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A B S T R A C T

We test the hypothesis that children acquire knowledge of the successor function — a founda-
tional principle stating that every natural number n has a successor n + 1 — by learning the
productive linguistic rules that govern verbal counting. Previous studies report that speakers of
languages with less complex count list morphology have greater counting and mathematical
knowledge at earlier ages in comparison to speakers of more complex languages (e.g., Miller &
Stigler, 1987). Here, we tested whether differences in count list transparency affected children’s
acquisition of the successor function in three languages with relatively transparent count lists
(Cantonese, Slovenian, and English) and two languages with relatively opaque count lists (Hindi
and Gujarati). We measured 3.5- to 6.5-year-old children’s mastery of their count list’s recursive
structure with two tasks assessing productive counting, which we then related to a measure of
successor function knowledge. While the more opaque languages were associated with lower
counting proficiency and successor function task performance in comparison to the more
transparent languages, a unique within-language analytic approach revealed a robust relation-
ship between measures of productive counting and successor knowledge in almost every lan-
guage. We conclude that learning productive rules of counting is a critical step in acquiring
knowledge of recursive successor function across languages, and that the timeline for this
learning varies as a function of counti list transparency.

1. Introduction

Linguistic expressions of number - like sixteen and seventy-two - provide humans with a powerful ability to exactly quantify a
limitless array of objects and other entities. This ability transcends our specific experience with numbers: Although most people have
never counted to (or even thought about) the number three million and thirty-two, we can immediately recognize it as a possible
number, and can judge without hesitation that adding “1″ would generate three million and thirty-three. Somehow, when we learn to
count in childhood, we use a finite training set to extract a set of rules that yield a potential infinity of numbers. In this sense, number
words - like language more generally - make “infinite use of finite means” (Chomsky, 1965; von Humboldt, 1999), perhaps by virtue
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of the fact that they are fundamentally linguistic symbols, acquired by children as part of the process of acquiring language. In the
present study, we pursued this analogy between natural language and the acquisition of counting, and tested how children’s learning
of recursive counting rules is affected by the grammatical structure of counting cross-linguistically. Specifically, we asked how the
rule-governed structure of number word morphology in transparent languages (Cantonese, Slovenian, and English) and more opaque
languages (Hindi and Gujarati) affected children’s discovery of the recursive successor function that governs counting.

Although children begin reciting some portion of the count list at around 2 years of age (Fuson, 1988), they initially appear to
treat it as a closed routine, or “unbreakable chain”, rather than as a productive system governed by rules. At this point, many children
are unable to count beyond 10, and show no understanding of how counting can be used to label the cardinality of sets. For example,
a child who is able to count to 10 may nevertheless produce a random number of items if asked to generate a set of one (Le Corre, Van
de Walle, Brannon, & Carey, 2006; Wynn, 1990, 1992). Despite being able to recite a partial count list, children acquire meanings for
the numerals one, two, and three in highly protracted stages over the course of about 18 months between the ages of 2.5 and 4 years,
and rarely even attempt to count when asked to label sets or give a particular number of objects (Le Corre & Carey, 2007). Only at
around the age of 3.5 to 4 years do US children begin to systematically use counting to label and generate sets, evidence that they
have acquired some form of the Cardinal Principle (CP) - e.g., that the final word used in a count routine labels the cardinality of the
set as a whole (Gelman & Gallistel, 1978).

This apparent discontinuity in children’s understanding of number is not currently well understood, though there is growing
evidence that it is importantly related to changes in children’s readiness for subsequent numerical learning (Geary, 2018; Geary et al.,
2018; Spaepen, Gunderson, Gibson, Goldin-Meadow, & Levine, 2018). On some accounts, acquisition of the CP indicates a moment of
conceptual change in which children discover the semantic content of counting (Carey, 2004, 2009; Sarnecka & Carey, 2008; Le Corre
& Carey, 2007; Wynn, 1990, 1992). On this view, children make a “wild induction” based on an analogical mapping between
counting and cardinality: They notice that as one counts up from one to two and then from two to three, the cardinality of the sets
labeled by these words grows in increments of exactly 1 (see also Gentner, 2010; Marchand & Barner, 2018; Wynn, 1992). On the
basis of this isomorphism between the count list and cardinal meanings, children hypothesize that the meaning of the next numeral in
their list (four) differs from the cardinality of the previous numeral by exactly 1 as well, and that more generally every number, n, has
a successor defined as n + 1. This, as noted by Sarnecka and Carey (2008) amounts to acquiring implicit knowledge of the successor
function, a central element of the Peano axioms, which provide a logical foundation for arithmetic, a subset of which are as follows:

1. 1 is a natural number.
2. If n is a natural number, then S(n) is also a natural number.
3. For every natural number n, S(n) ≠ 1.
4. If P is a property of natural numbers such that (a) 1 has property P, and (b) whenever a natural number has property P, so does its

successor, then all natural numbers have property P, and every number has a natural successor.

