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Abstract—This article investigates a robust receiver scheme for a sin-
gle carrier, multiple-input–multiple-output (MIMO) underwater acoustic
(UWA) communications,which uses the sparseBayesian learning algorithm
for iterative channel estimation embedded in Turbo equalization (TEQ).
We derive a block-wise sparse Bayesian learning framework modeling the
spatial correlation of the MIMO UWA channels, where a more robust
expectation–maximization algorithm is proposed for updating the joint
estimates of channel impulse response, residual noise, and channel covari-
ance matrix. By exploiting the spatially correlated sparsity of MIMOUWA
channels and the second-order a priori channel statistics from the training
sequence, the proposed Bayesian channel estimator enjoys not only rela-
tively low complexity but also more stable control of the hyperparameters
that determine the channel sparsity and recovery accuracy. Moreover, this
article proposes a low complexity space-time soft decision feedback equal-
izer (ST-SDFE) with successive soft interference cancellation. Evaluated
by the undersea 2008 Surface Processes and Acoustic Communications
Experiment, the improved sparse Bayesian learning channel estimation
algorithmoutperforms the conventionalBayesian algorithms in termsof the
robustness and complexity, while enjoying better estimation accuracy than
the orthogonal matching pursuit and the improved proportionate normal-
ized least mean squares algorithms.We have also verified that the proposed
ST-SDFE TEQ significantly outperforms the low-complexity minimum
mean square errorTEQ in terms of the bit error rate and error propagation.

IndexTerms—Channel estimation (CE),multiple-input–multiple-output
(MIMO), space-time soft decision feedback equalizer (ST-SDFE), sparse
Bayesian learning (SBL), successive soft interference cancellation (SSIC),
Turbo equalization (TEQ), underwater acoustic (UWA) communications.

I. INTRODUCTION

U NDERWATER acoustic (UWA) communications exhibit signifi-
cant technical challenges due to the following threemain reasons.

1) The channel impulse response (CIR) extends excessivemultipath
delay spreadwhich results in severe intersymbol interference that
is across hundreds of symbol periods.
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2) Significant time variation and Doppler spread due to dynamic
fluctuations of wavefront andmotion of the transceiver platforms
obstruct channel capability and impair the reliability of coherent
phase detection.

3) The available channel bandwidth is very limited due to the
frequency-dependent energy loss at high frequency,whichmakes
high data rate UWA communications difficult [1].

To realize high data rate communication in UWAchannels, multiple-
input–multiple-output (MIMO) schemes are considered a viable so-
lution thanks to the temporal and spatial diversity gains of MIMO
system. In the past two decades, extensive research on MIMO UWA
communications has ranged from single carrier [2]–[11] to multicarrier
[12]–[15] coherent modulation systems. However, MIMO schemes
under UWA channels still encounter several obstacles. For example,
strong spatial correlation decreases the diversity, andMIMOco-channel
interference (CCI) overwhelms receiver processing, especially in the
fast time-varying channels. Therefore, MIMO UWA transceivers often
require accurate channel estimation (CE), powerful equalization, and
decoding schemes to achieve satisfactory performance.

Currently, two equalization approaches are commonly used in UWA
communications, namely the CE-based equalization and the direct
adaption (DA)-based equalization. The DA-based equalizers calculate
the adaptive equalization filters directly without explicitly estimating
the channel coefficients, which often requires longer training sequence
to reach convergence [16]. In contrast, the CE-based methods explic-
itly estimate the channel coefficients and design the equalizer filters
accordingly via the training sequence [17]. While exposing higher
computational complexity than the DA-based equalizers, the CE-based
approaches require shorter training sequence and achieve better perfor-
mance than the DA-based equalizer.

UWA channels tend to be sparse both in the Doppler-spread and
delay-spread domains, which motivates several sparse CE and fast
tracking methods. The classic least mean squares [18] and its propor-
tionate variations [19], [20] have been applied to UWA communica-
tions [21], [22] successfully with variable step sizes and data reuse to
combat the slow convergence. Another approach is the Lp-norm regu-
larized optimization method [23]–[25], where p is a fractional number
between 0 and 2. When p = 1, minimizing the L1-norm of the error
function leads to the sign algorithm. More recently, the compressed
sensing approach which utilizes the mixed L1- and L2-norms [26],
[27] has been applied to UWA CE where the dictionary is defined in
the space-timedomain.Although thesemethods are effective, they often
require the sparse structure of CIR to remain stationary over the length
of a data block, where this constraint is easily violated by the dynamic
underwater environment.An alternative approach to alleviating the time
variation of the CIR is to estimate the delay-Doppler-spread function of
sparse arrivals, which is far less restrictive than assuming the constant
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CIR [28], [29], but this method harvests little gain when compared with
the high computational complexity which is not preferable, especially
for MIMO channels. Moreover, much more effort focuses on how to
exploit the channel sparseness, and there is little research that works on
the spatial correlation property of the MIMO UWA channels.

Recently, the Bayesian iterative learning method has been applied to
UWA CE [30] and passive source localization [31], [32]. These meth-
ods were originally proposed for estimating the single measurement
vector or the multiple measurement vector [33]–[35]. By incorporating
the knowledge of hierarchically underlying models and the a priori
information into the estimation process, Bayesian estimation shows
its superiority in terms of solving the channel overparametrization
problem. However, Bayesian estimation exhibits huge computational
complexity when the channel length or the number iteration is large or
when theMIMOUWA channels are spatially correlated. Simplification
is often used in practice, which assumes that the channel covariance
matrix is diagonal. Meanwhile, this assumption is invalid in terms of
the MIMO UWA channels.

