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ABSTRACT  8 

Bayesian updating offers a powerful tool for probabilistic calibration and uncertainty quantification of 9 

models as new observations become available. By reformulating Bayesian updating into a reliability 10 

problem via introducing an auxiliary random variable, the state-of-the-art Bayesian updating with structural 11 

reliability method (BUS) has showcased large potential to achieve higher accuracy and efficiency compared 12 

with conventional approaches based on Markov Chain Monte Carlo simulations. However, BUS faces a 13 

number of limitations. The transformed reliability problem often involves a very rare event especially when 14 

the number of observations increases. This along with the fact that conventional reliability analysis 15 

techniques are not efficient, and often not capable of accurately estimating the probability of rare events, 16 

unavoidably lead to a very large number of evaluations of the likelihood function and simultaneously 17 

insufficient accuracy of the derived posterior distributions. To overcome these limitations, we propose 18 

Simple Rejection Sampling with Multiple Auxiliary Random Variables (SRS-MARV), where the limit state 19 

function in BUS is decomposed into a system reliability problem with multiple limit state functions. The 20 

main advantage of this approach is that the acceptance rate of each decomposed limit state function is 21 

significantly improved, which facilitates effective integration of adaptive Kriging-based reliability analysis 22 

into SRS-MARV. Moreover, a new stopping criterion is proposed for efficient, adaptive training of the 23 

Kriging model. The proposed method called BUAK is shown to be highly computationally efficient and 24 

accurate based on results of comprehensive investigations for three diverse benchmark problems. Compared 25 

to the state-of-the-art methods, BUAK substantially reduces the computational demand by one to three 26 

orders of magnitude, therefore, facilitating the application of Bayesian updating to computationally very 27 

intensive models. 28 
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1. Introduction 1 

Recent advancements in inspection and monitoring techniques for various applications such as structural 2 

and infrastructure systems offer unprecedented capabilities to improve design, planning and management 3 

of these systems. Information obtained via such observations can be leveraged to update probabilistic or 4 

stochastic representations of uncertainties in models to better support risk-informed decision-making. Up-5 

to-date information on responses and features including, for example, system capacities, structural 6 

deformations, system dynamic features and deteriorations assist in comprehensively perceiving the 7 

probabilistic information of system variables. A well-established method for this purpose is Bayesian 8 

updating that derives the posterior probabilistic information from the often empirically defined prior 9 

statistical assumptions and new observations. 10 

In the past, the posterior distribution has commonly been estimated through the implementation of 11 

Markov chain Monte Carlo (MCMC) simulation [1]. Some other approximation-based approaches such as 12 

Laplace approximation method [2] have also shown good performance in terms of computational efficiency. 13 

However, they may yield inaccurate results especially when the number of random variables or the 14 

complexity of the posterior density increase [3]. In the MCMC-based Bayesian updating approach, random 15 

realizations are generated by the proposal function, whose mean value changes in relation to the last 16 

accepted realization. The samples generated by the proposal function are then compared with a random 17 

value drawn from the standard uniform distribution to determine whether those points should be accepted 18 

or rejected. It has been shown that the probability density of the accumulated accepted points converges to 19 

the posterior density. However, lack of guarantee to converge to a stationary state corresponding to Markov 20 

chain is the major limitation of the MCMC-based Bayesian updating method [3]–[5]. To address this 21 

limitation, the transitional Markov chain Monte Carlo simulation (TMCMC) has been proposed by Ching 22 

et al. [6], which attempts to adaptively sample from a series of intermediate probability distributions and 23 

transitionally converge to the target posterior probability distribution. Although, the TMCMC-based 24 

Bayesian updating method improves the performance by avoiding the burn-in phenomena in the 25 

conventional approach, the gained efficiency is not significant when the dimension of the variable space 26 
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increases [3], [7]. As an alternative, Straub and Papaioannou [4] proposed a new method called Bayesian 1 

Updating with Structural reliability methods (BUS). The primary idea behind BUS is reformulating 2 

Bayesian updating problems into structural reliability problems. By introducing an auxiliary standard 3 

uniform random variable P, the Bayesian updating problem with simple rejection sampling strategy targets 4 

realizations that satisfy the limit state equation: 𝑝𝑝 ≤ c𝐿𝐿(𝒙𝒙), where c is a constant ensuring the maxima of 5 

c𝐿𝐿(𝒙𝒙) is smaller than one. Based on this formulation, the problem of Bayesian updating is transformed into 6 

a structural reliability problem with corresponding random variables [𝑿𝑿,𝑃𝑃] with the aim changed to finding 7 

the failure points. By avoiding the process for ensuring the stationarity of Markov Chain in MCMC, BUS 8 

applies the subset simulation technique [8], [9] to focus on the accepted domain regardless of the dimension 9 

of random variables. This method adaptively approaches the failure domain through sequentially sampling 10 

a series of nested intermediate domains until the target number of samples for deriving posterior 11 

distributions are obtained. BUS has shown great efficiency in estimating posterior distributions using subset 12 

simulation techniques [10]–[12]. 13 

However, the process of estimating the posterior distribution through BUS with subset simulation is 14 

computationally expensive, especially when the likelihood functions become very complex e.g. when they 15 

involve time-consuming computational models [3], [5]. This is in part due to the use of subset simulation 16 

method for solving the structural reliability problem in BUS, which requires a large number of evaluations 17 

of the performance function. Second, as the shape of the limit state function for BUS in the standard normal 18 

space is typically highly nonlinear, methods such as First and Second Order Reliability Methods (FORM 19 

& SORM) may become very inaccurate. This challenge is compounded as the number of observations 20 

increases. The resulting high computational demand can be overcome through the application of surrogate 21 

model-based reliability analysis methods. The surrogate models can include Response Surface [12]–[14], 22 

artificial neural networks [3], Polynomial Chaos Expansion [15], Support Vector Regression [16], [17], and 23 

Kriging [18]–[21]. Among these methods, adaptive Kriging-based reliability analysis methods have been 24 

shown to be one of the most accurate and efficient methods in solving reliability problems [18], [22]–[24], 25 

and therefore have gained significant attention in recent years [25], [26]. However, the failure probability 26 
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associated with the acceptance ratio in BUS is significantly small and can reach 10−6 or even smaller as 1 

the number of observations increases. Such levels of failure probability are quite challenging to estimate 2 

for reliability analysis techniques using limited number of function evaluations. To apply adaptive Kriging-3 

based reliability analysis methods here, the number of candidate design samples should be extremely large 4 

to ensure a well-trained Kriging surrogate model [18] that can yield accurate estimates of these very small 5 

failure probabilities. In such a circumstance, the implementation of adaptive Kriging-based reliability 6 

analysis methods in conjunction with BUS becomes extremely computationally inefficient, if not infeasible.  7 

In this paper, we propose a method called Bayesian Updating using Adaptive Kriging (BUAK) to 8 

address the above issues. In BUAK, the component structural reliability analysis problem in BUS is 9 

transformed to a system reliability analysis problem, which facilitates the implementing of adaptive 10 

Kriging-based reliability analysis methods. Unlike the approach in BUS that uses only one auxiliary 11 

standard uniform random variable, we introduce multiple auxiliary standard uniform random variables to 12 

decompose the component structural reliability problem in BUS into a parallel system reliability problem 13 

with multiple limit state functions. This approach yields the same outcome in terms of the probability of 14 

failure corresponding to the acceptance ratio as the one in BUS, however, each component limit state 15 

function in BUAK does no longer correspond to a rare event. This development means that the 16 

corresponding limit state functions can be efficiently substituted by Kriging surrogate models through the 17 

adaptive Kriging-based structural reliability analysis methods. Therefore, the number of evaluations of the 18 

likelihood function significantly reduces, while the posterior probability distributions are estimated 19 

accurately. Eventually, with the well-trained Kriging surrogate model, samples with posterior distribution 20 

can be generated unlimitedly, as this process will no longer rely on the computationally expensive 21 

likelihood function.  22 

In the rest of this paper, Bayesian updating and BUS method are briefly introduced in Section 2. 23 

Methods derived based on system reliability analysis and their integration into Bayesian updating 24 

framework are represented in Section 3. Section 4 presents the Bayesian updating method based on adaptive 25 

Kriging, which is referred to as BUAK. Three numerical examples selected from literature are used to 26 
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analyze the performance of BUAK in Section 5. Conclusions are drawn in Section 6. 1 

2. Bayesian Updating  2 

Due to technical difficulties or high costs associated with direct observations of some of key properties of 3 

natural or built systems, their status is often inferred by taking reference to observations of other auxiliary 4 

variables that are easy to measure. For instance, natural frequencies of a building can implicitly reflect its 5 

inter-story stiffness [4], and such frequencies can be derived from ambient vibrations measured via cheap 6 

accelerometers. Generally, as the number of observations increases, the uncertainties of those parameters 7 

decreases. Bayesian updating facilitates the uncertainty reduction using the likelihood of observed 8 

properties and assuming a reasonable prior probability distribution for unknown parameters (i.e., inter-story 9 

stiffness in the building example) denoted as 𝑓𝑓(𝒙𝒙) based on empirical knowledge, and then estimating the 10 

posterior probability distribution denoted as 𝑓𝑓′(𝒙𝒙). 𝑓𝑓′(𝒙𝒙) can be estimated by the Bayes’ theorem: 11 

𝑓𝑓′(𝒙𝒙) =
𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙)

∫ 𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝛺𝛺

(1) 12 

where 𝛺𝛺 is the probabilistic domain of random variable 𝒙𝒙 and 𝐿𝐿(𝒙𝒙) is the so-called likelihood function, 13 

which is proportional to the conditional probability of observations given a parameter state, and can be 14 

expressed as

𝐿𝐿(𝒙𝒙) ∝ Pr(𝑍𝑍|𝑿𝑿 = 𝒙𝒙) (2) 16 

In estimating 𝑓𝑓′(𝒙𝒙) through MCMC, the denominator  ∫ 𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝛺𝛺  in Eq. (1) can be ignored since it is 17 

only a normalizing constant ensuring that 𝑓𝑓′(𝒙𝒙) integrates to one. Typically, the likelihood function 𝐿𝐿(𝒙𝒙) 18 

is composed of three parts: observations 𝑍𝑍, responses from the model 𝑠𝑠(𝒙𝒙) and error ε that represents the 19 

deviation of 𝑠𝑠(𝒙𝒙) from 𝑍𝑍. Because of measuring and modeling errors, observations 𝑍𝑍 can not perfectly 20 

reflect 𝑠𝑠(𝒙𝒙). The associated error can be represented as follows: 21 

ε =  𝑍𝑍 − 𝑠𝑠(𝒙𝒙) (3) 22 
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Note that the error in Eq.(3) is often defined through a multiplicative error term, especially when the error 1 

stems from the modeling uncertainty as suggested in [4]. Generally 𝐿𝐿(𝒙𝒙) can be estimated through the 2 

probability density function (PDF) of the error ε as: 3 

𝐿𝐿(𝒙𝒙) = 𝜌𝜌ε(ε) = 𝜌𝜌ε�𝑍𝑍 − 𝑠𝑠(𝒙𝒙)� (4) 4 

where 𝜌𝜌ε(∙) denotes the PDF of ε. Although the type of the PDF of 𝐿𝐿(𝒙𝒙) is commonly considered to be 5 

multivariate Gaussian distribution with zero mean, it can be any other unbiased distribution. When 𝑚𝑚 6 

mutually independent observations are available, the likelihood function in Eq. (4) can be presented as: 7 

𝐿𝐿(𝒙𝒙) = �𝐿𝐿𝑖𝑖(𝒙𝒙)
𝑚𝑚

𝑖𝑖=1

= �𝜌𝜌ε𝑖𝑖�𝑍𝑍𝑖𝑖 − 𝑠𝑠𝑖𝑖(𝒙𝒙)�
𝑚𝑚

𝑖𝑖=1

(5) 8 

In this article, the likelihood function is denoted as 𝐿𝐿(𝒙𝒙) for both independent and dependent observations.  9 

