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ABSTRACT

Bayesian updating offers a powerful tool for probabilistic calibration and uncertainty quantification of
models as new observations become available. By reformulating Bayesian updating into a reliability
problem via introducing an auxiliary random variable, the state-of-the-art Bayesian updating with structural
reliability method (BUS) has showcased large potential to achieve higher accuracy and efficiency compared
with conventional approaches based on Markov Chain Monte Carlo simulations. However, BUS faces a
number of limitations. The transformed reliability problem often involves a very rare event especially when
the number of observations increases. This along with the fact that conventional reliability analysis
techniques are not efficient, and often not capable of accurately estimating the probability of rare events,
unavoidably lead to a very large number of evaluations of the likelihood function and simultaneously
insufficient accuracy of the derived posterior distributions. To overcome these limitations, we propose
Simple Rejection Sampling with Multiple Auxiliary Random Variables (SRS-MARYV), where the limit state
function in BUS is decomposed into a system reliability problem with multiple limit state functions. The
main advantage of this approach is that the acceptance rate of each decomposed limit state function is
significantly improved, which facilitates effective integration of adaptive Kriging-based reliability analysis
into SRS-MARV. Moreover, a new stopping criterion is proposed for efficient, adaptive training of the
Kriging model. The proposed method called BUAK is shown to be highly computationally efficient and
accurate based on results of comprehensive investigations for three diverse benchmark problems. Compared
to the state-of-the-art methods, BUAK substantially reduces the computational demand by one to three
orders of magnitude, therefore, facilitating the application of Bayesian updating to computationally very
intensive models.
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1. Introduction

Recent advancements in inspection and monitoring techniques for various applications such as structural
and infrastructure systems offer unprecedented capabilities to improve design, planning and management
of these systems. Information obtained via such observations can be leveraged to update probabilistic or
stochastic representations of uncertainties in models to better support risk-informed decision-making. Up-
to-date information on responses and features including, for example, system capacities, structural
deformations, system dynamic features and deteriorations assist in comprehensively perceiving the
probabilistic information of system variables. A well-established method for this purpose is Bayesian
updating that derives the posterior probabilistic information from the often empirically defined prior
statistical assumptions and new observations.

In the past, the posterior distribution has commonly been estimated through the implementation of
Markov chain Monte Carlo (MCMC) simulation [1]. Some other approximation-based approaches such as
Laplace approximation method [2] have also shown good performance in terms of computational efficiency.
However, they may yield inaccurate results especially when the number of random variables or the
complexity of the posterior density increase [3]. In the MCMC-based Bayesian updating approach, random
realizations are generated by the proposal function, whose mean value changes in relation to the last
accepted realization. The samples generated by the proposal function are then compared with a random
value drawn from the standard uniform distribution to determine whether those points should be accepted
or rejected. It has been shown that the probability density of the accumulated accepted points converges to
the posterior density. However, lack of guarantee to converge to a stationary state corresponding to Markov
chain is the major limitation of the MCMC-based Bayesian updating method [3]-[5]. To address this
limitation, the transitional Markov chain Monte Carlo simulation (TMCMC) has been proposed by Ching
et al. [6], which attempts to adaptively sample from a series of intermediate probability distributions and
transitionally converge to the target posterior probability distribution. Although, the TMCMC-based
Bayesian updating method improves the performance by avoiding the burn-in phenomena in the
conventional approach, the gained efficiency is not significant when the dimension of the variable space
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increases [3], [7]. As an alternative, Straub and Papaioannou [4] proposed a new method called Bayesian
Updating with Structural reliability methods (BUS). The primary idea behind BUS is reformulating
Bayesian updating problems into structural reliability problems. By introducing an auxiliary standard
uniform random variable P, the Bayesian updating problem with simple rejection sampling strategy targets
realizations that satisfy the limit state equation: p < cL(x), where c is a constant ensuring the maxima of
cL(x) is smaller than one. Based on this formulation, the problem of Bayesian updating is transformed into
a structural reliability problem with corresponding random variables [X, P] with the aim changed to finding
the failure points. By avoiding the process for ensuring the stationarity of Markov Chain in MCMC, BUS
applies the subset simulation technique [8], [9] to focus on the accepted domain regardless of the dimension
of random variables. This method adaptively approaches the failure domain through sequentially sampling
a series of nested intermediate domains until the target number of samples for deriving posterior
distributions are obtained. BUS has shown great efficiency in estimating posterior distributions using subset
simulation techniques [10]-{12].

However, the process of estimating the posterior distribution through BUS with subset simulation is
computationally expensive, especially when the likelihood functions become very complex e.g. when they
involve time-consuming computational models [3], [S]. This is in part due to the use of subset simulation
method for solving the structural reliability problem in BUS, which requires a large number of evaluations
of the performance function. Second, as the shape of the limit state function for BUS in the standard normal
space is typically highly nonlinear, methods such as First and Second Order Reliability Methods (FORM
& SORM) may become very inaccurate. This challenge is compounded as the number of observations
increases. The resulting high computational demand can be overcome through the application of surrogate
model-based reliability analysis methods. The surrogate models can include Response Surface [12]-[14],
artificial neural networks [3], Polynomial Chaos Expansion [15], Support Vector Regression [16], [17], and
Kriging [18]-[21]. Among these methods, adaptive Kriging-based reliability analysis methods have been
shown to be one of the most accurate and efficient methods in solving reliability problems [18], [22]-[24],

and therefore have gained significant attention in recent years [25], [26]. However, the failure probability
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associated with the acceptance ratio in BUS is significantly small and can reach 107 or even smaller as
the number of observations increases. Such levels of failure probability are quite challenging to estimate
for reliability analysis techniques using limited number of function evaluations. To apply adaptive Kriging-
based reliability analysis methods here, the number of candidate design samples should be extremely large
to ensure a well-trained Kriging surrogate model [18] that can yield accurate estimates of these very small
failure probabilities. In such a circumstance, the implementation of adaptive Kriging-based reliability
analysis methods in conjunction with BUS becomes extremely computationally inefficient, if not infeasible.

In this paper, we propose a method called Bayesian Updating using Adaptive Kriging (BUAK) to
address the above issues. In BUAK, the component structural reliability analysis problem in BUS is
transformed to a system reliability analysis problem, which facilitates the implementing of adaptive
Kriging-based reliability analysis methods. Unlike the approach in BUS that uses only one auxiliary
standard uniform random variable, we introduce multiple auxiliary standard uniform random variables to
decompose the component structural reliability problem in BUS into a parallel system reliability problem
with multiple limit state functions. This approach yields the same outcome in terms of the probability of
failure corresponding to the acceptance ratio as the one in BUS, however, each component limit state
function in BUAK does no longer correspond to a rare event. This development means that the
corresponding limit state functions can be efficiently substituted by Kriging surrogate models through the
adaptive Kriging-based structural reliability analysis methods. Therefore, the number of evaluations of the
likelihood function significantly reduces, while the posterior probability distributions are estimated
accurately. Eventually, with the well-trained Kriging surrogate model, samples with posterior distribution
can be generated unlimitedly, as this process will no longer rely on the computationally expensive
likelihood function.

In the rest of this paper, Bayesian updating and BUS method are briefly introduced in Section 2.
Methods derived based on system reliability analysis and their integration into Bayesian updating
framework are represented in Section 3. Section 4 presents the Bayesian updating method based on adaptive

Kriging, which is referred to as BUAK. Three numerical examples selected from literature are used to
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analyze the performance of BUAK in Section 5. Conclusions are drawn in Section 6.