This article proposes an improved sparse Bayesian learning (I-SBL)
algorithm for MIMO UWA CE by exploiting the spatial correlation
structure and the temporal sparsity of theMIMOUWA channels simul-
taneously. The proposed I-SBL models the MIMO channel covariance
matrix as block diagonal with each subblock capturing the spatial cor-
relation of theMIMO channel and different subblocks corresponding to
the temporal delay taps. I-SBL also characterizes the temporal sparsity
of the MIMO channels via the gains of the subblocks of the covariance
matrix. A sparsity controlling factor γ is used to determine the sparsity
of I-SBL, which sets the subblock of the covariance matrix to zeros
if the gain of the subblock is smaller than γ. The proposed I-SBL
algorithmuses the expectation–maximization (EM) algorithm to update
the hyperparameters and is further enhanced via the initialization of the
channel covariance matrix and noise power from the training sequence.
In the iterative EM algorithm, when γl is less than a fixed value γ, the
corresponding entries of the given structured MIMO channel vector
hm are removed, reinforcing the sparsity of the spatially correlated
channels. The estimated channel coefficients are then applied to a Turbo
equalization (TEQ) unit with a simplified space-time soft decision
feedback equalizer (ST-SDFE), achieving successive soft interference
cancellation (SSIC).

The overall receiver schemewas tested by thefield trial data collected
undersea during the 2008 Surface Process and Acoustic Communi-
cations Experiment (SPACE08) where the transmitted signal was de-
signed by theMissouri University of Science and Technology [17]. The
experimental results demonstrate that the proposed I-SBL has higher
complexity than the improved proportionate normalized least mean
square (IPNLMS) algorithm, but achieves faster parameter convergence
and enjoys lower computational complexity than the conventional
Bayesian algorithms. Moreover, the ST-SDFE-based TEQ in combi-
nation with the I-SBL CE algorithm outperforms the low-complexity
minimum mean square error (LC-MMSE) TEQ significantly in terms
of bit error rate (BER). Complexity analysis also shows that I-SBL has
an acceptable complexity for practical implementation.

Notations: Upper (lower) boldface letters are used for matrices
(column vectors). (·)H , (·)T , and (·)∗ represent the Hermitian, trans-
position, and conjugation, respectively. Operator E[·] represents the
statistical expectation and ⊗ is the Kronecker product. Symbol IL
denotes the identity matrix with size L× L. When the dimension is
evident from the context, for simplicity, we just use I. Vector norms:
‖ · ‖2 is the squared Frobenius norm of a vector or a matrix, and
‖ · ‖1 and ‖ · ‖0 are the L1- and L0-norms of a vector, respectively.
The i× j complex matrix space is represented by Ci×j . The matrix
diag{d1, d2, . . . , dj} is a j × j diagonal matrix with diagonal elements

Fig. 1. Encoding scheme on the nth transmit branch, where Π denotes the
interleaver.

Fig. 2. Proposed MIMO detector using Bayesian iterative CE and TEQ.

d1, d2, . . . , dj , and similarly Bdiag{·} is a block diagonalmatrix. Other
mathematical symbols are defined after their first appearance.

II. SYSTEM DESCRIPTION

Consider anN ×M MIMOUWAcommunication system,whereN
and M are the numbers of transducers and hydrophones, respectively.
At the transmitter side, each bit stream is independently encoded,
interleaved,modulated, and then transmitted by a transducer via a frame
construction unit. Fig. 1 depicts the encoding scheme of thenth transmit
branch, with bn,k, c′n,k, cn,k, and sn,k being the information bit, the
encoded bit, the interleaved bit, and themodulated symbol, respectively.

For example, the SPACE08 experiment adopts a rate-1/2 nonsys-
tematic convolutional code with a generator polynomial [G1, G2] =
[17, 13]oct and a random interleaver Π. The bit to symbol em-
ploys QPSK, 8PSK, and 16QAM with the constellation sizes be-
ing Q = 4, 8, and 16, respectively, where each of the constellation
set S = {χq}Qq=1 carries log2 Q bits, i.e., the bit patterns {ckn,p =

cn,(k−1) log2 Q+p}log2 Q
p=1 are mapped to symbol sn,k.

Fig. 2 depicts the structure of the proposed iterative MIMO CE
and TEQ, where y denotes the received sampling vector of the M
received branches. The training sequence of the received y is used
for calculating R and σ̂2 that are the second-order a priori statistics
of the UWA channels. The iterative MIMO channel estimator unit
provides the estimates of channel matrix Ĥ and the noise variance σ̂2

for theMIMOST-SDFEunit,whereLE
e (cn,k) andLD

e (cn,k)denote the
extrinsic log-likelihood ratios (LLRs) of the MIMO ST-SDFE unit and
the maximum a posteriori probability (MAP) decoder, respectively,
with k being the index of the encoded bit and n being the index of
the transducer. The MIMO ST-SDFE calculates the extrinsic LLRs
LE

e (cn,k), which are then regrouped via the DEMUX and deinterleaver
(Π−1) to form the a priori LLRs LE

e (c
′
n,k) for the MAP decoder. The

MAP decoder calculates the bit extrinsic LLRs LD
e (c′n,k), which are

then fed back to the MIMO ST-SDFE as the a priori LLRs LD
e (cn,k)

via interleaver (Π) for the next Turbo iteration. Meanwhile, the MIMO
ST-SDFE feeds the estimated symbols ŝ and the reestimated noise
variance σ̂2 into the MIMO channel estimator for the decision-directed
(DD) CE.

To combat the time-varying fading in UWA channels, the MIMO
detector partitions each large data block into smaller sized subblocks.
Fig. 3 describes the detector partition prepared for the MIMO CE
unit and the MIMO ST-SDFE unit, which divides the data block into
several blocks of length Nb; each block is further divided into smaller
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Fig. 3. Partition of the transmitted frame at the receiver: Training sequence and data payload in subblocks [22].

subblocks of length Nsb. Each subblock is prevented by an overlap
of length Novlp, and the equalized symbols at the tail of previous
subblock are equalized again at the current sequential subblock. In
this way, performance degradation in the tail symbols of each subblock
is prevented. The previous Np symbols can be the training symbols or
the detected symbols from the equalizer of the previous subblocks.

The proposed CE works in two modes: the training mode and the
DD mode. In the training mode, the MIMO detector uses the training
symbols for CE in the first subblock. In the DD mode, the previously
detected symbols or a combination of partial training symbols are used
for CE for the second and subsequent subblocks. The algorithm outline
of the subblock processing has been discussed in [22], which is out of
the scope of this article.

