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Abstract—The recent proliferation of human-carried mobile
devices has given rise to mobile crowd sensing (MCS) systems that
outsource sensory data collection to the public crowd. In order
to identify truthful values from (crowd) workers’ noisy or even
conflicting sensory data, truth discovery algorithms, which jointly
estimate workers’ data quality and the underlying truths through
quality-aware data aggregation, have drawn significant attention.
However, the power of these algorithms could not be fully
unleashed in MCS systems, unless workers’ strategic reduction
of their sensing effort is properly tackled. To address this issue,
in this paper, we propose a payment mechanism, named Theseus,
that deals with workers’ such strategic behavior, and incen-
tivizes high-effort sensing from workers. We ensure that, at the
Bayesian Nash Equilibrium of the non-cooperative game induced
by Theseus, all participating workers will spend their maximum
possible effort on sensing, which improves their data quality.
As a result, the aggregated results calculated subsequently by
truth discovery algorithms based on workers’ data will be highly
accurate. Additionally, Theseus bears other desirable properties,
including individual rationality and budget feasibility. We validate
the desirable properties of Theseus through theoretical analysis,
as well as extensive simulations.

Index Terms— Incentive mechanism, mobile crowd sensing,
truth discovery, sensing effort elicitation.

I. INTRODUCTION

HE recent proliferation of increasingly capable human-
carried mobile devices (e.g., smartphones, smart-
watches) equipped with a plethora of on-board sensors
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(e.g., accelerometer, compass, GPS) has given rise to mobile
crowd sensing (MCS). Different from traditional sensor net-
works [2], MCS is a new sensing paradigm which out-
sources sensory data collection to a crowd of participants,
namely (crowd) workers. Thus far, a wide spectrum of MCS
systems [3]-[5] have been deployed which cover almost every
aspect of our lives, including smart transportation, health-
care, environmental monitoring, indoor localization, and many
others.

In real practice, workers’ sensory data are usually unreliable
because of various factors (e.g., lack of effort, insufficient
skill, poor sensor quality, background noise). Thus, the crowd
sensing platform, which is usually a cloud-based central server,
has to properly aggregate workers’ noisy or even conflicting
data so as to obtain accurate aggregated results. Clearly,
a weighted aggregation method that assigns higher weights
to workers with more reliable data is much more favorable
than naive methods (e.g., averaging and voting) that view each
worker equally, in that it shifts the aggregated results towards
the data provided by more reliable workers.

The challenge, however, is that workers’ reliability is usu-
ally unknown a priori by the platform, and should be inferred
from the sensory data submitted by individual workers.
To address this issue, truth discovery, which refers to a family
of algorithms [6]-[9] that aim to discover meaningful facts
from unreliable data, has been proposed and widely studied.
Without any prior knowledge about workers’ reliability, a truth
discovery algorithm calculates jointly workers’ weights and
the aggregated results, based on the principles that the workers
whose data are closer to the aggregated results will be assigned
higher weights, and the data from a worker with a higher
weight will be counted more in the aggregation.

However, the power of truth discovery algorithms could
not be fully unleashed in MCS systems, unless the platform
properly deals with workers’ strategic reduction of sensing
effort. This paper is exactly motivated by such fact due
to the following reasons. Though yielding reasonably good
performance under certain circumstances, truth discovery algo-
rithms still suffer from the limitation that the aggregation
accuracy highly depends on the quality of input data. If a
vast majority of the data sources are unreliable, it will be
hard or even impossible for these algorithms to obtain accurate
aggregated results. This is exactly why past literature on truth
discovery [6]-[9] assumes that most data sources have fairly
good reliability. However, in MCS systems, such assumption
does not hold, as the data sources here are selfish workers,
who may strategically reduce their costly sensing effort,
such as the time, resources, attention, and carefulness they
put into the sensing tasks. Clearly, the level of a worker’s
sensing effort is among the major factors that affect her data
quality. The reduction of workers’ effort inevitably deteriorates
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the quality of their sensory data, which further impairs the
aggregation accuracy. For example, in air quality monitoring
applications [4], in order to save effort, workers may carry
their mobile devices in their pockets instead of holding them
on their hands as required, which may significantly degrade
the reliability of their air quality measurements.

To address the aforementioned issue, in this paper, we take
into consideration workers’ strategic behavior, and propose a
payment mechanism, named Theseus,! that offers payments
to incentivize high-effort sensing from workers. Our work-
flow of an MCS system starts with the platform announc-
ing the Theseus payment mechanism to workers before all
the sensing happens. The workers’ strategic behavior after
the announcement of Theseus is then modeled using game-
theoretic methods. In our model, Theseus induces a non-
cooperative game,’ called sensing game, where workers are
the players who strategically decide their levels of effort for
sensing. In order to elicit effort from workers, Theseus is then
designed such that at the Bayesian Nash Equilibrium (BNE)
of the sensing game, each participating worker maximizes her
expected utility only when she spends her maximum possible
effort. Clearly, Theseus improves the quality of workers’ data
by controlling a critical factor, that is, the level of their
sensing effort. As a result, the aggregated results calculated
subsequently by truth discovery algorithms based on workers’
sensory data will be of high accuracy.

In summary, this paper makes the following contributions.

o In this paper, we propose a payment mechanism, called
Theseus, which is used in pair with a truth discovery
algorithm to ensure high aggregation accuracy in MCS
systems with continuous and categorical sensing tasks
by dealing with workers’ strategic reduction of sensing
effort.

o We derive a suite of detailed parameter selection rules for
Theseus in both the complete and incomplete information
scenarios, under which it could ensure the existence of
BNE in the sensing game, budget feasibility, individual
rationality, and a small approximation ratio with high
probability.

o We derive the BNEs of the non-cooperative sensing
games induced by Theseus, and prove that Theseus incen-
tivizes workers to spend their maximum possible sensing
effort at the derived BNEs.

o« We demonstrate using extensive numerical evaluations
that the proposed Theseus payment mechanism ensures
high aggregation accuracy under a variety of parameter
settings.

II. RELATED WORK

In order to identify truthful values from workers’ noisy
or even conflicting sensory data in MCS systems, truth dis-
covery algorithms [6]-[9], which jointly estimate workers’
data quality and the underlying truths through quality-aware
data aggregation, have drawn significant attention. However,
these algorithms usually cannot deal with workers’ strategic
reduction of sensing effort, and thus, may yield unsatisfactory
aggregation accuracy.

'The name Theseus comes from incenTivizing truth discovery with strategic
data sources.

2Non-cooperative game refers to the family of games, where each player acts
independently without collaboration or communication with others, whereas,
in cooperative games, players may communicate with each other and form
coalitions.
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Fig. 1. Interaction between the platform and workers (where circled numbers
represent the order of the events).

Workers

Another line of prior work related to this paper is a series
of incentive mechanisms [10]-[37] recently developed by the
research community in order to stimulate worker participation
in MCS systems. Most of these past literature [10]-[33] adopts
game-theoretic methods [38]-[40], due to their ability to deal
with workers’ strategic behavior. Among them, auction-based
incentive mechanisms [16]-[29] typically consider workers’
strategic bidding of the prices and sensing task choices to
the platform. Furthermore, some prior work [30]-[32] tackles
workers’ strategic manipulation of reported private and sen-
sitive data due to privacy concerns. However, none of them
study workers’ strategic reduction of sensing effort as in this
work. Mechanisms that elicit effort from crowd workers have
been investigated in past literature [11]-[16], but none of them
is designed to work in pair with truth discovery algorithms.
Note that although there exist incentive mechanisms [35]-[37]
that work jointly with truth discovery algorithms, different
from this paper, [35] is not based on game-theoretic models,
and thus, cannot tackle workers’ strategic behavior, [37] aims
to design sybil-resistant truth discovery algorithms, and [36]
specifically investigates MCS systems with copiers.