2.1 Simple Rejection Sampling (SRS) 10 

The idea of transforming Bayesian updating problems into structural reliability problems according  to the 11 

simple rejection algorithm was initially proposed by Straub and Papaioannou [4]. It is known that the goal 12 

of Bayesian updating is to estimate the posterior distribution 𝑓𝑓′(𝒙𝒙), which is proportional to the product of 13 

the likelihood 𝐿𝐿(𝒙𝒙) and prior distribution 𝑓𝑓(𝒙𝒙): 14 

𝑓𝑓′(𝒙𝒙) ∝ 𝐿𝐿(𝒙𝒙)𝑓𝑓(𝒙𝒙) (6) 15 

For the estimation of 𝑓𝑓′(𝒙𝒙), the use of the conventional MCMC approach, which requires ensuring the 16 

stability of the Markov Chain, is not computationally efficient. Simple rejection sampling algorithm can be 17 

applied here to overcome this limitation. First, the accepted domain Ω𝑎𝑎𝑎𝑎𝑎𝑎 can be defined corresponding to 18 

the augmented outcome space [𝒙𝒙,𝑝𝑝] with an auxiliary random variable 𝑃𝑃 expressed as: 19 

Ω𝑎𝑎𝑎𝑎𝑎𝑎 = [𝑝𝑝 ≤ 𝑐𝑐𝑐𝑐(𝒙𝒙)] = [ℎ(𝒙𝒙,𝑝𝑝) ≤ 0] (7) 20 

where ℎ(𝒙𝒙,𝑝𝑝) = 𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝒙𝒙)  and 𝑐𝑐  is a constant satisfying 𝑐𝑐𝑐𝑐(𝒙𝒙) ≤ 1  for all the outcomes from 𝑿𝑿 . 21 

Therefore, 𝑐𝑐 can be defined as: 22 

𝑐𝑐 =
1

𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿(𝒙𝒙)�
(8) 23 
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The strategy of defining 𝑐𝑐 in Eq.(8) is in fact the optimal one among all the feasible definitions. However, 1 

it is not the only one and any definition that satisfies 𝑐𝑐𝑐𝑐(𝒙𝒙) ≤ 1 is applicable. Larger 𝑐𝑐 leads to higher 2 

acceptance rate [4]. Moreover, an adaptive approach to search for 𝑐𝑐 is available in [5] and a method that 3 

corrects the samples for the case where 𝑐𝑐𝑐𝑐(𝒙𝒙) ≤ 1 is discussed in [27]. In this research, the strategy in 4 

Eq.(8) is adopted. Subsequently, the posterior distribution 𝑓𝑓′(𝒙𝒙) can be formulated as: 5 

𝑓𝑓′(𝒙𝒙) =
∫ 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑𝑝𝑝∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

∫ 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙[𝒙𝒙,𝑝𝑝]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

=
∫ 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎)𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑1
0

∫ ∫ 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎)𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙1
0𝑿𝑿

(9) 6 

where 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎) is the indicator function corresponding to the structural reliability problem with 7 

the limit state function ℎ(𝒙𝒙,𝑝𝑝) = 𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝒙𝒙). The numerator and denominator in Eq. (9) can be easily 8 

extended as: 9 

� 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎)𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑
1

0
= � 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑

𝑐𝑐𝑐𝑐(𝒙𝒙)

0
= 𝑐𝑐𝑐𝑐(𝒙𝒙)𝑓𝑓(𝒙𝒙) (10) 10 

and 11 

∫ ∫ 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎)𝑓𝑓(𝒙𝒙)𝑑𝑑𝑑𝑑𝑑𝑑𝒙𝒙1
0𝑿𝑿 =

∫ �∫ 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎�𝑝𝑝 ≤ 𝑐𝑐𝑐𝑐(𝒙𝒙)�𝑑𝑑𝑑𝑑1
0 �𝑿𝑿 𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙 = ∫ 𝑐𝑐𝑐𝑐(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝒙𝒙𝑿𝑿 (11)

 12 

Equations (10) and (11) are exactly the same as the numerator and denominator of Eq. (1), respectively. 13 

Therefore, a simple rejection sampling algorithm is available according to [28], which is presented in 14 

Algorithm 1. However, the simple rejection sampling algorithm faces the limitation that the acceptance rate 15 

significantly decreases as the number of observations 𝑚𝑚 increases. Straub and Papaioannou [4] showed that 16 

the average acceptance rate is proportional to 1
√𝑚𝑚

, when all measurements are independent and identically 17 

distributed (iid). This limitation makes the process of Bayesian updating computationally intractable since 18 

very few accepted points can be generated to estimate the posterior distribution, while a very large number 19 

of unnecessary points are generated. This issue becomes especially problematic when costly experimental 20 

or computational models are involved.  21 

 22 
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Algorithm 1. Simple Rejection Sampling  
1. 𝑖𝑖 = 1  
2. Generate a sample 𝒙𝒙𝑖𝑖 from 𝑓𝑓(𝒙𝒙) 
3. Generate a sample 𝑝𝑝𝑖𝑖 from the standard uniform distribution [0.1] 
4. If �𝒙𝒙𝑖𝑖,𝑝𝑝𝑖𝑖� ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎 

   (a). Accept 𝒙𝒙𝑖𝑖 
   (b). 𝑖𝑖 = 𝑖𝑖 + 1 

5. Stop if 𝑖𝑖 = 𝑁𝑁𝑠𝑠, else go to step 2 
 1 

2.2 Bayesian Updating with Structural Reliability Methods (BUS) 2 

Due to the inherent limitation of simple rejection sampling method with regard to its low acceptance rate, 3 

the MCMC method was proposed for Bayesian updating. However, to ensure a stable Markov chain, the 4 

MCMC-based Bayesian updating needs to investigate still a very large number of evaluations of the 5 

likelihood function. On the other hand, although the acceptance rate of simple rejection sampling-based 6 

Bayesian updating approach is low, it is very straightforward to implement and it can guarantee accurate  7 

posterior distributed samples. To maintain those advantages of the simple rejection-based approach, Straub 8 

and Papaioannou [4] proposed Bayesian Updating with Structural Reliability Methods (BUS) by 9 

strategically integrating the simple rejection sampling approach with structural reliability analysis methods.  10 

In BUS, the Bayesian updating problem is handled in a way that involves solving a reliability analysis 11 

problem. The equivalent limit state function in BUS approach is defined as: 12 

ℎ(𝒙𝒙,𝑝𝑝) =  𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝒙𝒙) (12) 13 

Note that the task of Bayesian updating is different from that in reliability analysis. In the process of 14 

reliability analysis, the target is to estimate the probability of failure, while drawing samples in the accepted 15 

(failure) domain is the main purpose of BUS. Concerning this point, many existing reliability analysis 16 

methods such as First & Second Order Reliability Methods (FORM & SORM), Importance Sampling (IS) 17 

and subset simulation (SS) should be adjusted to be applicable in association with BUS. For instance, the 18 

combination of subset simulation and BUS has shown great efficiency in drawing samples from posterior 19 

distributions. Details of BUS with subset simulation haven been shown in Algorithm 2. However, BUS 20 

algorithm also faces a number of challenges. As noted earlier, the acceptance rate in simple rejection 21 
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sampling approach tends to be extremely small when the number of observations increases. In this 1 

circumstance, the estimation of posterior distributions is equivalent to the analysis of reliability of rare 2 

events, which becomes rather computationally expensive for simulation-based approaches including subset 3 

simulation. To elaborate this point, the number of subsets can be denoted as 𝑁𝑁𝑠𝑠𝑠𝑠, thus the total number of 4 

evaluations of the likelihood function 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can be determined as: 5 

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑁𝑁𝑠𝑠𝑠𝑠 ∙ 𝑁𝑁𝑖𝑖𝑖𝑖 + 𝑁𝑁𝑡𝑡 − 𝑁𝑁𝑡𝑡𝑡𝑡 (13) 6 

where 𝑁𝑁𝑖𝑖𝑖𝑖 is the number of samples in each intermediate subset, 𝑁𝑁𝑡𝑡 is the number of final samples and  𝑁𝑁𝑡𝑡𝑡𝑡 7 

is the number of seeds in the final subset. As indicated in Eq.(13), the computational cost, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, typically 8 

increases linearly with −log(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎) and this is due to the fact that 𝑁𝑁𝑠𝑠𝑠𝑠 is proportional to −log(𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎). Note 9 

that 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 can easily reach thousands in BUS with subset simulation. Although this number is considerably 10 

smaller compared to the crude Monte Carlo simulation or MCMC, it is still computationally very inefficient 11 

for Bayesian updating for sophisticated computational models. Moreover, the limit state function ℎ(𝒙𝒙,𝑝𝑝) 12 

can be highly nonlinear since ℎ(𝒙𝒙,𝑝𝑝) includes an integrated likelihood function 𝐿𝐿(𝒙𝒙), which contains the 13 

probability density function of Gaussian distribution. This may lead to inaccurate estimates of posterior 14 

distributions if approximation-based approaches such as FORM & SORM are used.  15 

Kriging-based reliability analysis methods are known for their capabilities in substituting the limit state 16 

function through adaptive training of the surrogate models and thus reducing the number of evaluations of 17 

the performance function [18]. However, it is computationally inefficient to directly implement this 18 

approach in association with the limit state function in BUS (e.g. Eq. (12)). This is because with the increase 19 

in the number of observations, the acceptance ratio becomes small, which requires the number of candidate 20 

design samples to be extremely large. To address this challenge, we propose Simple Rejection Sampling 21 

with Multiple Auxiliary Random Variables (SRS-MARV), where the limit state function in Eq. (12) is 22 

decomposed into a series-system reliability problem with multiple limit state functions. A framework is 23 

subsequently proposed to integrate the Kriging-based reliability analysis method with SRS-MARV. The 24 
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acceptance rate of each decomposed limit state function is relatively large, which enables the multiple  1 

constructions of Kriging-based reliability analysis.  2 

 3 

Algorithm 2. BUS with subset simulation 
1. Define the parameters: 

    (a). Target number of samples 𝑁𝑁𝑡𝑡 
(b). Number of samples in each intermediate step 𝑁𝑁𝑖𝑖𝑖𝑖 
(c).  Probability of intermediate subsets 𝑝𝑝0 
(d).  Constant 𝑐𝑐 according to the Eq. (8) 

2. Draw 𝑁𝑁𝑖𝑖𝑖𝑖 samples [𝒙𝒙𝒌𝒌,𝑝𝑝𝑘𝑘],𝑘𝑘 = 1,2, …𝑁𝑁𝑖𝑖𝑖𝑖 from the prior distribution [𝑿𝑿,𝑃𝑃] 
3. Define the subset domain such that Ω1 = {ℎ(𝒙𝒙,𝑝𝑝) ≤ 𝑡𝑡1}, where 𝑡𝑡1 is defined according to the 𝑝𝑝0 

percentile of the responses of samples ℎ(𝒙𝒙𝒌𝒌,𝑝𝑝𝑘𝑘),𝑘𝑘 = 1,2, …𝑁𝑁𝑖𝑖𝑖𝑖. 
4. 𝑖𝑖 = 1 
5. While 𝑡𝑡𝑖𝑖 > 0: 

    (a). 𝑖𝑖 = 𝑖𝑖 + 1 
(b). Draw 𝑁𝑁𝑖𝑖𝑖𝑖 samples from the domain Ω𝑖𝑖−1 with MCMC technique 
(c). Define the next subset Ω𝑖𝑖 = {ℎ(𝒙𝒙,𝑝𝑝) ≤ 𝑡𝑡𝑖𝑖}, where 𝑡𝑡𝑖𝑖 is defined according to the 𝑝𝑝0 

percentile of the responses of samples ℎ(𝒙𝒙𝒌𝒌,𝑝𝑝𝑘𝑘),𝑘𝑘 = 1,2, …𝑁𝑁𝑖𝑖𝑖𝑖 in subset Ω𝑖𝑖−1 
6. Define the last subset Ω𝑖𝑖+1 = {ℎ(𝒙𝒙,𝑝𝑝) ≤ 0}, identify the number of samples 𝑁𝑁𝑠𝑠 in Ω𝑖𝑖+1 and keep 

these samples as seeds 
7. Draw 𝑁𝑁𝑡𝑡 samples in the subset Ω𝑖𝑖+1 with those seeds in Step 6 using MCMC technique 
8. Estimate the acceptance probability: 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 ≈ 𝑝𝑝0𝑖𝑖 ∙ �

𝑁𝑁𝑠𝑠
𝑁𝑁𝑖𝑖𝑖𝑖
� 

 4 

3. Adaptive Kriging-based Reliability Analysis  5 

The primary objective of using adaptive Kriging-based reliability analysis here is to train a surrogate model 6 

ℎ�(𝒙𝒙,𝑝𝑝) to substitute the computationally demanding limit state function ℎ(𝒙𝒙,𝑝𝑝) in Eq. (12). Then, SRS can 7 

be applied directly on the computationally efficient surrogate model. In this section, the elements of the 8 

Kriging model and Kriging-based reliability analysis are briefly reviewed. Then challenges of 9 

implementing adaptive Kriging-based reliability analysis methods are elaborated at the end of this section. 10 