III. ITERATIVE MIMO CE AND TEQ

After front-end processing which includes frame synchronization,
Doppler shift estimation, and waveform resampling, the discrete-time
baseband signal received at the mth hydrophone is expressed by

ym,k =
N∑

n=1

L−1∑

l=0

hm,n(k, l)sn,k−l + wm,k (1)

where sn,k−l is the transmitted symbol of the nth transducer,
{hm,n(k, l)}L−1

l=0 is the lth channel tap between the nth transducer and
the mth hydrophone at time instant k, and wm,k is the zero mean
additive white Gaussian noise (AWGN) whose power is assumed to be
σ2.

A. MIMO CE: The I-SBL Algorithm

When the time duration of the training sequence or the previously
detected payload sequence {xn,k}Np−1

k=0 is less than the channel coher-
ence time, the channel coefficientshm,n(k, l) are approximated as quasi
time invariant, which is hm,n(k, l) ≈ hm,n(l). The received signal at
the mth hydrophone corresponding to the transmitted sequence in a
matrix form is approximated as

ym ≈
L−1∑

l=0

Xlhm,l +wm = Xhm +wm (2)

where

ym �
[
ym,L−1, ym,L, . . . , ym,Np−1

]T ∈ C(Np−L+1)×1

hm,l � [hm,1(l), hm,2(l), . . . , hm,N (l)]T ∈ CN×1

wm �
[
wm,L−1, wm,L, . . . , wm,Np−1

]T ∈ C(Np−L+1)×1

hm �
[
hT
m,0,h

T
m,1, . . . ,h

T
m,L−1

]T ∈ CNL×1.

MatrixXl ∈ C(Np−L+1)×N is defined as

Xl �

⎡

⎢⎢⎢⎢⎢⎣

x1,L−l−1 x2,L−l−1 · · · xN,L−l−1

x1,L−l x2,L−1 · · · xN,L−l

...
...

...
...

x1,Np−l−1 x2,Np−l−1 · · · xN,Np−l−1

⎤

⎥⎥⎥⎥⎥⎦
(3)

and matrix X is concatenated as X = [X0,X1, . . . ,XL−1] ∈
C(Np−L+1)×NL.

The equivalent input and output (I/O) model in (2) differs from
the conventional system I/O model for block-wise MMSE CE, where
we concatenate the lth channel coefficients of all the N transducers
as one subgroup hm,l, while the conventional MIMO channel model
concatenates the L channel taps of each (m,n)-pair of transmitter
and receiver. The modified I/O model (2) ensures that the spatial
correlation of the MIMO UWA channels is utilized easily. Besides,
the UWA channels are usually sparse in time. Although hm contains
NL unknowns, many entries of hm are approximately zero and the
sparseness is usually similar across theN transducers.When the length
of the training symbols (Np − L+ 1) < (NL), the system equation
(2) is under determined or the estimation of hm is overparameterized,
and shall be avoided. Moreover, for the (m,n)th pair of transmit–
receive elements, the signals of the other (N − 1) channel are mixed
in the received samples, which will induce estimation ambiguity due to
spatial correlation. These aspects lead to formidable difficulties for the
conventionalBayesian learning algorithms to estimate theMIMOUWA
channels. This article improves the sparse Bayesian Learning (SBL)
algorithm by reducing the computational complexity and improving
the estimation accuracy. In the EM iteration, the E-step yields the
expectation of hm and the hyperparameters are obtained in the M-step.

1) EM Algorithm E-Step: The E-step takes the expectation of
the a posteriori likelihood as the estimate result for the MIMO UWA
channels whose Bayesian hierarchy is modeled as

Pr(hm|ym;Rm, σ2) =
p(ym|hm;σ2)Pr(hm;Rm)∑
hm

p(ym|hm;σ2)Pr(hm;Rm)
(4)

where the conditional Gaussian likelihood is

p(ym|hm;σ2) ∼ CN (Xhm, σ2I) (5)

and the a priori likelihood of Pr(hm;Rm) is

p(hm;Rm) ∼ CN (0,Rm) (6)

where Rm is the hidden hyperparameter incorporated inside the hier-
archical model. For the conventional Bayesian algorithm, Rm is just
considered as the uncorrelated diagonal matrix. As we consider the
MIMO UWA channel hm to be spatially correlated and sparse,Rm is
rewritten as

Rm = Bdiag{γ0Δ0, . . . , γL−1ΔL−1} (7)
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with {Δl}L−1
l=0 being the covariance submatrix that determines the

spatial correlation of the lth tap and γl being the hyperparameter that
controls the channel sparsity. When γl = 0, the corresponding Xl

becomes zero and is then discarded from matrix X. In this way, the
sparsity of MIMO channel is controlled jointly thanks to the spatial
correlation ofUWAchannels. To avoid overfitting,weupdate the hidden
hyperparameters γl andΔl instead of updatingRm directly. Since all
the Δl are assumed to be identically distributed, we consider using
one positive–definite matrixΔ to model all theΔl. Thus, (6) becomes
Rm = Γ⊗Δ with Γ � diag{γ0, . . . , γL−1}. The a priori likelihood
p(hm;Rm) � p(hm; γl,Δ). Using the Bayesian rule, we obtain the
a posteriori likelihood of hm, which is also the Gaussian process

p(hm|ym;Rm, σ2) ∼ CN (μ,Ξ) (8)

with the mean

μ = (σ2)−1ΞXHym (9)

and the covariance matrix

Ξ =
(
R−1

m + (σ2)−1XHX
)−1

. (10)

Therefore, given all the hyperparameters Θ = {γl,Δ, σ2} acquired
from the previous EM iteration, the MAP estimate of hm is given by
the E-step

ĥm � μ =
(
σ2R−1

m +XHX
)−1

XHym. (11)

2) EM AlgorithmM-Step: TheM-step maximizes the likelihood
p(ym;Θ) to update the hyperparameter set Θ. This is equivalent to
minimizing − log p(ym;Θ), yielding the effective cost function

L(Θ) � −2 log
∑

hm

(
p(ym|hm;σ2) p(hm; γl,Δ)

)

= yH
m (Ξ)−1 ym + log |Ξ| (12)

withΞ � σ2I+XRmXH . The EM formulation then treats thehm as
hidden parameters and takes the partial derivative ofL(Θ)with respect
to {γl,Δ, σ2} leading to zero. To estimate γ � [γ0, . . . , γL−1] andΔ,
we notice that the conditional likelihood p(ym|hm;σ2) is unrelated
to γ and Δ. Therefore, the cost function with target {γ,Δ} can be
simplified to

L(Θγ,Δ) ∝ − log
(|Γ|N |Δ|L)− Tr

[
(Γ⊗Δ)−1(Ξ+ hmhH

m)
]
.