Different from prior work, we design a payment mechanism,
which is used in pair with a truth discovery algorithm to
ensure high aggregation accuracy by incentivizing workers to
spend their maximum possible sensing effort.

III. PRELIMINARIES

In this section, we introduce the system overview, truth
discovery algorithms, our game theoretic model, as well as
the design objectives.

A. System Overview

We consider an MCS system consisting of a cloud-based
platform, and a set of S potential participating workers,
denoted as S = {1,2---,S}. The platform holds a set of
M sensing tasks, denoted as M = {1,2,--- M}, and each
task requires workers to sense a particular object, event, or
phenomenon locally, and report to the platform the sensory
data in the form of continuous values. Such MCS systems
collecting continuous data from the crowd, constitute a large
portion of the currently deployed MCS systems, such as
environmental monitoring applications that collect air quality
or noise level measurements from participating workers. The
scenario where workers report categorical sensory data to the
platform will be investigated in Section VII. We demonstrate
the interaction between the platform and workers in Figure 1,
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and describe the complete workflow of our MCS system model
as follows.

o Firstly, the platform announces the set of sensing tasks
M, as well as the payment mechanism, to the set of all
potential participating workers S (step @).

o After such announcements, each worker s € S decides
whether or not to participate in the sensing tasks. Then,
the workers that choose to participate decide the levels
of their sensing effort (e.g., time, resources, attention,
carefulness), and carry out sensing according to the
decided effort levels. We denote the set of participating
workers as S’ C S. Each worker s € &’ then submits to
the platform the sensory data x, for each task m € M
upon completion of sensing? (step @).

o After receiving workers’ data, the platform pays each
participating worker according to the payment calculated
using the payment mechanism (step ®).

o Finally, based on the collected data, the platform cal-
culates an aggregated result x, for each task m, and
uses it as an estimate for the ground truth 2™, which is

unknown to both the platform and the workers.

As the quality of different workers’ sensory data typically
varies, an ideal approach is to use a weighted aggregation
scheme which assigns higher weights to workers with higher
data quality. However, in practice, workers’ data quality is
usually unknown a priori to the platform. Therefore, in our
model, the platform utilizes one of the fruth discovery algo-
rithms [6]-[9] to aggregate workers’ data, which calculates
workers’ weights and estimates the ground truths in a joint
manner. An introduction of such algorithms is provided in the
following Section III-B.

B. Truth Discovery

Although existing truth discovery algorithms [6]—[9] differ
in their specific ways to calculate workers’ weights and the
aggregated results, their common procedure could be summa-
rized as in the following Algorithm 1.

A truth discovery algorithm, as described in Algorithm 1,
typically starts with a random guess of tasks’ ground truths,
and then iteratively updates workers’ weights, as well as the
estimated ground truths until convergence.

Weight Calculation: In this step, tasks’ estimated ground
truths are assumed to be fixed, and the weight ws of each
worker s € 8’ is calculated as

wg =w< > d(ximxm) (1
meM

where w(-) is some monotonically decreasing function, and
d(-) denotes the function that calculates the distance between
the worker’s data z;, and the estimated ground truth zj,.
Although different truth discovery algorithms may adopt dif-
ferent functions w(-) and d(-), they share the same underlying
principle that higher weights are assigned to workers whose

data are closer to the estimated ground truths.

3Clearly, in practice, each individual worker may not be able to execute
all the sensing tasks hosted by the platform. Thus, a more realistic model is
to introduce an affinity term for each worker-task pair (s, m) that indicates
whether or not worker s is able to execute task m. However, to simplify the
presentation of our subsequent mathematical analyses, we assume that each
worker is capable to execute all the tasks.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Algorithm 1 Truth Discovery Algorithm

Input: Workers’ data {z%,|m € M,s € §'};
Output: Estimated ground truths {z |m € M},
1 Randomly initialize the ground truth for each task;
2 repeat
// Weight calculation
3 | foreach s € S’ do
4 Update the weight ws based on current estimated
L ground truths using Equation (1);

// Truth estimation

5 | foreach m € M do

6 Update the estimated ground truth z;, based on
L workers’ current weights using Equation (2);

7 until Convergence criterion is satisfied;
8 return Estimated ground truths {z |m € M};

Truth Estimation: In this step, workers’ weights are assumed
to be fixed, and the estimated ground truth x}, of each task
m is derived as

s
.13* = 72565/ WsTm . (2)

" ZSES’ Ws

In such weighted aggregation method, the aggregated result
x;, relies more on the workers with higher weights. Usually,
the convergence criterion is application specific. For example,
the algorithm could be treated as converged as long as the
difference between the estimated ground truths in two consec-
utive iterations is less than a threshold.

Note that the payment mechanism that we propose in this
paper is independent with the specific forms of the functions
w(+) and d(-) in Equation (1). Therefore, it is able to work
jointly with any truth discovery algorithm that shares the same
procedure as Algorithm 1. Further discussions on this point
will be provided in Section IV.

C. Game Theoretic Model

As the aggregation accuracy of truth discovery algorithms
highly depends on the quality of input data, existing work
on truth discovery [6]-[9] assumes that most data sources
have fairly good reliability. In MCS systems, however, such
assumption does not hold, as the data sources here are usually
strategic and selfish workers, who may reduce their sensing
effort strategically, and thus, provide unreliable data.

In this paper, we take into consideration workers’ strategic
behavior, and incentivize workers to provide high quality data
using a payment mechanism defined in Definition 1.

Definition 1 (Payment Mechanism): A payment mechanism,
denoted as p : X — RS, where X denotes the set containing
all possible sets of workers’ sensory data, calculates the
payments to workers based on the collected set of data x =
{zzIm € M,s € S§'}. We use ps(x) > 0 to denote the
payment to worker s, when the set of collected data is x.
Note that ps(x) = 0, if worker s drops out.

A payment mechanism defined in Definition 1 is data-driven
in the sense that it calculates the payments to workers based on
their sensory data. As mentioned in Section III-A, the platform
firstly announces to workers the payment mechanism p(-),
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which then induces a non-cooperative game,* referred to as
sensing game in the rest of this paper, where workers are
the players. In this game, each worker decides whether or
not to participate by evaluating her own expected utility.
That is, a worker s will drop out, if participation leads to
a negative expected utility, and otherwise, she will participate
with a specific effort level es that maximizes her expected
utility. Similar to past literature [6], [41], we assume that the
difference between any worker s’s data and the ground truth
follows a zero-mean Gaussian distribution, i.e.,
X5, — X0~ N(0,62),

m

3)

where X%, and X" are the random variables corresponding
to x¢, and the ground truth z™" respectively, and N (0, §2)
denotes a Gaussian random variable with mean zero and
standard deviation Js. Although we assume that such differ-
ence follows a Gaussian distribution, the results in this paper
could be generalized, with some adaptation, to scenarios with
other types of distributions. Clearly, the standard deviation J
captures a worker s’s data quality, as the less the value of J,
the more likely that her sensory data will be close to the ground
truth.

As a worker’s data quality typically increases with her effort
level, we assume that §; = gs(es) € [d,, 0] for each worker
s, where ¢s(-) is a bounded monotonically non-increasing
function. We allow, in our model, workers to have different
gs(+) functions and ranges for their d’s, because apart from a
worker’s effort, her data quality is also affected by other factors
(e.g., skill level, sensor quality, environment noise). As each
worker s is assigned a single weight w; in the truth discovery
algorithm adopted by us (Algorithm 1), we assume that she
spends the same amount of effort e, on all the tasks. We leave
the study of the scenario where workers have different effort
levels on different tasks in our future work.

For simplicity, we use ds instead of es; as a worker s’s
strategy, and use d, = L to denote that the worker chooses to
drop out. Thus, a worker s’s strategy space is [0, 0] U {L}.
As given by Equation (3), the distribution of any worker s’s
data depends on 5, we use x(8) to denote the set of collected
data, and X(8) the random variable corresponding to x(8),
when workers’ strategy profile is & = (01,92, ,0s). Then,
we define a worker’s utility in Definition 2.

