix, 𝜮𝜮𝑝𝑝𝑝𝑝, in Eq. (38),  𝑁𝑁𝑢𝑢≤2 and 𝑁𝑁𝑢𝑢>2 are sizes of 𝑆𝑆𝑈𝑈≤2 22 

and 𝑆𝑆𝑈𝑈>2 and 𝜮𝜮𝑝𝑝𝑝𝑝𝑖𝑖,𝑗𝑗
𝑢𝑢≤2  are the elements of the reduced covariance matrix, 𝜮𝜮𝑝𝑝𝑝𝑝𝑢𝑢≤2, in Eq. (40). Based on the 23 

properties of the normal distribution, the CI of 𝕌𝕌𝑐𝑐 can be calculated as: 24 
 25 

𝕌𝕌𝑐𝑐  ∈ [𝜇𝜇𝕌𝕌𝑐𝑐 −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌,   𝜇𝜇𝕌𝕌𝑐𝑐 + 𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌𝑐𝑐], (45) 
 26 
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where  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96 in this paper, which corresponds to 𝛼𝛼 = 0.05. However, for small values of 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 CLT 1 
may not guarantee appropriate bounds. To address this issue, the CI of 𝕌𝕌𝑐𝑐  can be estimated through 2 
simulations. First, we generate a group of samples (e.g. 104) as follows: 3 
 4 

𝑇𝑇 = �
𝐵𝐵11 ⋯ 𝐵𝐵𝑛𝑛𝑡𝑡

1

⋮ ⋱ ⋮
𝐵𝐵1
𝑚𝑚𝑡𝑡 ⋯ 𝐵𝐵𝑛𝑛𝑡𝑡

𝑚𝑚𝑡𝑡
� (46) 

 5 
where 𝑛𝑛𝑡𝑡 is the 𝑛𝑛𝑡𝑡ℎ Bernoulli random variable and 𝑚𝑚𝑡𝑡 is the 𝑚𝑚𝑡𝑡ℎ group of simulated samples. Summing up 6 
all the rows, one can get: 7 
 8 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 = �
𝐵𝐵11 + 𝐵𝐵21 ⋯+ 𝐵𝐵𝑛𝑛𝑡𝑡

1

⋮
𝐵𝐵1
𝑚𝑚𝑡𝑡 + 𝐵𝐵2

𝑚𝑚𝑡𝑡 ⋯+ 𝐵𝐵𝑛𝑛𝑡𝑡
𝑚𝑚𝑡𝑡
� (47) 

 9 
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠 is the stochastic realization of 𝕌𝕌𝑐𝑐 , which can be used to estimate the CI of 𝕌𝕌𝑐𝑐 numerically. The CI of 10 
𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 considering Kriging correlation can therefore be estimated as: 11 

 12 

𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 ∈  �

𝜇𝜇𝕌𝕌𝑐𝑐 −  𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌𝑐𝑐
𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

,   
𝜇𝜇𝕌𝕌𝑐𝑐 + 𝛾𝛾𝑐𝑐𝑐𝑐𝜎𝜎𝕌𝕌𝑐𝑐

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
� ,   𝛼𝛼 = 0.05,  𝛾𝛾𝑐𝑐𝑐𝑐 = 1.96. (48) 

 13 
Compared to the CI of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 in Eq. (20), which is derived from Chebyshev’s inequality, the CI in Eq. (48) is 14 
more precise. In the next section, the performance of the proposed CIs for 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 is investigated. 15 
 16 
4. Numerical Investigations 17 
In this section, the performance of proposed CIs are investigated for five numerical examples. In this paper, 18 
the proposed CIs are compared with the 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 and not the true failure probability 𝑃𝑃𝑓𝑓. This is because the 19 
true failure probability 𝑃𝑃𝑓𝑓  is not available prior to implementing any reliability analysis method. This 20 
approach is acceptable since the coefficient of variation of the failure probability estimate based on Monte 21 
Carlo simulation is set to be small; therefore, it is expected that 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 will be close to 𝑃𝑃𝑓𝑓. Note that the level 22 
of probability of failure determines the number of candidate design samples according to Eq.(13) and (17). 23 
For example, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  needs to be as large as 4 × 106 for 𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 = 10−4 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑑𝑑𝑑𝑑 = 0.05. Therefore, the 24 