(13)
The derivative of (13) with respect to Δ and {γl}L−1

l=0 is given by

Δ =
1

Lα

∑

∀l:γl>γ

(
Ξl + hm,lh

H
m,l

)
/γl (14)

γl =
1

N
Tr

[
Δ−1

(
Ξl + hm,lh

H
m,l

)]
(15)

where Lα is the number of the channel taps that are nonzero over
the channel length L at the current EM iteration and γ detailed in the
previous section is the threshold that determines the channel sparseness.
Tr[·] denotes the trace of the matrix. We also define

Ξl � [Ξ][lN+1:(l+1)N,lN+1:(l+1)N ].

Similarly, the residual noise power σ2 is solved by setting the partial
derivative of L(Θσ2) over σ2 to zero. The solution is obtained as

σ2 =
‖ym −Xhm‖2 + σ̂2 [NL− Tr(ΞR−1

m )]

Np − L+ 1
(16)

Algorithm 1: I-SBL for MIMO UWA CE.

Given number of EM iterations T , the sparsity controlling
factor γ = 2× 10−6, the convergence threshold δ = 10−3.
Initialization t = 0, ĥm = 0NL×1, (σ2)(0),R(0)

m ;
nonzero index z = [1, 2, . . . , L];
nonzero dictionary list q = [1, 2, . . . , NL]T .
while t < T do

t ← t+ 1;
E-step:
update h(t)

m using (11);
M-step:
update Δ and γl using (14) and (15), respectively;
update R(t)

m usingR(t)
m = Γ⊗Δ;

update noise power (σ2)(t) using (16).
ifmin{|γl|} < γ, l ∈ z then
z := ∀l ∈ z, such that |γl| > γ;
update X ← [X][:,(z−1)N+1:zN ];
update q ← [q][(z−1)N+1:zN ]

end if
if ‖h(t)

m ‖0 = ‖h(t−1)
m ‖0 then

if ‖h(t)
m − h

(t−1)
m ‖1/‖h(t)

m ‖1 ≤ δ then
break;

end if
end if

end while
Output ĥm(q) ← h

(t)
m .

where σ̂2 on the right-hand side denotes the estimated σ2, which is
estimated from the previous EM iteration. For the derivation of (14)–
(16), Zhang and Rao [33] give more theoretical details.

After the tth EM iteration is finished by involving (11) and (14)–(16),
we set t := t+ 1, and repeat EM iteration until t equals T or meets the
condition ‖h(t)

m − h
(t−1)
m ‖1/‖h(t)

m ‖1 ≤ δ, where δ is the convergence
threshold that determines the accuracy of the estimation results. The
I-SBL algorithm for MIMO UWA CE is summarized in Algorithm 1.
Note thatR(0)

m is computed using the training sequence and is used for
every subblock (Nsb-length) throughout the whole data packet, while
h
(t)
m and R

(t)
m are updated for each subblock in every EM iteration

inside the channel estimator.

B. MIMO TEQ

The proposed MIMO detector uses the TEQ that combines the
ST-SDFE simplified from [9] with the MAP decoder. The payload
symbols of a subblock are denoted as {sn,k(0 ≤ k ≤ Nsb − 1)}Nn=1.
DefineK1 andK2 as the lengths of the noncasual and casual parts of the
nonlinear equalizer, respectively. The overall filter length used for the
symbol-wise equalization is K = K1 +K2 + 1. After the interblock
interference is removed from the current subblock, the system I/O
model is defined as

yk = Hsk +wk (17)

where the output

yk � [yT
k−K2

,yT
k−K2+1, . . . ,y

T
k+K1

]T ∈ CMK×1

denotes the observation vector for time instant k with

yk � [y1,k, y2,k, . . . , yM,k]
T ∈ CM×1
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the input

sk � [sTk−K2−L+1, . . . , s
T
k+K1

]T ∈ CN(K+L−1)×1

with

sk � [s1,k, s2,k, . . . , sN,k]
T ∈ CN×1

and the concatenated noise vector is expressed as

wk � [wT
k−K2

,wT
k−K2+1, . . . ,w

T
k+K1

]T ∈ CMK×1

with

wk � [w1,k, w2,k, . . . , wM,k]
T ∈ CM×1.

LetK3 = K2 + L− 1, then the MIMO channel matrix is defined as

H �

⎡

⎢⎢⎣

HL−1 · · · H0 · · · 0

...
. . .

. . .
. . .

...
0 · · · HL−1 · · · H0

⎤

⎥⎥⎦

∈ C(MK)×N(K3+K1+1)

with

Hl �

⎡

⎢⎢⎣

h1,1(l) h1,2(l) · · · h1,N (l)

...
...

. . .
...

hM,1(l) hM,2(l) · · · hM,N (l)

⎤

⎥⎥⎦ ∈ CM×N . (18)

The channel equalizer is to equalize the payload symbols {sn,k(0 ≤
k ≤ Nsb − 1)}Nn=1 given the observation signals and the estimated
channel coefficients ĥn,m(l).

1) Space-Time Soft Decision Feedback TEQ: Define the feed-
forward and feedback filter matrices, respectively, as

F = [f1, . . . , fN ] ∈ CM(K2+K1+1)×N

B = [b1, . . . ,bN ] ∈ CNK3×N . (19)

The ST-SDFE estimate of the kth transmitted symbol vector of the N
transducers is given by

ŝk = FHyk −BH s̆k (20)

where

s̆k = [s̆Tk−K3
, s̆Tk−K3+1, . . . , s̆

T
k−1]

T ∈ CNK3×1

s̆k = [s̆1,k, s̆2,k, . . . , s̆N,k]
T ∈ CN×1.