Definition 2 (Worker’s Utility): Given the payment mecha-

nism p(-) and workers’ strategy profile & = (61,02, - ,dg),
any worker s’s utility is
us(8) = ps (X(é)) — Cs(s), )

where Cy(-) is a monotonically decreasing function for 0, €
[0,,0s), and Cs(L) = 0. Cs(ds) denotes worker s’s sensing
cost when her strategy is §,. Therefore, the expected utility of
worker s (evaluated by worker s) is

ES_S [u5(587 675)] = ES_S [ S(X(58) 875))} - Cs((ss); (5)

where &_5 = (61, -+ ,0s—1,0s41," - ,05) denotes workers’
strategy profile excluding .

In general cases, the calculation of a worker s’s expected
utility in Equation (5) requires the knowledge of the joint
distribution of &6_4. However, because of the specific design
of our payment mechanism described in Section V, the cal-
culation can be done without knowing such joint distribution.

4Refer to Footnote 2 for definition.
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We leave the detailed discussion on the required prior statis-
tical knowledge in Section VI.

D. Design Objectives

In this paper, we aim to design a payment mechanism which
preserves several desirable properties at the Bayesian Nash
Equilibrium (BNE), formally defined in Definition 3, of the
sensing game.

Definition 3 (BNE): The strategy profile 8 = (87,05, - ,
0%) is a Bayesian Nash Equilibrium (BNE) of the sensing
game, if

E5is [U’S(é:’ 8*75)} 2 E5is [’LLS((SS, 6*75)} VS € Sv 587 (6)

where 8%, = (07, -+ ,05_1,05, 1, ,08).

Clearly, BNE & satisfies that any worker s maximizes her
expected utility by taking strategy J7 given that other workers
take strategies 8~ .. One desirable property we aim to achieve
is individual rationality defined in Definition 4.

Definition 4 (Individual Rationality): A payment mecha-
nism p(-) is individual rational, if and only if no worker has
negative expected utility at BNE &8, i.e.,

Es- [us(0,87,)] >0, VseS. 7)

The property of individual rationality is necessary for a
payment mechanism, as it prevents workers from being disin-
centivized to participate. Because usually, in practice, the plat-
form works under a fixed budget, another design objective
considered is budget feasibility defined in Definition 5.

Definition 5 (Budget Feasibility): A payment mechanism
p(+) is budget feasible, if and only if the expected overall
payment at BNE 8" does not exceed the budget B, i.e.,

Eg- { > pS(X(S*))} < B.

seS’

®)

Another critical desirable property is that workers at BNE
provide high quality data, so that the truth discovery algorithm
ensures low error probability, defined in Definition 6.

Definition 6 (Error Probability): Given any o > 0, we
define the error probability of a truth discovery algorithm as

e 3

m=1

| X5, — Xom| > a), ©)

where X denotes the random variable corresponding to the
estimated ground truth x,,. Clearly, it is the probability that
the mean absolute error (MAE), - Zﬁle ‘X;';L — Xt “ofq
truth discovery algorithm is no less than a threshold o.

In summary, our objective is to design an individual rational
and budget feasible payment mechanism, which ensures that
the truth discovery algorithm guarantees low error probability
at BNE.

Table I summarizes the notations frequently used in this
paper, where some will be introduced later.

IV. MATHEMATICAL FORMULATION

In this section, we formally formulate the payment mech-
anism design problem mathematically. Firstly, we introduce
the following Lemma 1 that establishes an upper bound for
the error probability of a truth discovery algorithm defined in
Definition 6.
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TABLE 1
NOTATIONS
Notation Definition
S, S the set and number of workers
S’ the set of participating workers
M, M the set and number of tasks
X the collected set of data
() payment mechanism

8, 8™ strategy profile and BNE for continuous MCS tasks
e, e* strategy profile and BNE for categorical MCS tasks
us(+) worker s’s utility function

Lemma 1: Given any o > 0 and workers’ strategy profile
8 = (01,02, ,0g), we have that

M
1 * 225 S/(SS
P{yﬂgﬂXm—X$W2a>s¢;—€;—,(w>

that is, the error probability of a truth discovery algorithm is

ses’ ds

upper bounded by =

Proof: Please refer Appendlx A for the detailed proof. [J
Given any fixed «, the upper bound of the error proba-
bility of a truth discovery algorithm given by Lemma 1 is
proportional to Y . cg 0s, i.€., the sum of all participating
workers’ d,’s. Thus, we aim to minimize ) g 0} in order
to get a good guarantee for the error probability at BNE
= (87,605,---,0%). The formal mathematical formulation
of the payment mechanism design (PMD) problem is given in

the following optimization program.

PMD Problem:

p?l)ienP S%; 0, (11)
st Bs» [us(6%,87,)] >0, VseS8 (12)
&{mewﬂ<3 (13)

seS’

Constants: The PMD problem takes as inputs the worker
set S, the budget B, as well as the set P, which denotes the
set consisting of all the possible payment mechanisms, such
that a BNE exists for the corresponding sensing game.

Variable: The variable of the PMD problem is the payment
mechanism p(-). Furthermore, §* denotes the BNE corre-
sponding to p(-), and S’ and X(8%) denote, respectively,
the set of participating workers and collected sensory data at
the BNE 8. Note that as 8, ¢%, 8, and &’ in the PMD
problem are determined by p(-), more comprehensive nota-
tions of them are 8" (p(-)), 7 (p(+)), 8~,(p()), and &'(p(-)),
respectively. For simplicity, however, we denote them as &%,
5%, 8" ., and S’ as in the PMD problem.

Objective Function: The objective (Equation (11)) of the
PMD problem is to find the payment mechanism from P with
the minimum )~ __, 07 at the corresponding BNE 8", which
is equivalent to minimizing the upper bound, as derived in
Lemma 1, of a truth discovery algorithm’s error probability at
BNE for a fixed a.

Constraints: Constraint (12) and (13) ensure, respectively,
that any feasible solution p(-) to the PMD problem satisfies
individual rationality and budget feasibility.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 27, NO. 6, DECEMBER 2019

Thus, the PMD problem aims to find the individual rational
and budget feasible payment mechanism, which minimizes
the upper bound (given by Lemma 1) of a truth discovery
algorithm’s error probability at the corresponding BNE for
any fixed «. Clearly, our formulation of the PMD problem
is valid for an arbitrary way of assigning workers’ weights.
Therefore, the above formulation and the proposed payment
mechanism to be presented in the following section can be
applied to any truth discovery algorithm that has the same
procedure as Algorithm 1.

V. PROPOSED PAYMENT MECHANISM

As solving directly the optimal payment mechanism is hard,
in this section, we propose our own payment mechanism,
named Theseus, in Algorithm 2, which approximately solves
the PMD problem with good performance guarantees.

Algorithm 2 Theseus Payment Mechanism
Input: M, S, &', x, {(as,bs)|s € S}
Output: {p;|s € S};

1 foreach worker s € S do

2 | if s €S’ then

3 Randomly pick another worker r € §’;
M

4 Ps ‘_bs_as% Zmzl(xfn _x:n)Q;

5 | else

6 | | ps—0;

7 return {p;|s € S};

Algorithm 2 takes as inputs the set of tasks M, workers S,
and participating workers S’, as well as the set of collected
sensory data x, and {(as,bs)|s € S} where as and by
are positive parameters related to the payment to worker s.
The calculation of the payment to any participating worker
(line 2-4) borrows the high-level idea of the peer prediction
method [42], which basically decides the payment based on
the difference between her data and that of a randomly selected
reference worker. That is, if worker s participates (i.e., s € '),
Algorithm 2 randomly picks another reference worker r from
the set of participating workers S’ (line 3). Next, the payment
ps to this worker s is set as

M

aS% Z (xfn, -

m=1

ps = bs — zh)?. (14)

Clearly, the more worker s’s data agrees with that of the ran-
domly selected reference worker 7, the higher her payment p;
will be. If any worker s drops out (i.e., s € S’), the algorithm
will set her payment as O (line 6). Finally, the algorithm returns
the set of payments to all workers {p;|s € S} (line 7). By now,
our description of Theseus has been finished except for one
missing piece, that is, how the parameters {(as,bs)|s € S}
are set, which is presented in the following Section VL.

