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On the Confidence Intervals for Failure Probability Estimates in Kriging-Based Reliability
Analysis
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Abstract

Despite recent advancements in adaptive Kriging-based reliability analysis for complex limit states,
estimation of the accuracy of extant techniques when the true failure probability is unknown remains an
important challenge. The present study addresses this gap by developing analytical confidence intervals
(Cls) for failure probability estimates. This is facilitated here by leveraging statistical properties of Poisson
Binomial distribution for the expected number of failure points in the set of candidate design samples in
adaptive Kriging as well as Lindeberg’s condition for central limit theorem. Concerning computational
demands involved in the computation of Cls, a simpler case where Kriging correlations are neglected is
also derived. The performance of the proposed Cls is subsequently analyzed for five examples with
different and varying complexities. Results indicate that the proposed CI with correlations considered offers
the most accurate intervals. Additionally, whereas the CI estimated without Kriging correlation is not
entirely satisfactory at early-stages of adaptive reliability analysis, it converges to accurate bounds at later
stages. The proposed Cls can be used to derive efficient stopping criteria, optimal learning strategies and
derive efficient solutions for high-dimensional problems.

Key words: Reliability analysis; Risk analysis; Surrogate models, Kriging,; Poisson binomial distribution;
Accuracy measure, Confidence interval

1. Introduction

Real-world phenomena either natural or engineered are accompanied with various types and extents of
uncertainties. Characterization and propagation of uncertainties in the analysis of these phenomena is a
challenge and a key research area in many fields of science and engineering. For example, to assist with
treatment decisions for incidental intracranial aneurysm, the risk of aneurysm rupture has been quantified
via computational hemodynamic simulations [1]. In the process of design and manufacturing of various
industrial products such as rockets and their propulsion systems, satellites and unmanned aerial vehicles, it
is necessary to consider extreme requirements of mission success under uncertain conditions [2].
Uncertainties are ubiquitous in the fields of ecological risk assessment, exposure assessment, occupational
health and safety, and security and defence [3]. Analysis of these phenomena to characterize potential
response modes is often facilitated by establishing quantifiable criteria, here referred to as performance
(also called limit-state) functions, which describe the onset of a particular or a set of response modes [4].
Using these performance functions in conjunction with characterization and propagation of involved
uncertainties, one can determine the probability of occurrence of response modes of interest. The estimation
of these probabilities is facilitated by reliability analysis methods. In the analysis of reliability, the failure
probability, Pr, can be calculated as:

P = f p(x)dx €y
gx)=<0

where x is the vector of random variables, g(x) is the performance function, p(x) is the joint probability
density function (PDF) of x. In many cases, evaluation of g(x) requires analysis of sophisticated,
computationally demanding numerical models, making the estimation of Pr a challenging task. This
challenge has been tackled through reliability analysis techniques such as the crude Monte-Carlo simulation
(MCS) [5], [6], first- or second-order reliability analysis methods [7], [8], importance sampling (IS) [9],
and subset simulation (SS) [10], [11]. Apart from techniques above, the state-of-the-art metamodel-based
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approaches [12]-[15] can also provide solutions for Eq. (1) due to its computational efficiency and accuracy
[4], [12], [16].

Since the early developments of Kriging-based reliability analysis methods such as EGRA(Efficient
Global Reliability Analysis) proposed by Bichon et al. [13] and AK-MCS (Adaptive Kriging-based MCS)
proposed by Echard et al. [12], a number of more efficient variants have been proposed. These
advancements typically contribute to learning functions, sampling strategies, stopping criteria and accuracy
measures. For learning functions, aside from the existing EFF and U functions, information entropy-based
H function and least improvement function (LIF) have been proposed by Lv et al. [17] and Sun et al. [18],
respectively. H learning function aims to seek the training point in the vicinity of the limit state, which
follows the same principle as EFF but in a way of information entropy. Moreover, LIF takes advantage of
probability density of each point to highlight the training points with large probability densities. Xiao et al.
[19] combined two learning functions, Y4 and P to pick the best training point defined as the one that is
not in the proximity of the existing training points but is close to the limit state, and has high variance.
Moreover, a number of parallel training point-enriching strategies, such as k-means clustering and pseudo-
Kriging, have been proposed, respectively, by Lelievre et al. [20] and Wen et al. [21]. Kriging-based
simulation techniques with IS [12], [22], [23] and SS [24]—[26] have shown promising results in the analysis
of rare-event problems with small number of evaluations to performance function. Furthermore, excluding
unimportant candidate design samples in the analysis of failure probabilities has been found to enhance the
computational efficiency [21], [27]. For sampling strategies, methods proposed by Echard et al. [9],
Balesdent et al. [22] and Dubourg et al. [23] that rely on importance sampling are shown to be
computationally efficient for rare events reliability analysis. Furthermore, in AKOIS, Zhang et al. [28]
optimized the process of searching for importance sampling center, which facilitates the fast identification
of multiple Most Probable Points (MPPs). Moreover, Chen et al. [29] proposed a method that substitutes
the original sample population with multiple equivalent ones, which can be leveraged to enhance the
learning process with sufficiently large sample pool close to the limit state. Other techniques that integrate
the subset simulation with Kriging surrogate model can be found in [24],[25] [30]. By not considering the
point with small probability density, Wen et al. [21], Yang et al. [27] and Wang and Shafieezadeh [4]
proposed sampling strategies that focus on samples with large contributions to probability of failure.
Moreover, Kriging surrogate model can be leveraged to improve the computational efficiency of system
reliability problems [27], [31], [32]. Gaspar et al. [33] assess the computation efficiency for Kriging-based
structural reliability methods. As the advancement of sensors and monitoring techniques for civil
infrastructure among other systems is gaining more momentum, it is shown that Kriging surrogate models
can facilitate real-time reliability updating[34]. The Kriging model can also be integrated with structural
reliability analysis for p-boxes considering both aleatory and epistemic uncertainty [35]. Aside from
aforementioned topics, Kriging surrogate models can also be applied to reliability-based design
optimization [36]-[38] and other uncertainty quantification (UQ) techniques such as Bayesian updating
[39], [40].