The Kriging surrogate model, also known as the Gaussian Process Regression, has been widely used in 11 

computer-based experiment design [29]. In this model, the estimated responses follow a normal distribution 12 

parametrized by the mean values and variances [29], [30]. An extensive review of the Kriging surrogate 13 

model can be found in [18], [31]–[33]. In Kriging, the responses ℎ�(𝑿𝑿) (𝑿𝑿 represents [𝑿𝑿,𝑃𝑃] in this section) 14 

are defined as: 15 
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ℎ�(𝑿𝑿) = 𝐹𝐹(𝜷𝜷,𝒙𝒙) +  𝜓𝜓(𝒙𝒙) = 𝜷𝜷𝑇𝑇𝒇𝒇(𝒙𝒙) + 𝜓𝜓(𝒙𝒙) (14) 1 

where 𝑿𝑿 is the vector of random variables, 𝐹𝐹(𝜷𝜷,𝒙𝒙) are the regression elements, and 𝜓𝜓(𝒙𝒙) is the Gaussian 2 

process. In 𝐹𝐹(𝜷𝜷,𝒙𝒙), 𝒇𝒇(𝒙𝒙) is the Kriging basis and 𝜷𝜷 is the corresponding set of coefficients. There are 3 

multiple formulations of 𝜷𝜷𝑇𝑇𝑓𝑓(𝒙𝒙) including ordinary (𝛽𝛽0),  linear �𝛽𝛽0 + ∑ 𝛽𝛽𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1 �,  or quadratic 4 

(𝛽𝛽0+∑ 𝛽𝛽𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1 +∑ ∑ 𝛽𝛽𝑖𝑖𝑖𝑖𝒙𝒙𝑖𝑖𝒙𝒙𝑗𝑗𝑁𝑁

𝑗𝑗=𝑖𝑖
𝑁𝑁
𝑖𝑖=1 ), where N is the number of dimensions of 𝒙𝒙. In this paper, the ordinary 5 

Kriging model is used. The Gaussian process 𝜓𝜓(𝒙𝒙) has a zero mean and a covariance matrix that can be 6 

represented as: 7 

𝐶𝐶𝐶𝐶𝐶𝐶 �𝜓𝜓(𝒙𝒙𝑖𝑖),𝜓𝜓�𝒙𝒙𝑗𝑗�� =  𝜎𝜎2𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� (15) 8 

where 𝜎𝜎2  is the process variance or the generalized mean square error (MSE) from the regression, 9 

computational detail of 𝜎𝜎2 is available in [34], 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗 are two observations, and 𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� is known 10 

as the kernel function representing the correlation between observations 𝒙𝒙𝑖𝑖 and 𝒙𝒙𝑗𝑗 parametrized by 𝜽𝜽. The 11 

correlation functions implemented in Kriging can include, among others, linear, exponential, Gaussian, and 12 

Matérn functions. The Gaussian kernel function is used in this paper, which has the following form: 13 

𝑅𝑅�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽� = � exp �−𝜃𝜃𝑘𝑘�𝑥𝑥𝑖𝑖𝑘𝑘 − 𝑥𝑥𝑗𝑗𝑘𝑘�
2�

𝑁𝑁

𝑘𝑘=1

(16) 14 

where 𝑥𝑥𝑖𝑖𝑘𝑘 is the 𝑘𝑘th dimension of 𝒙𝒙𝑖𝑖 and 𝜽𝜽 is estimated via the Maximum Likelihood Estimation (MLE) 15 

method [29]. It is shown that the variation of 𝜽𝜽 has significant impact on the performance of the Kriging 16 

meta-model [22], [35], [36]. To maintain consistency, 𝜃𝜃𝑘𝑘 is searched in Ɗ𝜃𝜃 = (0,10). Here, MLE can be 17 

represented as: 18 

𝜽𝜽 =  argmin
𝜽𝜽∗∈Ɗ𝜃𝜃

��𝑹𝑹�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽∗��
1
𝑛𝑛𝑡𝑡𝑡𝑡  𝜎𝜎2� (17) 19 

where �𝑹𝑹�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽�� denotes the determinant of 𝑹𝑹�𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗;𝜽𝜽�, 𝑛𝑛𝑡𝑡𝑡𝑡 is the number of training points and 𝜎𝜎2 is 20 

the process variance defined in Eq.(15). Accordingly, the regression coefficient 𝜷𝜷, and the predicted mean 21 

and variance can be determined as follows [29]: 22 

𝜷𝜷 =  (𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1𝑭𝑭𝑇𝑇𝑹𝑹−1𝒀𝒀  23 
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𝜇𝜇ℎ�(𝒙𝒙) = 𝒇𝒇𝑇𝑇(𝒙𝒙)𝜷𝜷 + 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1(𝒚𝒚 − 𝑭𝑭𝑭𝑭)  1 

𝜎𝜎ℎ�
2(𝒙𝒙) = 𝜎𝜎2(1− 𝒓𝒓𝑇𝑇(𝒙𝒙)𝑹𝑹−1𝒓𝒓(𝒙𝒙) + (𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙) − 𝒇𝒇(𝒙𝒙))𝑇𝑇(𝑭𝑭𝑇𝑇𝑹𝑹−1𝑭𝑭)−1(𝑭𝑭𝑇𝑇𝑹𝑹−1𝒓𝒓(𝒙𝒙)− 𝒇𝒇(𝒙𝒙))) (18) 2 

where 𝑭𝑭 is the matrix of the basis function 𝒇𝒇(𝒙𝒙) evaluated at the training points, i.e., 𝐹𝐹𝑖𝑖𝑖𝑖 =  𝑓𝑓𝑗𝑗(𝒙𝒙𝑖𝑖), 𝑖𝑖 =3 

1, 2, … ,𝑛𝑛𝑡𝑡𝑡𝑡; 𝑗𝑗 = 1,2, … ,𝑝𝑝, 𝒓𝒓(𝒙𝒙) is the correlation between known training points 𝒙𝒙𝑖𝑖 and an untried point 𝒙𝒙: 4 

𝑟𝑟𝑖𝑖 = 𝑅𝑅(𝒙𝒙,𝒙𝒙𝑖𝑖 ,𝜽𝜽) , 𝑖𝑖 = 1,2 …𝑛𝑛𝑡𝑡𝑡𝑡 , and 𝑹𝑹  is the autocorrelation matrix for known training points: 𝑅𝑅𝑖𝑖𝑖𝑖 =5 

 𝑅𝑅�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗,𝜽𝜽�,  𝑖𝑖 = 1,2, … ,𝑛𝑛𝑡𝑡𝑡𝑡; 𝑗𝑗 = 1,2, … ,𝑛𝑛𝑡𝑡𝑡𝑡 . Therefore, the estimated Kriging mean 𝜇𝜇ℎ�(𝒙𝒙)  and 6 

variance 𝜎𝜎ℎ�
2(𝒙𝒙) can be presented as: 7 

ℎ�(𝒖𝒖) ~ 𝑁𝑁�𝜇𝜇ℎ�(𝒙𝒙),𝜎𝜎ℎ�
2(𝒙𝒙)� (19) 8 

It is obvious that the responses from the Kriging model ℎ�(𝒙𝒙) are not deterministic but probabilistic in the 9 

form of a normal distribution with mean 𝜇𝜇ℎ�(𝒙𝒙) and variance 𝜎𝜎ℎ�
2(𝒙𝒙).  10 

Kriging-based reliability analysis method is summarized in Algorithm 3. Note that learning functions 11 

have a crucial role in adaptive Kriging-based reliability analysis. As the name implies, the ‘learning’ refers 12 

to the process of iterative selection of points for Kriging refinement based on the stochastic information for 13 

each design point. A popular learning function is 𝑈𝑈, which is concerned with uncertainties in the sign (±) 14 

estimation of ℎ�(𝒙𝒙)=0. In this regard, 𝑈𝑈 takes the probabilistic distribution of estimated responses into 15 

consideration, and quantifies the probability of making a wrong sign estimation in ℎ�(𝒙𝒙). This learning 16 

function is used in this paper. The formulation of 𝑈𝑈 is [18]: 17 

𝑈𝑈(𝒙𝒙) =  
|𝜇𝜇ℎ�(𝒙𝒙)|
𝜎𝜎ℎ�(𝒙𝒙)  

(20) 

In reliability analysis, the goal of learning function is often to identify points that have large variance and 18 

close to the limit state  ℎ�(𝒙𝒙)=0. Training the Kriging model this way enables accurate estimation of the sign 19 

of ℎ�(𝒙𝒙) and therefore precise classification of accepted and rejected samples in Bayesian updating problems. 20 

 21 

Algorithm 3. Adaptive Kriging-based Reliability Analysis  

1. Draw 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 candidate design samples 𝒙𝒙𝑠𝑠, denoted as S, and initial training samples 𝒙𝒙𝑡𝑡𝑡𝑡 with Latin 
Hypercube Sampling technique (LHS) 
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2. Estimate the responses ℎ(𝒙𝒙𝑡𝑡𝑡𝑡) of 𝒙𝒙𝑡𝑡𝑡𝑡 according to the performance function ℎ 
3. Construct the Kriging model ℎ� according to training points 𝒙𝒙𝑡𝑡𝑡𝑡 

4. Estimate the 𝜇𝜇ℎ�(𝒙𝒙), 𝜎𝜎ℎ�
2(𝒙𝒙), 𝑈𝑈(𝒙𝒙) and failure probability 𝑃𝑃�𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁�𝑓𝑓

𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀
  based on S with MCS, 

where 𝑁𝑁�𝑓𝑓 denotes the estimated number of failure samples 

5. 
Check if 𝑚𝑚𝑚𝑚𝑚𝑚(𝑈𝑈) ≥ 2 is satisfied or not: 
   (a). Satisfied. Go to step 6. 
   (b). Unsatisfied. Find the next best training point 𝒙𝒙𝑡𝑡𝑡𝑡∗ = arg  min

𝒙𝒙 ∈𝑆𝑆
𝑈𝑈(𝒙𝒙) and go back to Step 2. 

6. 
Check if 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶thr is satisfied or not: 
   (a). Satisfied. Go to step 6. 
   (b). Unsatisfied. Update S by adding 𝑁𝑁∆𝑆𝑆extra candidate design points and go back to Step 4. 

7. Output 𝑃𝑃�𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 
 1 

The general principle of adaptive Kriging-based reliability analysis methods is to start with a small 2 

number of candidate design samples to estimate 𝑃𝑃�𝑓𝑓 and then adaptively refine the model representing the 3 

limit state. To ensure that the number of candidate design samples  𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  is sufficient, coefficient of 4 

variation of 𝑃𝑃�𝑓𝑓 should satisfy: 5 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 = �
1 − 𝑃𝑃�𝑓𝑓
𝑃𝑃�𝑓𝑓𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀

≤ 𝐶𝐶𝐶𝐶𝐶𝐶thr (21) 

where 𝑃𝑃�𝑓𝑓 is the estimated failure probability and 𝐶𝐶𝐶𝐶𝐶𝐶thr is the threshold for stopping criterion in step 6, 6 

which is recommended to be 0.05 [18]. It is obvious that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 influences 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓, which means that the 7 

final 𝑃𝑃�𝑓𝑓 and the surrogate model for the limit state are reliable only when 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is large enough to satisfy 8 

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝑓𝑓 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶thr.  9 

A primary challenge in integrating adaptive Kriging-based reliability analysis with Bayesian updating 10 

here is to guarantee that 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀 is sufficiently large when the number of observations in Eq. (5) increases. 11 

The acceptance rate 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎  in Eq. (12) can be in the order of 10−8 or even smaller because of multiple 12 

observations. For example, to satisfy 𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃�𝑓𝑓 ≤ 𝐶𝐶𝐶𝐶𝐶𝐶thr  in Eq. (21), 𝑁𝑁𝑀𝑀𝑀𝑀𝑀𝑀  should be even greater than 13 