Critically, this account posits that children acquire a recursive successor function at around the age of 3.5 or 4 years, allowing
them to accurately label and generate sets of any size that is within their known count list. As evidence for this hypothesis, Sarnecka
and Carey (2008) used a paradigm they called the “Unit Task.” In this task, an experimenter placed either 4 or 5 items into a box,
providing the appropriate cardinal label - e.g., “There are 4 frogs in the box.” - and then added 1 or 2 additional items, while asking,
“Are there 5 or 6 frogs in the box now?” Using this method, they found that only CP-knowers exhibited above-chance performance
(around 66%), providing support for the claim that acquisition of the successor function is related to acquisition of the CP. However,
while CP-knowers as a group performed above chance on this task, many CP-knowers appeared to fail completely, raising the
question of whether acquisition of the successor function is what makes children CP knowers, as Sarnecka and Carey claimed, or
whether instead this knowledge is acquired sometime later.

Subsequent work has also found that although being a CP-knower may be a necessary condition for learning about the successor
function (Spaepen et al., 2018), many CP-knowers lack knowledge of the successor function, and appear to master it only after
becoming exceptionally strong counters (Cheung, Rubenson, & Barner, 2017; Davidson, Eng, & Barner, 2012; Wagner, Kimura,
Cheung, & Barner, 2015). For example, Cheung et al. (2017) found that US children only succeed at the Unit Task for the largest
numbers in their count lists by around age 5.5, and that this coincides with the moment at which they begin to claim that, rather than
being finite, numbers never end (for related evidence that children first judge numbers to be infinite at this age, see Evans, 1983;
Hartnett & Gelman, 1998). This finding is consistent with a much earlier finding, by Secada, Fuson, and Hall (1983), that children as
old as 5 or 6 struggle with a task almost identical to the Unit Task - which they use to assess “counting-on” (i.e., the ability to add a set
of 5 to a set of 1 without recounting the set of five objects after it is labeled for them).

Critical to our study, Cheung et al. (2017) note that performance on the Unit Task is best predicted by how high a child can count.
Although it is perhaps unsurprising that counting experience might be related to discovering the underlying logic of the count system,
it remains unknown how it might help. Nothing about memorizing a finite list guarantees that children should impute a recursive rule
to this list, or conclude that numbers are infinite; after all, other lists, like the ABCs or the months of the year, aren’t generated by a
recursive rule. One possibility is that, as proposed by Carey and colleagues, children posit a recursive function based purely on a
mapping between cardinalities and the ordered count list, such that the inference that numbers never end is an inductive general-
ization based on this analogy (Carey, 2004, 2009; Gentner, 2010; see Marchand & Barner, 2018, for discussion). However, as Cheung
et al. (2017) note, another possibility is that the recursive rule takes its origin in the morpho-syntactic structure of the count list itself
(see also Barner, 2017; Hurford, 1987; Rule, Dechter, & Tenenbaum, 2015; Yang, 2016). For example, a child learning English might
notice that after each decade term (twenty, thirty, forty, etc.) the next number in the count sequence can be generated by appending
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the words one through nine in order - i.e., an additive decade + unit rule. In parallel, some children might also learn a multiplicative
unit*decade rule for forming decade labels - e.g., seven*ty; eight*ty (though noticing such a rule is not strictly necessary to become a
productive counter, since the decades can be readily memorized, and in some cases must be due to their irregularity). A child who has
learned an additive decade + unit rule might use this to productively generate increasingly large number words which go beyond
their input. Given this, high counters’ better performance on measures like the Unit Task might result not merely from more number
language input in general, but also from their knowledge of the productive morphological rules that allow numbers to be freely
generated. Children’s belief that numbers never end might originate in a rule that suggests that number words might never end.

Several studies provide preliminary evidence that young children learn the productive rules that govern counting prior to ex-
hibiting errorless counting ability. First, when English-speaking children are asked to count as high as they can, their errors are non-
random and often occur on decade transitions like twenty-nine and thirty-nine (Fuson, Richards, & Briars, 1982; Gould, 2017; Siegler &
Robinson, 1982; Wright, 1994). If children simply memorized their count routine as an unstructured list like the alphabet, we might
expect their errors to be randomly distributed, such that errors should be just as likely for numbers like 22, 25, and 29. However, the
finding that children’s frequent failure to recall decade terms - but not the words preceding them - suggests that their ability to count
up to these words is not driven purely by memory, but instead by the application of a rule that combines the highest known decade
label with the numbers 1–9. As a second form of evidence for children’s acquisition of productive counting rules, several studies have
compared how children learn to count in languages which have more or less transparent morphological rules governing counting. For
example, in languages like Cantonese, in which the numbers 11–99 can be generated via rule-governed combinations of the verbal
labels for 1–10, (see Table 1) children count higher and make fewer errors than same-aged children learning English, which has
multiple exceptions in the teens and most decade labels (Miller, Smith, Zhu, & Zhang, 1995; Miller & Stigler, 1987). Speakers of
Korean, which like Cantonese is highly transparent, also exhibit better performance on multidigit addition and subtraction problems
and on identifying place-value names than age-matched English-speaking children (Fuson & Kwon, 1992). In a within-culture
comparison, children learning Welsh (which has a highly regular count list) outperformed English-speaking peers in tasks assessing
place-value comprehension (Dowker, Bala, & Lloyd, 2008). Finally, several studies have found that children learning less transparent
languages (such as English, French, and Swedish) demonstrate a weaker understanding of the base-10 system in comparison to
speakers of more transparent languages like Japanese, Korean, and Cantonese (Miura, Kim, Chang, & Okamoto, 1988; Miura &
Okamoto, 1989).