Here, the sequence s̆k is the most recent decisions on every stream, and
s̆k is the previously equalized symbol vector, with s̆n,k being the soft
decision of the kth transmitted symbol from the nth transducer, which
is a function of its a posteriori LLR obtained at current Turbo iteration.
To design the coefficient vectors fn and bn, we use the MMSE metric
by minimizing E[|ŝn,k − sn,k|2], and the optimum solution is given
by

ŝn,k = fHn yk − bH
n s̆k

=

[
fn
bn

]H [
yk

−s̆k

]
. (21)

Assume that the soft decisions are correct, i.e., s̆k = sk for all n and
k, then the MMSE Winner–Hopf solutions for fn and bn are solved
jointly by

[
fn
bn

]
= Ψ−1dn (22)

where

dn = E

[
yk

−s̆k

]
s∗n,k

= E
[
sn,ks

∗
n,k

]
[
[Ĥ][NK3+n]

0

]
(23)

and

Ψ = E

([
yk

−s̆k

] [
yk

−s̆k

]H
)

= E
[
sn,ks

∗
n,k

]
[
ĤĤH −V

−VH I

]
(24)

where [·][NK3+n] indicates the (NK3 + n)th column of the estimated
channel matrix Ĥ, and V = [[Ĥ][1:N :(N−1)K3], . . . , [Ĥ][N :N :NK3]].
Also, Ĥ is defined as (18) by replacing the channel coefficientshn,m(l)

with the estimated channel coefficients ĥn,m(l). Similar structure is
referred in [36]. The highly structured form of Ψ may be exploited
to simplify the calculation of its inverse in (22). Equations (23) and
(24) make sense by utilizing the space-time structure of the transmitted
symbols, where the N × 1 vector sk transmitted at time k is time
independent within every individual burst, leading to the diagonal
spatial covariance

E
[
sks

H
k

]
=

PT

N
IN (25)

where PT is the total average transmit power which is consistent
regardless of the transducer number. The expectation is simply

E[sn,ks
∗
n,k] =

PT

N
.

Equations (23) and (24) reveal that the feedforward filter vector fn
and feedbackfilter vectorbn are determined solely by the expectation of
the current (n, k)th symbol sn,k and the main column of the estimated
channelmatrix Ĥ that covers all the channel coefficients associatedwith
the nth transducer. The computational complexity is greatly reduced
since the expectations in calculating dn and Ψ are converted into the
symbol power and channel estimates. The filter coefficients fn and bn

can be calculated when equalizing the first symbol of the subblock
and keep them fixed in the current subblock to further reduce the
computational complexity that involves the matrix inverse of Ψ.

Once the equalizer filters are designed, the received signals are
filtered through the equalizer and the SSIC is applied to the first Turbo
iteration and beyond, where (21) is revised as

ŝn,k = fHn

(
yk − Ĥs̃k

)
− bH

n

(
s̆k − s̄k

)
(26)

where

s̃k = [s̄Tk−K2−L+1, . . . , s̄
T
k−1, s̃

T
n,k, s̄

T
k+1, . . . , s̄

T
k+K1

]T

s̄k = [s̄1,k, s̄2,k, . . . , s̄N,k]
T

s̃n,k = [s̄1,k, . . . , s̄n−1,k, 0, s̄n+1,k, . . . , s̄N,k]
T

s̄k = [s̄Tk−K3
, s̄Tk−K3+1, . . . , s̄

T
k−1]

T .

Here, s̄n,k is the soft estimate of the kth transmitted symbol from the
nth transducer, which is a function of its a priori LLR at the current
Turbo iteration. Note that the a posteriori soft decisions s̆k used in the
feedback filter bn are unavailable when k < K3, and we adopt the a
priori LLR of the corresponding symbols, which may slightly degrade
the performance of those symbols.
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2) Soft Decisions and LLRs Calculation: Instead of using the
soft estimated symbols from (26) as the final decision, we proceed to
calculate the soft decision of the ŝn,k as the final output, expressed as

s̆n,k =
∑

χq∈S
χqPr(sn,k = χq|ŝn,k) (27)

where the a posteriori probability Pr(sn,k = χq|ŝn,k) is given by

Pr(sn,k = χq|ŝn,k) =
p(ŝn,k|sn,k = χq)Pr(sn,k = χq)

p(ŝn,k)
(28)

and the a priori probability Pr(sn,k = χq) is computed as

Pr(sn,k = χq) =

log2 Q∏

p=1

1

2

(
1 + ãq,p tanh(L

D
e (ckn,p)/2)

)
(29)

where ãq,p is the predetermined bit patterns with ãq,p = 1when aq,p =
0 and ãq,p = −1 when aq,p = 1. A given constellation point χq is
mapped to the corresponding bit patterns

aq = [aq,1, aq,2, . . . , aq,log2 Q]
T .

Also, LD
e (ckn,p) is the a priori LLRs of equalizer which are acquired

from theMAPdecoder, since the equalized symbols ŝn,k are assumed to
be the outputs of an equivalent AWGN channel and follow the Gaussian
distribution ŝn,k ∼ CN(μn,ksn,k, σ

2
n,k). Therefore, the conditional

probability distribution function of the equalized symbols in (28) is
expressed as

p(ŝn,k|sn,k = χq) =
1

πσ2
n,k

exp
(−ρkn,q

)
(30)

where

ρkn,q =
|ŝn,k − μn,kχq|2

σ2
n,k

and μn,k and σ2
n,k are calculated by

μn,k = fHn h̃n (31a)

σ2
n,k = μn,k(1− μn,k) (31b)

respectively, with h̃n being the (NK3 + n)th column of Ĥ, since we
treat the UWA channel as time-invariant during each subblock period
Nsb whose channel update is unnecessarily performed symbol-wise.
Therefore, μn,k and σ2

n,k are reduced to μn and σ2
n to save the compu-

tation dramatically. Furthermore, the denominator in (28) is computed
via the normalization of

Q∑

q=1

Pr(sn,k = χq|ŝn,k) = 1.

Accordingly, the extrinsic LLRs of the interleaved bits generated from
the equalizer are directly calculated by [37]

LE
e (c

k
n,p) = ln

×
∑

χq :ckn,p=0 exp
(
−ρkn,q +

∑
∀p,′p′ =p ãq,p′L

D
e (ckn,p′)/2

)

∑
χq :ckn,p=1 exp

(
−ρkn,q +

∑
∀p,′p′ =p ãq,p′LD

e (ckn,p′)/2
) . (32)

which is readily fed back to theMAPdecoder as the a priori information
via deinterleaving operation. After going through the MAP decoder,
LD

e (ckn,p) is fed back again into the ST-SDFE unit as the a priori LLRs
for the next Turbo iteration.