2. Bayesian Updating

Due to technical difficulties or high costs associated with direct observations of some of key properties of
natural or built systems, their status is often inferred by taking reference to observations of other auxiliary
variables that are easy to measure. For instance, natural frequencies of a building can implicitly reflect its
inter-story stiffness [4], and such frequencies can be derived from ambient vibrations measured via cheap
accelerometers. Generally, as the number of observations increases, the uncertainties of those parameters
decreases. Bayesian updating facilitates the uncertainty reduction using the likelihood of observed
properties and assuming a reasonable prior probability distribution for unknown parameters (i.e., inter-story
stiffness in the building example) denoted as f(x) based on empirical knowledge, and then estimating the
posterior probability distribution denoted as f'(x). f'(x) can be estimated by the Bayes’ theorem:

el E)
[, LOOf@)dx

(1)

where £ is the probabilistic domain of random variable x and L(x) is the so-called likelihood function,
which is proportional to the conditional probability of observations given a parameter state, and can be
expressed as:

L(x) < Pr(Z|X = x) (2)
In estimating f”'(x) through MCMC, the denominator | , L(x)f(x)dx in Eq. (1) can be ignored since it is
only a normalizing constant ensuring that f'(x) integrates to one. Typically, the likelihood function L (x)
is composed of three parts: observations Z, responses from the model s(x) and error € that represents the
deviation of s(x) from Z. Because of measuring and modeling errors, observations Z can not perfectly

reflect s(x). The associated error can be represented as follows:

e=Z—s(x) 3)
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Note that the error in Eq.(3) is often defined through a multiplicative error term, especially when the error
stems from the modeling uncertainty as suggested in [4]. Generally L(x) can be estimated through the
probability density function (PDF) of the error € as:

L(x) = pe(e) = pe(Z — s(x)) (4)
where p,(+) denotes the PDF of €. Although the type of the PDF of L(x) is commonly considered to be
multivariate Gaussian distribution with zero mean, it can be any other unbiased distribution. When m

mutually independent observations are available, the likelihood function in Eq. (4) can be presented as:

1@ = [ [ue =] [ea(z - s@) (5)
i=1 i=1

In this article, the likelihood function is denoted as L(x) for both independent and dependent observations.
2.1 Simple Rejection Sampling (SRS)
The idea of transforming Bayesian updating problems into structural reliability problems according to the
simple rejection algorithm was initially proposed by Straub and Papaioannou [4]. It is known that the goal
of Bayesian updating is to estimate the posterior distribution f'(x), which is proportional to the product of
the likelihood L(x) and prior distribution f(x):
f(x) < L(x)f (%) (6)

For the estimation of f'(x), the use of the conventional MCMC approach, which requires ensuring the
stability of the Markov Chain, is not computationally efficient. Simple rejection sampling algorithm can be
applied here to overcome this limitation. First, the accepted domain Q.. can be defined corresponding to
the augmented outcome space [x, p] with an auxiliary random variable P expressed as:

Qace = [p < cL(®)] = [h(x,p) < 0] (7)
where h(x,p) = p —cL(x) and c is a constant satisfying cL(x) < 1 for all the outcomes from X.

Therefore, ¢ can be defined as:

1

TECE) v
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The strategy of defining ¢ in Eq.(8) is in fact the optimal one among all the feasible definitions. However,
it is not the only one and any definition that satisfies cL(x) < 1 is applicable. Larger ¢ leads to higher
acceptance rate [4]. Moreover, an adaptive approach to search for c is available in [5] and a method that
corrects the samples for the case where cL(x) < 1 is discussed in [27]. In this research, the strategy in
Eq.(8) is adopted. Subsequently, the posterior distribution f'(x) can be formulated as:

Jpeag S [119([x,p] € Qacc) f(X)dp
Sieplean, f@dpdx i [ 19¢(1x,p] € Qoce)f () dpex

f'x) = 9)

where 1%°¢([x, p] € Qqcc) is the indicator function corresponding to the structural reliability problem with
the limit state function h(x,p) = p — cL(x). The numerator and denominator in Eq. (9) can be easily

extended as:

cL(x)

1
f 1€ ([x, p] € Qaee)f (X)dp = f FG)dp = cLF (®) (10)
0

0

and
Jx Iy 1%°¢([%,P] € Qqe)f(X)dpdx =
Je {Jy 1% (0 < cL(®))dp} f()dx = [, cL(x)f (x)dx (11)
Equations (10) and (11) are exactly the same as the numerator and denominator of Eq. (1), respectively.
Therefore, a simple rejection sampling algorithm is available according to [28], which is presented in
Algorithm 1. However, the simple rejection sampling algorithm faces the limitation that the acceptance rate

significantly decreases as the number of observations m increases. Straub and Papaioannou [4] showed that
the average acceptance rate is proportional to Lm, when all measurements are independent and identically
distributed (iid). This limitation makes the process of Bayesian updating computationally intractable since
very few accepted points can be generated to estimate the posterior distribution, while a very large number

of unnecessary points are generated. This issue becomes especially problematic when costly experimental

or computational models are involved.
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Algorithm 1. Simple Rejection Sampling
. i=1
2. Generate a sample x* from f(x)
3. Generate a sample p' from the standard uniform distribution [0.1]
4. If [x%, '] € Quee
(a). Accept x*
Md.i=i+1
5. Stopifi = Ng, else go to step 2

2.2 Bayesian Updating with Structural Reliability Methods (BUS)
Due to the inherent limitation of simple rejection sampling method with regard to its low acceptance rate,
the MCMC method was proposed for Bayesian updating. However, to ensure a stable Markov chain, the
MCMC-based Bayesian updating needs to investigate still a very large number of evaluations of the
likelihood function. On the other hand, although the acceptance rate of simple rejection sampling-based
Bayesian updating approach is low, it is very straightforward to implement and it can guarantee accurate
posterior distributed samples. To maintain those advantages of the simple rejection-based approach, Straub
and Papaioannou [4] proposed Bayesian Updating with Structural Reliability Methods (BUS) by
strategically integrating the simple rejection sampling approach with structural reliability analysis methods.
In BUS, the Bayesian updating problem is handled in a way that involves solving a reliability analysis
problem. The equivalent limit state function in BUS approach is defined as:
h(x,p) = p — cL(x) (12)
Note that the task of Bayesian updating is different from that in reliability analysis. In the process of
reliability analysis, the target is to estimate the probability of failure, while drawing samples in the accepted
(failure) domain is the main purpose of BUS. Concerning this point, many existing reliability analysis
methods such as First & Second Order Reliability Methods (FORM & SORM), Importance Sampling (IS)
and subset simulation (SS) should be adjusted to be applicable in association with BUS. For instance, the
combination of subset simulation and BUS has shown great efficiency in drawing samples from posterior
distributions. Details of BUS with subset simulation haven been shown in Algorithm 2. However, BUS

algorithm also faces a number of challenges. As noted earlier, the acceptance rate in simple rejection
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sampling approach tends to be extremely small when the number of observations increases. In this
circumstance, the estimation of posterior distributions is equivalent to the analysis of reliability of rare
events, which becomes rather computationally expensive for simulation-based approaches including subset
simulation. To elaborate this point, the number of subsets can be denoted as N, thus the total number of
evaluations of the likelihood function N,,;; can be determined as:

Neaip = Ngs * Ny + N — N (13)
where N;, is the number of samples in each intermediate subset, N; is the number of final samples and N
is the number of seeds in the final subset. As indicated in Eq.(13), the computational cost, N_;;, typically
increases linearly with —log(p,.) and this is due to the fact that Ny is proportional to —log(pgcc). Note
that N,4;; can easily reach thousands in BUS with subset simulation. Although this number is considerably
smaller compared to the crude Monte Carlo simulation or MCMC, it is still computationally very inefficient
for Bayesian updating for sophisticated computational models. Moreover, the limit state function h(x, p)
can be highly nonlinear since h(x,p) includes an integrated likelihood function L(x), which contains the
probability density function of Gaussian distribution. This may lead to inaccurate estimates of posterior
distributions if approximation-based approaches such as FORM & SORM are used.