Clearly, another intuitive way of deciding the payment p;
to each participating worker s is to set ps to be positively
correlated to her weight wy calculated by the truth discovery
algorithm using Equation (1). However, we do not adopt this
approach due to the difficulty in analyzing the properties of
the induced sensing game.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on July 11,2020 at 16:24:42 UTC from IEEE Xplore. Restrictions apply.



JIN et al.: DATA-DRIVEN PRICING FOR SENSING EFFORT ELICITATION IN MCS SYSTEMS

VI. PARAMETERIZATION

In this section, we introduce our careful selection of the
parameters {(as,bs)|]s € S} in order to ensure that The-
seus achieves good performance. To simplify our analysis,
we assume that each worker s’s cost function C(+) is linear
in 05 € [0, 0], i.e.,

Cs((ss) - _CS,I(SS + Cs,2, V(Ss S [é3758]7 (15)
where c,1 and c,o are positive parameters. Note that
such selection of each worker s’s cost function conforms
to the requirement that her cost should decrease with the
increase of .

According to how much prior knowledge the platform has
about workers’ cost functions, we parameterize Theseus in
the following two scenarios, namely the complete information
scenario where the platform knows exactly each worker s’s
cs,1 and cgo (Section VI-A), as well as the incomplete
information scenario where only limited information about
cs,1 and ¢, 2 is known by the platform (Section VI-B). In both
scenarios, we assume that d,,0,,- - ,dg, i.e, the lower bounds
of workers’ d,’s, are i.i.d. random variables within the range
[0,0] with PDF f(-). Furthermore, the PDF f(-) is assumed
to be a priori known by the platform and workers, which,
as will be shown in Section VI-A2 and VI-B2, is the only prior
statistical knowledge needed to evaluate workers’ expected
utilities.

A. Complete Information Scenario

1) Parameter Selection: As aforementioned, in this section,
we assume that the platform knows exactly both ¢, 1 and ¢, 2
in each worker s’s cost function. Although, in practice, it might
be hard for the platform to obtain such exact knowledge,
the complete information scenario is still relevant and inter-
esting to study, because it sheds light upon the philosophy of
parameterizing Theseus in the incomplete information scenario
in Section VI-B. For any given A; € [, §], we can parameter-
ize Theseus with any set of parameters {(as,bs)|s € S} that
satisfy Condition (16)-(18).

Cs,1
> Sl 1
as > 55 VseS (16)
bs = ag (Af + A(At)) —cs 1At +cs2, VseS  (17)
s s
Y b < B+ 24 (18)
s=1 s=1

Ay o f(u)
where A(A;) fé T wyde

selecting the additional parameter A; will be discussed in
Section VI-A2 as we analyze the performance guarantees of
the parameter selection given by Condition (16)-(18). For each
s € S, as b is exactly determined by as due to Condition (17),
one way of parameter selection is to choose an a; > C; 5 such
that Condition (18) is satisfied. B

2) Analysis: In this section, we carry out analyses about the
desirable properties of Theseus by parameterizing it according
to Condition (16)-(18). We derive the BNE of the sensing game
that corresponds to such parameterization in the following
Theorem 1.

Theorem 1: If parameters {(as,bs)|s € S} satisfy Condi-
tion (16) and (17), we have that 8" = (01,05, -+ ,0%), where,

du. The criterion of
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for each worker s € S,

oy =

{L, if §, > Ay (19)

O, if 0y < Ay,
is a BNE of the sensing game in the complete information
scenario.

Proof: Please refer to Appendix B for detailed proof. [

Theorem 1 gives us a BNE of the sensing game, where every
worker s with §, > A, will voluntarily drop out, and as long as
d, < Ay, the worker s will participate with strategy J, which
is exactly the smallest standard deviation of the difference
between her data and the ground truths. That is, by satisfying
Condition (16) and (17), Theseus will only incentivize workers
who potentially is capable of providing high quality data to
participate, and those who choose to participate will exert
their maximum amount of effort, leading them to provide
reliable data. Note that there might be multiple BNEs for
the sensing game. However, to the best of our knowledge,
we have not found other BNEs except for the one given in
Theorem 1, on which our further analyses in this section are
based. We leave the derivation of other BNEs or the proof of
the uniqueness of BNE in our future work. Next, we prove
in the following Theorem 2 that Theseus satisfies budget
feasibility in the complete information scenario by satisfying
Condition (18).

Theorem 2: Condition (18) ensures that Theseus is budget
feasible in the complete information scenario.

Proof: Please refer to the supplementary material [43] for
the detailed proof. 0

Clearly, as stated in the following Theorem 3, Theseus
satisfies individual rationality in the complete information
scenario.

Theorem 3: Theseus is individual rational in the complete
information scenario.

Proof: Please refer to the supplementary material [43] for
the detailed proof. 0

Next, we discuss our selection criterion of the parameter A,.
Following notational conventions in order statistics, we denote
01y = min{d;,dy, -+ ,dg}. We assume that the CDF F(-)
of any ¢, is invertible, and its inverse is F~'(-). Based on
Theorem 1, if A; is set to be too small, no workers will
participate at the BNE. Thus, we establish a lower bound for
Ay in the following Theorem 4.

Theorem 4: Given any 0. € (0,1), if Ay > F’l(l —
J1 — 90), then Pr(é(l) < At) > 0., i.e., the probability that
at least one worker chooses to participate at the BNE of the
sensing game, in the complete information scenario, is no less
than the threshold 6..

Proof:  Please refer to Appendix C for the detailed
proof. 0

In the rest of our analyses, we use APP to denote the
value of the PMD problem’s objective function guaranteed by
Theseus. Theorem 4 gives us that if Ay > Pt (1 -1 - 90),
the probability that there exists at least one participating
worker at the BNE of the sensing game is guaranteed to be no
less than the predefined threshold 6. € (0, 1). However, this
does not mean that A; could be infinitely large, because the
greater A\, is, the farther APP will drift apart from the min-
imum value of the PMD problem’s objective function. Thus,
in the following Theorem 5, we derive an upper bound for
the parameter A,. Note that for any payment mechanism that
ensures the participation of at least one worker, the minimum
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possible value for the objective function is OPT = § (1)> Which
is the optimal benchmark that we compare APP with.

Theorem 5: In the complete information scenario, given
ae > 1 and . € (0,1), we have that

APP
—_— > <
Pr<OPT ac) < Be, (20
if Ay < A, where A\, is the solution to
_ 2 _
e ITY (R(B)S —dac) =0, @D

: N — [Ae f(u)

with R(A;) = fg uf?‘ e
Proof: Please refer to Appendix D for the detailed
proof. . (]

By Theorem 5, we have that, as long as Ay < A, the prob-
ability that the approximation ratio % > . is no greater
than (3., for the predefined constants a. > 1 and . € (0, 1).
This shows the probabilistic guarantee on the approximation
ratio of Theseus compared to the optimal payment mechanism.
Next, we have the following Corollary 1 about the range from
which the parameter A; should be selected.

Corollary 1: By jointly considering Theorem 4 and 5, Ay
should satisfy F~! (1 -1 - 90) < Ay < A in the complete
information scenario, so as to guarantee that with high prob-
ability there exist participating workers at the corresponding
BNE (Theorem 4), and that with high probability Theseus has
a small approximation ratio (Theorem 5).