size of associated covariance matrix defined in Eq.(38) is as large as  4 × 106 by 4 × 106, which may cause 25 
computation burden for computers. Considering our purpose is to compare the Confidence Intervals with 26 
and without considering Kriging correlation, Chebyshev’s inequality by Wang et al [48], cases with 27 
probability of failure below 10−4 are not explored due to aforementioned computational limitations. To 28 
ensure that the application of the CLT is appropriate, the number of candidate design samples, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀, should 29 
be sufficiently large and a reasonable threshold for 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  is necessary. According to our numerical 30 
investigations, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 104 is sufficient for the application of CLT in the derivation of CI for 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝. The 31 
number of initial training points is set as three times of the number of random variables for all examples. 32 
Moreover, Latin Hypercube Sampling(LHS) strategy based on the X-space without normalization is applied 33 
in these examples. For consistency, the set of candidate design samples, 𝑆𝑆, remains exactly the same 34 
throughout the process of reliability analysis for all CIs for a given example. The EFF learning function is 35 
applied for selection of best training points. This function is defined below [13], [59]: 36 
 37 



-12- 
 

𝐸𝐸𝐸𝐸𝐸𝐸(𝒙𝒙) = �𝜇𝜇𝑔𝑔�(𝒙𝒙) − 𝑎𝑎� �2Φ�
𝑎𝑎 − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) � − Φ�

𝑎𝑎− − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) � − Φ�

𝑎𝑎+ − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) ��

−𝜎𝜎𝑔𝑔�(𝒙𝒙) �2ϕ�
𝑎𝑎 − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) � − ϕ�

𝑎𝑎− − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) � − ϕ�

𝑎𝑎+ − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) ��

+2𝜎𝜎𝑔𝑔�(𝒙𝒙) �Φ�
𝑎𝑎+ − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) � −Φ�

𝑎𝑎− − 𝜇𝜇𝑔𝑔�(𝒙𝒙)
𝜎𝜎𝑔𝑔�(𝒙𝒙) �� ,

 

 

(49) 

where ϕ(∙) is the PDF and Φ(∙) is the CDF of the standard normal distribution. In this paper, 𝑎𝑎 = 0, 𝑎𝑎+ =1 
2𝜎𝜎𝑔𝑔�(𝒙𝒙) and 𝑎𝑎− = −2𝜎𝜎𝑔𝑔�(𝒙𝒙). The point that maximizes the 𝐸𝐸𝐸𝐸𝐸𝐸 response is chosen as the next-best training 2 
point. The number of calls to a performance function is denoted as 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 . Because this paper only 3 
investigates the CI of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝, it is reasonable that the stopping criterion for Kriging refinement is chosen 4 
as  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 𝑁𝑁𝑡𝑡ℎ𝑟𝑟. Thus, training point enrichment stops when it reaches a threshold number of evaluations 5 
of the performance function. The steps of numerical investigation are elaborated in Algorithm 1.  6 
 7 

Algorithm 1. Steps for numerical investigations 
1. Generating initial candidate design samples S with Latin Hypercube Sampling (LHS)  
2. Randomly select initial training samples 𝒙𝒙𝑡𝑡𝑡𝑡 from S and evaluate their responses 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡) 
3. Construct the Kriging model 𝑔𝑔�(𝒙𝒙) based on 𝒙𝒙𝑡𝑡𝑡𝑡 and 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡) 
4. Estimate the mean 𝜎𝜎𝑔𝑔�(𝒙𝒙), standard deviation 𝜎𝜎𝑔𝑔�(𝒙𝒙), 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 and it confidence interval for S 
with 𝑔𝑔�(𝒙𝒙) 

5. Search for the next best training points 𝒙𝒙𝑡𝑡𝑡𝑡∗  using learning function and update the 
training samples 𝒙𝒙𝑡𝑡𝑡𝑡 

6. Check if the stopping criterion 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 𝑁𝑁𝑡𝑡ℎ𝑟𝑟 is satisfied or not: 
 (a). Satisfied. Go to step 7. 
 (b). Unsatisfied. Estimate the response 𝑔𝑔(𝒙𝒙𝑡𝑡𝑡𝑡∗ ) for 𝒙𝒙𝑡𝑡𝑡𝑡∗  and go back to Step 3. 