Kriging-based reliability analysis methods are known for their capabilities in substituting the limit state
function through adaptive training of the surrogate models and thus reducing the number of evaluations of
the performance function [18]. However, it is computationally inefficient to directly implement this
approach in association with the limit state function in BUS (e.g. Eq. (12)). This is because with the increase
in the number of observations, the acceptance ratio becomes small, which requires the number of candidate
design samples to be extremely large. To address this challenge, we propose Simple Rejection Sampling
with Multiple Auxiliary Random Variables (SRS-MARV)), where the limit state function in Eq. (12) is
decomposed into a series-system reliability problem with multiple limit state functions. A framework is

subsequently proposed to integrate the Kriging-based reliability analysis method with SRS-MARV. The
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acceptance rate of each decomposed limit state function is relatively large, which enables the multiple

constructions of Kriging-based reliability analysis.

Algorithm 2. BUS with subset simulation

1. Define the parameters:
(a). Target number of samples N;
(b). Number of samples in each intermediate step N;;,
(c). Probability of intermediate subsets p,
(d). Constant c according to the Eq. (8)

2. Draw N, samples [xy, px], k = 1,2, ... Nj,, from the prior distribution [X, P]

3. Define the subset domain such that Q; = {h(x,p) < t;}, where t; is defined according to the p,

percentile of the responses of samples h(xy, px), k = 1,2, ... Ny,

4. i=1
5. Whilet; > 0:
(@.i=i+1

(b). Draw N;,, samples from the domain £;_; with MCMC technique
(c). Define the next subset ; = {h(x,p) < t;}, where t; is defined according to the p,
percentile of the responses of samples h(xy, p), k = 1,2, ... Nj;, in subset Q;_4
6. Define the last subset Q;,, = {h(x,p) < 0}, identify the number of samples N in ;,; and keep
these samples as seeds

7.  Draw N; samples in the subset Q;,; with those seeds in Step 6 using MCMC technique

Estimate the acceptance probability: pgee =~ p - (;}V—S)
mn

3. Adaptive Kriging-based Reliability Analysis
The primary objective of using adaptive Kriging-based reliability analysis here is to train a surrogate model
h(x,p) to substitute the computationally demanding limit state function h(x, p) in Eq. (12). Then, SRS can
be applied directly on the computationally efficient surrogate model. In this section, the elements of the
Kriging model and Kriging-based reliability analysis are briefly reviewed. Then challenges of
implementing adaptive Kriging-based reliability analysis methods are elaborated at the end of this section.
The Kriging surrogate model, also known as the Gaussian Process Regression, has been widely used in
computer-based experiment design [29]. In this model, the estimated responses follow a normal distribution

parametrized by the mean values and variances [29], [30]. An extensive review of the Kriging surrogate

model can be found in [18], [31]-[33]. In Kriging, the responses A(X) (X represents [X, P] in this section)

are defined as:

10
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h(X) = F(B,%) + ¥(x) = BTf(x) + Y (x) (14)
where X is the vector of random variables, F (8, x) are the regression elements, and y(x) is the Gaussian
process. In F(B,x), f(x) is the Kriging basis and B is the corresponding set of coefficients. There are
multiple formulations of BTf(x) including ordinary (B,), linear (,BO +¥N, ﬁixi), or quadratic
Bot N, Bixi 3N, Z?’:i Bijxix;), where N is the number of dimensions of x. In this paper, the ordinary
Kriging model is used. The Gaussian process 1(x) has a zero mean and a covariance matrix that can be
represented as:

cov (w(xi),w(xj)) = ¢2R(x; x;;0) (15)

where o2

is the process variance or the generalized mean square error (MSE) from the regression,
computational detail of ¢ is available in [34], x; and X;j are two observations, and R(xl-, Xj; 0) is known

as the kernel function representing the correlation between observations x; and x; parametrized by 6. The

correlation functions implemented in Kriging can include, among others, linear, exponential, Gaussian, and

Matérn functions. The Gaussian kernel function is used in this paper, which has the following form:

N
R(x,%;0) = | [ exp (—0*(xk - x)7) (16)
k=1

where x[ is the kth dimension of x; and @ is estimated via the Maximum Likelihood Estimation (MLE)
method [29]. It is shown that the variation of @ has significant impact on the performance of the Kriging
meta-model [22], [35], [36]. To maintain consistency, 6% is searched in Dy = (0,10). Here, MLE can be

represented as:

1
0 = argmin <|R(xi,xj; 0*)|ner 02> 17)
8°€Dg

where |R (xi, xj; 0)| denotes the determinant of R(xl-, Xj; 0), Ny is the number of training points and o2 is

the process variance defined in Eq.(15). Accordingly, the regression coefficient 8, and the predicted mean

and variance can be determined as follows [29]:
B= (FTR'F)"'FTR™ 'Y

11
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() = fTB +1"(OR ' (y — FB)
gR(x) = a*(1 = r"()R'r(x) + (F'R'r(x) — f)"(F'RT'F) (F'R'r(x) - f(x))) (18)
where F is the matrix of the basis function f(x) evaluated at the training points, i.e., F;; = f;(x;), i =
1,2,..,n;j = 1,2,...,p, r(x) is the correlation between known training points x; and an untried point x:
11 =R(x,x;,0),i=12..n4, and R is the autocorrelation matrix for known training points: R;; =
R(xl-,xj,B), i=12,..,n;j =12,..,ny . Therefore, the estimated Kriging mean puz(x) and

variance O'}% (x) can be presented as:

Rw) ~ N (1 (), 07 () (19)
It is obvious that the responses from the Kriging model A(x) are not deterministic but probabilistic in the
form of a normal distribution with mean uz(x) and variance 0}% (x).

Kriging-based reliability analysis method is summarized in Algorithm 3. Note that learning functions
have a crucial role in adaptive Kriging-based reliability analysis. As the name implies, the ‘learning’ refers
to the process of iterative selection of points for Kriging refinement based on the stochastic information for
each design point. A popular learning function is U, which is concerned with uncertainties in the sign (+)
estimation of H(x)=0. In this regard, U takes the probabilistic distribution of estimated responses into
consideration, and quantifies the probability of making a wrong sign estimation in fl(x). This learning

function is used in this paper. The formulation of U is [18]:

|z ()] (20)
op(x)

Ulx) =

In reliability analysis, the goal of learning function is often to identify points that have large variance and
close to the limit state A (x)=0. Training the Kriging model this way enables accurate estimation of the sign

of h(x) and therefore precise classification of accepted and rejected samples in Bayesian updating problems.

Algorithm 3. Adaptive Kriging-based Reliability Analysis
Draw Ny s candidate design samples x,, denoted as S, and initial training samples x;,- with Latin
Hypercube Sampling technique (LHS)

12
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2. Estimate the responses h(x;,) of x;, according to the performance function h
3. Construct the Kriging model h according to training points Xx;,

Estimate the up (x), aﬁz (x), U(x) and failure probability 13}” €S = NL based on S with MCS,
McCS

where ]Vf denotes the estimated number of failure samples
Check if min(U) = 2 is satisfied or not:
5 (a). Satisfied. Go to step 6.
(b). Unsatisfied. Find the next best training point x7,. = arg min U(x) and go back to Step 2.

X ES
Check if COVp . S COVy,, 1s satisfied or not:

6.  (a). Satisfied. Go to step 6.
(b). Unsatisfied. Update S by adding N, extra candidate design points and go back to Step 4.

