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Social robots are becoming increasingly influential in shaping the
behavior of humans with whom they interact. Here, we examine
how the actions of a social robot can influence human-to-human
communication, and not just robot–human communication, using
groups of three humans and one robot playing 30 rounds of a
collaborative game (n = 51 groups). We find that people in groups
with a robot making vulnerable statements converse substantially
more with each other, distribute their conversation somewhat
more equally, and perceive their groups more positively compared
to control groups with a robot that either makes neutral state-
ments or no statements at the end of each round. Shifts in robot
speech have the power not only to affect how people interact
with robots, but also how people interact with each other, offer-
ing the prospect for modifying social interactions via the intro-
duction of artificial agents into hybrid systems of humans
and machines.

human–robot interaction | groups and teams | conversational dynamics

Human behavior is very sensitive to the influence of other
people in their groups. Verbal behavior, in particular, plays

a special role in establishing successful social interactions and
cooperation (1). Additionally, successful social interactions are
remarkably dependent on group dynamics, especially when con-
trasting a one-on-one (dyadic) interaction with an interaction
occurring across several members of a group (2, 3). Social influ-
ence across social ties can enable the spread of phenomena as
diverse as emotions, voting, and cooperation, in both natural and
laboratory settings (4–7).
Just as humans are capable of influencing the behaviors of the

people with whom they interact, robots may exert similar effects.
For example, robots can alter how well human participants
complete a task (8–12) and how humans respond to requests
(13–15) in human–robot interactions. Studying such one-on-one
interactions between humans and robots is important to under-
standing how robots can affect direct human–robot relationships.
For example, algorithms programmed with simple communica-
tion capacities, such as “cheap talk,” are able to effectively im-
prove one-on-one human–robot cooperation to a level on par with
human–human cooperation in online games (16). However, ana-
lyzing interactions in groups with several humans and one robot,
compared to one-on-one interactions, can illuminate other aspects
of how robots influence human behavior between the humans
themselves.
Research on group interactions is less common, but extant work

has shed light on several novel aspects of human–robot interac-
tions. For example, a social robot can shape the roles members of
a group assume through gaze direction (17). Robots can also be
programmed with algorithms that alter their behavior to empha-
size different aspects of the group, such as increasing group co-
hesion, productivity, sense of peace, or engagement (18–21).
Furthermore, in settings with many human participants, robots can
guide interactions between humans by adjusting their speech, fo-
cus, and actions (9, 22–25). This effect is especially pronounced

when the content of robot speech is based on group emotions,
which can lead to a more positive view of the robot (26). As
robots increasingly populate our homes and workplaces, the
ubiquitous presence of such groups composed of humans and
machines could alter how humans relate to both robots and each
other (27–29).
For a group to sustain and achieve collective outcomes, it is

extremely helpful if its members socially engage with one another
and are willing to communicate. Groups without social interaction
are less able to learn from each other and work together (30, 31).
One way to establish and promote social engagement within
groups is through vulnerable expressions. Vulnerability focuses
individuals on others, which encourages interpersonal connection
(32). In interpersonal interactions, vulnerability is often expressed
as self-disclosure or personal stories (which increase solidarity)
and humor (which alleviates tension) (33–36). But this can also be
extended to nonhuman agents, like robots, by programming them
to exhibit these behaviors (37, 38). For instance, when robots
disclose emotions in a collaborative task, humans are more likely
to project feelings of companionship onto the robot (37). Ex-
pressions of vulnerability by a robot have also been shown to
positively influence interpersonal behaviors (e.g., laughing with
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team members and liking the robot more) within a human–robot
group (39, 40).
While this prior work offers evidence of a robot’s capacity to

influence how human group members interact in the presence of
a robot, this work has not examined whether these changes are
sustained over time or if the influence of robot utterances ex-
tends to the dynamics of the discussion between the humans them-
selves. Here, we focus on the ability of a robot to improve human
discussion in a collaborative task. We test whether a robot pro-
grammed to utter vulnerable statements throughout a sustained
group interaction can influence the conversational dynamics be-
tween human members of the group.
In this experiment, 153 participants were assigned to 51 groups