7. Report 𝑃𝑃�𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 and its confidence interval. 
 8 
4.1 Two dimensional problems 9 
This non-linear four-branch series system problem has been investigated in many studies [12], [24], [48]. 10 
In this problem, random variables all follow mutually independent standard normal distributions as 11 
described in Table 1. The performance function, 𝑔𝑔(𝒙𝒙), is given as: 12 
 13 

𝑔𝑔(𝑥𝑥1,𝑥𝑥2) = 𝑚𝑚𝑚𝑚𝑚𝑚

⎩
⎪⎪
⎪
⎨

⎪⎪
⎪
⎧3 + 0.1(𝑥𝑥1 − 𝑥𝑥2)2 − (𝑥𝑥1 + 𝑥𝑥2)

√2

3 + 0.1(𝑥𝑥1 − 𝑥𝑥2)2 + (𝑥𝑥1 + 𝑥𝑥2)
√2

(𝑥𝑥1 − 𝑥𝑥2) + 6
√2

−(𝑥𝑥1 − 𝑥𝑥2) + 6
√2

 (50) 

 14 
 15 
 16 

Table 1. Random variables in example 4.1. 17 
Random variable Distribution Mean Standard deviation 

𝑥𝑥1,𝑥𝑥2 Normal 0 1 
 18 
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The number of candidate design samples for Kriging Monte Carlo simulations is chosen as 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 =1 
1 × 105, in order to satisfy 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 < 0.05 as suggested in [12]. In this example, the threshold number for 2 
the stopping criterion is set to 𝑁𝑁𝑡𝑡ℎ𝑟𝑟 = 70, such that 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 ≅ 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 when 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is close to 𝑁𝑁𝑡𝑡ℎ𝑟𝑟. The initial 3 
training samples are illustrated in Fig. 1(a), where 𝑥𝑥𝑖𝑖𝑖𝑖 means the initial training samples. The 95% CIs of 4 
𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝  without considering Kriging correlation is shown in Fig. 1(b), whereas the comparison between the 95% 5 

CI using Chebyshev’s inequality proposed by Wang et al. [48] and the CI considering Kriging correlation 6 
is shown in Fig. 1(c). Additionally, to clearly explore the performance of the proposed approaches, the true 7 
absolute difference between 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 and 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is investigated: 8 
 9 

𝜖𝜖 = �𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝�. (51) 

 10 
Different from the work in [48], which directly uses 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 4.5 × 10−3 from the literature, 𝑃𝑃𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 here is 11 
computed based on the current set S, because 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  can be different for different simulations. In this 12 
example, 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 = 4.60 × 10−3 for the generated set, S, in this simulation. Note that S for both 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚and 13 
𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 are exactly the same. The estimated bounds of error, 𝜖𝜖̂, versus 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, for the three different approaches, 14 

are illustrated in Fig. 1(d). Fig. 1(e) records the coefficient of variant of 𝑃𝑃�𝑓𝑓
𝑝𝑝𝑝𝑝 for both cases with and without 15 

considering Kriging correlation: 16 
 17 

𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 =  
𝜎𝜎𝕌𝕌/𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
𝜇𝜇𝕌𝕌/𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

=
𝜎𝜎𝕌𝕌
𝜇𝜇𝕌𝕌

𝑜𝑜𝑜𝑜 
𝜎𝜎𝕌𝕌𝑐𝑐
𝜇𝜇𝕌𝕌𝑐𝑐

 (52) 

 18 
  19 
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         (a)          (b) 

  
         (c)          (d) 

 
   (e) 

Fig. 1. Reliability analysis results for Example 1 including (a) Illustration of initial training samples (b) 1 
𝑃𝑃�𝑓𝑓 and the CI without Kriging correlation vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (c) 𝑃𝑃�𝑓𝑓 and the CI with Kriging correlation vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 2 

and (d) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  (e) Curves of 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 3 

 4 
According to Fig. 1(b), the CI without considering Kriging correlation tends to be accurate when 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 >5 
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40. However, it performs poorly at the early stage when 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 40. On the other hand, in Fig. 1(c), both 1 
the CIs by Chebyshev’s inequality [48] and the proposed CI considering Kriging correlation perform well. 2 
This trend is also reflected clearly in Fig. 1(d). Nevertheless, the one estimated by considering Kriging 3 
correlation offers a narrower band than the one estimated by Chebyshev’s inequality. Because the CI 4 
estimated by Wang et al. [48] is based on the Chebyshev’s inequality, as stated in Eq. (20), it assumes that 5 
the distribution of 𝕌𝕌 is unknown. However, the distribution of 𝕌𝕌 or 𝕌𝕌𝑐𝑐 as proved in this paper is a PBD. 6 
This finding was subsequently used in the derivation of the proposed CIs with and without considering 7 
Kriging correlation. Moreover, according to Fig. 1(d), one can infer that error 𝜖𝜖̂ , estimated without 8 
considering Kriging correlation, is smaller than the true error, 𝜖𝜖 , at the early stage (e.g. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 < 40). 9 
However, it is close to the 𝜖𝜖̂ estimated considering Kriging correlation in the later stage (e.g. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≥ 40). 10 
This trend is because of the contribution of the off-diagonal elements of 𝚺𝚺𝑝𝑝𝑝𝑝 in Eq. (38). At the early stages, 11 
this contribution is significant resulting in a significantly smaller 𝜎𝜎𝕌𝕌𝑐𝑐