Fig. 4. Oceanographic and meteorological data in SPACE08. The average
wave height and wind speed were 1.25 m and 5.395 m/s labeled by the blue
dash–dot line, respectively. Two blue circle marks in each figure denoted the
Julian dates 289, 300 and 289, 301, respectively.

IV. EXPERIMENT RESULTS

The proposedMIMO detector was tested by the data of the undersea
trial of SPACE08. The merits of the proposed I-SBL CE algorithm are
demonstrated via comparison to other channel estimators, such as the
MMSE [17], OMP [28], IPNLMS [22], sparse Bayesian algorithm [35]
(cited as Bayesian-I), and nonsparse Bayesian algorithm [32] (cited as
Bayesian-II). The ST-SDFE structure is also compared with the LC-
MMSE linear equalizer [22].

A. Experiment Description

The SPACE08 experiment was conducted in October 2008, by
the Woods Hole Oceanographic Institution at the Air-Sea Interaction
Tower, twomiles south of the coast ofMartha’s Vineyard, MA, USA, at
a sea depth about 15m. The channel conditionswere closely linkedwith
the oceanographic and meteorological data such as wave height and
wind speed, as shown in Fig. 4, where the dynamic variations were used
as the reference to determine the channel conditions and communication
quality. Many descriptions about this sea trial experiment have been
provided [17], [22], and we will not repeat the tedious experimental
specifications.

In this experiment, QPSK, 8PSK, and 16 QAM signal carrier
modulation (SCM) were used with a baseband symbol period of
Ts = 0.1024 milliseconds (ms). The carrier frequency was fc = 13
kHz. The transmitter filter was a square-root raised cosine filter with the
roll-off factor 0.22 and the occupied channel bandwidth 9.7656 kHz.
The transmission frame structure of each transducer is illustrated in
Fig. 5. The data frame began with a header LFM named LFMB,
followed by three SCM packets: QPSK, 8PSK, 16QAM, and ended
with a trailing LFM signal named LFME. Zero-padded gaps were
inserted between the LFM header and SCM packets, and between the
adjacent frames. Each of the SCM packet included an m-sequence of
length-511, and a data payload consisting of Nd = 30 000 modulated
symbols. The LFM served multiple purposes including the coarse
synchronization, carry frequency offset estimation and compensation,
and the channel length measurement, attributed to their unique corre-
lation properties. The m-sequence was used for evaluating the channel
scattering function, calculating the a priori R(0)

m and (σ2)(0) for the
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Fig. 5. Burst structure of the nth transmit branch in the SPACE08 experiment.

Fig. 6. Estimated CIR and its coherence time: Packet 1 from transducer 1
(Tx1) to hydrophone 1 (Rx1) at 200-m transmission distance.

I-SBL channel estimator. An analysis of the channel scattering function
with the m-sequence revealed that the maximum Doppler spread of
the channel was about 5 Hz. The baseband CIR distribution and the
equivalent channel coherence time at 200-m distance are depicted in
Fig. 6. The CIRs were time variant, in which the coherence time was
used to evaluate the channel variation level. Most of the channel energy
was concentrated within 10 ms, corresponding to a channel with an
approximated length of 100 taps. The coherence level decreased to 0.4
at 0.125 s, spanning 0.125 × 9.7656 ≈ 1000 taps. The tap scaling was
in terms of the symbol duration Ts = 0.1024 ms.

For the two-transducer MIMO scheme, 45 S3, S4 files (200-m trans-
mission distance) and 19 S5, S6 files (1000-m transmission distance)
were processed. For the three-transducer MIMO scheme, 19 S5, S6
files were processed. For the four-transducer MIMO scheme, 19 S5, S6
files were processed.

B. Performance Comparison Under Different CE Algorithms

For the proposed CE-based ST-SDFE, we chose L = 100, K1 =
100, andK2 = 50. TheMMSE,OMP, IPNLMS,Bayesian-I, Bayesian-
II, and the proposed I-SBLwere tested and compared in terms of the ST-
SDFE before theMAP decoder. To ensure the channel coefficients were
quasi time invariant, the subblock length, training overhead, and the
information rate for all the modulation types andMIMO configurations
were selected as shown in Table I, where the corresponding information

TABLE I
PARAMETER SETUP FOR DIFFERENT COMBINATIONS

rate follows:

Rc = 0.5× 9.7656× (1− ξ)N log2 Q (33)

with ξ = Np/Nb being the training overhead rate.
A refined Nsb-length subblock was selected in case that the cor-

responding time duration exceeded the channel coherence time. The
length of Np and Nsb should be chosen so as to achieve a tradeoff
between the detection performance and the transmission efficiency. We
expect to track the channel constantly and avoid the signal-to-noise
degradation in the equalized symbols at the tail of each subblock Nsb.
The subblock partition had an overlap, in which the Novlp symbols
at the tail of the previous block were equalized again in the current
block. Considering the coherence time as shown in Fig. 6, we set
Np +Nsb ≤ 1000. Without loss of generality, we set Novlp = 50,
Nsb = 200,Np = 600, and a flexible choice ofNb for differentMIMO
schemes in Table I. Intuitively, when channel conditions are severe,
e.g., more transducers induce more CCI (four transducers), ξ needs to
be increased.

Other parameter setup for the proposed I-SBL CE algorithm is
summarized as

Number of EM iterations per subblock: T = 2

The sparseness controlling factor: γ = 2× 10−6

The convergence threshold: δ = 10−3

Initializing the channel coefficients: ĥ(0)
m = 0

Initializing the a priori
(
σ2

)(0)
and R(0)

m using m-sequence
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Fig. 7. L1-norm measurement of the estimated channel links ĥ1 correspond-
ing to the EM iterations of the I-SBL, Bayesian-I, and Bayesian-II algorithms
at zero Turbo iteration. Packet 1, 200-m transmission distance with QPSK
modulation.