B. Incomplete Information Scenario

1) Parameter Selection: In this section, we study a more
practical incomplete information scenario, where the platform
does not know the exact values of each worker s’s cs 1
and ¢, 2, but instead, only knows that c¢s1 € [¢;,€1], and
Cs,2 € [y, Ca], for each worker s. In this case, given any A,
and Ay, such that § < A; < A, < 4§, we can parameterize
Theseus with any set of parameters {(as, bs)|s € S} such that
Condition (22)-(25) are satisfied.

a5 > o, VseS (22
by < ag(A2 + A(AR)) —E1AL +cy, VsES  (23)
bs > as (A} + A(AR)) — 1A+ 8, Vs€S  (24)
S S
Y bo<B+Y 2,8, (25)
s=1 s=1
Ap 9 f(u)

where A(Ap) = [5" u?—x-——du. Note that the criterion
2 Js " f(v)dv

of selecting A; and Aj, will be discussed in Section VI-B2
as we introduce the corresponding analyses. Given these
conditions, one specific way of parameter selection for each
s € 8 is to choose an a; > g} such that Condition (22)-(25)
are satisfied. N

2) Analysis: In this section, we firstly characterize the BNE
of the sensing game by parameterizing Theseus in the incom-
plete information scenario according to Condition (22)-(25) in
the following Theorem 6.

Theorem 6: If parameters {(as,bs)|s € S} satisfy Condi-
tion (22)-(24), we have a BNE &" = (67,05, ,0%) of the
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sensing game in the incomplete information scenario, such
that, for each worker s € S,

5 — J_, iféS>Ah
s T \6., if 8, < A

=8

(26)

Proof: Please refer to Appendix E for the detailed
proof. U
Theorem 6 characterizes a BNE of the sensing game, where
each worker s with §, > Aj, will drop out, and as long as
0, < Ay, she will participate with strategy .. Note that,
at the BNE, each worker s with §, € (A;,Ap] has to
evaluate her expected utility based on the specific choice of
{(as,bs)|s € S} in order to make the decision of whether or
not to participate. All of the following analyses in this section
are based on the BNE characterized in Theorem 6. We also
leave the proof of the uniqueness of BNE or the derivation
of other BNEs in our future work. Next, we introduce in
Theorem 7 and 8 about the budget feasibility and individual
rationality of Theseus in the incomplete information scenario.
Theorem 7: Condition (25) ensures that Theseus is budget
feasible in the incomplete information scenario.

Theorem 8: Theseus is individual rational in the incomplete
information scenario.

The proof of Theorem 7 is the same as that of Theorem 2
except that the A; is replaced by Ay, and the proof of
Theorem 8 is exactly identical to that of Theorem 3. Thus,
we omit the formal proofs of Theorem 7 and 8 in this paper.
Similar to Section VI-A2, we establish ranges from which we
select parameters A; and Ay. In the following Theorem 9,
we introduce a lower bound for A;.

Theorem 9: Given any 6, € (0,1), if Ay > F7'(1 —
1 —916), then Pr(é(l) < Al) > 0O, i.e., the probability
that at least one worker chooses to participate at the BNE
of the sensing game, in the incomplete information scenario,
is no less than the threshold 0;..

The proof of Theorem 9 is omitted in this paper as well,
because it can be directly adapted from that of Theorem 4 by
changing A; to A; and 6. to 6;.. By Theorem 9, we have that,
in the incomplete information scenario, it is A; that decides
the probability that at least one worker chooses to participate
at the BNE of the sensing game. That is, as long as A; > F~1
(1— 1 — 910), this probability, i.e., Pr(é(l) < Al), will be no
less than the predefined threshold ;.. Next, in the following
Theorem 10, where APP and OPT have the same meanings
as in Theorem 5, we derive an upper bound for Ay,.

Theorem 10: In the incomplete information scenario, given
aic > 1 and B;. € (0,1), we have that

APP
P (m > aic) < Bic, (27)
if Ap < Ay, where Ay, is the solution to
_ 2 __
Bt s (R(A;,,)S . éaic) -0, (28

~ A
with R(Ap) = [2" u—L0)
(Bn) =I5 s
Proof:  Please refer to Appendix F for the detailed

proof. U

Similar to Theorem 5, Theorem 10 gives us a probabilistic
guarantee on the approximation ratio of Theseus compared to
the optimal payment mechanism in the incomplete information
scenario. That is, as long as A, < Ay, the probability that

du.
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the approximation ratio &gt > e is no greater than 3,
for the predefined constants ;. > 1 and ;. € (0, 1). Next,
we introduce in Corollary 2 about the ranges from which we
select the parameters A; and Ay,.

Corollary 2: By jointly considering Theorem 9 and 10,
in the incomplete information scenario, the parameters /\; and
Ay, should satisfy F~1(1 — §1T=0;) < A < Ay < Ay,
in order to guarantee, with high probability, the existence of
at least one participating worker at the corresponding BNE
(Theorem 9), and that with high probability Theseus yields a
small approximation ratio (Theorem 10).

C. Summary of Parameterization

Thus far, we have finished our discussion of parameterizing
Theseus in both the complete (Section VI-A) and incomplete
(Section VI-B) information scenario. In summary, in the
complete information scenario, if parameters {(as, bs)|s € S}
and A; satisfy Condition (16)-(18) and Corollary 1, at the
BNE derived in Theorem 1, Theseus satisfies budget feasibility
(Theorem 2), individual rationality (Theorem 3), as well as
with high probability it has a small approximation ratio (Theo-
rem 5), and with high probability it guarantees that there exist
participating workers (Theorem 4). Similarly, in the incom-
plete information scenario, if we set parameters {(as, bs)|s €
S}, Ay, and A}, according to Condition (22)-(25) and Corol-
lary 2, at the BNE characterized in Theorem 6, Theseus also
satisfies budget feasibility (Theorem 7), individual rationality
(Theorem 8), as well as with high probability it guarantees that
there will be participating workers (Theorem 9), and with high
probability it has a small approximation ratio (Theorem 10).

VII. EXTENSIONS TO MCS SYSTEMS WITH
BINARY CLASSIFICATION TASKS

In this section, we extend our model, problem formulation,
payment mechanism design, and the corresponding analyses
to MCS systems with binary classification tasks.

A. Model

Different from Section III-A, the platform in the MCS
system considered in this section holds a set of M binary
classification tasks (e.g., labeling whether bumps and potholes
exist on a piece of road surface [5]), each of which has either
0 or 1 as its true label. We again use M = {1,2--- , M} to
denote the task set. In the rest of Section VII-A, we will only
elaborate on where the model is different from its counterpart
given in Section III.

We use 2™ to denote the ground truth label of task m,

m
x3, to denote worker s’s label on task m, and X™" and X3,

m

to denote, respectively, the random variables corresponding to
2 and 72, . Next, we define e, € [e,, €] as the probability
that worker s provides a wrong label on task m, i.e., Pr(X?$, #
Xty — ¢ . Clearly, the smaller ey is, the more likely that
worker s’s sensory data will be close to the ground truths.

In this section, we use ey as a worker s’s strategy in the
sensing game induced by the payment mechanism, and use
es = L to denote that worker s chooses to drop out. Thus,
a worker s’s strategy space is [e,, €s] U {_L}. Given workers’
strategy profile e = {ej,eq, - ,eg}, a worker s’s utility
us(e) has the same form as Equation (4) except that we
substitute §, with eg, and & with e.
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B. Mathematical Formulation and Proposed Mechanism

In this section, we also take individual rationality, budget
feasibility, and low error probability as our design objectives.
Next, we introduce the following Lemma 2 that establishes an
upper bound for the error probability given workers’ strategy
profile e.