A critical consideration in adaptive Kriging-based reliability analysis methods is the definition of the
stopping criterion for active learning. Many approaches that use EFF learning functions have prescribed
the stopping criterion as max(EFF) < 0.001. Otherwise, they have used the U learning function primarily
in the form of min(U) = 2 [9], [41], [42]. Similarly, Sun et al. [23] proposed an uncertainty function and
Wang et al. [34] defined cumulative confidence level to measure the expected error in wrong sign estimation
according to the U learning function. Moreover, Gaspar et al. [44] proposed a stopping criterion based on
the uncertainty of the estimated failure probability. Fauriat et al. [31] points out that Kriging models are
often sufficiently accurate if 98% of the candidate design samples satisfy min(U) = 2. Different from
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aforementioned approaches, Wang and Shafieezadeh [45] proposed an efficient stopping criterion that
analytically derives the maximum error for the estimated failure probability. Following the same path, Jiang
et al. [46] proposed the real-time estimation of the maximum error for time-dependent reliability analysis.
Additionally, Schdbi et al. [47] proposed using the difference between the failure probabilities estimated in
current and last iterations in the stopping criterion. However, Wang et al. [48] pointed out that these
accuracy measures can be further improved and they derived the CI of the estimated failure probability via
probabilistic classification-based MCS. In their approach, as the probability distribution of estimated failure
probability was unknown, Chebyshev’s inequality was applied to estimate the corresponding CI. The use
of Chebyshev’s inequality in this approach, however, can lead to over conservative estimates of CI for
failure probability estimates.

In this paper, CIs for failure probability estimates are derived within the framework of adaptive Kriging-
based reliability analysis, once with Kriging correlations neglected and another time considering such
correlations. Statistical properties of Poisson Binomial distribution (PBD) and Central Limit Theorem (CLT)
are leveraged here to facilitate the derivations. The proposed Cls considering Kriging correlation are
expected to be tighter than those in [48], as the use of Chebyshev’s inequality in that approach is based on
the assumption that the probabilistic distribution of the failure probability is unknown. The performance of
the proposed Cls are examined for five numerical examples, and results are compared to the approach based
on Chebyshev’s inequality proposed by Wang et al. in [48]. The organization of this paper is as follows.
Section 2 introduces the Kriging model, the probabilistic classification-based MCS and the Cls based on
Chebyshev’s inequality. In Section 3, the CIs with and without considering Kriging correlation are derived.
Section 4 explores the performance of the proposed Cls for five examples with different and varying
complexities. Section 5 draws the conclusions of this study.

2. Review of Kriging

2.1 Kriging model

Kriging, also known as the Gaussian process regression, has been widely used for deterministic computer-
based experiment. In this section, Kriging model with correlated outputs are briefly summarized. The model
for Kriging g(x) can be presented as:

gx) =F(x,B)+ Z(x) = fT(x)B + Z(x), (2)

where F(x, ) is the regression base representing the Kriging trend, which can be a constant or a
polynomial. g(x) can be seen as the realization of the random process defined in Eq.(2). f(x) is the Kriging
basis and B is the regression coefficients. f7 (x)f usually have ordinary (B,), linear (Bo+X.N_; BnXy) or
quadratic (BotXN_1 Brxnt I N_ SN_| BrkXnxy) forms, whereas n is the dimension of the random input
vector, x. The ordinary Kriging model is used in this paper and it is assumed that the data used in training
the Kriging model are not noisy. Z(x) is the Kriging interpolation following a stationary Gaussian process
with zero mean and a covariance matrix between two points, x; and x;, as defined below:

cov (Z(xl),Z(x])) = O'ZR(xi, Xj; 0) (3)

where o2 is the process variance or the generalized mean square error from the regression part, based on
the best linear unbiased predictor. R(xl-,xj ; 0) is the correlation function or the kernel function,
representing the correlation function of the process with hyper-parameter 8. The correlation functions
implemented in Kriging include linear, exponential, Gaussian, and Matérn models, among others [49]. In
this paper, the Gaussian kernel function is implemented based on the assumption that the correlations
between samples are smooth:

N
R(x;,x;;0) = l_[ exp (—9{"} (xl.{n} — xj{n})z) 4)
n=1
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where N is the dimension of the random input vector, x; or x; and xi{n} and 8™ are the elements of x; and

0 in the n™ dimension, respectively. The hyper-parameter @ can be estimated via maximum likelihood
estimation (MLE) or cross-validation [49]. 8 has a significant impact on Kriging performance [21], [48],
[50]. The MLE can be represented as:

1
0" = argmin <|R(xl-,xj; 0)|m 02>, (5)
0

where m is the number of known training points or design-of-experiment (DoE) points. Thus, for a number
of DoE points, Spor = [X1, X3, ..., X;n], With associated responses ¥ = [g(x1), g(x3), ..., g(xm)], the
Kriging-estimated response at candidate design points follow a multivariate normal distribution, which can
be represented as [48], [S1]-[53]:

g~ N(ug%;), x€S, (6)

where S denotes the set of candidate design samples and Ny, is the size of S. Therefore, the mean values
are represented in a matrix form:

wg =FB+1"R™(Y - Fp), 7)
and the covariance matrix is:
Z;=0*(R+uz(F'R'F)'uy —r"R7'r), (8)
where
R = (R(xp,xq; 0))T ,Xp,Xg € S,
NpcsXNycs
r= (R(xl,x ;9))T » X1 € Spok,
P Nmcsxm 9)

pg = F'R'r — F7,
F() = [f(x0), F2), o f (2wl )]

Let 63 denote the diagonal elements of X4, thus, the responses of unknown points without considering
Kriging correlation can be represented as:

g(x)~N(uz03), x€S (10)

2.2 Probabilistic Classification-based MCS (PC-MCS)

In reliability analysis, the true failure probability, Pr, is computationally unavailable, an estimation based
on probabilistic simulation techniques is preferred. Crude MCS with sufficiently large number of samples
is often considered as a benchmark. In the Kriging model with MCS, there are two indicator functions:
deterministic classification [12], [54] and the probabilistic classification [23], [48]. For deterministic
classification, the crude MCS can be represented as:
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~ 1
pée = Z 1(x), X€ES (11)
T Nyes 4 - Hg( )

i=

where P}’fc is the estimated failure probability with deterministic classification on the Kriging model. Ny
is the number of sampling realizations, x; , from the probabilistic distribution of random variables and I,ﬁlg
is the corresponding indicator for deterministic classifications:

I¥(x) = X, ES (12)

g

{1, ,ng‘(xi) <0
0, pg(x) >0’

where 115(x;) is the mean value of §(x). The coefficient of variation of ﬁ;ic can be calculated as:

cov kil (13)
Pl Nyscs ISfdc

The failure probability based on probabilistic classification can be estimated as:

Nucs

. _ 1 1 — 15 (x)
P = E[P] = E[U] = Z @ <—g l > X €S (14
Nucs Nucs - o5(x;)
Npcs
U= Z Igc(xi),xi eES (15)
i=1

where P}pc is the augmented stochastic estimator and P}pc is the mean value of 15pr. E[-] is the expectation
operator, d5(x;) denote the standard deviation of x; according to Eq. (10) and Igc (x;) denotes the
probabilistic classification-based indicator:

—#g(xi)

kO’ W.p1—¢<M>’

Ug(xi)

Igc(xi) = X; €S (16)

where @(x) is the cumulative distribution function (CDF) of the univariate standard normal distribution
and pg(x;) and o4(x;) are the mean and standard deviation, respectively, of Kriging predictors. The

performance of probability classification-based MCS is equivalent to the deterministic classification-based
U

approach [48]. Note that U is a random variable, thus, 13pr is the mean value of according to Eq. (14).

Numcs
The purpose of using probability classification-based MCS in this paper is to facilitate the derivation of the

Cls for ISpr. The probabilistic classification estimates the failure probability considering uncertainties

associated with Kriging-based classification. The coefficient of variation of failure probability estimate can
be represented as [23]:
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MCS —g(x;)
1 RS “’Z(ﬁ)_ﬁgcz, (17)

X; €S
~d 2
/NMCSpr Nycs

2.3 CI Based on Chebyshev’s inequality
Recently, Wang et al. [48] derived Ggpc considering Kriging correlation, as shown in Eq. (6). In that study,
f

6§pc was derived as below [48]:
f

Npcs
Z D(U(x))P(-U(x))) +
Jlg}gc - N21 Numcs - ’ (18)
McCS
[P(9(x) <0,4(x;) < 0) — P(g(x) < 0)- P(§(x;) < 0)]
[i=1,j=1,i#] .

where dD(—U (xl-)) is the probability that the sign of the limit state function at x; is incorrectly estimated
by the Kriging model, and P(@ (x;)<0,g (xj) < O) is the bivariate normal distribution with the mean and
covariance matrix given in Eq. (6). Because the probabilistic distribution of 13pr was unknown, the
Chebyshev’s inequality was applied in [48] to find the CI of f}pc, as shown below:

1
spc A
P (IR - ppres | < eaﬁ},c) >1-— (19)
where 6}5}oc is the standard deviation of ISfpc, and e is a constant. Therefore, per this inequality, the 95%

confidence level CI (i.e. a = 0.05,1 — eiz =1—oa,e = 4.472, where a denotes the significance level) for

13pr can be represented as:
i_}pc € ,uf,}nc — ea'P}nCS, ,uf,}nc + eoA'P}ncs ] , a=0.05¢e=4.472. (20)

The CI in Eq. (20) is conservatively estimated, because the distribution of 15pr is treated as an unknown.

However, as shown in the next section, U follows a Poisson binomial distribution if the Kriging correlation
is not considered.

3. The proposed Cls for f,}f?c

3.1 CI for 13?6 without considering Kriging correlation
Let’s consider S as the set of candidate design samples. Ny ¢s and Ny denote the total number of samples

and the true number of failure points in S, respectively. Thus, P}"CS can be estimated as:

pmes — Nf 21)
F 7 Nyes'

Similarly, the probability of failure via PC-MCS can be estimated as:
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pPc (22)

= )
NMCS

where ]Vf? ¢ is the expected number of failure points in S. In this approach, for each candidate design sample,
x;, the outcome of the probabilistic classification-based indicator function, Igc (x;), defined in Eq. (16),
follows a Bernoulli distribution:

Igc(xi)~3(ﬂb(xi)),xi €S, (23)
—pug(x;)

og(x;)
the variance of the Bernoulli distribution, 62 = pj, (xl-)(l — Up (xl-)). It can be inferred that IV}? “is the

where B is the Bernoulli distribution, p;, (x;) is the Bernoulli mean with u,(x;) = @ ( ) and o is

expected value of U in Eq. (14), where each Igc (x;) follows a Bernoulli distribution. In probability theory

and statistics, a random variable, PB, is considered to follow Poisson Binomial distribution if it can be
represented as [55]:

Np
PB = Z B; (24)
i=1

where B;s denote random variables with mutually independent Bernoulli distribution. Note that B;s are not
identically distributed. Based on this definition, it follows that U has a Poisson binomial distribution, if the
Kriging correlations are not considered. Subsequently, U can be defined as:

U~PB(uy, 0f),x; € S, (25)

where py; and o are the mean value and variance of U. According to the probabilistic properties of PBD,
Uy = Zli\]:"fs pp(x;) and o = Z?’z"fs pp () (1 — pp(x,)). Note that N}’C = uy .Consequently, the CI
for U with confidence level a can be calculated as:

Ue <@u-]1 (%),@51 (1- %)) (26)

where @31 (+) is the inverse CDF of PBD with mean uy and variance 0. « is the confidence level (e.g.