7. Output pr cs

The general principle of adaptive Kriging-based reliability analysis methods is to start with a small
number of candidate design samples to estimate Pf and then adaptively refine the model representing the
limit state. To ensure that the number of candidate design samples Ny s is sufficient, coefficient of

variation of Pf should satisfy:

1-P
covs = |—ZL < covy, (21)
*Nucs

where Pf is the estimated failure probability and COVy,, is the threshold for stopping criterion in step 6,

which is recommended to be 0.05 [18]. It is obvious that Ny, s influences COVp £ which means that the

final Pf and the surrogate model for the limit state are reliable only when Ny,qs is large enough to satisfy
COVp, < COViyy-

A primary challenge in integrating adaptive Kriging-based reliability analysis with Bayesian updating
here is to guarantee that Ny, is sufficiently large when the number of observations in Eq. (5) increases.
The acceptance rate p,.. in Eq. (12) can be in the order of 1078 or even smaller because of multiple
observations. For example, to satisfy COVp . S COVy, in Eq. (21), Ny s should be even greater than
4 x 101, which is computationally intractable. To overcome this challenge, we propose decomposing the
limit state function A into multiple limit state functions h;,i = 1, ... n; with relatively large acceptance rates,

where n; is the number of decompositions of h. Then, n; Kriging surrogate models h;,i = 1,... n; are

13
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trained to substitute h;. Subsequently, the integration of SRS and adaptive Kriging-based reliability analysis
method can be conducted based on this strategy.

4. Bayesian Updating with System Reliability Analysis Methods

To draw samples based on the posterior distribution with minimum number of evaluations of the likelihood
function L(x), an innovative approach is proposed here that leverages merits of both simple rejection
sampling method and adaptive Kriging-based reliability analysis techniques. Inspired by the work in [4],
which transforms the Bayesian updating problem into an equivalent reliability analysis problem with an
auxiliary random variable, the proposed method transforms the problem into a series-system reliability
analysis with multiple limit state functions. The main advantage of this strategy is that the acceptance rate
in each decomposed limit state function is significantly improved, which facilitates the implementation of
adaptive Kriging-based Reliability analysis in conjunction with simple rejection sampling.

4.1 SRS with Multiple Auxiliary Random Variables (SRS-MARYV)

As explained in section 3, the direct implementation of Kriging-based reliability analysis for the limit state
function in Eq. (12) can lead to high computational burdens when the number of observations increases, as
acceptance rate will be extremely small for such cases. To overcome this limitation, a method is proposed
that decomposes Eq. (12) into multiple limit state functions with high acceptance rate. First, note that the

likelihood function L(x) in Eq. (5) can be decomposed into multiple functions W;(x) as follows:

1@ = [ (22)
i=1

where n; is the number of decomposed likelihood functions. Here, n; is recommended to be equal to the
number of observations m; however that is not necessary. Let [pl,pz pnl] be a set of mutually
independent standard uniform random variables in [0,1]. Then a domain can be defined according to the

augmented outcome space [x, P, P02 - pnl]:

Qec=Ipi<cW(®)],i=1..n (23)

14



1 where Qb i =1,2,..,n; are the subsets of the accepted domain Q.. = [Qacc NQZ...n QZZCC] and

1 . . .
2 ¢g= (W) ,i =1, ...n; are the corresponding constants to ensure ¢;IW;(x) is less than 1. Samples

3 [x, P1, P2 ...pnl] generated from prior distribution f(x) in the accepted domain follow the posterior
4  distribution f'(x). Hence, the acceptance region, .., can be further expanded as:
5 Quce = [Qhee N Q2c .. N QL] = Max{p; — cWi(x)} < 0], i=1,.m (24)

6  Subsequently, the posterior distribution f’(x) can be determined as:

fanEQ;"éC." fplenwlzccf(x)dpl " dpnl

f'(x) =
[eon Jeaut, f[x,pl]en}mf(x)dpl = dpp,dx
Jo 155 ([ pn,] € Qte) = [y 185 (1, pa] € Q) () |~ dp,

Ty JE 1 (] € Q1L [ F 10 (12, pa] € Qo) FRIApy | dpngd

(25)

7  The numerator of Eq. (25) can be further expanded into the equation below:

[l oot

1
acc P1€Qgcc

CnyLn; (%) ¢1L1(x)
= [ [ @y - ap,
0 0

Cnanl x) cyL, (x) (26)
=[ [T an@r@ap, - dp,
0 0

n;

= f@ [ [(m@) =1 f@®-| [«
i=1

i=1

8  Moreover, the denominator of Eq. (25) can be expanded to the following expression:

| redp e i,
[x pnl]EQ L [x, pl]EQtlzcc

ZJ f Iacc([x pnl E QZéc) [J Iacc( pl] € Q cc)f(x)dpl] dpnldx
27
J J Iacc pnl < Cnanl(x)) [J Ilacc(pl < ClLl(x))f(x)dpl] = dpp,dx
0

n

-/ f(x)L_l[(ciwi(x))azx= ]_1[c | re ﬁ[wi(x) ax=(]Te) | reorcoax

i=1
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Different from SRS approach, SRS-MARV introduces multiple auxiliary random variables to decompose the
limit state in Eq. (12) into multiple limit state functions. Acceptance rates of these limit state functions are
significantly larger than those of SRS. The process for the implementation of SRS-MARV is summarized in

Algorithm 4.

Algorithm 4. Simple Rejection Sampling with Multiple Auxiliary Random Variables (SRS-MARYV)
1. i=1
2. Generate a sample x* from f(x)
3. Generate multiple samples p' = [pi, pL, ... p,ln] from the standard uniform distribution [0.1]
4. If [x',p'] € Qqec by judging Eq. (24)
(a). Accept x*
b.i=i+1
5. Stopifi = N, else go to step 2

4.2 Bayesian Updating using Adaptive Kriging (BUAK)

By integrating Kriging-based reliability analysis method and SRS-MARV, a new method called BUAK
(Bayesian Updating using Adaptive Kriging) is proposed for Bayesian updating. BUAK is a surrogate
model-based Bayesian updating technique that can estimate the posterior distribution f'(x) with a small
number of calls to the likelihood function L(x). This method is elaborated in Algorithm 5 and a flowchart
that illustrates this method is also shown in Fig. 1. To check if the Kriging model is trained sufficiently, the

following stopping criterion ¥ in step 8 is proposed:

Nacc _ —d(-
o {cp( U(x)l\)l(l @( U(x)))}slpthr (28)

where N, is the number of accepted samples with the posterior distribution, ®(+-) denotes the Cumulative
Density Function (CDF) of the standard normal distribution and ¥;y,- is the stopping criterion threshold for
Kriging active learning. According to [34], the total number of wrong sign estimation follows a Poisson
Binomial distribution, thus, ¥ is an indicator of the expected variance of the total number of wrong
classified samples for accepted or failure points. It should be noted that the U function in Eq.(20) is an

appropriate model to identify the next best training points. However, if used as a stopping criterion in the

16



form of max max(U) < Uy, it leads to a large number of unnecessary calls to the performance function

in Bayesian updating problems. The proposed model in Eq.(28) addresses this problem and yields accurate

Kriging model for Bayesian updating.

Algorithm 5. Bayesian Updating using Adaptive Kriging

1.

[98)

10.

Define the parameters:
(a). Number of candidate design samples n, and training samples ng,
(b). Number of decomposition of likelihood function L(x) as n;
(¢). Number of dimension of random variable X as ny
(d). Constant c;,i =1, ...
Using Latin Hypercube Sampling technique (LHS) to generate following samples :

(a). ng candidate design samples x4 and p; from f(x) and standard uniform distribution [0,1]
where x4 is a ng X ny matrix and p, is a ng X n; matrix with number of decomposition of
likelihood function as column. Denote the set of candidate design samples set as D.