consisting of 3 human participants and 1 robot. The groups
worked collaboratively, with the social robot, over 30 consecutive
rounds, to play our custom-built, tablet-based game (39). This
game was developed so that the human members of the group
and the robot were perceived to all be part of the same team (see
SI Appendix for more information). A limited version of this
paradigm has been shown to increase engagement with robots
themselves as well as how likely human participants are to ex-
plain their mistake and console their teammates in the game
(39). Groups were assigned to one of three conditions: the vul-
nerable condition, the neutral condition, or the silent condition.
In the vulnerable condition, the robot made a vulnerable com-
ment at the end of every round; in the neutral condition the
robot made a task-related comment at the end of every round
(see SI Appendix for more information); and in the silent con-
dition the robot did not speak at the end of every round.

Results
We used multilevel modeling to account for the clustered struc-
ture of the data (participants in groups) and, when needed, the
longitudinal aspects of the data (rounds within participants

within groups). Further details on the analysis can be found in
SI Appendix.

Total Talking Time. There was a substantial difference between
conditions in the total amount of time spent talking by partici-
pants, where those in the vulnerable condition spoke twice as
much over the course of the game (xVi = 253.60  s, SD = 184.41 s)
compared to those in the neutral condition (xNi = 124:23   s, SD =
78.78 s) and the silent condition (xSi = 119.86  s, SD = 148.17 s).
This difference was statistically significant between the vulnera-
ble and neutral conditions (c = 140.68, P = 0.001) and the vul-
nerable and silent conditions (c = 124.52, P = 0.004), even after
adjustment for age, extraversion, gender, and familiarity, using
regression models, but there was no significant difference be-
tween the silent and neutral conditions (c = 16.15, P = 0.70) (see
Fig. 1A and SI Appendix, Table S2).
In Fig. 1B, we show the total time participants spent talking to

each of the other human participants and the robot, represented
by the line width of the connections in the group network. The
vulnerable robot condition enhanced interhuman conversation. In
the neutral condition, across all groups, participants spoke to their
human teammates for 83.22 min (4,993 s) and to the robot for
10.27 min (616 s) over the course of the game. In the vulnerable
condition, participants spoke to their human teammates and the
robot more than twice as much [178.38 min (10,703 s) and 24.02
min (1,441 s), respectively]. In the silent condition, participants
spoke to their human teammates for similar amounts of time to
the neutral condition [83.07 min (4,984 s)] but spoke to the
robot very little [5.61 min (336 s)].
Additionally, those in the vulnerable condition spoke progres-

sively more over time (across rounds in the game) (xVi = 8:45  s,
SD = 8.33 s) compared to those in the neutral condition
(xNi = 4.14  s, SD = 4.99 s) as demonstrated by the significant in-
teraction effect between round and experimental condition with

Fig. 1. Total talking time by condition. Compared to the neutral and silent conditions, human participants in the vulnerable condition spoke more, in total,
to the other participants in their group, and increasingly across game rounds. In A, we see that participants in the vulnerable condition (V) spoke significantly
more than participants in either the neutral (N) or silent (S) condition (n = 153 participants). In B, the line widths represent the amount of talking by human
participants toward their teammates who are connected by the line, in seconds (summed across all groups within a condition (n = 153 participants)). R =
robot; P1, P2, and P3 = human participants, in their relative positions around the table. In C and D, the shaded area around each line represents a 95%
confidence interval (n = 4,590 rounds); the dots represent the condition average for that round. In C, the vulnerable condition has more talking in every
round, and the slope (i.e., the rate of increase in talking per round, across rounds) is higher than the neutral condition (but indistinguishable from the silent
condition). In D we see that, compared to the neutral condition, those in the vulnerable condition respond more over time to their fellow human group
members (n = 4,590 rounds).
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respect to the vulnerable and neutral conditions (c = 0.13, P =
0.03), although there is no significant difference between the silent
condition (xSi = 4:00  s, SD = 6.73 s) and neutral condition (c =
0.06, P = 0.32) or the vulnerable and silent condition (c = 0.07, P =
0.27) (see Fig. 1C and SI Appendix, Table S3).