a = 0.05). Analytical solutions for the above Cls are typically not available. Therefore, numerical
approaches or approximate analytical methods can be pursued. Sampling techniques can be used to
numerically determine the inverse CDF of PBDs. In most cases, Ny, is sufficiently large so that the CI of
U can be approximately determined using the Central Limit Theorem (CLT) [45]. As Lindeberg’s condition
for the central limit theorem for the sum of independent, not identically distributed random variables [56]
is satisfied for sufficiently large Ny cs:

li var [Igc (Xi)] 0 S 27
—— = 1=0, . €
NME?LOO i:lr,?f}ijcvzcs Var[U] xi 27)

it can be shown that U in distribution converges to a normal distribution:
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U ~N(uy, o), x€ S. (28)
The CI of U can then be obtained as:
U € [py — Yeiou, Bu+ Yeoul, XES, (29)
where Y. = 1.96 for the confidence level a = 0.05. As Nycs is large in Kriging-based reliability
analysis problems, the above confidence bounds for U are accurate. However, the CLT cannot be

appropriately applied in cases where Ny, s is small. According to Le cam’s theorem [45], [55], [57], the CI
of U without considering Kriging correlation can be approximately obtained using Poisson distribution:

k=0

Nmcs

2
—Hg(xi)
<22<¢<W>>, xiES (30)

i=1

—Hu

k
e
Pr(tU:k)—”‘”k

|

which indicates that the distribution of U can be approximately represented as a Poisson distribution:

ke_y'lU
Pr(U = k) ~ “‘”T,k = 0,1, ..., Nyycs 31
Therefore, the CI of U can be determined as:
—1 (&Y p-1(1_%
Uelrg (2),1"[U (1 2)] (32)

where ' (+) is the inverse CDF of the Poisson distribution with both mean and variance equal to uy
defined in Eq. (25), and « is the confidence level. According to Eq. (22), the CI of 15pr can be obtained by:

Pe

)

[Htu Yei% Py F Ve ‘“], a = 0.05, yo; = 1.96. (33)

NMCS NMCS

For Kriging-based reliability analysis methods, there is a prior assumption that all the responses for
training and testing points are mutually and normally (correlated) distributed. There are two groups of
uncertainty in the stochastic estimator. The first group can be defined as the one that the training samples
are not sufficient but the Gaussian Process is satisfied and the second group stems from the fact the prior
assumption for Gaussian process is not satisfied. For the first case, the difference between g and g already
exists in the stochastic estimator of Igc (x;). The stochastic indicator takes the value of 1 or 0 according to

the probability that the sample is classified as failure or safe. The Confidence interval are derived in our
manuscript based on the first case. For the second group of uncertainty that is related the GP uncertainty, it
is not investigated in this manuscript. This GP uncertainty commonly exists in many Kriging-based
reliability analysis algorithm.

3.2 CI for 131;6 considering Kriging correlation

The ClI derived above is based on the assumption that responses from the Kriging model follow independent
normal distributions. However, these responses follow a multivariate normal distribution, as stated in

Section 2.1. Let U¢denote Z?’z"fs I g “(x),x; € S, where Igc(xi) are mutually correlated indicators in this
subsection. The covariance matrix in Eq. (6) for the responses of the Kriging model can be represented as:
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Y. = 221 2y = 05(962) Z2Nucs |’ (34)

| :
I. ZNMcsrl ZNMCSrZ ZNMcs,NMcs = 0_5 (xNMcs)J

where x; is a candidate sample from S = [xq, X5, ..., Xy,, ] Whose true value of the performance function
is not known, ¢ (x;) is the variance defined in Eq. (10), and pi,j is the correlation coefficient between any
two Kriging responses, §(x;) and g (xj). According to the definition of Pearson’s correlation coefficient
and Eq. (34), the correlation p; ; between §(x;) and § (xj) can be calculated as follows:
P 1Y (35)
7 0(x)s(x))

It should be noted that the true correlation form between g(x;) and § (xj) can have a nonlinear form. Here,
the use of Pearson’s correlation model have an underlying assumption that this form is linear. While as later
presented, this approach provides satisfactory results, further investigations are needed to examine this
assumption. Moreover, let Pf}- denote the probability that two correlated Bernoulli random variables
Igc (x;) and Igc(xj) are both estimated as failure(i.e., Igc (x)=1 andlgc (xj) = 1). Subsequently, Pfj
can be calculated as:

0 0
ph= [ [ (el zg)axay, 36)
where 1; j(x,y) is the PDF of the multivariate normal distribution with mean pg = [ug(x;) pg (xj)] and
2
o5 (x;) 105 (x)og(x;
the covariance matrix L5 = [ g PLi% ) l g( ]) in Eq. (6). The covariance between two
pi,j05 (x:)og(%;) a5 (%)

correlated Bernoulli random variables can be represented as:
cov (Igc(xi)' Igc(xj)) = Pfj “0p (%) - 0p (xj), (37)

where pf ; € [-1,1] is the unknown correlation coefficient of two correlated Bernoulli distributions, I, (x;)

and I, (xj). 0, (x;) and gy, (xj) are the standard deviations (g3, (x;) = \/yb (xl-)(l — Up (xl-))). When pfj =

0, it means that the failure probabilities of two points, x; and x;, are uncorrelated, which can further infer
that p; ; = 0 (i.e. P = P(§(x;) < 0,g(x;) < 0) = P(§(x;) < 0)- P(g(x;) <0)). When p?; = 1 or —
1, it means that the two responses are positively or negatively, linearly correlated. It also means that p; ; =
1 or — 1. Because the correlated Bernoulli distribution in Eq. (36) is actually a linear integration form of
bivariate normal distribution, the covariance matrix for the points with Bernoulli distributions can be
expressed as:
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|[ op%(x1) P1,20p (x1) 0 (x2) P15 (X105 (X es) |
- | P2,10p(X2)0p (x1) 0% (%2) P2.Nues b (X2) 0 (XN, cs) (38)
lPNMCS,lab(xNMCS)Ub(xl) PNMCS,ZUb(xNMCS)Ub(xz) sz(xNMCS) J
where ,%2(x;) is the Bernoulli variance, and can be calculated as:
—pg (x;) g (x:)
o2 (x; =<Dg—>-d><g ,X; € S. 39
v ) <%7(xi) ag(x))" " (39)

Construction of the correlation coefficient for every pair of points in S is computationally highly demanding.
Therefore, the strategy in [48] for points satisfying U(x;) < 2 can be applied here. Thus, the covariance
corresponding to U(x;) < 2 can be represented as:

zuSZ
pb
[ sz(x%sz) P1,20p (x1152)0b (xgsz) P1,N,Ob (xlfsz)ab (xlzﬁiz)]l
— P2,10p (x%sz)gb (x11152) sz(x%sz) P2,n, Op (x%sz)Ub (x}\‘;izz) (40)
. . . 4
PNy 105 (XN52, )0 (D) Py, 200 (XKE2, )0 (A552) oo ap?(%:2,)

where x¥=? is a point in Sy <, with size N,,<,, which is defined as:
Su<z = lall x; satisfing U(x}') < 2| x;€S]. (41)