2  for the uncorrelated PBD compared 12 
to the case considering Kriging correlation. Therefore, the CI without considering Kriging correlation tends 13 
to be considerably narrower than the CI considering Kriging correlation. As more training points are added 14 
into the construction of the Kriging model, 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 gradually converges to 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, and the off-diagonal elements 15 
in Eq. (38) become negligible. This is reflected in the phenomenon where the CI without considering 16 
Kriging correlation performs close to CI considering Kriging correlation for larger number of training 17 
points. Hence, the CI considering Kriging correlation is recommended, because it offers accurate 18 
confidence intervals over the entire range of training points for Kriging-based reliability analysis with 19 
probabilistic classification. However, the estimates of CI considering Kriging correlation and Chebyshev’s 20 
inequality are computationally demanding, owing to the large scale of the covariance matrix in Eq. (38). 21 
Although the CI without considering Kriging correlation only performs well at post stage, the coefficient 22 
of variation of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝by this approach finally converges to the performance via the approach considering 23 
Kriging correlation according to Fig. 1(e). This finding can draw the conclusion that the coefficients of 24 
variation of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 with and without considering Kriging correlation asymptotically converge to the same 25 
level of value as the training points increase. 26 
 27 

  
       (a)         (b) 

Fig. 2. Analysis of the robustness of the proposed CIs to the arrangement of initial training samples: (a) 28 
Illustration of ill-conditioned initial training samples and (b) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 29 

 30 
To investigate the robustness of the proposed CIs to the arrangement of initial training samples, we define 31 
a set of ill-conditioned initial training samples as shown in Fig. 2(a). It can be observed that these samples 32 
are clustered close to each other. The error estimates for confidence intervals are presented in Fig. 2(b). 33 
Compared to the results in Fig. 1(d), which represents the case where initial training samples are generated 34 
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following design of experiment methods, it is seen that artificially clustering initial training samples affects 1 
the performance of the proposed CIs. Although this represents an extremely unlikely scenario for generation 2 
of training samples, the proposed CI with Kriging correlations considered present a satisfactory 3 
performance except for when 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 48 . Moreover, effects of active learning strategies on the 4 
performance of the CIs is investigated in Fig. 3. For this purpose, as shown in Fig. 3(a), training samples 5 
are randomly selected in the area [-4 4;-4 4] as compared to a strategic selection based on EFF learning 6 
function. According to Fig. 3(b), the proposed CI that considers Kriging correlations exhibits a satisfactory 7 
performance in the sense that it provides an upper bound for the true error. However, all CIs fail to show 8 
convergence compared to the case that adopts the active learning function. This can be attributed to the fact 9 
that random selection leads to training points that are not close to the limit state. As a result, it cannot reduce 10 
the uncertainty of the Kriging model for failure probability estimation. 11 
 12 

  
       (a)         (b) 

Fig. 3. Reliability analysis results for example 1 when training points are randomly selected: (a) 13 
Illustration of initial training samples and (b) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 14 

 15 
4.2 Truss problems 16 
4.2.1 Structural Roof Truss 17 
The second example is a structural truss problem shown in Fig. 4 with six normal random variables [60], 18 
[61]. In this example, the maximum vertical displacement at the centre of the structure is selected as the 19 
critical response to consider in the limit state function as follows: 20 
 21 

𝐺𝐺(𝑞𝑞, 𝑙𝑙,𝐴𝐴𝑐𝑐 ,𝐸𝐸𝑐𝑐 ,𝐴𝐴𝑠𝑠,𝐸𝐸𝑠𝑠) = 0.03−
𝑞𝑞𝑙𝑙2

2
�

3.81
𝐴𝐴𝑐𝑐𝐸𝐸𝑐𝑐

+
1.13
𝐴𝐴𝑠𝑠𝐸𝐸𝑠𝑠

�, (53) 