We further find that the difference in the amount of talking by
those in the vulnerable condition was primarily driven by one
type of utterance, namely, the communications between the hu-
man players themselves, with an increase in responses to other
humans over time. In other words, participants in the vulnerable
condition (xVi = 3:99  s, SD = 5.16 s) increased the amount of time
they spent responding to the utterances of their other human
group members as the game progressed (Fig. 1D) compared to
those in the neutral condition (xNi = 1:72  s, SD = 2.76 s) (c = 0.08,
P = 0.04), although there was no difference between the silent
condition (xSi = 1:96  s, SD = 4.01 s) and the neutral condition
(c = 0.04, P = 0.36) or the vulnerable condition and the silent
condition (c = 0.04, P = 0.27), in terms of the increase over
rounds. No other utterance category (see SI Appendix for details)
was statistically significant across rounds of the game (SI Appendix,
Table S4).

Equality in Conversation. In addition to examining the amount of
participants’ speech, we also explored how equally participants’
speech durations were within a group as well as how evenly par-
ticipants distributed their speech to the two other human mem-
bers in the group. To quantify the former, we used the following
“equality in talking time” (ETT) metric:

ETTi = c

�
�
�
�
�

τiPn
1τi

−
1
n

�
�
�
�
�
,

where τi represents the total amount of time participant i spoke
during the game, n is the number of human participants (3 in this
case),

Pn
1τi is the total amount of time participant i’s group

spoke during the game, and c is a normalizing constant, causing
ETTi to have a range of [0, 1]. ETTi takes on a value of 0 when a
participant speaks for a third of the total amount of time their
group speaks and a value of 1 when a participant speaks and
their group members did not speak at all. We found that equality
of time speaking did not differ between the vulnerable robot
condition (xETTVi

= 0:14, SD = 0.10) and the neutral robot condi-
tion (xETTNi

= 0.14, SD = 0.11) (c = −0.03, P = 0.88, see SI Appendix,
Table S5), but there is a significant difference between the neutral and
silent conditions (xETTSi

= 0.25, SD = 0.17) (c = −0.63, P = 0.001)
and the vulnerable and silent conditions (c = −0.66, P = 0.0004).
In other words, the distribution of speech by participants in the
vulnerable condition did not differ from that in the neutral
condition, but participants in the silent condition had the least
equal distribution of talking time, as seen in Fig. 2A. Thus, the
mere presence of a robot that communicates may enhance the
equality of talking time in conversation among humans in a
group.
To examine how evenly distributed each participant’s utter-

ances were toward their fellow human teammates in the human–
robot group, we created an “equality in talking partners” ðETPÞ
metric as follows:

ETPi =

�
�τðPi,PjÞ − τðPi,PkÞ

�
�

τðPi,PjÞ + τðPi,PkÞ
,

where τðPi,PjÞ represents the talking time of participant i’s speech
specifically directed at participant j during the game and τðPi,PkÞ
represents the talking time of participant i’s speech specifically
directed at participant k during the game. In other words, this
measures how balanced a participant’s speech is toward the two

other human members of their group over the whole game. If a
participant directs all of their speech to one participant and none
to the other, that participant gets a value of 1. If a participant
speaks for the exact same amount of time to each of the other
two participants, that participant will receive a value of 0. In
other words, values of 1 represent perfect inequality and 0 rep-
resents perfect equality. Every human–human pairwise compar-
ison is made for each participant in each group. We found
no evidence that participants in the vulnerable condition
(xETPVi

= 0.38, SD = 0.26) distributed their speech more equally
between their fellow human group members than those in the
neutral condition (xETPNi

= 0.43, SD = 0.29) (c = −0.38, P = 0.16)
or between the silent condition (xETPSi

= 0.57, SD = 0.34) and neutral
condition (c = 0.36, P = 0.25). However, the vulnerable condition is
significantly more equal than the silent condition (c = −0.74, P =
0.01), as shown in Fig. 2B (SI Appendix, Table S6). In other
words, speech seems to be more balanced in the conditions with a
vulnerable robot compared to a silent robot.