Earlier, it was shown that the summation of uncorrelated Bernoulli random variables follow a PBD.
However, as the number of candidate design samples is very large, the Central Limit theorem for dependent
random variables is applicable here [58]. Thus, U¢ can be approximated as a normal distribution when
Nycs = . Thus, the distribution of U¢ can be represented as:

Ue~N (pye, o), (42)
Nmcs
e
Uye = Z ¢<L ,xiE S, (43)
L o5(x;)
=1
Npmcs Nmcs Ny<2 Ny<2 Ny>2 Ny>2 Ny<2 Ny<2
2 _ U2 uU>2 o us<2
i=1 j=1 i=1 j=1 i=1 j=1 i=1 j=1

where Z'pbl_]_ are the elements of the covariance matrix, X5, in Eq. (38), Ny<, and Ny, are sizes of Sy <,

and Sy~ and ng,izj are the elements of the reduced covariance matrix, ng,z, in Eq. (40). Based on the
properties of the normal distribution, the CI of U can be calculated as:

U € [uye — Yeiou, Huc + Veiouel, (45)
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where y.; = 1.96 in this paper, which corresponds to @ = 0.05. However, for small values of Ny;-¢ CLT
may not guarantee appropriate bounds. To address this issue, the CI of U¢ can be estimated through
simulations. First, we generate a group of samples (e.g. 10%) as follows:

311 Brllt
T = : : (46)
Blmt B:Zf

where n; is the ny, Bernoulli random variable and m, is the m;;, group of simulated samples. Summing up
all the rows, one can get:

Bl + B} -+ By,

Tsum -

: (47)
B + B} -+ Byt

Teum is the stochastic realization of U¢, which can be used to estimate the CI of U¢ numerically. The CI of
f}pc considering Kriging correlation can therefore be estimated as:

pPe € Hye — Veioue  Hye T Vcioye
f

)

], a = 0.05, y,; = 1.96. (48)

NMCS NMCS

Compared to the CI of 13pr in Eq. (20), which is derived from Chebyshev’s inequality, the CI in Eq. (48) is
more precise. In the next section, the performance of the proposed Cls for 13pr is investigated.

4. Numerical Investigations
In this section, the performance of proposed Cls are investigated for five numerical examples. In this paper,

the proposed Cls are compared with the P}”CS and not the true failure probability Pr. This is because the

true failure probability Py is not available prior to implementing any reliability analysis method. This
approach is acceptable since the coefficient of variation of the failure probability estimate based on Monte
Carlo simulation is set to be small; therefore, it is expected that P}"CS will be close to P¢. Note that the level
of probability of failure determines the number of candidate design samples according to Eq.(13) and (17).
For example, Ny;cs needs to be as large as 4 x 10° for ﬁ}ﬁic =10"*and C OVﬁ}gc = 0.05. Therefore, the

size of associated covariance matrix defined in Eq.(38) is as large as 4 X 10° by 4 x 10°, which may cause
computation burden for computers. Considering our purpose is to compare the Confidence Intervals with
and without considering Kriging correlation, Chebyshev’s inequality by Wang et al [48], cases with
probability of failure below 10™# are not explored due to aforementioned computational limitations. To
ensure that the application of the CLT is appropriate, the number of candidate design samples, Ny s, should
be sufficiently large and a reasonable threshold for Ny ¢ is necessary. According to our numerical
investigations, Ny,cs = 10* is sufficient for the application of CLT in the derivation of CI for ISpr. The

number of initial training points is set as three times of the number of random variables for all examples.
Moreover, Latin Hypercube Sampling(LHS) strategy based on the X-space without normalization is applied
in these examples. For consistency, the set of candidate design samples, S, remains exactly the same
throughout the process of reliability analysis for all Cls for a given example. The EFF learning function is
applied for selection of best training points. This function is defined below [13], [59]:

-11-
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+20b(X)

(49)

where ¢(*) is the PDF and ®(+) is the CDF of the standard normal distribution. In this paper,a = 0, a®™ =
2045(x) and a™ = —204(x). The point that maximizes the EFF response is chosen as the next-best training
point. The number of calls to a performance function is denoted as N.,;;. Because this paper only
investigates the CI of 13pr, it is reasonable that the stopping criterion for Kriging refinement is chosen

as N qi1 = Ne¢pr- Thus, training point enrichment stops when it reaches a threshold number of evaluations
of the performance function. The steps of numerical investigation are elaborated in Algorithm 1.

Algorithm 1. Steps for numerical investigations

1.

2.
3.
4

Generating initial candidate design samples S with Latin Hypercube Sampling (LHS)
Randomly select initial training samples X, from S and evaluate their responses g(x,-)
Construct the Kriging model g(x) based on x;, and g(x;,)

Estimate the mean g (x), standard deviation ag(x), f}pc and it confidence interval for S
with §(x)

Search for the next best training points X3, using learning function and update the
training samples X,

Check if the stopping criterion N,4;; < Nipp- 1s satisfied or not:

(a). Satisfied. Go to step 7.

(b). Unsatisfied. Estimate the response g(x},.) for x7, and go back to Step 3.

Report AfMCS and its confidence interval.

4.1 Two dimensional problems
This non-linear four-branch series system problem has been investigated in many studies [12], [24], [48].
In this problem, random variables all follow mutually independent standard normal distributions as
described in Table 1. The performance function, g(x), is given as:

( (xq + x3)
34 0.1(x; —xp)? — 122
( 1 2) Vﬁz
34+0.1(x; —x3)% + @
g(x1,%x3) = min < 2
(x _x2)+i
! V2
6
X1 —x) +—=
( 1 2) Vﬁz

Table 1. Random variables in example 4.1.