 22 
where 𝑞𝑞 is uniformly distributed loading, 𝑙𝑙 is the horizontal length of the roof truss, 𝐴𝐴𝑐𝑐  and 𝐴𝐴𝑠𝑠 are the cross-23 
section areas, and 𝐸𝐸𝑐𝑐 and 𝐸𝐸𝑠𝑠 are the Young’s modulus of the steel and concrete beams, respectively. The 24 
probabilistic information of the six random variables are shown in Table 2. The number of candidate design 25 
samples for Kriging-based MCS is 5 × 104, and the 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is estimated as 9.6 × 10−3, which means that 26 
the coefficient of variation satisfies 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 < 0.05. The threshold number for the stopping criterion for 27 
refining the Kriging model is set as 𝑁𝑁𝑡𝑡ℎ𝑟𝑟 = 90. Three CIs determined using the three approaches discussed 28 
earlier are illustrated in Fig. 5. 29 
  30 
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Table 2. Random variables of example 4.2.1. 1 
Random variable Unit Mean C.O.V (%) 

𝑞𝑞 (N/m) 2 × 104 7 
𝑙𝑙 (m) 12 1 
𝐴𝐴𝑐𝑐  (m2) 4 × 10−2 12 
𝐸𝐸𝑐𝑐  (N/m2) 2 × 1010 6 
𝐴𝐴𝑠𝑠 (m2) 9.82 × 10−4 6 
𝐸𝐸𝑠𝑠 (N/m2) 1 × 1011 6 

 2 

 3 
 4 

Fig. 4. Example 4.2.1, The roof truss in [23]. 5 
 6 
According to Fig. 5(a), the CI without considering Kriging correlation fails to cover the true failure 7 
probability, 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚, at the early stage (e.g. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≤ 70). However, it works well at the later stage (e.g. 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ≥8 
70). The reason behind this phenomenon has been explained in example 4.1. In Figs. 5(b) and 5(c), both 9 
CIs estimated with Kriging correlation and by Chebyshev’s inequality [48] perform well. However, the 10 
correlated PBD-based CI offers a narrower bound and closer to the true error, 𝜖𝜖, compared to the approach 11 
via Chebyshev’s inequality [48]. As shown in Fig. 5(d), the coefficients of variation of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝  estimated 12 
through the proposed two approaches gradually converge to 10−3. However, 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝  considering the 13 

Kriging correlation keeps decreasing while 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝  without considering Kriging correlation does not 14 

change too much after 10−3. 15 
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         (a)          (b) 

  
         (c)          (d) 

Fig. 5. Reliability analysis results for Example 4.2.1 including: (a) 𝑃𝑃�𝑓𝑓 vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 without considering 1 
Kriging correlation (b) 𝑃𝑃�𝑓𝑓 vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 considering Kriging correlation (c) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (d) Curves of 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 2 

 3 
4.2.2 Modified Truss Structure 4 
In the fourth example, a 23-bar truss with 10 input random variables is investigated [15], [48]. In this truss, 5 
as shown in Fig. 6, 11 bars are horizontal and 12 are diagonal. The performance function is defined as: 6 
 7 

𝑔𝑔(𝑥𝑥) = 0.14 − |𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙)|, (54) 
 8 
where 𝑑𝑑𝑑𝑑𝑑𝑑(𝒙𝒙) is the vertical displacement of the truss at point E. The truss is subject to six vertical loadings, 9 
𝑃𝑃1 to 𝑃𝑃6, which follow Gumbel distributions. 𝐴𝐴1 and 𝐴𝐴2 are the cross-section areas and 𝐸𝐸1 and 𝐸𝐸2  are the 10 
Young’s modulus of the horizontal and diagonal bars, respectively. The 10 mutually independent random 11 
variables are described in Table 3. For this high dimensional example, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 5 × 104 , and 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 =12 
9.10 × 10−3, such that 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 < 0.05. Moreover, 𝑁𝑁𝑡𝑡ℎ𝑟𝑟 = 100. The simulation results are presented in Fig. 13 
7.  14 
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 1 
                                    Fig. 6. Example 4.2.2, the truss with 10 random variables 2 

 3 
Table 3. Random variables in example 4.2.2. 4 

Random variable Distribution Mean Standard deviation 
𝑃𝑃1 − 𝑃𝑃6 Gumbel 6.5 × 104 6.5 × 103 
𝐴𝐴1 Lognormal 2 × 10−3 2 × 10−4 
𝐴𝐴2 Lognormal 1 × 10−3 1 × 10−4 
𝐸𝐸1 Lognormal 2.1 × 1011 2.1 × 1010 
𝐸𝐸2 Lognormal 2.1 × 1011 2.1 × 1010 