Lemma 2: Given any o > 0, and workers’ strategy
profile e, we have that

1 - * truth ZSES’ s
Pr MZ X, — X, ‘Za gia ,

m=1

(29)

that is, the error probability of a truth discovery algorithm is
upper bounded by %’e
Proof: Please refer to the supplementary material [43] for
the detailed proof. 0
Similar to the PMD problem formulated in Section IV,
we aim to obtain the payment mechanism p(-) that minimizes
> scs €s at the corresponding BNE e*. The mathematical
formulation of designing such payment mechanism, which is
referred to as the cPMD problem, is provided in the following
optimization program.

cPMD Problem:

Jmin_ S%; e (30)
st Eer [us(e},e” )] >0, VseS8 (31)
e | 3 p(x(e)| < 8 32)

seS’

The detailed description of the cPMD problem is omitted,
as it could be directly adapted from that of the PMD problem.
Next, we propose to use the same payment mechanism as
given in Algorithm 2, and provide the corresponding parame-
terization of the parameters {(as, bs)|s € S} in Section VII-C.

C. Parameterization

To simplify our analysis, we assume that each worker s’s
cost function is quadratic® w.r.t. e, € les, 5], 1oe.,

Cs(es) - _Cs,lei + Cs,2, ves S [Qsaés]v (33)
where ¢, 1 and ¢, o are positive parameters. Next, we consider
the complete information scenario in Section VII-C1, where
each worker s’s cs1 and ¢, are a priori known, and the
incomplete information scenario in Section VII-C2, where the
platform only knows that ¢51 € [c;,¢1] and ¢s2 € [co, 2]
In both sections, we assume that the lower bounds of workers’
es’s, 1.e., e1,€y, -, €g, are 1.i.d. random variables within the
range [e, €] with a priori PDF g(-).

1) Complete Information Scenario: As each worker s’s ¢, 1
and cs2 are known in the complete information scenario,
for any A; € [e,€] and € < 0.5, we propose to paramete-
rize Theseus with any set of parameters {(as, bs)|s € S} that

SNote that the variables of Equation (15) and (33) have rather different
meanings. That is, Equation (15) is linear w.rt. the standard deviation
of the difference between worker s’s data and the ground truth, whereas
Equation (33) is quadratic w.r.t. worker s’s error probability for a binary
classification task. We leave the investigation of whether our results hold for
general forms of cost functions in our future work.
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satisfy Condition (34)-(36).

2cs 1€

as > C”le_, VseS (34)
1-2e

bs = as\; — csﬁlAf + 52 —as(2A; — 1)D(Ay),

Vs e S (35)
z}><B+2e— }:%, (36)
s=1

where D(A;) = [ Ay 2 gy Then, we start our analy-

e feAt g(v)dv

sis of such parameterization by deriving the BNE of the

corresponding sensing game in the following Theorem 11.
Theorem 11: If parameters {(as,bs)|s € S} satisfy Condi-

tion (34) and (35) , we have that €* = (e, e3,-- - ,e%), where,
for each worker s € S,
x J_, lf QS > At
es N {255 if QS S Ata (37)

is a BNE of the sensing game in the complete information
scenario.

Proof: Please refer to the supplementary material [43] for
the detailed proof. (]

We next introduce Theorem 12-15 without proofs, as they
could be obtained by adapting those of Theorem 2-5. In the
following Theorem 12 and 13, we show that Theseus satisfies
budget feasibility and individual rationality, if it is parameter-
ized according to Condition (34)-(36).

Theorem 12: Condition (36) ensures that Theseus is budget
feasible.

Theorem 13: Theseus is individual rational in MCS systems
with binary classification tasks in the complete information
scenario.

Next, we discuss our criterion of selecting the parameter A;.
We let e(1) = min{e;, €5, - , €5}, and assume that the CDF
G(-) of any e, is invertible with an inverse G~*(-). In the
following Theorem 14, we establish a lower bound for A;.

Theorem 14: Given any 0. € (0,1), if Ay > G1
(1 — 1 - 90), then Pr(g(l) < At) > 0., ie., the probability
that at least one worker chooses to participate at the BNE of
the sensing game in MCS systems with binary classification
tasks, in the complete information scenario, is no less than
the threshold 0..

Similar to Theorem 5, we use APP to denote the value of the
cPMD problem’s objective function guaranteed by Theseus,
and we let OPT = ¢,y which is the objective function’s
minimum value. In Theorem 15, we derive a probabilistic
guarantee on the approximation ratio between APP and OPT.

Theorem 15: In the complete information scenario, given
ae > 1 and . € (0,1), we have that

APP
Pr( =0 >a.) <.
r(OPT >« ) <0, (38)
if Ay < Ay, where A, is the solution to
_ 2 _
A+ ——Slnﬁc(Q(A¢)S——§ac)470, (39)
with Q(A¢) = feK’ u—2 gy

2t g(v)dv

Apart from the approximation ratio, Theorem 15 also estab-
lishes an upper bound A; for the parameter A;. Then, we have
the following Corollary 3 about the range of A;.
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Corollary 3: By jointly considering Theorem 14 and 15,
A; should satisfy G71(1 - 1 —96) < Ay < Ay in the
complete information scenario, so as to guarantee that with
high probability there exist participating workers at the cor-
responding BNE (Theorem 14), and that with high probability
Theseus has a small approximation ratio (Theorem 15).

2) Incomplete Information Scenario: In this section,
we study the incomplete information scenario, where, instead
of the exact values of each worker s’s ¢, 1 and c; 2, the plat-
form only knows that ¢s1 € [¢,C1], and ¢s2 € [cq, o] for
each worker s. Then, given any A; and Ap with e < A} <
A < e, we propose to parameterize Theseus with any set of
parameters {(as,bs)|s € S} such that Condition (40)-(43) are

satisfied.
955
ay > 22 vse s (40)
1-—2e
by < asAp — ElA}QL +cy — QGS(A}L - ].)D(Ah),
VseS (41)
bs > asA; — ¢ A7 + T2 — 2a,(A; — 1)D(Ay),
VseS (42)
s S
Y b, <B+2(e—A})D as, (43)
s=1 s=1

where D(Ap) = fQA” quhg(")
the following Theorem 16-20 regardlng the analysis of such
parameterization, the proofs of which are omitted because
they can be adapted from their counterparts in Section VI-B2.
Specifically, in Theorem 16, we characterize the BNE guaran-
teed by such parameterization.

Theorem 16: If parameters {(as,bs)|s € S} satisfy Condi-
tion (40)-(42), we have a BNE e* = (e}, e5, - ,e%) of the
sensing game in the incomplete information scenario, such
that, for each worker s € S,

L
os* _{ ,
QS?

Next, Theorem 17 and 18 shows respectively that Theseus
is budget feasible and individual rational under the parameter-
ization given by Condition (40)-(43).

Theorem 17: Condition (43) ensures that Theseus is budget
feasible in the incomplete information scenario.

Theorem 18: Theseus is individual rational in MCS systems
with binary classification sensing tasks in the incomplete
information scenario.

Then, in the following Theorem 19, we establish a lower
bound for the parameter A;.

Theorem 19: Given any 6;. € (0,1), if Ay > G~1
(1 — /1 - Hic), then Pr(g(l) < Al) > 0., i.e., the probability
that at least one worker chooses to participate at the BNE of
the sensing game in MCS systems with binary classification
tasks, in the incomplete information scenario, is no less than
the threshold 0;..

Similar to Theorem 15, we establish an upper bound for
the parameter Ay and derive a probabilistic guarantee on the
approximation ratio between APP and OPT.

Theorem 20: In the incomplete information scenario, given
aic > 1 and ;. € (0,1), we have that

APP
PI'<— Z aic) S ﬂica

du. Next, we introduce

ifgs > Ay

if e, < A, “4)

OPT 45)
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if Ap, < A, where Ny, is the solution to

_ 2 A
T, + m (Q(8N)S — caic) =0, (6)
with Q(Ap) = ff" “%

Combining Theorem 19 and 20, we have the following
Corollary 4 on the range from which the parameters A; and Ay,
should be selected.