Random variable Distribution = Mean Standard deviation
X1, Xy Normal 0 1

-12-
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The number of candidate design samples for Kriging Monte Carlo simulations is chosen as Ny cs =
1 x 105, in order to satisty COVp ;< 0.05 as suggested in [12]. In this example, the threshold number for
the stopping criterion is set to Nyp, = 70, such that Isfpc = P when N,gq; is close to Ngpy. The initial
training samples are illustrated in Fig. 1(a), where x;,, means the initial training samples. The 95% ClIs of
13pr without considering Kriging correlation is shown in Fig. 1(b), whereas the comparison between the 95%

CI using Chebyshev’s inequality proposed by Wang et al. [48] and the CI considering Kriging correlation
is shown in Fig. 1(c). Additionally, to clearly explore the performance of the proposed approaches, the true

absolute difference between 13fpc and P is investigated:

e = |Pes — PP, (51)

Different from the work in [48], which directly uses mecs = 4.5 x 1073 from the literature, P}W €S here is
computed based on the current set S, because Pf"* can be different for different simulations. In this
example, P"“ = 4.60 X 1073 for the generated set, S, in this simulation. Note that S for both P*“and
13pr are exactly the same. The estimated bounds of error, €, versus N_,;;, for the three different approaches,
are illustrated in Fig. 1(d). Fig. 1(e) records the coefficient of variant of Isfpc for both cases with and without

considering Kriging correlation:

oy/Nucs _ 9y Oyc
u/Nucs Mo Uye

C.0.Vppe = (52)
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Fig. 1. Reliability analysis results for Example 1 including (a) Illustration of initial training samples (b)
ﬁf and the CI without Kriging correlation vs N.q;;, (€) 13f and the CI with Kriging correlation vs N_g4;;,
and (d) € vs N,4;; () Curves of C. O. Vﬁ}ac

According to Fig. 1(b), the CI without considering Kriging correlation tends to be accurate when N_4;; >
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40. However, it performs poorly at the early stage when N,;;; < 40. On the other hand, in Fig. 1(c), both
the CIs by Chebyshev’s inequality [48] and the proposed CI considering Kriging correlation perform well.
This trend is also reflected clearly in Fig. 1(d). Nevertheless, the one estimated by considering Kriging
correlation offers a narrower band than the one estimated by Chebyshev’s inequality. Because the CI
estimated by Wang et al. [48] is based on the Chebyshev’s inequality, as stated in Eq. (20), it assumes that
the distribution of U is unknown. However, the distribution of U or U€ as proved in this paper is a PBD.
This finding was subsequently used in the derivation of the proposed Cls with and without considering
Kriging correlation. Moreover, according to Fig. 1(d), one can infer that error é, estimated without
considering Kriging correlation, is smaller than the true error, €, at the early stage (e.g. N.q;; < 40).
However, it is close to the € estimated considering Kriging correlation in the later stage (e.g. N g1 = 40).
This trend is because of the contribution of the off-diagonal elements of X,,;, in Eq. (38). At the early stages,
this contribution is significant resulting in a significantly smaller aﬁc for the uncorrelated PBD compared
to the case considering Kriging correlation. Therefore, the CI without considering Kriging correlation tends
to be considerably narrower than the CI considering Kriging correlation. As more training points are added
into the construction of the Kriging model, 13pr gradually converges to P}"CS , and the off-diagonal elements
in Eq. (38) become negligible. This is reflected in the phenomenon where the CI without considering
Kriging correlation performs close to CI considering Kriging correlation for larger number of training
points. Hence, the CI considering Kriging correlation is recommended, because it offers accurate
confidence intervals over the entire range of training points for Kriging-based reliability analysis with
probabilistic classification. However, the estimates of CI considering Kriging correlation and Chebyshev’s
inequality are computationally demanding, owing to the large scale of the covariance matrix in Eq. (38).
Although the CI without considering Kriging correlation only performs well at post stage, the coefficient
of variation of ISprby this approach finally converges to the performance via the approach considering
Kriging correlation according to Fig. 1(e). This finding can draw the conclusion that the coefficients of
variation of 13pr with and without considering Kriging correlation asymptotically converge to the same

level of value as the training points increase.

8 mcs 7 9
g(z)=0 ‘ ‘ - e L

6| x x,
O Iy

—a—€ by Chebyshev’s inequality
—e— € without Kriging correlation
—— € with Kriging correlation

o
TS

Xs

-5 0 5 20 30 40 50 60 70

X; Nean
(a) (b)

Fig. 2. Analysis of the robustness of the proposed Cls to the arrangement of initial training samples: (a)
Ilustration of ill-conditioned initial training samples and (b) € vs N,;;

To investigate the robustness of the proposed Cls to the arrangement of initial training samples, we define
a set of ill-conditioned initial training samples as shown in Fig. 2(a). It can be observed that these samples
are clustered close to each other. The error estimates for confidence intervals are presented in Fig. 2(b).
Compared to the results in Fig. 1(d), which represents the case where initial training samples are generated
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following design of experiment methods, it is seen that artificially clustering initial training samples affects
the performance of the proposed Cls. Although this represents an extremely unlikely scenario for generation
of training samples, the proposed CI with Kriging correlations considered present a satisfactory
performance except for when N.;; = 48. Moreover, effects of active learning strategies on the
performance of the Cls is investigated in Fig. 3. For this purpose, as shown in Fig. 3(a), training samples
are randomly selected in the area [-4 4;-4 4] as compared to a strategic selection based on EFF learning
function. According to Fig. 3(b), the proposed CI that considers Kriging correlations exhibits a satisfactory
performance in the sense that it provides an upper bound for the true error. However, all CIs fail to show
convergence compared to the case that adopts the active learning function. This can be attributed to the fact
that random selection leads to training points that are not close to the limit state. As a result, it cannot reduce
the uncertainty of the Kriging model for failure probability estimation.

o ‘P;ncs _ P})C|

—a— CI by Chebyshev’'s inequality
—e— € without Kriging correlation
10~ ——¢€ with Kriging correlation

g(z) =10
6| x =z,

<w 10 X——/\W

X

N G\e/ B o= e St

/ J)}f
MR,

-6 [O—g ]
8 w ‘ ‘ 107
5 0 5 20 30 40 50 60 70
X Neair
(a) (b)