 5 

  
         (a)          (b) 

  
         (c)          (d) 

Fig. 7. Reliability analysis results for Example 4.2.2 including: (a) 𝑃𝑃�𝑓𝑓 vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 without considering 6 
Kriging correlation (b) 𝑃𝑃�𝑓𝑓 vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 considering Kriging correlation (c) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (d) Curves of 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 7 

40 50 60 70 80 90 100
7

8

9

10

11
10 -3

40 50 60 70 80 90 100
0.007

0.008

0.009

0.01

0.011

0.012

0.013

40 50 60 70 80 90 100

10 -4

10 -3

40 50 60 70 80 90 100
10 -3

10 -2

10 -1

10 0

P1 

 

P2 

 

P3 

 

P4 

 

P5 

 

P6 

 
2 m 

 

24 m 

 

V 

 

A1, E1 

 

A2, E2 

 
E 

 



-20- 
 

 1 
In Fig. 7, the CI of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝 without considering Kriging correlation exhibits poor performance, while the CI 2 
considering Kriging correlation works well for all stages of the adaptive Kriging-based reliability analysis. 3 
Moreover, the CI considering Kriging correlation is tighter than the CI by Chebyshev’s inequality [48], as 4 
shown in Figs. 7(b) and 7(c). According to Fig. 7(d), the 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 estimated via proposed two approaches 5 

show the same convergence direction.  6 
 7 
4.3 Non-linear oscillator 8 
4.3.1 One-degree-of-freedom oscillator  9 
This example investigated in this section is a mechanical non-linear oscillator with six random variables, 10 
as illustrated in Fig. 8 [12], [48]. For this non-linear problem, the performance function is defined as: 11 
 12 

𝑔𝑔(𝑘𝑘1,𝑘𝑘2,𝑚𝑚, 𝑟𝑟, 𝑡𝑡1,𝐹𝐹1) = 3𝑟𝑟 − �
2𝐹𝐹1
𝑚𝑚𝜔𝜔02

𝑠𝑠𝑠𝑠𝑠𝑠 �
𝜔𝜔0𝑡𝑡1

2
��, (55) 

 13 

where 𝜔𝜔0 =  �𝑘𝑘1+𝑘𝑘2
𝑚𝑚

 is the system frequency. The probabilistic information of the six input random 14 

variables are summarized in Table 4. In this example, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 7 × 104  and 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  is estimated as 15 
2.89 × 10−2  with 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 < 0.05 . Moreover, 𝑁𝑁𝑡𝑡ℎ𝑟𝑟 = 76 . The CIs estimated with/without considering 16 
Kriging correlation and via Chebyshev’s inequality [48], are all presented in Fig. 9.   17 

 18 
Fig. 8 Example 4.3.1, A two-degree-of-freedom  19 

 20 
As illustrated in Figs. 9(a) and 9(c), the CI estimated without considering Kriging correlation works well 21 
when 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 65. Moreover, while both the CIs through considering Kriging correlation and Chebyshev’s 22 
inequality are accurate, the former approach yields a tighter bound. This trend is also observed in Fig. 9(c). 23 
Generally, CI estimated without considering Kriging correlation is efficient for implementation, but is 24 
inaccurate at early stages. However, the CI estimated with Kriging correlation  is accurate in all stages, but 25 
remains computationally demanding. Moreover, the 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝  estimated via proposed two approaches 26 

converges to the same value as shown in Fig. 9(d). 27 
 28 

Table 4. Random variables in example 4.3.1. 29 
Random variable Distribution type Mean Standard Deviation 

𝑚𝑚 Normal 1 0.05 
𝑘𝑘1 Normal 1 0.1 
𝑘𝑘2 Normal 0.1 0.01 
𝑟𝑟 Normal 0.5 0.05 
𝐹𝐹1 Normal 1 0.2 
𝑡𝑡1 Normal 1 0.2 
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 1 

  
         (a)          (b) 

  
         (c)          (d) 

Fig. 9. Reliability analysis results for Example 4.3.1 including: (a) 𝑃𝑃�𝑓𝑓 vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 without considering 2 
Kriging correlation (b) 𝑃𝑃�𝑓𝑓 vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 considering Kriging correlation (c) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (d) Curves of 𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 3 