4 × 1010, which is computationally intractable. To overcome this challenge, we propose decomposing the 14 

limit state function ℎ into multiple limit state functions ℎ𝑖𝑖, 𝑖𝑖 = 1, … 𝑛𝑛𝑙𝑙 with relatively large acceptance rates, 15 

where 𝑛𝑛𝑙𝑙  is the number of decompositions of ℎ. Then, 𝑛𝑛𝑙𝑙  Kriging surrogate models ℎ�𝑖𝑖, 𝑖𝑖 = 1, … 𝑛𝑛𝑙𝑙  are 16 
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trained to substitute ℎ𝑖𝑖. Subsequently, the integration of SRS and adaptive Kriging-based reliability analysis 1 

method can be conducted based on this strategy. 2 

4. Bayesian Updating with System Reliability Analysis Methods  3 

To draw samples based on the posterior distribution with minimum number of evaluations of the likelihood 4 

function 𝐿𝐿(𝒙𝒙), an innovative approach is proposed here that leverages merits of both simple rejection 5 

sampling method and adaptive Kriging-based reliability analysis techniques. Inspired by the work in [4], 6 

which transforms the Bayesian updating problem into an equivalent reliability analysis problem with an 7 

auxiliary random variable, the proposed method transforms the problem into a series-system reliability 8 

analysis with multiple limit state functions. The main advantage of this strategy is that the acceptance rate 9 

in each decomposed limit state function is significantly improved, which facilitates the implementation of 10 

adaptive Kriging-based Reliability analysis in conjunction with simple rejection sampling. 11 

4.1 SRS with Multiple Auxiliary Random Variables (SRS-MARV) 12 

As explained in section 3, the direct implementation of Kriging-based reliability analysis for the limit state 13 

function in Eq. (12) can lead to high computational burdens when the number of observations increases, as 14 

acceptance rate will be extremely small for such cases. To overcome this limitation, a method is proposed 15 

that decomposes Eq. (12) into multiple limit state functions with high acceptance rate. First, note that the 16 

likelihood function 𝐿𝐿(𝒙𝒙) in Eq. (5) can be decomposed into multiple functions 𝑊𝑊𝑖𝑖(𝒙𝒙) as follows: 17 

𝐿𝐿(𝒙𝒙) = �𝑊𝑊𝑖𝑖(𝒙𝒙)
𝑛𝑛𝑙𝑙

𝑖𝑖=1

(22) 18 

where 𝑛𝑛𝑙𝑙 is the number of decomposed likelihood functions. Here, 𝑛𝑛𝑙𝑙 is recommended to be equal to the 19 

number of observations 𝑚𝑚 ; however that is not necessary. Let �𝑝𝑝1,𝑝𝑝2 … 𝑝𝑝𝑛𝑛𝑙𝑙�  be a set of mutually 20 

independent standard uniform random variables in [0,1]. Then a domain can be defined according to the 21 

augmented outcome space �𝒙𝒙,𝑝𝑝1,𝑝𝑝2 …𝑝𝑝𝑛𝑛𝑙𝑙�: 22 

Ω𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 = [𝑝𝑝 𝑖𝑖 ≤ 𝑐𝑐 𝑖𝑖𝑊𝑊 𝑖𝑖(𝒙𝒙)], 𝑖𝑖 = 1, …𝑛𝑛𝑙𝑙 (23) 23 
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where Ω𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑛𝑛𝑙𝑙  are the subsets of the accepted domain Ω𝑎𝑎𝑎𝑎𝑎𝑎 =  �Ω𝑎𝑎𝑎𝑎𝑎𝑎1 ∩ Ω𝑎𝑎𝑎𝑎𝑎𝑎2 …∩ Ω𝑎𝑎𝑎𝑎𝑎𝑎
𝑛𝑛𝑙𝑙 � and 1 

𝑐𝑐i = 1
𝑚𝑚𝑚𝑚𝑚𝑚�𝑊𝑊i(𝒙𝒙)�

 , 𝑖𝑖 = 1, …𝑛𝑛𝑙𝑙  are the corresponding constants to ensure 𝑐𝑐 𝑖𝑖𝑊𝑊 𝑖𝑖(𝒙𝒙) is less than 1. Samples 2 

�𝒙𝒙,𝑝𝑝1,𝑝𝑝2 …𝑝𝑝𝑛𝑛𝑙𝑙�  generated from prior distribution 𝑓𝑓(𝒙𝒙)  in the accepted domain follow the posterior 3 

distribution 𝑓𝑓′(𝒙𝒙). Hence, the acceptance region, Ω𝑎𝑎𝑎𝑎𝑎𝑎, can be further expanded as: 4 

Ω𝑎𝑎𝑎𝑎𝑎𝑎 =  �Ω𝑎𝑎𝑎𝑎𝑎𝑎1 ∩ Ω𝑎𝑎𝑎𝑎𝑎𝑎2 …∩ Ω𝑎𝑎𝑎𝑎𝑎𝑎
𝑛𝑛𝑙𝑙 � = [𝑀𝑀𝑀𝑀𝑀𝑀{𝑝𝑝𝑖𝑖 − 𝑐𝑐i𝑊𝑊i(𝒙𝒙)} ≤ 0], 𝑖𝑖 = 1, …𝑛𝑛𝑙𝑙 (24) 5 

Subsequently, the posterior distribution 𝑓𝑓′(𝒙𝒙) can be determined as: 6 

𝑓𝑓′(𝒙𝒙) =
∫ ∙∙∙ ∫ 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1𝑝𝑝1∈Ω𝑎𝑎𝑎𝑎𝑎𝑎1 ∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙𝑝𝑝𝑛𝑛𝑙𝑙∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑙𝑙

∫ ∙∙∙ ∫ 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1[𝒙𝒙,𝑝𝑝1]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎1 ∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙𝑑𝑑𝒙𝒙�𝒙𝒙,𝑝𝑝𝑛𝑛𝑙𝑙�∈Ω𝑎𝑎𝑎𝑎𝑎𝑎
𝑛𝑛𝑙𝑙

=
∫ 𝐼𝐼𝑛𝑛𝑙𝑙

𝑎𝑎𝑎𝑎𝑎𝑎��𝒙𝒙,𝑝𝑝𝑛𝑛𝑙𝑙� ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎
𝑛𝑛𝑙𝑙 � ∙∙∙ �∫ 𝐼𝐼1𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝1] ∈ Ω𝑎𝑎𝑎𝑎𝑐𝑐1 )𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1

1
0 � ∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙

1
0

∫ ∫ 𝐼𝐼𝑛𝑛𝑙𝑙
𝑎𝑎𝑎𝑎𝑎𝑎��𝒙𝒙,𝑝𝑝𝑛𝑛𝑙𝑙� ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑙𝑙 � ∙∙∙ �∫ 𝐼𝐼1𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝1] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎1 )𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1
1
0 � ∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙𝑑𝑑𝒙𝒙

1
0𝑿𝑿

 (25) 

The numerator of Eq. (25) can be further expanded into the equation below: 7 

� ∙∙∙ � 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1
𝑝𝑝1∈Ω𝑎𝑎𝑎𝑎𝑎𝑎1

∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙
𝑝𝑝𝑛𝑛𝑙𝑙∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑙𝑙

= � ∙∙∙ � 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1
𝑐𝑐1𝐿𝐿1(𝒙𝒙)

0
∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙

𝑐𝑐𝑛𝑛𝑙𝑙𝐿𝐿𝑛𝑛𝑙𝑙(𝒙𝒙)

0

= � ∙∙∙ � 𝑐𝑐1𝐿𝐿1(𝒙𝒙)𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝2
𝑐𝑐2𝐿𝐿2(𝒙𝒙)

0
∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙

𝑐𝑐𝑛𝑛𝑙𝑙𝐿𝐿𝑛𝑛𝑙𝑙(𝒙𝒙)

0

= 𝑓𝑓(𝒙𝒙)��𝑐𝑐𝑖𝑖𝑊𝑊𝑖𝑖(𝒙𝒙)�
𝑛𝑛𝑙𝑙

𝑖𝑖=1

= 𝐿𝐿(𝒙𝒙) ∙ 𝑓𝑓(𝒙𝒙) ∙�𝑐𝑐𝑖𝑖

𝑛𝑛𝑙𝑙

𝑖𝑖=1

 (26) 

Moreover, the denominator of Eq. (25) can be expanded to the following expression: 8 

� ∙∙∙ � 𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1
[𝒙𝒙,𝑝𝑝1]∈Ω𝑎𝑎𝑎𝑎𝑎𝑎1

∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙
�𝒙𝒙,𝑝𝑝𝑛𝑛𝑙𝑙�∈Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑙𝑙

= � � 𝐼𝐼𝑛𝑛𝑙𝑙
𝑎𝑎𝑎𝑎𝑎𝑎��𝒙𝒙,𝑝𝑝𝑛𝑛𝑙𝑙� ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎

𝑛𝑛𝑙𝑙 � ∙∙ �� 𝐼𝐼1𝑎𝑎𝑎𝑎𝑎𝑎([𝒙𝒙,𝑝𝑝1] ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎1 )𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1
1

0
� ∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙𝑑𝑑𝒙𝒙

1

0𝑿𝑿

= � � 𝐼𝐼𝑛𝑛𝑙𝑙
𝑎𝑎𝑎𝑎𝑎𝑎 �𝑝𝑝𝑛𝑛𝑙𝑙 ≤ 𝑐𝑐𝑛𝑛𝑙𝑙𝑊𝑊𝑛𝑛𝑙𝑙(𝒙𝒙)� ∙∙∙ �� 𝐼𝐼1𝑎𝑎𝑎𝑎𝑎𝑎�𝑝𝑝1 ≤ 𝑐𝑐1𝐿𝐿1(𝒙𝒙)�𝑓𝑓(𝒙𝒙)𝑑𝑑𝑝𝑝1

1

0
� ∙∙∙  𝑑𝑑𝑝𝑝𝑛𝑛𝑙𝑙𝑑𝑑𝒙𝒙

1

0𝑿𝑿

= � 𝑓𝑓(𝒙𝒙)��𝑐𝑐𝑖𝑖𝑊𝑊𝑖𝑖(𝒙𝒙)�
𝑛𝑛𝑙𝑙

𝑖𝑖=1

𝑑𝑑𝒙𝒙
𝑿𝑿

= ��𝑐𝑐𝑖𝑖

𝑛𝑛𝑙𝑙

𝑖𝑖=1

� ∙ � 𝑓𝑓(𝒙𝒙)��𝑊𝑊𝑖𝑖(𝒙𝒙)
𝑛𝑛𝑙𝑙

𝑖𝑖=1

�𝑑𝑑𝒙𝒙
𝑿𝑿

= ��𝑐𝑐𝑖𝑖

𝑛𝑛𝑙𝑙

𝑖𝑖=1

� ∙ � 𝑓𝑓(𝒙𝒙)𝐿𝐿(𝒙𝒙)𝑑𝑑𝒙𝒙
𝑿𝑿

 (27) 
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Different from SRS approach, SRS-MARV introduces multiple auxiliary random variables to decompose the 1 

limit state in Eq. (12) into multiple limit state functions. Acceptance rates of these limit state functions are 2 

significantly larger than those of SRS. The process for the implementation of SRS-MARV is summarized in 3 

Algorithm 4.  4 

 5 

Algorithm 4. Simple Rejection Sampling with Multiple Auxiliary Random Variables (SRS-MARV) 
1. 𝑖𝑖 = 1 
2. Generate a sample 𝒙𝒙𝑖𝑖 from 𝑓𝑓(𝒙𝒙) 
3. Generate multiple samples 𝒑𝒑𝑖𝑖 = �𝑝𝑝1𝑖𝑖 ,𝑝𝑝2𝑖𝑖 , …𝑝𝑝𝑚𝑚𝑖𝑖 � from the standard uniform distribution [0.1] 
4. If �𝒙𝒙𝑖𝑖,𝒑𝒑𝑖𝑖� ∈ Ω𝑎𝑎𝑎𝑎𝑎𝑎 by judging Eq. (24) 

   (a). Accept 𝒙𝒙𝑖𝑖 
   (b). 𝑖𝑖 = 𝑖𝑖 + 1 

5. Stop if 𝑖𝑖 = 𝑁𝑁𝑠𝑠, else go to step 2 
 6 

4.2 Bayesian Updating using Adaptive Kriging (BUAK) 7 

By integrating Kriging-based reliability analysis method and SRS-MARV, a new method called BUAK 8 

(Bayesian Updating using Adaptive Kriging) is proposed for Bayesian updating. BUAK is a surrogate 9 

model-based Bayesian updating technique that can estimate the posterior distribution 𝑓𝑓′(𝒙𝒙) with a small 10 

number of calls to the likelihood function 𝐿𝐿(𝒙𝒙). This method is elaborated in Algorithm 5 and a flowchart 11 

that illustrates this method is also shown in Fig. 1. To check if the Kriging model is trained sufficiently, the 12 

following stopping criterion 𝛹𝛹 in step 8 is proposed: 13 

𝛹𝛹 =
∑ �Φ�−𝑈𝑈(𝒙𝒙)� �1 −Φ�−𝑈𝑈(𝒙𝒙)���𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎
𝑖𝑖=1

𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎
≤ 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 (28) 14 

where 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 is the number of accepted samples with the posterior distribution, Φ(∙) denotes the Cumulative 15 

Density Function (CDF) of the standard normal distribution and 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 is the stopping criterion threshold for 16 

Kriging active learning. According to [34], the total number of wrong sign estimation follows a Poisson 17 

Binomial distribution, thus, 𝛹𝛹 is an indicator of the expected variance of the total number of wrong 18 

classified samples for accepted or failure points. It should be noted that the U function in Eq.(20) is an 19 

appropriate model to identify the next best training points. However, if used as a stopping criterion in the 20 



17 
 

form of max max (𝑈𝑈) ≤ 𝑈𝑈𝑡𝑡ℎ𝑟𝑟, it leads to a large number of unnecessary calls to the performance function 1 

in Bayesian updating problems. The proposed model in Eq.(28) addresses this problem and yields accurate 2 

Kriging model for Bayesian updating. 3 

 4 

Algorithm 5. Bayesian Updating using Adaptive Kriging 
1. Define the parameters: 

    (a). Number of candidate design samples 𝑛𝑛𝑑𝑑 and training samples 𝑛𝑛𝑡𝑡𝑡𝑡 
(b). Number of decomposition of likelihood function 𝐿𝐿(𝒙𝒙) as 𝑛𝑛𝑙𝑙 
(c).  Number of dimension of random variable 𝑿𝑿 as 𝑛𝑛𝑿𝑿 

    (d).  Constant 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1, …𝑛𝑛𝑙𝑙  
2. Using Latin Hypercube Sampling technique (LHS) to generate following samples : 

   (a). 𝑛𝑛𝑑𝑑 candidate design samples 𝒙𝒙𝑑𝑑 and 𝒑𝒑𝑑𝑑  from 𝑓𝑓(𝒙𝒙) and standard uniform distribution [0,1]   
         where 𝒙𝒙𝑑𝑑 is a 𝑛𝑛𝑑𝑑 × 𝑛𝑛𝑿𝑿 matrix and 𝒑𝒑𝑑𝑑 is a 𝑛𝑛𝑑𝑑 × 𝑛𝑛𝑙𝑙 matrix with number of decomposition of 

likelihood function as column. Denote the set of candidate design samples set as 𝐷𝐷. 
   (b). 𝑛𝑛𝑡𝑡𝑡𝑡 candidate design samples 𝒙𝒙𝑡𝑡𝑡𝑡 and 𝒑𝒑𝑡𝑡𝑡𝑡 from prior distribution 𝑓𝑓(𝒙𝒙) and standard 
uniform distribution[0,1]  
   (c). Define the training samples set 𝑇𝑇 = [𝒙𝒙𝑡𝑡𝑡𝑡,𝒑𝒑𝑡𝑡𝑡𝑡] and denote its subset as 𝑇𝑇1 =

[𝒙𝒙𝑡𝑡𝑡𝑡,𝑝𝑝𝑡𝑡𝑡𝑡1 ], …𝑇𝑇𝑛𝑛𝑙𝑙 = �𝒙𝒙𝑡𝑡𝑡𝑡,𝑝𝑝𝑡𝑡𝑡𝑡
𝑛𝑛𝑙𝑙�, where 𝑝𝑝𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … 𝑛𝑛𝑙𝑙 is the 𝑖𝑖𝑡𝑡ℎ column vector in 𝒑𝒑𝑡𝑡𝑡𝑡 

3. 𝑗𝑗 = 1 
4. Evaluate all the responses 𝒚𝒚𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1, … 𝑛𝑛𝑙𝑙 of 𝑇𝑇1 = [𝒙𝒙𝑡𝑡𝑡𝑡,𝑝𝑝𝑡𝑡𝑡𝑡1 ], …𝑇𝑇𝑛𝑛𝑙𝑙 = �𝒙𝒙𝑡𝑡𝑡𝑡,𝑝𝑝𝑡𝑡𝑡𝑡

𝑛𝑛𝑙𝑙� corresponding to 
all the limit state functions ℎ𝑖𝑖, 𝑖𝑖 = 1, … 𝑛𝑛𝑙𝑙, where 𝒚𝒚𝑡𝑡𝑡𝑡𝑖𝑖  is a 𝑛𝑛𝑡𝑡𝑡𝑡 × 1matrix. 

5. Construct the 𝑗𝑗𝑡𝑡ℎ Kriging models ℎ�𝑗𝑗 according to the training samples subset 𝑇𝑇𝑗𝑗. 
6. Estimate the responses (e.g., mean 𝝁𝝁𝑗𝑗 and variance 𝝈𝝈𝑗𝑗2) of candidate design samples D based on 

𝑗𝑗𝑡𝑡ℎ Kriging models ℎ�𝑗𝑗. 
7. Compute the value of U learning function for candidate design samples D using the Kriging model 

ℎ�𝑗𝑗. 
8. Check if 𝛹𝛹 ≤ 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 is satisfied or not: 

   (a). Satisfied. Go to step 9. 
   (b). Unsatisfied. Search for the next best training point [𝒙𝒙𝑡𝑡𝑡𝑡∗ ,𝑝𝑝𝑡𝑡𝑡𝑡∗ ] in D, renew 𝑇𝑇 and go back to 
Step 4. 

9. Check if 𝑗𝑗 > 𝑛𝑛𝑙𝑙 is satisfied or not: 
   (a). Satisfied. Go to step 10. 
   (b). Unsatisfied. Do 𝑗𝑗 = 𝑗𝑗 + 1 and go back to Step 4. 

10. Implement SRS-MARV based on 𝑛𝑛𝑙𝑙 surrogate Kriging model ℎ�𝑖𝑖, 𝑖𝑖 = 1, …𝑛𝑛𝑙𝑙 according to the 
Algorithm 4.  
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  1 
Fig 1. Flowchart of BUAK 2 

Define 𝑛𝑛𝑡𝑡𝑡𝑡, 𝑛𝑛𝑙𝑙, 𝑛𝑛𝑿𝑿 and 𝑐𝑐𝑖𝑖 

Generate 𝒙𝒙𝑑𝑑 ,𝒙𝒙𝑡𝑡𝑡𝑡,𝒑𝒑𝑑𝑑 and 𝒑𝒑𝑡𝑡𝑡𝑡 with 
LHS and define 𝐷𝐷 and 𝑇𝑇 

Define variable 𝑗𝑗 and  𝑗𝑗 = 1 

Evaluate all the responses 𝒚𝒚𝑡𝑡𝑡𝑡𝑖𝑖  
on limit state functions ℎ𝑖𝑖 

Construct the 𝑗𝑗𝑡𝑡ℎ Kriging models 
ℎ�𝑗𝑗 on subset 𝑇𝑇𝑗𝑗 

Estimate 𝝁𝝁𝑗𝑗, 𝝈𝝈𝑗𝑗2 and 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗 based on 

D with 𝑗𝑗𝑡𝑡ℎ Kriging models ℎ�𝑗𝑗 

Compute U values on D  

𝛹𝛹 ≤ 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 
Search for next best 

training point[𝒙𝒙𝑡𝑡𝑡𝑡∗ ,𝑝𝑝𝑡𝑡𝑡𝑡∗ ] 
in D and renew 𝑇𝑇 

End 

Implement Algorithm 4 based on 
𝑛𝑛𝑙𝑙 surrogate Kriging model ℎ�𝑖𝑖 

𝐽𝐽 > 𝑛𝑛𝑙𝑙 

𝐽𝐽 = 𝐽𝐽 + 1 
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5. Numerical Studies 1 

In this section, three numerical examples are implemented to investigate the performance of the proposed 2 

method BUAK compared to existing techniques.  3 

5.1 Example 1: Illustrative purpose 4 

The first example is implemented here to illustrate the general process of the proposed method BUAK. This 5 

example has also been studied in [5]. The problem involves a one-dimensional random variable that follows 6 

a standard normal prior distribution, denoted as φ(𝑥𝑥). The likelihood of this problem also follows a normal 7 

distribution with mean 𝜇𝜇𝑙𝑙 = 3 and standard deviation 𝜎𝜎𝑙𝑙 = 0.3. Thus the maximum value of this likelihood 8 

is 𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝜎𝜎𝑙𝑙√2𝜋𝜋

= 1.33, which means 𝑐𝑐 = 1
𝑚𝑚𝑚𝑚𝑚𝑚(𝐿𝐿𝑚𝑚𝑚𝑚𝑚𝑚) = 0.752. The limit state function according to Eq. 9 

(12) can be represented as: 10 

ℎ(𝑥𝑥,𝑝𝑝) =  𝑝𝑝 − 𝑐𝑐𝑐𝑐(𝑥𝑥|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙) (29) 11 

where 𝑝𝑝  is an auxiliary random variable following the standard uniform distribution and 𝜙𝜙(𝒙𝒙|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙) 12 

denotes the probability density function of a normal distribution parameterized by 𝜇𝜇𝑙𝑙 and 𝜎𝜎𝑙𝑙. To reduce the 13 

nonlinearity of Eq. (29), the logarithmic formulation of the limit state function (i.e., Eq.(29)) can be used 14 

as follows [5]: 15 

𝑔𝑔(𝑥𝑥,𝑝𝑝) =  𝑙𝑙𝑙𝑙(𝑝𝑝) − 𝑙𝑙𝑙𝑙(𝑐𝑐) − 𝑙𝑙𝑙𝑙�𝜙𝜙(𝑥𝑥|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙)� (30) 16 

In this one dimensional example, the acceptance rate, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, is 4.63 × 10−3, which allows implementation 17 

of Monte Carlo simulations with BUS method as a benchmark with high accuracy. Thus, four methods 18 

including BUS + MCS, BUS + Subset Simulation (SS), BUAK + MCS and BUAK + SS are explored in this 19 

example. For this problem, the number of initial training points and candidate design samples are selected 20 

as 12 and 105, respectively. The performance of the considered methods is evaluated in terms of the number 21 

of calls to the likelihood function, 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐; ratios between the true and estimated mean and standard deviation 22 

of the posterior distribution (i.e., 𝜇̂𝜇/𝜇𝜇′and 𝜎𝜎�′/𝜎𝜎′), and the confusion matrix. 23 

Results of the analyses are summarized in Table 1. With 105 samples for Monte Carlo simulations, the 24 

mean and standard deviation of posterior distribution estimated through BUS + MCS can reach very high 25 
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accuracy with 𝜇𝜇�
′

𝜇𝜇′
= 0.9991 and 𝜎𝜎�

′

𝜎𝜎′
= 1.0377. However, it needs an extremely large number of calls to the 1 

performance function (i.e., 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 105), which is not feasible in practice. The proposed surrogate model-2 

based approach, BUAK + MCS, can dramatically reduce the number of calls to the performance function to 3 

𝑁𝑁𝑐𝑐𝑎𝑎𝑎𝑎𝑎𝑎 = 26, while offering a relatively high accuracy with  𝜇𝜇�
′

𝜇𝜇′
= 1.0072 and 𝜎𝜎�

′

𝜎𝜎′
= 0.9492. The reason for 4 

high computational efficiency is that the proposed method only needs the calls to performance function to 5 

explore and refine the limit state. Figure 2 shows the true limit state of Eq. (29) or (30) and the limit state 6 

estimated using BUAK with  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 15 and  𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 26. According to Fig. 2, the estimated limit state 7 

function ℎ�(𝒙𝒙,𝑝𝑝) = 0 gradually refines as the number of training points 𝑥𝑥𝑡𝑡𝑡𝑡 increases. The accepted samples 8 

and samples that are wrongly estimated from the prior distribution are illustrated in Fig. 3. Totally, the label 9 

of 17 points out of 105 points is wrongly estimated (i.e., points that should be accepted but are rejected, 10 

and points that should be rejected but are accepted). To further investigate the performance of the proposed 11 

surrogate-based approach, the confusion matrix of rejected and accepted samples of BUAK + MCS is 12 

presented in Table 2. According to this confusion matrix, there are totally 5 samples out of 451 that should 13 

be accepted but rejected through the proposed approach. Moreover, the ‘precision’ (P) and ‘recall’ (R) of 14 

this confusion matrix are found as P =  99525
99525+5

= 0.9998  and R =  99525
99525+24

= 0.9998 . Thus, the 15 

probabilities of failure for the true and estimated limit state functions are 0.0045 and 0.0047, respectively, 16 

which indicates an error of 𝜖𝜖 = 0.0444 . These values indicate that the proposed method, BUAK, is 17 

computationally accurate. The ratios of the means and standard deviations of the estimated to true posterior 18 

distributions using BUS + SS are  𝜇𝜇�
′

𝜇𝜇′
= 1.0428 and 𝜎𝜎�

′

𝜎𝜎′
= 0.9279, respectively, with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 3749. The 19 

parameters of the posterior distribution estimated through BUAK + SS are shown to be even more accurate 20 

than BUS + SS with 𝜇𝜇�
′

𝜇𝜇′
= 1.0375 and 𝜎𝜎�

′

𝜎𝜎′
= 0.9441, with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 26. Figure 4 shows accepted samples in 21 

different stages of subset simulation in BUAK + SS. The estimation error of BUAK + SS can be explained 22 

by the fact that the estimated limit state does not completely match the true limit state. As more training 23 
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points are added in training the surrogate model, it is expected that the accuracy of the parameters of the 1 

posterior distribution estimated using BUAK + MCS and BUAK + SS increases. 2 

  
         (a)          (b) 