Fig. 3. Reliability analysis results for example 1 when training points are randomly selected: (a)
[lustration of initial training samples and (b) € vs N4,

4.2 Truss problems

4.2.1 Structural Roof Truss

The second example is a structural truss problem shown in Fig. 4 with six normal random variables [60],
[61]. In this example, the maximum vertical displacement at the centre of the structure is selected as the
critical response to consider in the limit state function as follows:

12 /3.81 1.13
a ( ) (53)

G(q,1, A, E, Ag E5) = 0.03 ——
(q c c S S) 2 ACEC+ASES

where q is uniformly distributed loading, [ is the horizontal length of the roof truss, A, and A are the cross-
section areas, and E, and E are the Young’s modulus of the steel and concrete beams, respectively. The
probabilistic information of the six random variables are shown in Table 2. The number of candidate design
samples for Kriging-based MCS is 5 X 104, and the P is estimated as 9.6 X 1073, which means that

the coefficient of variation satisfies COVp ;< 0.05. The threshold number for the stopping criterion for

refining the Kriging model is set as Ny, = 90. Three Cls determined using the three approaches discussed
carlier are illustrated in Fig. 5.
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Table 2. Random variables of example 4.2.1.

Random variable Unit Mean C.0.V (%)
q (N/m) 2 x 10* 7
l (m) 12 1
A, (m?) 4 %1072 12
E, (N/m?) 2 x 1010 6
Ag (m?) 9.82 x 10~ 6
E, (N/m?) 1x 101 6

N

0.2781 0.2221 0.251 0.251
Fig. 4. Example 4.2.1, The roof truss in [23].

According to Fig. 5(a), the CI without considering Kriging correlation fails to cover the true failure

probability, Pf"*“*, at the early stage (e.g. Noqu < 70). However, it works well at the later stage (e.g. Neqy =

70). The reason behind this phenomenon has been explained in example 4.1. In Figs. 5(b) and 5(c), both
ClIs estimated with Kriging correlation and by Chebyshev’s inequality [48] perform well. However, the
correlated PBD-based CI offers a narrower bound and closer to the true error, €, compared to the approach
via Chebyshev’s inequality [48]. As shown in Fig. 5(d), the coefficients of variation of 13pr estimated

through the proposed two approaches gradually converge to 10~3. However, C. O. Vﬁ}w considering the
Kriging correlation keeps decreasing while C. O. Vﬁ}oc without considering Kriging correlation does not

change too much after 1073,
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Fig. 5. Reliability analysis results for Example 4.2.1 including: (a) ﬁf vs N_qy; without considering
Kriging correlation (b) 13f vs N_q1; considering Kriging correlation (c) € vs N.q;; (d) Curves of C. 0. Vp}ac

4.2.2 Modified Truss Structure
In the fourth example, a 23-bar truss with 10 input random variables is investigated [15], [48]. In this truss,
as shown in Fig. 6, 11 bars are horizontal and 12 are diagonal. The performance function is defined as:

g(x) = 0.14 — |dis(x)|, (54)

where dis(x) is the vertical displacement of the truss at point E. The truss is subject to six vertical loadings,
P; to P, which follow Gumbel distributions. A; and A, are the cross-section areas and E; and E, are the
Young’s modulus of the horizontal and diagonal bars, respectively. The 10 mutually independent random
variables are described in Table 3. For this high dimensional example, Nycs = 5 x 10*, and P/*** =

9.10 x 1073, such that COV, ;< 0.05. Moreover, N¢p, = 100. The simulation results are presented in Fig.
7.
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4 Table 3. Random variables in example 4.2.2.
Random variable  Distribution Mean Standard deviation
P, — Pg Gumbel 6.5 x 10* 6.5 x 103
Ay Lognormal 2 x 1073 2x107%
A, Lognormal 1 x 1073 1x107*
E; Lognormal 2.1 x 10! 2.1 x 101°
E, Lognormal 2.1 x 101! 2.1 x 1010
5
107
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6 Fig. 7. Reliability analysis results for Example 4.2.2 including: (a) P vs N4y without considering
7

Kriging correlation (b) ﬁf vs N1 considering Kriging correlation (¢) € vs N,4;; (d) Curves of C. 0. Vp}:c
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In Fig. 7, the CI of 15pr without considering Kriging correlation exhibits poor performance, while the CI

considering Kriging correlation works well for all stages of the adaptive Kriging-based reliability analysis.
Moreover, the CI considering Kriging correlation is tighter than the CI by Chebyshev’s inequality [48], as
shown in Figs. 7(b) and 7(c). According to Fig. 7(d), the C. O. Vﬁ}oc estimated via proposed two approaches

show the same convergence direction.

4.3 Non-linear oscillator

4.3.1 One-degree-of-freedom oscillator

This example investigated in this section is a mechanical non-linear oscillator with six random variables,
as illustrated in Fig. 8 [12], [48]. For this non-linear problem, the performance function is defined as:

2F; . (woty
g(klr kZIml r, tlr Fl) =3r— 2 Sln( 2 ) ) (55)
mawg

where wy = is the system frequency. The probabilistic information of the six input random

variables are summarized in Table 4. In this example, Nycs = 7 X 10* and P is estimated as
2.89 X 1072 with COVp ;< 0.05. Moreover, Ny, = 76. The Cls estimated with/without considering
Kriging correlation and via Chebyshev’s inequality [48], are all presented in Fig. 9.

%;Z o E(t)

ke, F
F(t)
k, m e

ty t

Fig. 8 Example 4.3.1, A two-degree-of-freedom

As illustrated in Figs. 9(a) and 9(c), the CI estimated without considering Kriging correlation works well
when N.,;; > 65. Moreover, while both the Cls through considering Kriging correlation and Chebyshev’s
inequality are accurate, the former approach yields a tighter bound. This trend is also observed in Fig. 9(c).
Generally, CI estimated without considering Kriging correlation is efficient for implementation, but is
inaccurate at early stages. However, the CI estimated with Kriging correlation is accurate in all stages, but
remains computationally demanding. Moreover, the C. O.Vﬁ}ac estimated via proposed two approaches

converges to the same value as shown in Fig. 9(d).