Self-Reported Group Dynamics. Using comments that the partici-
pants provided in the postexperiment survey, we analyzed how
participants perceived their own group’s dynamics (SI Appendix,
Table S7). Comments were reliably coded by two coders (see SI
Appendix for details) into the following four categories: quiet,
positive, supportive, and fun.
We found that those in the vulnerable condition thought of

their groups as being less quiet than did those in the neutral
condition (P = 0.03) and that the silent condition did not differ
from the neutral condition (P = 0.29)—in accordance with the
foregoing analyses of actual talk time. The vulnerable condition
did not differ from the silent condition (P = 0.23). Those in the
vulnerable condition viewed their groups as more positive than
did those in the neutral condition (P = 0.04) and the silent
condition (P = 0.01). There was no difference between the silent
and neutral conditions (P = 0.54). Those in the vulnerable
condition also viewed their groups as being more fun than did
those in the neutral condition (P = 0.03) or the silent condition
(P = 0.02), and the silent and neutral conditions did not differ
(P = 0.71). There was no difference between the vulnerable
and neutral conditions in how supportive participants found
their groups (P = 0.77), nor was there a difference between the
silent and neutral conditions (P = 0.13) or the vulnerable and
silent conditions (P = 0.19). See SI Appendix for more details. In
summary, participants in the vulnerable condition described

Fig. 2. Equality of conversation by condition. Although there was (A) no
statistical difference between the vulnerable (V) and neutral (N) conditions
in the equality in talking time (n = 150 participants; one group did not speak
at all and was excluded), the silent (S) condition was less equal than either of
the other two conditions. (B) Also, participants in the vulnerable condition
directed their utterances more equally to each of their human group
members than participants in the silent condition, as measured by the total
amount of time spent talking to each participant’s two human partners (n =
144 participants; participants who didn’t speak at all or who did not make
directed utterances were excluded).

6372 | www.pnas.org/cgi/doi/10.1073/pnas.1910402117 Traeger et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Ju
ly

 1
1,

 2
02

0 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1910402117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1910402117


their groups as more pleasant overall than those in either of the
two other conditions.

Discussion
We experimentally evaluated human-to-human conversational
dynamics in a group with three human group members and ei-
ther a vulnerable, neutral, or silent robot group member. Par-
ticipants in a group with a vulnerable robot spoke more overall
than participants in a group with a neutral or silent robot and
increasingly over the rounds of the game than participants in a
group with a neutral robot. This difference is largely driven by
responses to other human group members, which demonstrates an
increasing social engagement effect in the conversation. It is likely
that the vulnerable statements made by the robot helped partici-
pants feel more comfortable conversing with their group members.
In short, it is not just the presence of a speaking robot in a
hybrid system that changes human–human communication, but
rather the nature of the robot’s speech––specifically, speech that is
vulnerable.
As the total amount of time spent talking may not fully capture

the nature of the conversation, we also examined the equality of
each member’s speech amount, relative to their group members,
as well as how evenly distributed each member’s talking was
between their fellow human group members. We did not find a
significant difference in the equality in talking time measure in
groups with the vulnerable robot and in groups with the neutral
robot, but participants in the silent robot condition had signifi-
cantly less equal talking times, as if the mere presence of a talking
humanoid robot helped even out the total amount of speaking
between each human. Additionally, we found that those in a group
with the vulnerable robot distributed their talking more equally
between the other two human members of their group than those
in a group with the silent robot. In short, we found that the vul-
nerable utterances by the robot not only influenced groups to talk
more, but also positively shaped the directionality of the utter-
ances to be more evenly balanced between the other two human
members of the group compared to the silent condition.
These results demonstrate that robots are able to positively

shape group conversational dynamics and emphasize the in-
fluential role that robots can have on the way we converse and
interact with each other in the context of human–robot groups. As
robots and other forms of machine intelligence (such as digital
assistants and online bots) become increasingly prevalent in our
daily lives in what we have called “hybrid systems,” (9) they will
likely shape our actions, relationships, and conversations. They
will critically affect our interactions with other people. Without an
understanding of how machines may influence our connections
with the people around us, we may encounter negative and un-
expected consequences of interacting with these robots (41, 42).
For instance, there has been a great deal of concern about the