Although the channel sparsity of each tested packet was dynamic,
we fixed the hyperparameters γ and δ to process all the tested packets.
In particular, we chose the hyperparameters as γ = 2× 10−6 and
δ = 10−3, because these values were suitable for all the tested packets.
In our experience, a larger γ or a smaller δ reinforces the estimated
channels to be sparser, but the sensitivity of these hyperparameters
to the CE performance is low making the proposed I-SBL robust
against the variations in the real channel condition. The reason for
the proposed I-SBL CE algorithm achieving excellent performance
over the other CE counterparts was its robust parameter update of hm,
Rm, σ2 and the utilization of the a priori estimates (σ2)(0) andR(0)

m .
In comparison with the MMSE, OMP, and IPNLMS algorithms, the
robust parameter update of the I-SBL enhances the channel tracking
by exploring the spatial correlation and sparse nature of the MIMO
UWA channels. The utilization of the a priori estimates reduces the
computational complexity, leads to fast convergence, and enjoys more
compact threshold control than the conventional Bayesian algorithms
(Bayesian-I and Bayesian-II).

Fig. 7 depicts the L1-norm measurement of h1 corresponding to
the EM iterations, where all the hyperparameters were the same for
all the three Bayesian schemes. Compared with the Bayesian-I and
Bayesian-II counterparts, the proposed I-SBL enhanced the channel
sparsity and converged at 15th EM iterations which was far less than
that of the other two Bayesian channel estimators. In fact, when we
increased the EM iterations, the ‖hm‖1 convergence of the Bayesian-I
became unstable, andBayesian-II showed no sparseness reinforcement.
During the data processing, we fixed themaximumEM iterationT = 2,
which reduced the computational burden significantly, and the I-SBL
still performed very well.

We also measured the sparseness of the estimated CIRs by using
different channel estimators. The level of sparseness in hm is defined
as

η =
NL

NL−√
NL

(
1− ‖hm‖1√

NL‖hm‖2

)
(34)

Fig. 8. Sparsenessmeasurement of the estimated channel links ĥ1 correspond-
ing to the Rx1 at zero Turbo iteration. Packet 1, 200-m transmission distance
with QPSK modulation.

where the p-norm is defined by

‖hm‖p :=

(
N∑

n=1

L−1∑

l=0

|hn,m(l)|p
) 1

p

. (35)

Different from [22], this article measured the joint channel sparse-
ness of the N transducers whose received signals were projected on
the givenmth hydrophone simultaneously. A larger η indicates that the
estimated channel has sparser structure and the corresponding channel
estimator enjoys better sparsity control. For all the six channel estima-
tors, the sparseness of the estimated CIRs at the given channel links
h1 of packet 1, 200-m transmission distance is shown in Fig. 8, which
was a representative channel condition during the experiment. Since
the MMSE and Bayesian-II criterion enhanced no channel sparsity, η
was the smallest ≈ 0.35. Although adopting the channel sparsity, the
failure of sparseness in Bayesian-I was due to the slow convergence of
γl, as we only took two iterations inside the EM algorithm, which was
far less than the convergence state as shown in Fig. 8. The IPNLMS
algorithm inherently had the capability of sparseness enhancement, and
η ≈ 0.4 achieved minor sparseness gain over the MMSE, Bayesian-I
and Bayesian-II. For the OMP and I-SBL algorithms, the sparseness
η was over 0.45, and the channel sparseness was determined by the
hyperparameters artificially, e.g., for the I-SBL, we restrained the
channel sparseness via γ. However, the estimated channel sparseness is
unable to determine the channel tracking capability as the true channel
state was unavailable a priori. Therefore, Fig. 8 only demonstrates
that the I-SBL can achieve better channel sparseness control than the
other counterparts. Alternately, Fig. 9 depicts the signal prediction error
measurement [28] of the equalized symbols ŝn,k to evaluate the CE
performance straightforwardly with ST-SDFE, corresponding to Fig. 8.
The smaller the signal prediction error is, the better performance the
channel estimatorwill have.CombinedwithFigs. 8 and9, someanalysis
is drawn.

1) The channel in SPACE08 was time varying, leading to a time-
varying estimated CIR, so it made perfect sense that the sparse-
ness curves of the estimated CIRs were also time varying and
almost had the same tendency for all the channel estimators under
test.
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Fig. 9. Average signal prediction error of ŝn,k in decibels (dB), 2× 6MIMO
transmission at zero Turbo iteration. Packet 1, 200-m transmission distance with
QPSK modulation.

Fig. 10. Results of2× 6 and3× 9MIMOtransmission at zeroTurbo iteration
before MAP decoder, with QPSK modulation.

2) The proposed I-SBL had both the sparsest estimated CIR and the
best estimate performance.

3) The estimated channel sparseness was insufficient to determine
the estimation performance, e.g., the OMP had sparser estimated
CIR but worse performance than that of IPNLMS. Therefore,
excessive sparseness will induce bias in the estimate process for
the Lp-norm algorithms such as OMP.

To better emphasize the performance gain brought by the proposed
I-SBL CE algorithm, we also compared the BER benchmark of using
different CE algorithms before the MAP decoder, which excludes the
performance gain from the powerful MAP decoder. For the QPSK
modulation with 2× 6 and 3× 9 MIMO schemes, the experimental
results are shown in Fig. 10, in terms of the percentage of all the
packets that fall in the specified BER ranges at the zero Turbo iteration
using ST-SDFE. For the 2× 6 MIMO system, the MMSE, Bayesian-
I, and Bayesian-II channel estimators performed worse for the fast

Fig. 11. Averaged BER corresponding to the subblocks of 2× 6MIMO trans-
mission at zero Turbo iteration before MAP decoder, with QPSK modulation.

time-varying channels, thus resulting in the largest percentage of
packets with unsatisfactory BER > 10−2. The reason for the bad
performance of Bayesian-I and Bayesian-II was attributed to the slow
parameter convergence and vulnerable channel sparsity control. In
contrast, for the I-SBL channel estimator, most of the packets achieved
satisfactory BER ≤ 10−2. Specifically, 38.8% of the packets achieved
BER ≤ 10−3. For the 3× 9 MIMO system, as the number of trans-
ducers increased, the BER performance became worse due to the more
CCI but insufficient training symbols. Nevertheless, the I-SBL channel
estimator still performed the best among the six channel estimators.
Fig. 11 gives the averaged BER corresponding to each subblock for
the 2× 6 MIMO system. Since the 2× 6 MIMO system updated the
CE in the training mode every 30 subblocks, the BER performance
was periodical due to the error propagation. The I-SBL still had the
strongest channel tracking capability, proving that the results in Fig. 10
were valid. As a preliminary conclusion, the proposed I-SBL solves the
matrix inverse for channel estimating better than the other counterparts
and induces less singularity when increasing the MIMO size.