(b). ny, candidate design samples x¢,- and p;,- from prior distribution f (x) and standard

uniform distribution[0,1]

(¢). Define the training samples set T = [X;,, Pt-] and denote its subset as T; =
[Xer, D& ] o Ty = [%er pg], where ply, i = 1, ... ny is the iy column vector in py,

j=1
Evaluate all the responses yi,,i = 1, ... n; of Ty = [X¢, Py, ... Ty, = [xtr, p?rl] corresponding to
all the limit state functions h;,i = 1, ... n;, where y!, is a ny, X 1matrix.
Construct the j;; Kriging models Ej according to the training samples subset T;.
Estimate the responses (e.g., mean y; and variance 012) of candidate design samples D based on
Jen Kriging models flj.
Compute the value of U learning function for candidate design samples D using the Kriging model
h;.
Check if ¥ < Wy, is satisfied or not:

(a). Satisfied. Go to step 9.

(b). Unsatisfied. Search for the next best training point [x},, p;] in D, renew T and go back to
Step 4.
Check if j > n; is satisfied or not:

(a). Satisfied. Go to step 10.

(b). Unsatisfied. Do j = j + 1 and go back to Step 4.

Implement SRS-MARV based on n; surrogate Kriging model h;,i = 1, ...n; according to the
Algorithm 4.

17



( Define ng,., n;, ny and c;

\

Generate Xy, X¢r, Pg and p,- with
LHS and define D and T

L]

Define variable j and j =1

v

Evaluate all the responses yL,.

on limit state functions h;

y

Construct the j;; Kriging models
flj on subset T;

Y

Estimate p, Gf and piccbased on

D with j;, Kriging models flj

Search for next best
training point[x},, p,]
in D and renew T

Y

Compute U values on D

Y

o< W< Wy | >

[~

T

Yes
A J

I=7+1

< ] >n
~—

Yes

Implement Algorithm 4 based on
n; surrogate Kriging model h;

¥
End

Fig 1. Flowchart of BUAK
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5. Numerical Studies

In this section, three numerical examples are implemented to investigate the performance of the proposed
method BUAK compared to existing techniques.

5.1 Example 1: Illustrative purpose

The first example is implemented here to illustrate the general process of the proposed method BUAK. This
example has also been studied in [5]. The problem involves a one-dimensional random variable that follows
a standard normal prior distribution, denoted as ¢(x). The likelihood of this problem also follows a normal

distribution with mean y; = 3 and standard deviation o; = 0.3. Thus the maximum value of this likelihood

1S Lpagx = al_\}ﬁ = 1.33, which means ¢ = m = 0.752. The limit state function according to Eq.
(12) can be represented as:
h(xr p) =p- Cd)(xlnul' O-l) (29)

where p is an auxiliary random variable following the standard uniform distribution and ¢ (x|y;, a;)
denotes the probability density function of a normal distribution parameterized by y; and o;. To reduce the
nonlinearity of Eq. (29), the logarithmic formulation of the limit state function (i.e., Eq.(29)) can be used
as follows [5]:
g(x,p) = In(p) — In(c) — In($(xlw, a,)) (30)
In this one dimensional example, the acceptance rate, P, is 4.63 X 1073, which allows implementation
of Monte Carlo simulations with BUS method as a benchmark with high accuracy. Thus, four methods
including BUS + MCS, BUS + Subset Simulation (SS), BUAK + MCS and BUAK + S§ are explored in this
example. For this problem, the number of initial training points and candidate design samples are selected
as 12 and 10>, respectively. The performance of the considered methods is evaluated in terms of the number
of calls to the likelihood function, N_4;;; ratios between the true and estimated mean and standard deviation
of the posterior distribution (i.e., fi/u'and 6’ /c"), and the confusion matrix.
Results of the analyses are summarized in Table 1. With 10° samples for Monte Carlo simulations, the

mean and standard deviation of posterior distribution estimated through BUS + MCS can reach very high
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accuracy with% = 0.9991 and% = 1.0377. However, it needs an extremely large number of calls to the

performance function (i.e., N,q;; = 10%), which is not feasible in practice. The proposed surrogate model-

based approach, BUAK + MCS, can dramatically reduce the number of calls to the performance function to
N:qu = 26, while offering a relatively high accuracy with % = 1.0072 and% = 0.9492. The reason for

high computational efficiency is that the proposed method only needs the calls to performance function to
explore and refine the limit state. Figure 2 shows the true limit state of Eq. (29) or (30) and the limit state
estimated using BUAK with N.,; = 15 and N_4;; = 26. According to Fig. 2, the estimated limit state
function A(x,p) = 0 gradually refines as the number of training points x;,. increases. The accepted samples
and samples that are wrongly estimated from the prior distribution are illustrated in Fig. 3. Totally, the label
of 17 points out of 10° points is wrongly estimated (i.e., points that should be accepted but are rejected,
and points that should be rejected but are accepted). To further investigate the performance of the proposed
surrogate-based approach, the confusion matrix of rejected and accepted samples of BUAK + MCS is
presented in Table 2. According to this confusion matrix, there are totally 5 samples out of 451 that should

be accepted but rejected through the proposed approach. Moreover, the ‘precision’ (P) and ‘recall’ (R) of

99525 _ 0.9998 and R = —22_ — (0.9998 . Thus, the
99525+5 99525+24

this confusion matrix are found as P =

probabilities of failure for the true and estimated limit state functions are 0.0045 and 0.0047, respectively,
which indicates an error of € = 0.0444. These values indicate that the proposed method, BUAK, is

computationally accurate. The ratios of the means and standard deviations of the estimated to true posterior

~1

distributions using BUS + SS are % = 1.0428 and % = 0.9279, respectively, with N q;; = 3749. The
parameters of the posterior distribution estimated through BUAK + SS are shown to be even more accurate

than BUS + SS with% = 1.0375 and & = 0.9441, with N,q; = 26. Figure 4 shows accepted samples in

different stages of subset simulation in BUAK + SS. The estimation error of BUAK + SS can be explained

by the fact that the estimated limit state does not completely match the true limit state. As more training

20



1  points are added in training the surrogate model, it is expected that the accuracy of the parameters of the

2 posterior distribution estimated using BUAK + MCS and BUAK + SS increases.

0.8

06 |

04 |

02 |

(a) (b)
3 Fig. 2. The true limit state function h(x,p) = 0 and that estimated using BUAK h(x,p) = 0 with
4 (a) Nca” = 15 and (b) Nca” = 26.

5
1 T 1 T
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0.8 SRS - | . . stimated samples! L. o
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04 |
02 . .x .
. . ®
0 " )
1 1.5 2 2.5 3 3.5 4 3.5 4
X
(a)
6 Fig. 3. Illustration of accepted samples through (a) BUS + MCS and (b) BUAK + MCS.
7
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(d)
Fig. 4. lllustration of BUAK + SS with accepted samples in (a) the first subset, (b) the second subset, (¢)
the third subset, and (d) the last subset.

Table 1. Bayesian Updating results for BUS + MCS, BUAK + MCS, BUS + SS, and BUAK + SS. The
initial number of training points for BUAK is 12, while the number of candidate design samples is 10°.
' /u'and 6' /o' denote the true/estimated mean and true/estimated standard deviation of the posterior

distribution, respectively.