Table 4. Random variables in example 4.3.1.
Random variable  Distribution type  Mean  Standard Deviation

m Normal 1 0.05
ky Normal 1 0.1
k, Normal 0.1 0.01
r Normal 0.5 0.05
F; Normal 1 0.2
t Normal 1 0.2
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Fig. 9. Reliability analysis results for Example 4.3.1 including: (a) Pf vs N,y without considering
Kriging correlation (b) ﬁf vs N1 considering Kriging correlation (¢) € vs N,4;; (d) Curves of C. 0. Vp}:c

4.3.2 Two-degree-of-freedom oscillator

To explore the performance of the proposed Cls for a non-linear case, we investigate a two-degree-of-
freedom primary-secondary damped oscillator as shown in Fig. 10. This example was originally used in the
report by Der Kiureghian and De Stefano [8], and was further explored by Bourinet et al [62], Dubourg et
al [23], [63], and Hu and Mahadevan [64]. Let m,, and mg, k,, and ks, w, = \/k,/m, and ws = [ kg/mg,
and &, and &g denote the primary and secondary masses, spring stiffness, natural frequencies and damping
ratios of the oscillator system, respectively. Here, p and s denote the primary and secondary oscillator,
respectively. Thus, the mean-square relative displacement of the secondary spring under a white noise base
acceleration S can be computed as:

SO fafs (fpwg + fsws)wp
4&sw3 §,8,(482 + 02) + yEZ 4¢wg

Ejx?]=m (56)
where S is the intensity of the white noise, y = mg/m,,, w, = (a)p + a)s)/Z, o = (Ep + fs)/Z and 0 =
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(wp — ws) /w, is the tuning parameter. For this example, the limit state function is defined as:

9(X) = F; —pe ks /Es[xsz], (57)
Xy X
— - S(1)

m m
2 {_| s

b | — L

Fig. 10. Example 4.3.2, a two-degree-of —freedom oscillator under a white-noise base acceleration

Table 5. Random variables in example 4.3.2.
Random variable  Distribution type  Mean  Standard Deviation

my Lognormal 1.5 0.15
mg Lognormal 0.01 0.001
k, Lognormal 1 0.2
kg Lognormal 0.01 0.002
$p Lognormal 0.05 0.02
& Lognormal 0.02 0.01
F; Lognormal 15 1.5
So Lognormal 100 10

where pe denotes the peak factor set and is equal to 3 in this example. The eight mutually independent
random variables are summarized in Table 5. In this example, Nycs = 1 X 10° and me“ is estimated as

4.80 X 1073 with C OVﬁ}ac < 0.05. Moreover, Ny, = 1000. The proposed Cls estimated with and without
considering Kriging correlation and that via Chebyshev’s inequality [48] are all presented in Fig. 11.
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Fig. 11. Reliability analysis results for Example 4.3.2 including: (a) ﬁf and the CI without Kriging
correlation vs N_;;, (b) ﬁf and the CI with Kriging correlation vs N4, (¢) € vs N¢qy;, and (d)
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According to the plots in Figs. 11(a) and (c), the CI estimated without considering Kriging correlation
works well when N_;; > 630. On the other hand, the Cls that consider Kriging correlation and
Chebyshev’s inequality are accurate for N,,;; larger than 240. Fig. 11(d) illustrates a similar convergence
pattern of the coefficient of variation of I3fpcfor different correlation considerations.
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Fig. 12. Analysis of the robustness of the proposed Cls to the arrangement of initial training samples for
example 4.3.2: (a) Pf and the CI with Kriging correlation vs N4, (b) € vs N i1

To investigate the robustness of the proposed ClIs to the arrangement of initial training samples, we define
a set of ill-conditioned initial training samples. Results of corresponding analyses are summarized in Fig.
12. Compared to the results in Fig. 11(c), the error estassimate considering Kriging correlation presented
in Fig. 12(b) tends to be accurate for N.4; = 630. It can be inferred that the initial design of training
samples affects the performance of the proposed confidence intervals. However, they become more accurate
as the number of training samples increases. Therefore, a strategy for the initial design of experiments is
necessary and should be appropriately defined.

5. Conclusion

This paper proposes a novel approach to derive confidence intervals (Cls) for failure probability estimates
in adaptive Kriging-based reliability analysis methods. The approach builds on the fact that the summation
of probabilistic classification-based indicator follows a Bernoulli distribution, which is subsequently
leveraged to derive the CI for failure probability estimates. Two variants of Cls are developed in this paper,
where one approach disregards Kriging correlation for candidate design samples, and the other approach
takes into account such correlations. Both the two proposed Cls are investigated for four groups of
numerical example. Results show that the CI considering Kriging correlation offers more accurate bounds
for failure probability estimates compared to the uncorrelated CI model. It is also demonstrated that the
proposed CI considering Kriging correlation outperforms the existing approach that relies on Chebyshev’s
inequality. While the CI without considering Kriging correlation is primarily accurate at later stages of
adaptive reliability analysis, it is computationally efficient compared to other techniques. The proposed Cls
can be leveraged to derive efficient stopping criteria, optimal learning strategies and efficient solutions for
high-dimensional problems.

It should be noted that the performance of the proposed Cls can be partially affected by the initial design
of experiments. Specifically, if the initial training samples are properly generated e.g. via Latin Hypercube
Sampling (LHS), the estimated CI will be appropriate. However, clustered initial samples may lead to
inaccurate Cls. Such ill-conditioned initial samples fail to capture the global responses of the performance
function and can lead to fast convergence in local regions. Therefore, the appropriate generation of initial
training samples is necessary for estimating proper confidence intervals. Moreover, the proposed Cls
considering Kriging correlation are computationally demanding. There is no concern for computational
intractability for the uncertainty indicator without Kriging correlation, since it relies on computationally
simple operations. However, the uncertainty indicator with Kriging correlation needs to compute a very
large covariance matrix. The size of this matrix is associated with the number of candidate design samples.
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As N,y increases, it becomes increasingly demanding to generate the covariance matrix. Due to this
computational challenge, numerical examples investigated in this paper have probabilities of failure larger
than 10~*. Although investigating techniques for the computation of large covariance matrices is out of the
scope of this paper, it is an important topic to pursue in future studies.
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