 4 
4.3.2 Two-degree-of-freedom oscillator  5 
To explore the performance of the proposed CIs for a non-linear case, we investigate a two-degree-of-6 
freedom primary-secondary damped oscillator as shown in Fig. 10. This example was originally used in the 7 
report by Der Kiureghian and De Stefano [8], and was further explored by Bourinet et al [62], Dubourg et 8 
al [23], [63], and Hu and Mahadevan [64]. Let 𝑚𝑚𝑝𝑝 and 𝑚𝑚𝑠𝑠, 𝑘𝑘𝑝𝑝 and 𝑘𝑘𝑠𝑠, 𝜔𝜔𝑝𝑝 = �𝑘𝑘𝑝𝑝/𝑚𝑚𝑝𝑝 and 𝜔𝜔𝑠𝑠 = �𝑘𝑘𝑠𝑠/𝑚𝑚𝑠𝑠, 9 
and 𝜉𝜉𝑝𝑝 and 𝜉𝜉𝑠𝑠 denote the primary and secondary masses, spring stiffness, natural frequencies and damping 10 
ratios of the oscillator system, respectively. Here, 𝑝𝑝 and 𝑠𝑠 denote the primary and secondary oscillator, 11 
respectively. Thus, the mean-square relative displacement of the secondary spring under a white noise base 12 
acceleration 𝑆𝑆 can be computed as: 13 
 14 

𝐸𝐸𝑠𝑠[𝑥𝑥𝑠𝑠2] = 𝜋𝜋
𝑆𝑆0

4𝜉𝜉𝑠𝑠𝜔𝜔𝑠𝑠3
𝜉𝜉𝑎𝑎𝜉𝜉𝑠𝑠

𝜉𝜉𝑝𝑝𝜉𝜉𝑠𝑠(4𝜉𝜉𝑎𝑎2 + 𝜃𝜃2) + 𝛾𝛾𝜉𝜉𝑎𝑎2
�𝜉𝜉𝑝𝑝𝜔𝜔𝑝𝑝3 + 𝜉𝜉𝑠𝑠𝜔𝜔𝑠𝑠3�𝜔𝜔𝑝𝑝

4𝜉𝜉𝑎𝑎𝜔𝜔𝑎𝑎4
 (56) 

 15 
where 𝑆𝑆0 is the intensity of the white noise, 𝛾𝛾 = 𝑚𝑚𝑠𝑠/𝑚𝑚𝑝𝑝, 𝜔𝜔𝑎𝑎 = �𝜔𝜔𝑝𝑝 + 𝜔𝜔𝑠𝑠�/2, 𝜉𝜉𝑎𝑎 = �𝜉𝜉𝑝𝑝 + 𝜉𝜉𝑠𝑠�/2 and 𝜃𝜃 =16 
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�𝜔𝜔𝑝𝑝 − 𝜔𝜔𝑠𝑠�/𝜔𝜔𝑎𝑎 is the tuning parameter. For this example, the limit state function is defined as: 1 
 2 

𝑔𝑔(𝑿𝑿) = 𝐹𝐹𝑠𝑠 − 𝑝𝑝𝑝𝑝 ∙ 𝑘𝑘𝑠𝑠�𝐸𝐸𝑠𝑠[𝑥𝑥𝑠𝑠2], (57) 

 3 

  4 
Fig. 10. Example 4.3.2, a two-degree-of –freedom oscillator under a white-noise base acceleration 5 

 6 
Table 5. Random variables in example 4.3.2. 7 

Random variable Distribution type Mean Standard Deviation 
𝑚𝑚𝑝𝑝 Lognormal 1.5 0.15 
𝑚𝑚𝑠𝑠 Lognormal 0.01 0.001 
𝑘𝑘𝑝𝑝 Lognormal 1 0.2 
𝑘𝑘𝑠𝑠 Lognormal 0.01 0.002 
𝜉𝜉𝑝𝑝 Lognormal 0.05 0.02 
𝜉𝜉𝑠𝑠 Lognormal 0.02 0.01 
𝐹𝐹𝑠𝑠 Lognormal 15 1.5 
𝑆𝑆0 Lognormal 100 10 

 8 
where 𝑝𝑝𝑝𝑝 denotes the peak factor set and is equal to 3 in this example. The eight mutually independent 9 
random variables are summarized in Table 5. In this example, 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 = 1 × 105 and 𝑃𝑃𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 is estimated as 10 
4.80 × 10−3 with 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝 < 0.05. Moreover, 𝑁𝑁𝑡𝑡ℎ𝑟𝑟 = 1000. The proposed CIs estimated with and without 11 

considering Kriging correlation and that via Chebyshev’s inequality [48] are all presented in Fig. 11.   12 
  13 
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         (a)          (b) 