Corollary 4: By jointly considering Theorem 19 and 20,
in the incomplete information scenario, A; and Ay, should sat-
isfy G 1 (1— v1— QiC) < A; < Ay < Ay, so as to guarantee,
with high probability, the existence of at least one participating
worker at the corresponding BNE (Theorem 19), and that with
high probability Theseus yields a small approximation ratio
(Theorem 20).

3) Summary of Parameterization: So far, our parame-
terization of Theseus in the complete information sce-
nario (Section VII-C1) and incomplete information scenario
(Section VII-C2) in MCS systems with binary classification
tasks have been finished. In summary, in the complete infor-
mation scenario, if parameters {(as, bs)|s € S} and A, satisfy
Condition (34)-(36) and Corollary 3, at the BNE derived in
Theorem 11, Theseus satisfies budget feasibility (Theorem 12),
individual rationality (Theorem 13), as well as with high
probability it has a small approximation ratio (Theorem 15),
and with high probability it guarantees that there exist par-
ticipating workers (Theorem 14). Similarly, in the incomplete
information scenario, if we set parameters {(as,bs)|s € S},
Ay, and Ay, according to Condition (40)-(43) and Corollary 4,
at the BNE characterized in Theorem 16, Theseus also sat-
isfies budget feasibility (Theorem 17), individual rationality
(Theorem 18), as well as with high probability it guarantees
that there will be participating workers (Theorem 19), and
with high probability it has a small approximation ratio
(Theorem 20).

VIII. PERFORMANCE EVALUATION

In this section, we introduce the baseline methods, as well
as simulation settings and results.

A. Baseline Methods

In our numerical evaluation for MCS systems with con-
tinuous tasks, we consider two baseline methods, namely
Max Std and Random Std. In Max Std, each worker s takes
strategy 05, i.e., the maximum standard deviation of the
difference between her data and the ground truths. Max Std
actually corresponds to the family of payment mechanisms
that provide rather insufficient incentives so that workers are
only willing to spend little amount of effort. Different from
Max Std, in Random Std, each worker s selects her strategy d
uniformly at random from the range [d,, 05|. Similarly, in our
evaluation for MCS systems with binary classification tasks,
we consider the baseline method Max EP where each work
s takes strategy €s, and another baseline method Random EP
where each worker s’s strategy es is selected uniformly at
random from the range [e,,€;]. We compare these baseline
methods with the BNEs of the sensing game induced by
Theseus, established in Theorem 1, 6, 11, and 16. Note that
we do not compare Theseus with existing mechanisms in past
literature, because, as indicated in Section II, none of them
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TABLE 11
SIMULATION SETTINGS
lSetting[ és7§s [ SS,ES IOC,Gic[ac,aic[Bc,Bic[ m‘y‘};‘h [ S [ M l
LI | [0.1,4 [5,10] | 0.9 5 0.1 [0, 10][[120, 150]] 30
ILIV|[ [0.1,4 [5, 10] 0.9 5 0.1 [[0,10]] 130 [[10,40]
V, VI [[0.05, 0.15][[0.45,0.5]] 0.9 | 150 | 0.2 |{0,1}] 110 [[30,60]

consider the same scenario as this paper, and thus they are
not comparable with Theseus.

B. Simulation Settings

For MCS systems with continuous tasks, we consider
setting I-IV in Table II. Among them, setting I and II
correspond to the complete information scenario, whereas
setting III and IV correspond to the incomplete information
scenario. In setting I and II, for each worker s, J, is generated
uniformly at random from the range [0.1,4], ie., 0, ~
U[0.1, 4]. Furthermore, we set 6. = 0.9, a. = 5, and 3. = 0.1,
and generate &, and ™" uniformly at random from the range
[5,10] and [0, 10], respectively. In setting I, we fix the number
of tasks as M = 30 and vary the number of workers S from
120 to 150, whereas in setting II, we fix the number of workers
as S = 130 and vary the number of tasks M from 10 to 40.
Note that the parameter A; is generated uniformly at random
from the range [F~(1 — /1 —0.),A,]. In setting III and
IV for the incomplete information scenario, we generate the
parameters &, s, Oic, Qic, Bic, 2™, S, and M in the same
way as in setting I and II, and select A; and Aj uniformly
at random from the range [F'~(1— /1 — 0;.), Ap] such that
A < Ay,

In all these settings, given J; and xf,;“h, worker s’s data
on task m, which is x7,, is generated by adding a randomly
sampled noise from the distribution N(0,42) to the ground
truth z™®. Then, workers’ data generated by Max Std and
Random Std, as well as at the BNEs of the sensing game
induced by Theseus, are treated as the inputs to a truth
discovery algorithm, respectively, to calculate the estimated
ground truths. For MCS systems with binary classification
tasks, the parameters e, €, Oic, Qics Bics 00, S, and M
are set in the same way as in setting I-IV. Given e4 and z™®,
we generate ¢, by setting it to be 2™ with probability 1—e,,
and 1 — 2" with probability e,.

In our simulation, the truth discovery algorithm that we
implement is the widely adopted CRH [7], which calculates
each participating worker s’s weight wy as

s’ * |2
wr — log <zsfes, Smem i = 5l ) @

ZmEM |x7gn - x;kl’L|2

C. Simulation Results

In this section, we firstly demonstrate our simulation results
regarding the comparison among Max Std, Random Std, and
Theseus, in terms of the truth discovery algorithm CRH’s
MAE:s (defined in Definition 6), in Figure 2-5. Note that for
each specific worker and task number, we repeatedly generate
workers’ data, run the truth discovery algorithm CRH, and
calculate the corresponding MAE for 10000 times.

In Figure 2 and 3, we plot the means and standard deviations
of the MAEs corresponding to Max Std, Random Std, and
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Fig. 2. MAE (setting I).

—v—Max Std
18 —-— Random Std
—e— Theseus
18 HHNNITNTTITTTTTTTTTTHUTT
HMHHIIIHIIIHHMIHMMM
w12
g
=
0 I A A A RIS Ai i i A AAEAELEL
TIITITTITITI T T I T Ereees
0.6
0.3

0
10 13 16 19 22 25 28 31 34 37 40
Number of Tasks

Fig. 3. MAE (setting II).
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Fig. 4. MAE (setting III).
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Fig. 5. MAE (setting IV).

Theseus for setting I and II of the complete information sce-
nario. From these two figures, we observe that the means and
standard deviations of the MAEs that correspond to Theseus
are far less than those that correspond to Max Std and Random
Std, which is because Theseus incentivizes workers to exert
their maximum effort, so that the standard deviation between
each worker’s data and the ground truths is minimized. Note
that, in Figure 2, the mean of MAE largely decreases as the
number of workers increase, because more data that are close
to the ground truths will be inputted to CRH with more number
of workers. Figure 4 and 5 demonstrate similar trends for the
MAEs in setting IIT and IV of the incomplete information sce-
nario. In Figure 6 and 7.5 we compare Theseus with Max EP
and Random EP in the complete and incomplete information

%Note that for ease of presentation, we scale up all standard deviations
in Figure 6 and 7 by 2.5 times.
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Fig. 8. Trade-off between the MAE and MP.

scenario, respectively, in MCS systems with binary classifica-
tion tasks. These two figures show that Theseus yields much
lower MAEs than MAX EP and Random EP.

Basically, Figure 2-7 indicate collectively that a truth
discovery algorithm will return rather inaccurate aggregated
results, when a vast majority of the participating workers pro-
vide unreliable data. Therefore, our Theseus payment mecha-
nism is highly necessary in order to achieve high aggregation
accuracy, even though the platform aggregates workers’ data
using a state-of-the-art truth discovery algorithm.