Methodology Nean u' o' g é' a'/u é'/a’
BUS + MCS 10° 2.7474 0.2978 0.9991 1.0377
BUAK + MCS 12+ 14 575 0.287 2.7697 0.2724 1.0072 0.9492
BUS + SS 3749 ' ' 2.8677 0.2663 1.0428 0.9279
BUAK + SS 12+ 14 2.8530 0.2709 1.0375 0.9441
Table 2. Confusion matrix for the results of BUAK + MCS approach.
Actual Predicted Class
Class Rejected Accepted
Rejected 99525 24
Accepted 5 446
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Note that running a single simulation with a prechosen number of samples may not provide a comprehensive
assessment of the performance of stochastic estimators. This is due to the fact that randomness exists in the
selection of initial training and candidate design samples. To examine such effects, the expected
performance and the variation in the performance of Bayesian updating methods are investigated here. 100
simulations are used to evaluate these measures and the results are summarized in Table 3. Four methods
including BUS + MCS, BUAK + MCS, BUS + SS and BUAK + SS are examined by computing the expected
number of calls to the limit state function E(N,,;;), expected value of the estimated mean E(fi’ /u") and
standard deviation E(6'/a") and their corresponding coefficients of variation(C.O. V). Results indicate that
BUS + MCS is the most accurate method with E (4’ /u') = 1.001 and E(6'/a") = 1.006. However, BUAK
+MCS achieves the high accuracy of E(4'/u’) = 1.005 with E(N.y;) = 31.02, as compared to

E(N.g;) = 10° for BUS + MCS.

Table 3. The performance of Bayesian Updating with 100 simulations for example 1.

c.0.v nt gt c.0.vV At gt C.0.V

MethOdOIOgy E(Ncall) (Ncall) E(H /.u ) (ﬁ//ﬂl) E(O- /0- ) (6”/0”)
BUS + MCS 10° - 1.001 0.004 1.006 0.022
BUAK + MCS 31.02 0.596 1.005 0.007 0.960 0.043
BUS + 8§ 3812.5 0.051 1.034 0.001 0.941 0.017
BUAK + 8§ 31.02 0.596 1.046 0.003 0.931 0.035

5.2 Example 2: Unimodal distribution
The second example has a posterior distribution with n-dimensional random variables [3], [37]. First, the

prior distribution of the random variables can be represented as the multiplication of » mutually independent

standard normal distributions f(x) =[]}, @(x;). The likelihood function L(x) can be represented as:
g
L) = | | om0 (3D
i=1

where oy is set as 0.2 and y; can be computed as follows:
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U = —2(1+0l2)-ln[c;/n- ’21‘[' /1+al2 (32)

where ¢ is the model evidence. Two cases including (a)n = 2 and ¢z = 10™* and (b)n = 10 and ¢ =
1075 are investigated in this example. According to Eq. (12), the limit state function of the SRS method

can be written as:

n

1
hGep) = p—ec| |- oCalu o) (33)

i=1
For the first case (i.e., n = 2 and c; = 10™%), the acceptance rate, P,.., is equal to 2.451 X 107>, which
indicates that a large number of candidate design samples are required to capture the limit state in Eq. (33)
and subsequently estimate f'(x) through BUAK+SRS. The large number of candidate design samples
makes the BUAK + SRS computationally inefficient. To increase P,.. for Eq. (33), SRS-MARYV should be
adopted here as explained in Eq. (22):
n 1 ny
1) = [ [ Zetmon =] [wic (34)
i=1 i=1
where n; is the number of decompositions of the likelihood function and n; = n, which means that the

decomposed likelihood function can be presented as follows:

1

1
Wi(xy) = Walp) = = Wix) = ¢ (il o) and ¢; = max(W,(x)

(35)

Since all the formulations of W;(x;) have the same format, only one surrogate model for the limit state
function is required according to Eq. (12),

h(xi,pi) = pi — ciWi(x;) (36)
where p;,i = 1,...,n are the n auxiliary random variables that follow uniform distribution. The acceptance
rate involving the limit state function in Eq. (36) is relatively very high, which indicates that the required

number of candidate design samples and required training samples can be small when using BUAK + SRS-
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MARYV. Moreover, Eq. (36) can be further expanded to reduce the nonlinearity by taking the logarithmic
form:
9(x,p) = In(py) — In(cy) — In(W;(x)) (37)
For the first case where n = 2, P, = 2.451 X 1075, ' = 2.659 and ¢’ = 0.1961. Five methods
including BUS+MCS+SRS, BUS+MCS+SRS-MARV, BUS+SS+SRS-MARV, BUAK+MCS+SRS-MARYV,
and BUAK+SS+SRS-MARYV are investigated to explore the performance of the proposed method. Results
of these methods are summarized in Table 4. For the active learning in BUAK, 12 initial training samples
and 10° candidate design samples are prepared. The accuracy of the considered methods is evaluated in
terms of the estimated mean and standard deviation of the posterior distribution (i.e., fi’and ). Figure 5
shows the true limit state, h(x;, p;), and the estimated limit state, 2(x;, p;), through Kriging surrogate model
at different stages of training including N.,; = 20 and 31. The probabilities of failure for the true and
estimated limit state functions (e.g., h(x;, p;) and h(x;, p;)) are estimated as 0.00509 and 0.00503, which

indicates the corresponding error is estimated as € = 0.012. Among all of these approaches, fi'and 6’

estimated through BUS+MCS+SRS and BUS+MCS+SRS-MARYV are the most accurate With% = 1.0008

and i— = 0.9870 for BUS+MCS+SRS, and %: 0.9977 and i— = 1.0125 for BUS+MCS+SRS-MARV.

However, these methods require a significantly large number of calls to the performance function with
Ngqu = 2 X 107, which is intractable for sophisticated models. The BUS algorithm with subset simulation
can significantly reduce the number of evaluations of the performance function with N.,;; = 28384 when

N, = 5000 for each subset. The BUS+SS approach can still achieve high accuracy in estimating the
posterior distribution f'(x) with % = 1.0066 and % = 1.051. The proposed method BUAK+MCS+SRS-
MARYV is shown to be computationally very efficient and accurate. With only 31 evaluations of the

performance function, the ratios of the estimated to true means and standard deviations are % = 1.0031

Q)

- =0.9446 . Figure 6 shows samples from the posterior distribution estimated through

and

Q

25



10

11

12

13

14

15

16

17

18

19

20

21

22
23

BUS+MCS+SRS, BUS+MCS+SRS-MARV, BUS+SS+SRS-MARV, and BUAK+MCS+SRS-MARV. The
main deviation of BUAK+MCS+SRS-MARYV (Fig. 6(d)) from BUS+MCS+SRS-MARV (Fig. 6(b)), is that
BUAK+MCS+SRS-MARYV rejects some ‘outlier’ points, which makes ¢’ smaller. These points are referred
to the points that are in the failure domain with extremely low probability density in the equivalent
reliability analysis problems. Therefore, these ‘outlier’ points can only be precisely captured if the Kriging-
based reliability method is set with extremely tight stopping criterion (i.e., ¥¢, = 0). For the case where
n =10, u’' = 0.6542 and ¢’ = 0.1961, P,.. is extremely small and difficult to estimate. Thus, two
methods including BUS+SS and BUAK+SS are investigated for this case. Since the example 2 is based on
the SRS-MARV strategy, for the purpose of consistency, the proposed method is compared with
BUS+SS+SRS-MARYV and not BUS+SS+SRS. Although the original BUS+SS-SRS is not investigated here,

it is expected to outperform BUS+SS+SRS-MARYV. This is related to constants ¢;, { = 1, ...n;, which are

chosen as for the component reliability problems in the system formulation for the SRS-MSRV

1
max(L;i(x))
strategy . This choice leads to a much smaller acceptance probability for the overall parallel system as

. . . 1
compared to the case where the original BUS formulation is used where c is chosen close to (L)’ In

table 5, i’ /u'and 6’ /o' denote the true/estimated mean and standard deviation of the posterior distribution
based on one of the components of vector x. For this case, the number of samples in each level of SS is
selected as 10*.For the state-of-the-art approach BUS+SS where c is identified adaptively, interested readers
are referred to [5]. Results indicate that the accuracy of estimated f'(x) improves as the stopping criterion
becomes tight with ¥,;,,, = 1 X 107>, These results indicate that the proposed BUAK algorithm is very
capable for Bayesian updating, especially for cases involving sophisticated models.