  
         (c)          (d) 

Fig. 11. Reliability analysis results for Example 4.3.2 including: (a) 𝑃𝑃�𝑓𝑓 and the CI without Kriging 1 
correlation vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (b) 𝑃𝑃�𝑓𝑓 and the CI with Kriging correlation vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (c) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and (d) 2 

𝐶𝐶.𝑂𝑂.𝑉𝑉𝑃𝑃�𝑓𝑓𝑝𝑝𝑝𝑝vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 3 

 4 
According to the plots in Figs. 11(a) and (c), the CI estimated without considering Kriging correlation 5 
works well when 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 > 630 . On the other hand, the CIs that consider Kriging correlation and 6 
Chebyshev’s inequality are accurate for 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 larger than 240. Fig. 11(d) illustrates a similar convergence 7 
pattern of the coefficient of variation of 𝑃𝑃�𝑓𝑓

𝑝𝑝𝑝𝑝for different correlation considerations. 8 
 9 
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       (a)         (b) 

Fig. 12. Analysis of the robustness of the proposed CIs to the arrangement of initial training samples for 1 
example 4.3.2: (a) 𝑃𝑃�𝑓𝑓 and the CI with Kriging correlation vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, (b) 𝜖𝜖̂ vs 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 2 

 3 
To investigate the robustness of the proposed CIs to the arrangement of initial training samples, we define 4 
a set of ill-conditioned initial training samples. Results of corresponding analyses are summarized in Fig. 5 
12. Compared to the results in Fig. 11(c), the error estassimate considering Kriging correlation presented 6 
in Fig. 12(b) tends to be accurate for Ncall ≥ 630. It can be inferred that the initial design of training 7 
samples affects the performance of the proposed confidence intervals. However, they become more accurate 8 
as the number of training samples increases. Therefore, a strategy for the initial design of experiments is 9 
necessary and should be appropriately defined.  10 
 11 
5. Conclusion 12 
This paper proposes a novel approach to derive confidence intervals (CIs) for failure probability estimates 13 
in adaptive Kriging-based reliability analysis methods. The approach builds on the fact that the summation 14 
of probabilistic classification-based indicator follows a Bernoulli distribution, which is subsequently 15 
leveraged to derive the CI for failure probability estimates. Two variants of CIs are developed in this paper, 16 
where one approach disregards Kriging correlation for candidate design samples, and the other approach 17 
takes into account such correlations. Both the two proposed CIs are investigated for four groups of 18 
numerical example. Results show that the CI considering Kriging correlation offers more accurate bounds 19 
for failure probability estimates compared to the uncorrelated CI model. It is also demonstrated that the 20 
proposed CI considering Kriging correlation outperforms the existing approach that relies on Chebyshev’s 21 
inequality. While the CI without considering Kriging correlation is primarily accurate at later stages of 22 
adaptive reliability analysis, it is computationally efficient compared to other techniques. The proposed CIs 23 
can be leveraged to derive efficient stopping criteria, optimal learning strategies and efficient solutions for 24 
high-dimensional problems. 25 

It should be noted that the performance of the proposed CIs can be partially affected by the initial design 26 
of experiments. Specifically, if the initial training samples are properly generated e.g. via Latin Hypercube 27 
Sampling (LHS), the estimated CI will be appropriate. However, clustered initial samples may lead to 28 
inaccurate CIs. Such ill-conditioned initial samples fail to capture the global responses of the performance 29 
function and can lead to fast convergence in local regions. Therefore, the appropriate generation of initial 30 
training samples is necessary for estimating proper confidence intervals. Moreover, the proposed CIs 31 
considering Kriging correlation are computationally demanding. There is no concern for computational 32 
intractability for the uncertainty indicator without Kriging correlation, since it relies on computationally 33 
simple operations. However, the uncertainty indicator with Kriging correlation needs to compute a very 34 
large covariance matrix. The size of this matrix is associated with the number of candidate design samples. 35 
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As 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  increases, it becomes increasingly demanding to generate the covariance matrix. Due to this 1 
computational challenge, numerical examples investigated in this paper have probabilities of failure larger 2 
than 10−4. Although investigating techniques for the computation of large covariance matrices is out of the 3 
scope of this paper, it is an important topic to pursue in future studies. 4 
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