capacity for physical robots and autonomous bots to damage hu-
man interactions (for instance by causing car accidents or
spreading propaganda), but equally it is the case that such agents
may improve human welfare. Prior work has shown the capacity
for online bots to facilitate coordination (9) or decrease racist
speech online (43). Here, we show that physical robots can im-
prove conversational dynamics among humans. We believe that
research investigating the consequences of social agents on
human behavior, like the work presented here, will help agent
designers optimally take such social spillovers into account and
may help inform the general public on how to use artificial
intelligence (AI) technology in beneficial ways.
Machines endowed with particular kinds of programming

might have effects not only by modifying the behavior of humans
with whom they directly interact, but also by modifying the be-
havior between the humans themselves when they interact with
other humans in a group, thus creating diverse sorts of be-
havioral cascades. This can happen even when people actually

know they are interacting with machines, as in the present case
[and as shown in other work (9)]. In this sense, even simple AI
agents might be able to serve a beneficial function, shaping the
actions of their human counterparts and modifying human–
human interactions and not just human–robot interactions. Our work
illustrates the idea that, in hybrid systems of humans and ma-
chines, robots could help people work better together.

Materials and Methods
Recruitment Procedures. After approval by the Yale University Institutional
Review Board (IRB), we recruited 195 participants, but due to experimental
malfunctions (e.g., video/audio failing to record, system glitches that pre-
vented game play), 153 participants (51 groups) are included in this analysis.
Most of our participants (73%) had very low familiarity with the other
participants in their group. Further details, along with the regression pro-
cedures used to control for variation in measured covariates across treat-
ment groups, are provided in SI Appendix.

The Collaborative Game. To set up a collaborative environment where the
robot’s vulnerability might help to ease group tension and facilitate positive
group dynamics, we designed a collaborative game to be played on indi-
vidual tablets where each human participant and an autonomous humanoid
robot would be equal contributors (see SI Appendix for more details). This
collaborative game for three humans and one robot (a Softbank Robotics
NAO robot) was built to be played on individual Android tablets running our
bespoke Railroad Route Construction game.

The gamewe developedwas created to give players the sense that they are
playing collaboratively—by making success contingent on everyone in the
group completing their part of the game successfully for the whole group to
succeed. In other words, if one person fails, everyone fails. To successfully
complete a round, each player needs to place eight pieces along the most
efficient route for the railroad. This same game procedure was completed for
all 30 rounds for each group. The group’s score was the total number of
successfully completed rounds for that group.

Experimental Procedure.When participants arrived, theywere given a consent
form (or adolescent assent form after receiving parental consent), which was
signed by the participant (and guardian, if applicable) before participating in
any aspect of the study. Then, the participants were given a preexperiment
survey. After completion of the survey, the participants entered the exper-
iment room to play the game described above. Further details are provided in
SI Appendix. The 3 human participants and the robot played 30 rounds of
the Railroad Route Construction game. In the neutral condition, the robot
made neutral utterances at the end of each round and did not acknowledge
when it had made a mistake. In the vulnerable condition, the robot made
vulnerable utterances when each round finished, which included acknowl-
edging its mistakes. In the silent condition, the robot did not say anything at
the end of each round. In the vulnerable and neutral conditions, the end-of-
round utterances were approximately the same length across conditions. For
more details, consult SI Appendix.

During the game, each player would take a railroad track piece from the
options on the right-hand side of the screen and drag it to the active play area
to complete the track (see SI Appendix for more details). Each player was
instructed to build the optimal route during each round by creating the
shortest contiguous track on their tablet. The group succeeded in a round if
each player completed their path. The group failed a round when at least
one participant failed to complete their track.

Over the course of the game, by design, each participant, including the
robot, failed twice (see SI Appendix for details). In the case of the humans,
we engineered this outcome by making no suitable track parts available to
be placed on the game-play surface. Participants did not perceive this as
accidental and felt responsibility for their “failure.” After the game, par-
ticipants completed a postexperiment survey. When this survey was com-
plete, they were given a debrief form about the true nature of the game
and a payment for their time.