Table 4. Bayesian Updating results of BUS + SS and BUAK + SS for example 2 (n = 2). i’ /u'and 6’ /o’

denote the true/estimated means and standard deviations of the posterior distribution based on one of the
components of vector x. ¥, = 1 X 1073 is set in this case.

Methodology Sampling method Neau a' é' a'Ju 6'/a’
BUS + MCS SRS 2 x 107 2.6612 0.1936 1.0008 0.9870
BUS + MCS SRS-MARV 2 x 107 2.6529 0.1986 0.9977 1.0125
BUS + SS SRS-MARV 28384 2.6765 0.2061 1.0066 1.051
BUAK + MCS SRS-MARV 12+19 2.6674 0.1853 1.0032 0.9446
BUAK + SS SRS-MARV 12+19 2.7310 0.2068 1.0271 1.0544
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Table 5. Bayesian Updating results of BUS + SS and BUAK + SS for example 2 (n = 10).

Methodology Sampling N.an a' é' a/u é')a’
method

BUS + 8§ SRS-MARV 64886 0.6778 0.1811 1.036 0.9236
BUAK + S§S

(W = 1% 107%) SRS-MARV 12 +25 0.5902 0.1654 0.9021 0.8433
BUAK + S§S

W = 1% 10~ SRS-MARV 12+73 0.6144 0.1730 0.9392 0.8821

BUAK + S SRS-MARV 12+91 0.6222 0.1751 0.9511 0.8961

(W = 1% 10°%)

Similar to example 1, the expected performance the variation in the performance of Bayesian algorithms is

investigated for example 2. The average performance based on 100 simulations is summarized in Table 6.

Again, four methods including BUS + MCS, BUAK + MCS, BUS + SS and BUAK + SS are examined by

computing the expected number of calls to the limit state function E (N.4;;), expected value of the estimated

mean E (' /u") and standard deviation E(6'/c") and their corresponding coefficients of variation(C.O.V).

An interesting observation is that the application of surrogate model in Bayesian updating can increase the

variance of the estimated results. This observation is due to fact that the shape of the true limit state can not

be perfectly captured by the surrogate model. However, despite this limitation, the results in Table 6

showcase the computational efficiency of the proposed BUAK algorithm.

Table 6. The performance of Bayesian Updating with 100 simulations for example 2(Based on the SRS-

MARYV strategy).
c.0.v — c.0.v A1y c.0.v
MethOdOIOgy E(Ncall) (Ncall) E(,Lt /,Lt ) (ﬁ,/ﬂ,) E(O’ /0- ) (6’/0’)
BUS + MCS 2 x 107 - 0.999 0.001 0.998 0.010
BUAK + MCS 36.24 0.596 1.006 0.008 0.952 0.027
BUS + 8§ 26148 0.047 1.008 0.006 0.956 0.035
BUAK + 8§ 36.24 0.596 1.023 0.015 0.943 0.042
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5.3 Example 3: Two degrees-of-freedom structure

The third example involving a two-degrees-of-freedom (two-DOF) system was originally developed in [1]
and then investigated in [3]-[5] to assess the performance of BUS. The goal of this case study is to estimate
the posterior distribution of inter-story stiffnesses based on measurements of eigen-frequencies of the
structure. The configuration of this structure is shown in Fig. 7. The masses of the two stories are set as
my = 16.531- 103 kg and m, = 16.13.1- 103 kg. The inter-story stiffnesses are modeled as K; = X1k,
and K, = X, k,,, where K; and K, are the stiffness values of the first and second stories, respectively, k,, =
29.7 - 10 N/m is the nominal value, and X; and X, are correction factors to be updated. In this example,
damping is not considered. As stated before, the distribution of X = [X;, X,] is updated according to the
observations of the first two eigen-frequencies f; and f,. Referring to the work in [1], [4], the likelihood

function for this problem can be presented as:

L(x) < exp [—]2(:2)] (43)
where
2 2 2
J(x) = z 2 [fffgx )_ 1] (44)
=1 J

is a measure-of-fit function. sz (x) is the jth eigen-frequency estimated from the structural model with
random factors x, and sz is the measurement of the jth eigen-frequency. A; = A, = 1 are the means and
O =718 the standard deviation of the prediction error. In this example, two measurements of eigen-

frequencies are available: f; = 3.13 Hz and f, = 9.83 Hz. The prior distribution of X; and X, are

uncorrelated lognormal distributions with modes 1.3 and 0.8 and standard deviations oy, = oy, = 1.
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Fig. 7. Two-DOF shear building model.

According to the instructions of BUS algorithm, the original limit state function can be represented as:

J(x)

207

h(x,p) = p—c-exp (45)

To increase the acceptance rate in Eq. (45) for the purpose of constructing the Kriging model, the likelihood

function can be decomposed into 2 likelihood functions:

A7
Wi(x) = exp|—

fe-)

i=1,2 46
207 i (46)

The two corresponding limit state functions, denoted as h;,i = 1,2, can be subsequently represented as:
hi(pi, x) = pi — eWi(x),, i = 1,2 (47)
where p;, i = 1,2 are the two auxiliary random variables and c¢;, i = 1,2 are the constants satisfying Eq. (24).

In this case, ¢; = ¢, = 1. The logarithmic form of Eq. (47) is:

g:(x,p) = In(py) — In(c;) — In(W;(x)),i = 1,2 (48)
The acceptance rate of the undecomposed limit state function in Eq. (45) is about 0.0016, which
indicates to the feasibility of integrating Monte Carlo simulations with BUS and BUAK algorithms as the
benchmarks. Four methods are considered here including BUS+MCS, BUS+SS, BUAK+MCS, and
BUAK+SS. The performance of these methods is evaluated in terms of the number of calls to the
performance function N_,;;, and mean and standard deviation of the posterior distribution estimated in the

left and right clusters (i.e., 2'(L), A'(R), 6'(L) and 6'(R), L denotes X; < 1and R denotes X; > 1).
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Simulation results of these methods are summarized in Table 7. Figure 9 showcases the samples following
posterior distribution using BUS+MCS through SRS and SRS-MARYV strategies. According to these results
and those in Table 8, f'(x) estimated through BUS+MCS+SRS and BUS+MCS+SRS-MARV are very close.
Figure 9 offers a comparison between results generated using BUS+MCS+SRS-MARV and
BUAK+MCS+SRS-MARYV. The manga cross points in Fig. 9 (b) are the wrongly accepted samples estimated
from the surrogate models, §;(x,p;),i = 1,2, using the BUAK method compared with the true limit state
functions g;(x,p;),i = 1,2. The performance of this classification task is summarized in the confusion

matrix in Table 8. Out of 2 x 10° candidate design samples, 321 samples should be accepted. The

. . . . 199656 199656
‘precision’ (P) and ‘recall’(R) of this confusion matrix are P = ———=0999andR = —— =
199656+15 199656+23

0.999, which indicate the very high accuracy of the involved classification. Thus, the probabilities of failure

for the true and estimated limit state functions are 1.61 x 1075 and 1.65 X 107> and the corresponding

1.65X1075-1.61x1073

error is calculated as € = TeIx10-5 = 0.0248, which is very small. The mean and standard

deviation of f'(x) estimated through BUAK+MCS+SRS-MARV are close to those estimated through
BUS+MCS+SRS-MARV  with  Agry= 04997 — 0.4996 = 0.0001 , A= 18093 —1.8146 =
—0.0053, Agr(;y= 0.0417 — 0.0406 = 0.0011 and A5/ (g)= 0.1527 — 0.1544 = —0.0017. Results of
BUS+SS+SRS-MARV and BUAK+SS+SRS-MARV are shown in Fig. (10) and (11), respectively, which
demonstrate that the process of accepting the samples with posterior distribution is very close to that via
the true limit state. Results from Table 7 show that parameters of f'(x) estimated using BUAK+SS+SRS-
MARYV are close to the approach of BUS+SS+SRS-MARV with A ry= 0.5032 — 0.5038 = —0.0006,
Aprry= 18197 — 1.8191 = 0.0006 , Az y= 0.0388 — 0.0407 = —0.0019 and A/ = 0.1352 —
0.1476 = —0.0124.