Fig. 2. The true limit state function ℎ(𝒙𝒙,𝑝𝑝) = 0  and that estimated using BUAK ℎ�(𝒙𝒙,𝑝𝑝) = 0  with 3 
(a) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 15 and (b) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 26. 4 
 5 

  
         (a)          (b) 

Fig. 3. Illustration of accepted samples through (a) BUS + MCS and (b) BUAK + MCS. 6 
 7 

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1



22 
 

  
         (a)          (b) 

  
         (c)          (d) 

Fig. 4. Illustration of BUAK + SS with accepted samples in (a) the first subset, (b) the second subset, (c) 1 
the third subset, and (d) the last subset. 2 
 3 

Table 1. Bayesian Updating results for BUS + MCS, BUAK + MCS, BUS + SS, and BUAK + SS. The 4 
initial number of training points for BUAK is 12, while the number of candidate design samples is 105. 5 
𝜇̂𝜇′/𝜇𝜇′and 𝜎𝜎�′/𝜎𝜎′ denote the true/estimated mean and true/estimated standard deviation of the posterior 6 
distribution, respectively.  7 

Methodology 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇′ 𝜎𝜎′ 𝜇̂𝜇′ 𝜎𝜎�′ 𝜇̂𝜇′/𝜇𝜇′ 𝜎𝜎�′/𝜎𝜎′ 
BUS + MCS 105 

2.75 0.287 

2.7474 0.2978 0.9991 1.0377 
BUAK + MCS 12 + 14 2.7697 0.2724 1.0072 0.9492 

BUS + SS 3749 2.8677 0.2663 1.0428 0.9279 
BUAK + SS 12 + 14 2.8530 0.2709 1.0375 0.9441 

 8 
Table 2. Confusion matrix for the results of BUAK + MCS approach. 9 

Actual 
Class 

Predicted Class 
Rejected Accepted 

Rejected 99525 24 
Accepted 5 446 
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Note that running a single simulation with a prechosen number of samples may not provide a comprehensive 1 

assessment of the performance of stochastic estimators. This is due to the fact that randomness exists in the 2 

selection of initial training and candidate design samples. To examine such effects, the expected 3 

performance and the variation in the performance of Bayesian updating methods are investigated here. 100 4 

simulations are used to evaluate these measures and the results are summarized in Table 3. Four methods 5 

including BUS + MCS, BUAK + MCS, BUS + SS and BUAK + SS are examined by computing the expected 6 

number of calls to the limit state function 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), expected value of the estimated mean 𝐸𝐸(𝜇̂𝜇′/𝜇𝜇′) and 7 

standard deviation 𝐸𝐸(𝜎𝜎�′/𝜎𝜎′) and their corresponding coefficients of variation(C.O.V). Results indicate that 8 

BUS + MCS is the most accurate method with 𝐸𝐸(𝜇̂𝜇′/𝜇𝜇′) = 1.001 and 𝐸𝐸(𝜎𝜎�′/𝜎𝜎′) = 1.006. However, BUAK 9 

+MCS achieves the high accuracy of 𝐸𝐸(𝜇̂𝜇′/𝜇𝜇′) = 1.005  with 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 31.02 , as compared to 10 

𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 105 for BUS + MCS.  11 

 12 

Table 3. The performance of Bayesian Updating with 100 simulations for example 1. 13 

Methodology 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐶𝐶.𝑂𝑂.𝑉𝑉 
(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐸𝐸(𝜇̂𝜇′/𝜇𝜇′) 𝐶𝐶.𝑂𝑂.𝑉𝑉 

(𝜇̂𝜇′/𝜇𝜇′) 𝐸𝐸(𝜎𝜎�′/𝜎𝜎′) 𝐶𝐶.𝑂𝑂.𝑉𝑉 
(𝜎𝜎�′/𝜎𝜎′) 

BUS + MCS 105 - 1.001 0.004 1.006 0.022 
BUAK + MCS 31.02 0.596 1.005 0.007 0.960 0.043 

BUS + SS 3812.5 0.051 1.034 0.001 0.941 0.017 
BUAK + SS 31.02 0.596 1.046 0.003 0.931 0.035 

 14 

5.2 Example 2: Unimodal distribution 15 

The second example has a posterior distribution with n-dimensional random variables [3], [37]. First, the 16 

prior distribution of the random variables can be represented as the multiplication of n mutually independent 17 

standard normal distributions 𝑓𝑓(𝒙𝒙) = ∏ φ(𝑥𝑥𝑖𝑖)𝑛𝑛
𝑖𝑖=1 . The likelihood function 𝐿𝐿(𝒙𝒙) can be represented as: 18 

𝐿𝐿(𝒙𝒙) = �
1
𝜎𝜎𝑙𝑙
𝜙𝜙(𝑥𝑥𝑖𝑖|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙)

𝑛𝑛

𝑖𝑖=1

(31) 19 

where 𝜎𝜎𝑙𝑙 is set as 0.2 and 𝜇𝜇𝑙𝑙 can be computed as follows: 20 

 21 
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𝜇𝜇𝑙𝑙 = �−2(1 + 𝜎𝜎𝑙𝑙2) ∙ 𝑙𝑙𝑙𝑙 �𝑐𝑐𝐸𝐸
1/𝑛𝑛 ∙ �2𝜋𝜋 ∙ �1 + 𝜎𝜎𝑙𝑙2� (32) 1 

where 𝑐𝑐𝐸𝐸 is the model evidence. Two cases including (a) 𝑛𝑛 = 2 and 𝑐𝑐𝐸𝐸 = 10−4 and (b) 𝑛𝑛 = 10 and 𝑐𝑐𝐸𝐸 =2 

10−5  are investigated in this example. According to Eq. (12), the limit state function of the SRS method 3 

can be written as: 4 

ℎ(𝒙𝒙,𝑝𝑝) =  𝑝𝑝 − 𝑐𝑐�
1
𝜎𝜎𝑙𝑙
𝜙𝜙(𝑥𝑥𝑖𝑖|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙)

𝑛𝑛

𝑖𝑖=1

(33) 5 

For the first case (i.e., 𝑛𝑛 = 2 and 𝑐𝑐𝐸𝐸 = 10−4), the acceptance rate, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎, is equal to 2.451 × 10−5, which 6 

indicates that a large number of candidate design samples are required to capture the limit state in Eq. (33) 7 

and subsequently estimate 𝑓𝑓′(𝑥𝑥) through BUAK+SRS. The large number of candidate design samples 8 

makes the BUAK + SRS computationally inefficient. To increase 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 for Eq. (33), SRS-MARV should be 9 

adopted here as explained in Eq. (22): 10 

𝐿𝐿(𝒙𝒙) = �
1
𝜎𝜎𝑙𝑙
𝜙𝜙(𝑥𝑥𝑖𝑖|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙)

𝑛𝑛

𝑖𝑖=1

= �𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖)
𝑛𝑛𝑙𝑙

𝑖𝑖=1

(34) 11 

where 𝑛𝑛𝑙𝑙 is the number of decompositions of the likelihood function and 𝑛𝑛𝑙𝑙 = 𝑛𝑛, which means that the 12 

decomposed likelihood function can be presented as follows: 13 

𝑊𝑊1(𝑥𝑥1) = 𝑊𝑊2(𝑥𝑥2) = ⋯𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖) =
1
𝜎𝜎𝑙𝑙
𝜙𝜙(𝑥𝑥𝑖𝑖|𝜇𝜇𝑙𝑙 ,𝜎𝜎𝑙𝑙) 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑖𝑖 =

1
𝑚𝑚𝑚𝑚𝑚𝑚�𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖)�

(35) 14 

Since all the formulations of 𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖) have the same format, only one surrogate model for the limit state 15 

function is required according to Eq. (12), 16 

ℎ(𝑥𝑥𝑖𝑖,𝑝𝑝𝑖𝑖) =  𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖) (36) 17 

where 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1, . . . ,𝑛𝑛 are the 𝑛𝑛 auxiliary random variables that follow uniform distribution. The acceptance 18 

rate involving the limit state function in Eq. (36) is relatively very high, which indicates that the required 19 

number of candidate design samples and required training samples can be small when using BUAK + SRS-20 
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MARV. Moreover, Eq. (36) can be further expanded to reduce the nonlinearity by taking the logarithmic 1 

form: 2 

𝑔𝑔(𝑥𝑥𝑖𝑖,𝑝𝑝𝑖𝑖) =  𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) − 𝑙𝑙𝑙𝑙(𝑐𝑐𝑖𝑖) − 𝑙𝑙𝑙𝑙�𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖)� (37) 3 

For the first case where 𝑛𝑛 = 2, 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 = 2.451 × 10−5 , 𝜇𝜇′ = 2.659 and 𝜎𝜎′ = 0.1961. Five methods 4 

including BUS+MCS+SRS, BUS+MCS+SRS-MARV, BUS+SS+SRS-MARV, BUAK+MCS+SRS-MARV, 5 

and BUAK+SS+SRS-MARV are investigated to explore the performance of the proposed method. Results 6 

of these methods are summarized in Table 4.  For the active learning in BUAK, 12 initial training samples 7 

and 105 candidate design samples are prepared. The accuracy of the considered methods is evaluated in 8 

terms of the estimated mean and standard deviation of the posterior distribution (i.e., 𝜇̂𝜇′and 𝜎𝜎�′). Figure 5 9 

shows the true limit state, ℎ(𝑥𝑥𝑖𝑖,𝑝𝑝𝑖𝑖), and the estimated limit state, ℎ�(𝑥𝑥𝑖𝑖,𝑝𝑝𝑖𝑖), through Kriging surrogate model 10 

at different stages of training including 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 20 and 31. The probabilities of failure for the true and 11 

estimated limit state functions (e.g., ℎ(𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑖𝑖) and ℎ�(𝑥𝑥𝑖𝑖,𝑝𝑝𝑖𝑖)) are estimated as 0.00509 and 0.00503, which 12 

indicates the corresponding error is estimated as 𝜖𝜖 = 0.012. Among all of these approaches, 𝜇̂𝜇′and 𝜎𝜎�′ 13 

estimated through BUS+MCS+SRS and BUS+MCS+SRS-MARV are the most accurate with 𝜇𝜇�
′

𝜇𝜇′
= 1.0008 14 

and 𝜎𝜎�
′

𝜎𝜎′
= 0.9870 for BUS+MCS+SRS, and  𝜇𝜇�

′

𝜇𝜇′
= 0.9977 and 𝜎𝜎�

′

𝜎𝜎′
= 1.0125 for BUS+MCS+SRS-MARV. 15 

However, these methods require a significantly large number of calls to the performance function with 16 

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 2 × 107, which is intractable for sophisticated models. The BUS algorithm with subset simulation 17 

can significantly reduce the number of evaluations of the performance function with 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 28384 when 18 

𝑁𝑁𝑖𝑖𝑖𝑖 = 5000 for each subset. The BUS+SS approach can still achieve high accuracy in estimating the 19 

posterior distribution 𝑓𝑓′(𝑥𝑥) with   𝜇𝜇�
′

𝜇𝜇′
= 1.0066 and 𝜎𝜎�

′

𝜎𝜎′
= 1.051. The proposed method BUAK+MCS+SRS-20 

MARV is shown to be computationally very efficient and accurate. With only 31 evaluations of the 21 

performance function, the ratios of the estimated to true means and standard deviations are 𝜇𝜇�
′

𝜇𝜇′
= 1.0031 22 

and 𝜎𝜎�′

𝜎𝜎′
= 0.9446 . Figure 6 shows samples from the posterior distribution estimated through 23 
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BUS+MCS+SRS, BUS+MCS+SRS-MARV, BUS+SS+SRS-MARV, and BUAK+MCS+SRS-MARV. The 1 

main deviation of BUAK+MCS+SRS-MARV (Fig. 6(d)) from BUS+MCS+SRS-MARV (Fig. 6(b)), is that 2 