In Figure 8, we consider the same parameter settings as in
setting I, except that we fix the number of workers as 130, and
show the trade-off between the MAE corresponding to Theseus
and the miss probability (MP), defined as Pr(d;y > A).
Clearly, MP is the probability that no worker will participate
at the BNE of the sensing game induced by Theseus. In this
figure, the mean of the MAE, as well as the empirical MP
obtained by generating d,,0,, - - , 03, according to U[0.1, 4]
repeatedly for 10000 times, are plotted. It is clear that although
reducing A; causes the decrease of the MAE, it comes at a
cost of the increase in the MP. Due to space limit, we omit the
figure that shows the trade-off between the MAE and MP in
the incomplete information scenario, which has similar trends.

IX. CONCLUSION

In conclusion, in this paper, we propose a payment mech-
anism, called Theseus, which is used in pair with a truth
discovery algorithm to ensure high aggregation accuracy in
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MCS systems where workers may strategically reduce their
sensing effort. Theseus tackles workers’ strategic behavior, and
incentivizes workers to spend their maximum possible effort
at the BNE of the induced sensing game among workers.
Furthermore, we ensure that Theseus bears other desirable
properties, including individual rationality and budget feasibil-
ity. The desirable properties of Theseus are validated through
theoretical analysis, and extensive simulations.

APPENDIX A
PROOF OF LEMMA 1

Proof: The MAE of a truth discovery algorithm satisfies
that
M
* h
Z m Xlrut ‘
m:l
M
= sES’ ws X X:;fth
m=1 D ses Ws
M
= Z 968/ ws XS Xg;:lth)
m= Z‘?GS' Ws
i Zm:l ZSES’ w9|X'rgn - X;;;lth‘
M ESES/ Ws
M
| Sacsrwn( T x5, - xim)
M ZSES’ Ws
h
S Z Z | m Xglm .
SES’
As X3, — Xluh N(0,62), we have that E[| X3, —
X ] = \/gés. Thus, given any o > 0, we have that

| M
Pr(M Z |X*

m=1

truth
Xm | > Oé)

<re( 343 -
SES’
(Markov’s Inequahty)
M Tt
< E[ESES’ % Zm:l |XYSVL B X;nl,lth ]
o «
M S Ul
_ Yes a1 Zme B[ XG, — X]
o
= 2R
T a
which is exactly Inequality (10). (]
APPENDIX B

PROOF OF THEOREM 1

Proof: If any worker s chooses to participate, her expected
utility, when other workers take strategies 8*_8, and her refer-
ence worker 7’s strategy J; is given, can be calculated as

]E[ug(ég,é*_s)w,*j] =E|[ S(X(és,é*_s))‘éﬂ — Cs(0s)
1 M
= by — a,E M; (x5, —x1)? 5*]
+Cs,155 — Cs,2-
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As X5 — X = (X™0 4 N(0,62)) —
N(0,82) — N(0,62), we have ]E[(X
Therefore, we have

E[us(0s,8,)[67] = bs — as (02 +

(anh—l-N(O 52)) —
— X7)?] = 02 4 62,

(6:)2) + Cs,lés — Cs,2,

and thus,

Cs,1 ,és} = arg max ]E[us((ssa 8*75)|5:} .

max { <
2as 55€[8,,5.]

That is, regardless of the value of ", the strategy s €[04, 0]
that maximizes E[u,(d,,8",)[0}] is the maximum between
;al and ¢,. Because of Condltlon (16), we have that §, >
J > ;al Therefore, if any worker s chooses to participate,
her strategy must be J, and thus, her expected utility is

E[us(d,, 87,)]
= Bs; [B[u,(0,,57,)|57]]
= By, [B[us(6,.8%,)]6,]]
= Es [bs — as (62 +02) + cs 10, — 2]
= b, — a (éi +Es [é?‘ér < At]) + 5105 — Cs2
_ (as (A2 + A(A) — canAy + cs,g)

- (as (62 + A(A) = 018, +cs2),

where A(A f 5 —%du, and the last equality is
8
due to COIldlthH (17). Therefore, for each worker s € S

Elus(8,,87,)] <0, if 6, > Ay
Elus(8,,8%,)] >0, if 3, < Ay,
and thus, given that other workers take the strategies &° ,,
worker s will drop out, if §, > A, and will take strategy ¢,

if 5, < A;. Hence, the strategy profile 8" given in Theorem 1
is a BNE of the sensing game. 0

APPENDIX C
PROOF OF THEOREM 4

Proof: For any given A;, we have that

Pr(é(l) < At) = Pr(min{él,QQ, T aés} < At)
=1- Pr(min{élvé27 T 7éS} > At)
S
=1-[]Pr(s, > A) =1 (1 - F(A))”.
s=1

Thus, for any 6. € (0,1), we get A, > F_l(l — 1 - 95)

by setting 1 — (1 — F(At))s > 6., which proves Theorem 4.
O

APPENDIX D
PROOF OF THEOREM 5

Proof: At the BNE 8" given in Theorem 1, we have that

APP:Z(S* 25 —25 L5 <nnys

seS’ seS’
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where, for each s € S, ]l{ébé A} is an indicator function with

" o, if 8, > A,
=80 T, if g, < Ay,

and thus, és]l{észt} € [0, A]. Thus, for a fixed a. > 1,

S
51
br APPZaC b Yoem1 0515 <ayy >
OPT 9y

S
5.1
Zszl_s(S Lzag

=1 (és]]'{é,;SAf,} - E[é€|ée < At])

< Pr

Q¢
> — —E[8,]8, < A¢]
2 52 E[o,]0; < A
Sexp| — ( S[A_21| =)
t
_ 2
~ exp  2(acd = R(AY)S) 7

SA?

where the last inequality is because of the Hoeffding’s inequal-

ity, and R(A;) = f‘ufmf%du. For a fixed (., €
g i v v
(0,1), by setting exp ( — W) < B, we get that

A+ /-5 11215 (R(A¢)S—dac) < 0. Therefore, by setting A,
to be no greater than the upper bound A, given in Theorem 5,

we have Pr(45F > o) < f.. O

APPENDIX E
PROOF OF THEOREM 6
Proof: From Condition (22), we have that §, > ¢ >

261 26 5(; for each worker s. By the same reasoning as

in ‘the proof of Theorem 1, if a worker s chooses to par-
ticipate when other workers take strategies 8" _, her strategy
must be J,.

Therefore, given that other workers take strategies 8
worker s’s expected utility is

E[us(d,,8",)]
= by = (82 + E[82]8, < An]) + eoad, - o
= by — a5 (07 + A(Ap)) + 518, — 2.
Thus, by Condition (23), for any worker s with §, > Ay,
E[us(8,,8",)] < (as(A} + A(AR)) — 1A + ¢,)

— (as(82 + A(AR)) — cs10, + Cs2) <0
and by Condition (24), for any worker s with §, < Ay,
E[us(8,,87,)] > (as(A] + A(AR)) — ¢ A+ E2)

- (as (éf + A(Ah)) —cs10, + Cs,z) > 0.

Thus, given that other workers take strategies 8" ., worker s
will drop out, if §, > Ay, and will take strategy d,,1f 6, < A;.
Hence, there exists a BNE 8™ of the sensing game such that
Equation (26) is satisfied for each worker s. [l

—5°
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APPENDIX F
PROOF OF THEOREM 10

Proof: At the BNE of characterized in Theorem 6, we have

APP = Z d, < 25 L5 <nnys

seS’

where, for each s € S, ]l{égg And is an indicator function with

0, if 8, > A
Hosa =40, e, < A

Thus, similar to the proof of Theorem 5, for a fixed a;c > 1,

s
0.1
L 2om1 9045 <a) > an
OPT 30
2(icd — R(A1)S)?
s exp| - - SA?Z ’
_ [Bn f(w)
where R(Ap) = [; quthu Thus, for any fixed
Gic € (0,1), by setting exp ( - —Q(Q”“QS}Z%A”)S) ) < Bies

we get Ay + ./—S%W(R(A;,,)S — davc) < 0. Therefore,

by setting Ay, to be no greater than the upper bound A, given

in Theorem 10, we have that Pr(4 > a;c) < Sic. O
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