For this example, BUS+SS needs 3758 calls to the performance function with 1000 samples searching
in each subsets. The proposed method BUAK is computationally very efficient as it requires only 250

training samples to achieve high accuracy. These training points include 12 initial training sample, 175
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samples for training the first Kriging surrogate model (i.e., g, (x,p;)) and 63 samples for training the
second Kriging surrogate model (i.e., §,(x, p;)). In the first loop for constructing h,, the total number of
evaluations to the performance function is 12 (initial training) + 175 (for h;). These 187 points can also be
used in the construction of h,. It should be noted that the 175 training points used for h; are not
strategically selected for constructing h,. However, they can still be used to reduce the computational cost
of h,. And this is also the reason that only 63 evaluations to h, are needed but not like that as much as 175
for h;. This advancement enables researchers to implement Bayesian updating with relatively small number

of calls to the likelihood function.

1.5 . . 1.5 ; ;
% Accepted samples % Accepted samples
X
1 % ] 1L
% a
=1 g < .

05 | 1 05 L

0 0

0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 25 3

X] XI
(a) (b)

Fig. 8. f'(x) estimated through BUS+MCS with (a) SRS and (b) SRS-MARV.
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Fig. 9. f'(x) estimated through (a) BUS+MCS+SRS-MARV and (b) BUAK+MCS+SRS-MARYV.
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Fig. 11 Accepted samples using BUAK+SS+SRS-MARYV in (a) the first subset, (b) the second subset, (c)
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Table 7. Bayesian Updating results for example 3. 2'(L), i’ (R), 6'(L) and 6'(R) denote the estimated
means(left and right cluster) and standard deviation(left and right cluster) for the posterior distribution
f(%). W = 1 X 1073 is set in this case.

Sampling

Methodology method Nean Ly o 6'L) ' (R) 6'(R)
BUS+MCS SRS 2x10° 05077  0.0421  1.8209  0.1412
BUS+MCS SRS-MARV 2x10° 04996  0.0406  1.8146  0.1544

BUS+SS SRS-MARV 3758 0.5038  0.0407  1.8191  0.1476

BUAK+MCS SRS-MARV 12+175+63 04997  0.0417  1.8093  0.1527

BUAK+SS SRS-MARV 12+175+63 05032 0.0388  1.8197  0.1352

Table 8. Confusion matrix for the classification results

using BUAK+MCS+SRS-MARYV.

Actual Predicted Class

Class Rejected Accepted
Rejected 199656 23
Accepted 15 306
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For example 3, 100 simulations are conducted to investigate the average performance of the proposed
method compared to the BUS approach. These simulation results are summarized in Table 9 and 10. For
this case, the expected number of calls to the limit state function E (N,4;;), expected value of the estimated
mean E (") and standard deviation E (") on the left and right sides and their corresponding coefficients of
variation (C.0.V) are recorded. According to Table 9 and 10, BUS + MCS is the most accurate approach
with smallest variance. For example, the coefficients of variation of the mean of samples following the
posterior distribution on the left and right sides are only 0.005 and 0.007, respectively, which are very small
compared to other approaches. The application of subset simulation can increase the variance of the
stochastic estimator. The proposed approach based on surrogate model can estimate the probabilistic
properties of the samples with posterior distributions, however, with a slightly increased uncertainty. For
instance, BUAK + MCS delivers E(2'(R)) = 1.816 and E(6'(R)) = 0.143 with C.0.V 0f 0.012 and 0.122,
respectively, while BUS + MCS yields E(4'(R)) = 1.817 and E(6'(R)) = 0.141 with C.O.V of 0.007 and
0.069, respectively. However, the proposed BUAK approach only needs a very small number of calls to the

performance function with E (N,4;;) = 272.68 compared to 2 X 10> for BUS + MCS.

Table 9. The performance of Bayesian Updating with 100 simulations for example 3 (On the left side).

C.0.v o ~r c.0.v C.0.vV

Meth0d010gy E(Ncall) (Ncall) E(# (L)) E(O- (L)) (ﬁ’(L)) (6’(14))
BUS + MCS 2x10° - 0.502 0.038 0.005 0.050
BUAK + MCS 252.68 0.483 0.502 0.038 0.007 0.092
BUS + 8§ 3674.52 0.037 0.505 0.044 0.006 0.051
BUAK + 8§ 252.68 0.483 0.498 0.049 0.013 0.113

Table 10. The performance of Bayesian Updating with 100 simulations for
example 3(On the right side).

N N C.0.V C.0.V
Methodology E(&'(R)) E(6'(R)) (Z(R)) (6'(R))
BUS + MCS 1.817 0.141 0.007 0.069

BUAK + MCS 1.816 0.143 0.012 0.122

BUS + SS 1.824 0.137 0.017 0.103
BUAK + SS 1.829 0.135 0.023 0.137
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6. Conclusion

To enhance Bayesian updating techniques, a novel approach, called BUAK, is proposed in this paper that
integrates Bayesian Updating with Structural reliability methods (BUS) with Adaptive Kriging surrogate
modeling. Integration of BUS with advanced adaptive Kriging-based reliability analysis methods offers
new capabilities in reducing the number of evaluations of costly performance functions and simultaneously
training very accurate surrogate models. However, one of the challenging problems in implementing
adaptive Kriging-based reliability analysis methods is the extremely small acceptance rate corresponding
to the limit state function generated via BUS, as the number of observations increases. This leads to adaptive
Kriging-based reliability analysis methods requiring significantly large numbers of candidate design
samples to construct a refined limit state. Such a process can be computationally inefficient and is often not
feasible. To address this limitation, the limit state function derived through BUS is decomposed into
multiple sub-limit state functions with relatively large acceptance rates. Toward this goal, Simple Rejection
Sampling with Multiple Auxiliary Random Variables (SRS-MARYV) is proposed in this paper. By training
multiple Kriging surrogates for these decomposed limit state functions, Bayesian updating can be well
implemented using adaptive Kriging-based reliability analysis methods. Three numerical examples are
investigated to examine the performance of the proposed method, BUAK. Results indicate that BUAK offers
high accuracy in estimating the posterior distribution of random variables, while significantly reducing the
number of evaluations of costly likelihood functions. However, BUAK has some limitations for high-
dimensional problems (e.g., known as the curse of dimensionality) due to the large computational demand
associated with large matrix operations in constructing Kriging surrogate models. These limitations can
hamper the application of BUAK for problems that have a large number of random inputs such as random
field representations of spatially distributed properties. A potential solution is to control the number of

candidate design samples via integration of the BUS+SS algorithm with adaptive Kriging.
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