C. BER Comparison of the ST-SDFE TEQ and LC-MMSE
TEQ

The BER performance comparison of the proposed ST-SDFE-based
TEQ and LC-MMSE TEQ with different MIMO sizes and modulation
schemes is presented next. First, results of QPSK 2× 6 MIMO are
listed in Table II, where the number of packets that achieved zero BER
is shown for each Turbo iteration. For the 200-m transmission, all 45
QPSKpackets achieved zeroBERwithnomore thanoneTurbo iteration
for the proposed ST-SDFE. In comparison, the LC-MMSE equalizer
took two Turbo iterations to achieve BER-free-packet. For the 1000-m
transmission, 18 out of 19 QPSK packets achieved zero BER after
one Turbo iteration when using the ST-SDFE, while 16 QPSK packets
achieved zero BERwhen using the LC-MMSE equalizer with the same
number of Turbo iterations.

For the 8PSK and 16QAMmodulation with 2× 6MIMO, the exper-
imental results comparison of the LC-MMSE equalizer and ST-SDFE
with I-SBL channel estimators are illustrated in Fig. 12, in terms of
the percentage of packets that fall in the specified BER ranges after
five Turbo iterations. For the higher order modulation schemes, the
ST-SDFE outperformed the LC-MMSE equalizer, leading to 57.9%
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TABLE II
BER BENCHMARK OF QPSK 2× 6 MIMO USING LC-MMSE TEQ

AND ST-SDFE TEQ

Fig. 12. Results of the 2× 6 MIMO 1000-m transmission using the LC-
MMSE equalizer and ST-SDFE after five Turbo iterations.

percentage of the packets achieving BER ≤ 10−4 with the 8PSK
modulation scheme.

For the 3× 9MIMO 1000-m transmission, the experimental results
are shown in Fig. 13. The overall BER performance was largely de-
graded due to the severe channel links from the third transducer to the
received hydrophones compared with the 2× 6 MIMO scheme. Al-
though we increased the training overhead ξ, the performance gain was
limited and most of the error bits originated from the data stream of the
third transducer. Moreover, the 16QAM modulation scheme achieved
better BER performance than the 8PSK scheme with the LC-MMSE
equalizer, which was not reasonable in intuition. Herein, we give the
explanation that the LLR calculation for the LC-MMSE equalizer
was not stable due to the severe channel links from the third trans-
ducer. Nevertheless, the ST-SDFE still outperformed the LC-MMSE
equalizer.

For the 4× 12MIMO 1000-m transmission, the experimental BER
comparison results are illustrated inFig. 14.A larger training overhead ξ
in Table Iwas chosenwithNb = 1950, 1500 for the 8PSKand 16QAM,
respectively. Since ξ was sufficient enough to track the dynamic UWA

Fig. 13. Results of the 3× 9 MIMO 1000-m transmission using the LC-
MMSE equalizer and ST-SDFE after 5 Turbo iterations.

Fig. 14. Results of the 4× 12 MIMO 1000-m transmission using the LC-
MMSE equalizer and ST-SDFE after five Turbo iterations.

channels, the BER benchmark of 16QAM in 4× 12 MIMO scheme
outperformed 8PSK and 16QAM in the 3× 9MIMO scheme, and even
performed better than QPSK and 8PSK in the 4× 12 MIMO scheme.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of the six channel estimators is listed
in Table III in terms of the number of multiplications, where βmax

denotes the round of training sequence reuse in [22]. The computational
complexity of the block-wise MMSE, OMP, Bayesian-I, Bayesian-II,
and I-SBL channel estimators was on the order ofO((NL)3), and was
on the order of O(NL) for IPNLMS. The given parameters were set
as βmax = 5, L = 100, N = 2, M = 6, Np = 600 and T = 2. Since
the channel sparsity was nonuniform, without loss of generality, we
fixed Lα = 50, and the number of million multiplications required for
the six channel estimators for each subblock processing is shown in
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TABLE III
COMPUTATIONAL COMPLEXITY OF THE CHANNEL ESTIMATORS

TABLE IV
DETAILED NUMBER OF MILLION MULTIPLICATIONS OF THE CHANNEL

ESTIMATORS FOR EACH SUBBLOCK PROCESSING (βMAX = 5, L = 100,
Np = 600, T = 2, Lα = 50)

Table IV. When increasing the MIMO size, the number of multiplica-
tions required for the MMSE channel estimator was 1.5 times as many
as that needed for the IPNLMS channel estimator. For the OMP and
Bayesian-II channel estimators, the complexity increased rapidly with
larger MIMO size, which was unpromising for the MIMO CE. For the
Bayesian-I channel estimators, while enjoying relatively less compu-
tation than the I-SBL channel estimators, it was still not preferable
due to the slow L1 convergence of hm as shown in Fig. 7, and also
the tedious hyperparameter control. For the proposed I-SBL channel
estimator, the complexity was acceptable in terms of performance gain
over the block-wise MMSE channel estimator.

VI. CONCLUSION

An effective MIMO detector has been proposed that uses the I-SBL
algorithm for CE and ST-SDFE for the TEQ. Experimental results
have demonstrated that the I-SBL channel estimator achieved faster
parameter convergence and better sparsity control than the conventional
Bayesian and OMP algorithms. While sacrificing acceptable complex-
ity compared with IPNLMS, I-SBL had better estimation accuracy
in terms of the BER performance than the IPNLMS, MMSE, OMP,
and conventional Bayesian channel estimators. Experimental results
have also verified that ST-SDFE achieved an order of magnitude im-
provement of BER performance over that using the LC-MMSE Turbo
equalizer.
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