BUAK+MCS+SRS-MARV rejects some ‘outlier’ points, which makes 𝜎𝜎�′ smaller. These points are referred 3 

to the points that are in the failure domain with extremely low probability density in the equivalent 4 

reliability analysis problems. Therefore, these ‘outlier’ points can only be precisely captured if the Kriging-5 

based reliability method is set with extremely tight stopping criterion (i.e., 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 → 0).  For the case where 6 

𝑛𝑛 = 10 , 𝜇𝜇′ = 0.6542  and 𝜎𝜎′ = 0.1961 , 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎  is extremely small and difficult to estimate. Thus, two 7 

methods including BUS+SS and BUAK+SS are investigated for this case. Since the example 2 is based on 8 

the SRS-MARV strategy, for the purpose of consistency, the proposed method is compared with 9 

BUS+SS+SRS-MARV and not BUS+SS+SRS. Although the original BUS+SS-SRS is not investigated here, 10 

it is expected to outperform BUS+SS+SRS-MARV. This is related to constants 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1, …𝑛𝑛𝑙𝑙, which are 11 

chosen as 1
𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿𝑖𝑖(𝒙𝒙)�

 for the component reliability problems in the system formulation for the SRS-MSRV 12 

strategy . This choice leads to a much smaller acceptance probability for the overall parallel system as 13 

compared to the case where the original BUS formulation is used where c is chosen close to 1
𝑚𝑚𝑚𝑚𝑚𝑚�𝐿𝐿(𝒙𝒙)�

. In 14 

table 5, 𝜇̂𝜇′/𝜇𝜇′and 𝜎𝜎�′/𝜎𝜎′ denote the true/estimated mean and standard deviation of the posterior distribution 15 

based on one of the components of vector 𝒙𝒙. For this case, the number of samples in each level of SS is 16 

selected as 104.For the state-of-the-art approach BUS+SS where c is identified adaptively, interested readers 17 

are referred to [5]. Results indicate that the accuracy of estimated 𝑓𝑓′(𝑥𝑥) improves as the stopping criterion 18 

becomes tight with 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 = 1 × 10−5. These results indicate that the proposed BUAK algorithm is very 19 

capable for Bayesian updating, especially for cases involving sophisticated models. 20 

Table 4. Bayesian Updating results of BUS + SS and BUAK + SS for example 2 (n = 2). 𝜇̂𝜇′/𝜇𝜇′and 𝜎𝜎�′/𝜎𝜎′ 21 
denote the true/estimated means and standard deviations of the posterior distribution based on one of the 22 
components of vector 𝒙𝒙. 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 = 1 × 10−3 is set in this case. 23 

Methodology Sampling method 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝜇̂𝜇′ 𝜎𝜎�′ 𝜇̂𝜇′/𝜇𝜇′ 𝜎𝜎�′/𝜎𝜎′ 
BUS + MCS  SRS 2 × 107 2.6612 0.1936 1.0008 0.9870 
BUS + MCS  SRS-MARV 2 × 107 2.6529 0.1986 0.9977 1.0125 
BUS + SS SRS-MARV 28384 2.6765 0.2061 1.0066 1.051 

BUAK + MCS SRS-MARV 12 + 19 2.6674 0.1853 1.0032 0.9446 
BUAK + SS SRS-MARV 12 + 19 2.7310 0.2068 1.0271 1.0544 
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Table 5. Bayesian Updating results of BUS + SS and BUAK + SS for example 2 (n = 10). 1 
Methodology Sampling 

method 
𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝜇̂𝜇′ 𝜎𝜎�′ 𝜇̂𝜇′/𝜇𝜇′ 𝜎𝜎�′/𝜎𝜎′ 

BUS + SS  SRS-MARV 64886 0.6778 0.1811 1.036 0.9236 
BUAK + SS  

(𝛹𝛹𝑡𝑡ℎ𝑟𝑟 = 1 × 10−3) SRS-MARV 12 + 25 0.5902 0.1654 0.9021 0.8433 

BUAK + SS  
(𝛹𝛹𝑡𝑡ℎ𝑟𝑟 = 1 × 10−4) SRS-MARV 12 + 73 0.6144 0.1730 0.9392 0.8821 

BUAK + SS  
(𝛹𝛹𝑡𝑡ℎ𝑟𝑟 = 1 × 10−5) SRS-MARV 12 + 91 0.6222 0.1751 0.9511 0.8961 

 2 

Similar to example 1, the expected performance the variation in the performance of Bayesian algorithms is 3 

investigated for example 2. The average performance based on 100 simulations is summarized in Table 6. 4 

Again, four methods including BUS + MCS, BUAK + MCS, BUS + SS and BUAK + SS are examined by 5 

computing the expected number of calls to the limit state function 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), expected value of the estimated 6 

mean 𝐸𝐸(𝜇̂𝜇′/𝜇𝜇′) and standard deviation 𝐸𝐸(𝜎𝜎�′/𝜎𝜎′) and their corresponding coefficients of variation(C.O.V). 7 

An interesting observation is that the application of surrogate model in Bayesian updating can increase the 8 

variance of the estimated results. This observation is due to fact that the shape of the true limit state can not 9 

be perfectly captured by the surrogate model. However, despite this limitation, the results in Table 6 10 

showcase the computational efficiency of the proposed BUAK algorithm. 11 

 12 

Table 6. The performance of Bayesian Updating with 100 simulations for example 2(Based on the SRS-13 
MARV strategy). 14 

Methodology 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐶𝐶.𝑂𝑂.𝑉𝑉 
(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐸𝐸(𝜇̂𝜇′/𝜇𝜇′) 𝐶𝐶.𝑂𝑂.𝑉𝑉 

(𝜇̂𝜇′/𝜇𝜇′) 𝐸𝐸(𝜎𝜎�′/𝜎𝜎′) 𝐶𝐶.𝑂𝑂.𝑉𝑉 
(𝜎𝜎�′/𝜎𝜎′) 

BUS + MCS 2 × 107 - 0.999 0.001 0.998 0.010 
BUAK + MCS 36.24 0.596 1.006 0.008 0.952 0.027 

BUS + SS 26148 0.047 1.008 0.006 0.956 0.035 
BUAK + SS 36.24 0.596 1.023 0.015 0.943 0.042 

 15 
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         (a)          (b) 

Fig. 5. The limit state of 𝑔𝑔(𝑥𝑥𝑖𝑖 ,𝑝𝑝𝑖𝑖) = 0 and 𝑔𝑔�(𝑥𝑥𝑖𝑖,𝑝𝑝𝑖𝑖) = 0 with (a) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 20, (b) 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 31 1 
 2 
 3 

  
         (a)          (b) 

  
         (c)          (d) 

Fig. 6. 𝑓𝑓′(𝑥𝑥) estimated through (a) BUS+MCS+SRS, (b) BUS+MCS+SRS-MARV, (c) BUS+SS+SRS-4 
MARV, and (d) BUAK+MCS+SRS-MARV. 5 
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5.3 Example 3: Two degrees-of-freedom structure 1 

The third example involving a two-degrees-of-freedom (two-DOF) system was originally developed in [1] 2 

and then investigated in [3]–[5] to assess the performance of BUS. The goal of this case study is to estimate 3 

the posterior distribution of inter-story stiffnesses based on measurements of eigen-frequencies of the 4 

structure. The configuration of this structure is shown in Fig. 7. The masses of the two stories are set as 5 

𝑚𝑚1 = 16.531 ∙ 103 𝑘𝑘𝑘𝑘 and 𝑚𝑚2 = 16.13.1 ∙ 103 𝑘𝑘𝑘𝑘. The inter-story stiffnesses are modeled as 𝐾𝐾1 = 𝑋𝑋1𝑘𝑘𝑛𝑛 6 

and 𝐾𝐾2 = 𝑋𝑋2𝑘𝑘𝑛𝑛, where 𝐾𝐾1 and 𝐾𝐾2 are the stiffness values of the first and second stories, respectively,  𝑘𝑘𝑛𝑛 =7 

29.7 ∙ 106 𝑁𝑁/𝑚𝑚 is the nominal value, and 𝑋𝑋1 and 𝑋𝑋2 are correction factors to be updated. In this example, 8 

damping is not considered. As stated before, the distribution of 𝑿𝑿 = [𝑋𝑋1,𝑋𝑋2] is updated according to the 9 

observations of the first two eigen-frequencies 𝑓𝑓1 and 𝑓𝑓2. Referring to the work in [1], [4], the likelihood 10 

function for this problem can be presented as: 11 

𝐿𝐿(𝒙𝒙) ∝ exp �−
𝐽𝐽(𝒙𝒙)
2𝜎𝜎𝜀𝜀2

� (43) 12 

where  13 

𝐽𝐽(𝒙𝒙) = �𝜆𝜆𝑗𝑗2
2

𝑗𝑗=1

�
𝑓𝑓𝑗𝑗2(𝒙𝒙)
𝑓𝑓𝑗𝑗2

− 1�
2

(44) 14 

is a measure-of-fit function.  𝑓𝑓𝑗𝑗2(𝒙𝒙) is the jth eigen-frequency estimated from the structural model with 15 

random factors 𝒙𝒙, and 𝑓𝑓𝑗𝑗2 is the measurement of the jth eigen-frequency. 𝜆𝜆1 = 𝜆𝜆2 = 1 are the means and 16 

𝜎𝜎𝜀𝜀 = 1
16

 is the standard deviation of the prediction error. In this example, two measurements of eigen-17 

frequencies are available: 𝑓𝑓1 = 3.13  Hz and 𝑓𝑓2 = 9.83  Hz. The prior distribution of 𝑋𝑋1  and 𝑋𝑋2  are 18 

uncorrelated lognormal distributions with modes 1.3 and 0.8 and standard deviations 𝜎𝜎𝑋𝑋1 = 𝜎𝜎𝑋𝑋2 = 1.  19 
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 1 
Fig. 7. Two-DOF shear building model. 2 

 3 
According to the instructions of BUS algorithm, the original limit state function can be represented as: 4 

ℎ(𝒙𝒙,𝑝𝑝) =  𝑝𝑝 − 𝑐𝑐 ∙ exp �−
𝐽𝐽(𝒙𝒙)
2𝜎𝜎𝜀𝜀2

� (45) 5 

To increase the acceptance rate in Eq. (45) for the purpose of constructing the Kriging model, the likelihood 6 

function can be decomposed into 2 likelihood functions: 7 

𝑊𝑊𝑖𝑖(𝒙𝒙) = exp

⎣
⎢
⎢
⎢
⎡
−
𝜆𝜆𝑖𝑖2 �

𝑓𝑓𝑖𝑖2(𝒙𝒙)
𝑓𝑓𝑖𝑖2

− 1�

2𝜎𝜎𝜀𝜀2

⎦
⎥
⎥
⎥
⎤

, 𝑖𝑖 = 1, 2 (46) 8 

The two corresponding limit state functions, denoted as ℎ𝑖𝑖, 𝑖𝑖 = 1,2, can be subsequently represented as: 9 

ℎ𝑖𝑖(𝑝𝑝𝑖𝑖 ,𝒙𝒙) =  𝑝𝑝𝑖𝑖 − 𝑐𝑐𝑖𝑖𝑊𝑊𝑖𝑖(𝑥𝑥𝑖𝑖), , 𝑖𝑖 = 1, 2 (47) 10 

where 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2 are the two auxiliary random variables and 𝑐𝑐𝑖𝑖 , 𝑖𝑖 = 1,2 are the constants satisfying Eq. (24). 11 

In this case, 𝑐𝑐1 = 𝑐𝑐2 = 1. The logarithmic form of Eq. (47) is: 12 

𝑔𝑔𝑖𝑖(𝒙𝒙,𝑝𝑝𝑖𝑖) =  𝑙𝑙𝑙𝑙(𝑝𝑝𝑖𝑖) − 𝑙𝑙𝑙𝑙(𝑐𝑐𝑖𝑖) − 𝑙𝑙𝑙𝑙�𝑊𝑊𝑖𝑖(𝒙𝒙)�, 𝑖𝑖 = 1, 2 (48) 13 

The acceptance rate of the undecomposed limit state function in Eq. (45) is about 0.0016, which 14 

indicates to the feasibility of integrating Monte Carlo simulations with BUS and BUAK algorithms as the 15 

benchmarks. Four methods are considered here including BUS+MCS, BUS+SS, BUAK+MCS, and 16 