Vulnerable utterances made by the robot after each round of the game in
the vulnerable condition were constructed based on the principles of psy-
chological safety (44). The utterances by the robot were of three types: self-
disclosure, personal story, and humor. Both self-disclosure and telling a
personal story show vulnerability through the sharing of personal information
with another member of the group (34). The robot used self-disclosure in
utterances such as: “Sorry guys, I made the mistake this round. I know it may
be hard to believe, but robots make mistakes too.” Personal stories from the
robot consisted of sharing information about prior experiences and passions.
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These utterances were statements such as: “Awesome! I bet we can get the
highest score on the scoreboard, just like my soccer team went undefeated in
the 2014 season!” Lastly, the robot expressed vulnerability by using humor, as
humorous expressions constitute a social gamble that has the potential to
reduce discomfort within the group (35, 36). An example of a humorous
phrase the robot used was “Sometimes failure makes me angry, which re-
minds me of a joke: Why is the railroad angry? Because people are always
crossing it!” (We quite realize that this joke is corny, but that was the point.) In
contrast, neutral statements were fact-based and did not contain any personal
information or humor. For example, the robot would say, “We have com-
pleted 17 rounds thus far and have successfully built 76 percent of them.” All
end-of-round utterances can be found in SI Appendix.

To verify that the comments made by the robot at the end of each round
were perceived to be vulnerable in the vulnerable condition and fact-based in
the neutral condition, we asked 210 human judges (via Amazon Mechanical
Turk) to assess pairs of utterances. Judgeswere providedwith randompairs of
utterances (one utterance from each condition in a pair) and were asked
which of the two indicated more vulnerability. By a ratio of nearly 3:1, the
judges selected the utterances that we designed to be vulnerable as vul-
nerable (details can be found in SI Appendix).

Measures of Conversational Dynamics. In order to analyze the conversational
dynamics within groups, we transcribed and categorized each utterance
made by the participants using ELAN software (45). All utterances made
throughout the game were included. These utterances fell broadly into two
categories: comments and responses. We define comments as utterances
that are addressed to others within the group, but that are not contingent
on what has been said previously in the conversation. In other words,
comments are new thoughts. In contrast, we define a response as an ut-
terance that is dependent on what has just been said in the conversation.
Often, responses are to comments, but they can also be a response to a
response. Both comments and responses could be directed speech to certain
individuals in particular or to the group as a whole (see SI Appendix for
details on the utterance categorizations). For example, a comment would be
an utterance such as, “Alright, we need to beat the top team” followed by a

response of “We can do it!” The coder agreement (Cohen’s κ) across the four
coders on these categorizations was k = 0.92.

Control Variables. Because characteristics of the participants could shape their
willingness to engage socially with their group members, we asked partici-
pants to report their age, gender, familiarity with others in their group, and
degree of extraversion.

Before entering the experiment room, we provided participants with a
survey in which we asked them to select their familiarity with the two other
human participants in their group on a 5-point scale. In addition, we asked
participants if they were “Facebook friends” with, or had the telephone
numbers of, the other members of their group. For more details on how
familiarity was calculated, consult SI Appendix. In the postexperiment sur-
vey, we asked participants about the psychological safety of the group, what
the participant thought of the robot, how extraverted the participant was,
and a series of general questions about the game and the group.

We believed that whether or not a participant was extravertedwould have
an impact on their willingness to engage socially with their other group
members. To avoid priming participants, we asked participants 6 yes or no
questions from the abbreviated, revised Eysenck personality questionnaire
(EPQR-A) (46) in the postexperiment survey. Participants were given a score
from 0 (lowest extraversion) to 6 (highest extraversion) by adding the number
of affirmative answers to the 6 questions in our survey. More details can be
found in SI Appendix.

Data Availability. Data and reproducible R scripts are available on the Human
Nature Lab website at http://humannaturelab.net/publications/vulnerable-
robots (raw participant videos are not available due to IRB stipulations).
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