BUAK+SS. The performance of these methods is evaluated in terms of the number of calls to the 17 

performance function 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, and mean and standard deviation of the posterior distribution estimated in the 18 

left and right clusters (i.e., 𝜇̂𝜇′(𝐿𝐿), 𝜇̂𝜇′(𝑅𝑅),  𝜎𝜎�′(𝐿𝐿) and 𝜎𝜎�′(𝑅𝑅), L denotes 𝑋𝑋1 < 1and R denotes 𝑋𝑋1 > 1 ). 19 

𝑚𝑚2 

𝑚𝑚1 

𝑘𝑘1 

𝑘𝑘2 
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Simulation results of these methods are summarized in Table 7. Figure 9 showcases the samples following 1 

posterior distribution using BUS+MCS through SRS and SRS-MARV strategies. According to these results 2 

and those in Table 8, 𝑓𝑓′(𝑥𝑥) estimated through BUS+MCS+SRS and BUS+MCS+SRS-MARV are very close. 3 

Figure 9 offers a comparison between results generated using BUS+MCS+SRS-MARV and 4 

BUAK+MCS+SRS-MARV. The manga cross points in Fig. 9 (b) are the wrongly accepted samples estimated 5 

from the surrogate models, 𝑔𝑔�𝑖𝑖(𝒙𝒙,𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, 2, using the BUAK method compared with the true limit state 6 

functions 𝑔𝑔𝑖𝑖(𝒙𝒙,𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, 2. The performance of this classification task is summarized in the confusion 7 

matrix in Table 8. Out of 2 × 105  candidate design samples, 321 samples should be accepted. The 8 

‘precision’ (P) and ‘recall’(R) of this confusion matrix are P =  199656
199656+15

= 0.999 and R =  199656
199656+23

=9 

0.999, which indicate the very high accuracy of the involved classification. Thus, the probabilities of failure 10 

for the true and estimated limit state functions are 1.61 × 10−5 and 1.65 × 10−5 and the corresponding 11 

error is calculated as 𝜖𝜖 = 1.65×10−5−1.61×10−5

1.61×10−5
= 0.0248, which is very small. The mean and standard 12 

deviation of 𝑓𝑓′(𝑥𝑥)  estimated through BUAK+MCS+SRS-MARV are close to those estimated through 13 

BUS+MCS+SRS-MARV with ∆ 𝜇𝜇�′(𝐿𝐿)= 0.4997− 0.4996 = 0.0001 , ∆ 𝜇𝜇�′(𝑅𝑅)= 1.8093− 1.8146 =14 

−0.0053 , ∆ 𝜎𝜎�′(𝐿𝐿)= 0.0417− 0.0406 = 0.0011  and ∆ 𝜎𝜎�′(𝑅𝑅)= 0.1527− 0.1544 = −0.0017 . Results of 15 

BUS+SS+SRS-MARV and BUAK+SS+SRS-MARV are shown in Fig. (10) and (11), respectively, which 16 

demonstrate that the process of accepting the samples with posterior distribution is very close to that via 17 

the true limit state. Results from Table 7 show that parameters of 𝑓𝑓′(𝑥𝑥) estimated using BUAK+SS+SRS-18 

MARV are close to the approach of BUS+SS+SRS-MARV with ∆ 𝜇𝜇�′(𝐿𝐿)= 0.5032 − 0.5038 = −0.0006, 19 

∆ 𝜇𝜇�′(𝑅𝑅)= 1.8197− 1.8191 = 0.0006 , ∆ 𝜎𝜎�′(𝐿𝐿)= 0.0388− 0.0407 = −0.0019  and ∆ 𝜎𝜎�′(𝐿𝐿)= 0.1352−20 

0.1476 = −0.0124. 21 

For this example, BUS+SS needs 3758 calls to the performance function with 1000 samples searching 22 

in each subsets. The proposed method BUAK is computationally very efficient as it requires only 250 23 

training samples to achieve high accuracy. These training points include 12 initial training sample, 175 24 
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samples for training the first Kriging surrogate model (i.e., 𝑔𝑔�1(𝒙𝒙,𝑝𝑝1)) and 63 samples for training the 1 

second Kriging surrogate model (i.e., 𝑔𝑔�2(𝒙𝒙,𝑝𝑝2)). In the first loop for constructing ℎ�1, the total number of 2 

evaluations to the performance function is 12 (initial training) + 175 (for ℎ�1). These 187 points can also be 3 

used in the construction of ℎ�2 . It should be noted that the 175 training points used for  ℎ�1  are not 4 

strategically selected for constructing  ℎ�2. However, they can still be used to reduce the computational cost 5 

of ℎ�2. And this is also the reason that only 63 evaluations to ℎ2 are needed but not like that as much as 175 6 

for ℎ�1. This advancement enables researchers to implement Bayesian updating with relatively small number 7 

of calls to the likelihood function.  8 

  
       (a)         (b) 

Fig. 8. 𝑓𝑓′(𝑥𝑥) estimated through BUS+MCS with (a) SRS and (b) SRS-MARV. 9 
 10 
 11 

  
       (a)         (b) 

Fig. 9. 𝑓𝑓′(𝑥𝑥) estimated through (a) BUS+MCS+SRS-MARV and (b) BUAK+MCS+SRS-MARV. 12 
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        (a)          (b) 

  
       (c)         (d) 

Fig. 10 Accepted samples using BUS+SS+SRS-MARV in (a) the first subset, (b) the second subset, (c) the 1 
third subset, and (d) the last subset. 2 
 3 
 4 
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        (a)         (b) 

  
        (c)         (d) 

Fig. 11 Accepted samples using BUAK+SS+SRS-MARV in (a) the first subset, (b) the second subset, (c) 1 
the third subset, and (d) the last subset. 2 

 3 
Table 7. Bayesian Updating results for example 3. 𝜇̂𝜇′(𝐿𝐿), 𝜇̂𝜇′(𝑅𝑅), 𝜎𝜎�′(𝐿𝐿) and 𝜎𝜎�′(𝑅𝑅) denote the estimated 4 
means(left and right cluster) and standard deviation(left and right cluster) for the posterior distribution 5 
𝑓𝑓′(𝒙𝒙). 𝛹𝛹𝑡𝑡ℎ𝑟𝑟 = 1 × 10−3 is set in this case. 6 

Methodology Sampling 
method 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  𝜇̂𝜇′(𝐿𝐿) 𝜎𝜎�′(𝐿𝐿) 𝜇̂𝜇′(𝑅𝑅) 𝜎𝜎�′(𝑅𝑅) 

BUS+MCS  SRS 2 × 105 0.5077 0.0421 1.8209 0.1412 
BUS+MCS  SRS-MARV 2 × 105 0.4996 0.0406 1.8146 0.1544 
BUS+SS SRS-MARV 3758 0.5038 0.0407 1.8191 0.1476 

BUAK+MCS SRS-MARV 12 + 175 +63 0.4997 0.0417 1.8093 0.1527 
BUAK+SS SRS-MARV 12 + 175 +63 0.5032 0.0388 1.8197 0.1352 

 7 
Table 8. Confusion matrix for the classification results 8 
using BUAK+MCS+SRS-MARV. 9 

Actual 
Class 

Predicted Class 
Rejected Accepted 

Rejected 199656 23 
Accepted 15 306 
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For example 3, 100 simulations are conducted to investigate the average performance of the proposed 1 

method compared to the BUS approach. These simulation results are summarized in Table 9 and 10. For 2 

this case, the expected number of calls to the limit state function 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐), expected value of the estimated 3 

mean 𝐸𝐸(𝜇̂𝜇′) and standard deviation 𝐸𝐸(𝜎𝜎�′) on the left and right sides and their corresponding coefficients of 4 

variation (C.O.V) are recorded. According to Table 9 and 10, BUS + MCS is the most accurate approach 5 

with smallest variance. For example, the coefficients of variation of the mean of samples following the 6 

posterior distribution on the left and right sides are only 0.005 and 0.007, respectively, which are very small 7 

compared to other approaches. The application of subset simulation can increase the variance of the 8 

stochastic estimator. The proposed approach based on surrogate model can estimate the probabilistic 9 

properties of the samples with posterior distributions, however, with a slightly increased uncertainty. For 10 

instance, BUAK + MCS delivers 𝐸𝐸�𝜇̂𝜇′(𝑅𝑅)� = 1.816 and 𝐸𝐸�𝜎𝜎�′(𝑅𝑅)� = 0.143 with C.O.V of 0.012 and 0.122, 11 

respectively, while BUS + MCS yields 𝐸𝐸�𝜇̂𝜇′(𝑅𝑅)� = 1.817 and 𝐸𝐸�𝜎𝜎�′(𝑅𝑅)� = 0.141 with C.O.V of 0.007 and 12 

0.069, respectively. However, the proposed BUAK approach only needs a very small number of calls to the 13 

performance function with 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 272.68 compared to 2 × 105 for BUS + MCS. 14 

 15 

Table 9. The performance of Bayesian Updating with 100 simulations for example 3 (On the left side). 16 

Methodology 𝐸𝐸(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐶𝐶.𝑂𝑂.𝑉𝑉 
(𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 𝐸𝐸�𝜇̂𝜇′(𝐿𝐿)� 𝐸𝐸�𝜎𝜎�′(𝐿𝐿)� 

𝐶𝐶.𝑂𝑂.𝑉𝑉 
�𝜇̂𝜇′(𝐿𝐿)� 

𝐶𝐶.𝑂𝑂.𝑉𝑉 
�𝜎𝜎�′(𝐿𝐿)� 

BUS + MCS 2 × 105 - 0.502 0.038 0.005 0.050 
BUAK + MCS 252.68 0.483 0.502 0.038 0.007 0.092 

BUS + SS 3674.52 0.037 0.505 0.044 0.006 0.051 
BUAK + SS 252.68 0.483 0.498 0.049 0.013 0.113 

 17 
Table 10. The performance of Bayesian Updating with 100 simulations for 18 
example 3(On the right side).  19 

Methodology 𝐸𝐸�𝜇̂𝜇′(𝑅𝑅)� 𝐸𝐸�𝜎𝜎�′(𝑅𝑅)� 
𝐶𝐶.𝑂𝑂.𝑉𝑉 
�𝜇̂𝜇′(𝑅𝑅)� 

𝐶𝐶.𝑂𝑂.𝑉𝑉 
�𝜎𝜎�′(𝑅𝑅)� 

BUS + MCS 1.817 0.141 0.007 0.069 
BUAK + MCS 1.816 0.143 0.012 0.122 

BUS + SS 1.824 0.137 0.017 0.103 
BUAK + SS 1.829 0.135 0.023 0.137 

 20 

 21 

 22 
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6. Conclusion 1 

To enhance Bayesian updating techniques, a novel approach, called BUAK, is proposed in this paper that 2 

integrates Bayesian Updating with Structural reliability methods (BUS) with Adaptive Kriging surrogate 3 

modeling.  Integration of BUS with advanced adaptive Kriging-based reliability analysis methods offers 4 

new capabilities in reducing the number of evaluations of costly performance functions and simultaneously 5 

training very accurate surrogate models. However, one of the challenging problems in implementing 6 

adaptive Kriging-based reliability analysis methods is the extremely small acceptance rate corresponding 7 

to the limit state function generated via BUS, as the number of observations increases. This leads to adaptive 8 

Kriging-based reliability analysis methods requiring significantly large numbers of candidate design 9 

samples to construct a refined limit state. Such a process can be computationally inefficient and is often not 10 

feasible. To address this limitation, the limit state function derived through BUS is decomposed into 11 

multiple sub-limit state functions with relatively large acceptance rates. Toward this goal, Simple Rejection 12 

Sampling with Multiple Auxiliary Random Variables (SRS-MARV) is proposed in this paper. By training 13 

multiple Kriging surrogates for these decomposed limit state functions, Bayesian updating can be well 14 

implemented using adaptive Kriging-based reliability analysis methods. Three numerical examples are 15 

investigated to examine the performance of the proposed method, BUAK. Results indicate that BUAK offers 16 

high accuracy in estimating the posterior distribution of random variables, while significantly reducing the 17 

number of evaluations of costly likelihood functions. However, BUAK has some limitations for high-18 

dimensional problems (e.g., known as the curse of dimensionality) due to the large computational demand 19 

associated with large matrix operations in constructing Kriging surrogate models. These limitations can 20 

hamper the application of BUAK for problems that have a large number of random inputs such as random 21 

field representations of spatially distributed properties. A potential solution is to control the number of 22 

candidate design samples via integration of the BUS+SS algorithm with adaptive Kriging. 23 
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