Although there have been several points of connection made between the regularity of counting systems, how high children can
count, and mathematical achievement, no previous work has provided direct evidence that such effects are actually due to differences
in how readily children extract recursive counting rules (e.g., by examining individual differences within a particular culture). For
example, while previous findings are consistent with a role for counting transparency, there are also known differences in the levels of
counting, number, and mathematics exposure across many of these previously studied groups (Pan, Gauvain, Liu, & Cheng, 2006;
Towse & Saxton, 1998). Consequently, it is unclear whether these findings reflect differences in linguistic structure, or in cross-
cultural practices surrounding number and mathematics instruction. Further, these advantages in mathematics education outcomes
extend well into elementary school and high school (Siegler et al., 2012; Watts, Duncan, Siegler, & Davis-Kean, 2014) at a time when
computations depend mainly on written numerals, such that counting transparency should play a much weaker role, if any, in
learning. Very generally, many cross-cultural differences including language, mathematics curriculum, and societal attitudes toward
the importance of early math education may impact children’s early counting fluency without necessarily implicating children’s
ability to detect recursive counting rules. If previously attested differences in mathematics learning result from the impact of counting
transparency on the acquisition of counting rules, then children learning transparent counting systems should be faster to extract
recursive rules from their count list, and should be faster to apply these rules to reasoning about simple addition facts, like those
tested by Sarnecka and Carey (2008) Unit Task.

The present work addresses these issues by directly assessing whether individual children have acquired productive counting
rules, how knowledge of such rules is related to successor function knowledge, and how both differ across languages and cultures.
First, in keeping with previous work, we tested the role of count-list transparency on acquisition of successor function knowledge by
comparing children learning languages with relatively transparent count lists to children learning languages with much more opaque
count lists. Second, we reasoned that if successor function knowledge is driven by learning recursive counting rules, then this should
be true across all cultures, regardless of how opaque the count list, how long it takes for children to become competent counters, or
how much input they receive. Third, to assess the value of this within-culture approach, we tested how other cultural factors might

Table 1
Examples of number words in Cantonese, Slovenian, Hindi, Gujarati, and English. Languages are arranged from most to least transparent. Bolded
items refer to irregular/novel items in the count list.

Numeral

2 5 10 20 25 50 52 102

Cantonese yih ńgh sahp yihsahp yihsahpńgh ńghsahp ńghsahpyih yātbāaklìngyih
Slovenian dva pet deset dvajset petindvajset petdeset dvainpetdeset sto dva
English two five ten twenty twenty-five fifty fifty-two one hundred two
Gujarati be pāṅch das vīs panchīs pachās bāvan eka so be
Hindi do pānch das bīs pachchīs pachās bāvan ek sau do
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impact learning by comparing children learning similarly transparent languages across cultures that differ with respect to previously
attested outcomes in mathematics education. To accomplish these goals, we conducted two Experiments with data from five different
groups that varied with respect to both counting transparency and cultural practices surrounding mathematics education.

In Experiment 1, we tested children learning Cantonese (in Hong Kong), Slovenian (in Slovenia), and English (in the US). As
already noted, Cantonese is a fully regular count system, with the entirety of the count list from 11 to 99 generated using the verbal
labels for 1–10 (see Table 1). For example, the label for 25 (yihsahpńgh) can be described as the joint application of two distinct rules:
the multiplicative unit*decade rule (two*decade, or yih*sahp) and the additive decade + unit rule (decade + five, or yih*sahp+ńgh),
each of which is fully regular (i.e., exceptionless) up to 99 in Cantonese. Given this, Cantonese-speaking children may be quick to
learn the structure of the count list because there are no exceptions to this structure, allowing them to potentially notice rules after
memorizing a relatively small subset of the count list. Slovenian is slightly less transparent than Cantonese; while numerals from 11 to
99 are all formed according to a unit + unit*decade structure, it features several irregular formulations (e.g., the teens more closely
resemble English). Prior to grade school, however, Slovenian children appear to receive relatively little counting exposure and often
cannot count past 10 before age 5, when US children count to nearly 50 (Almoammer et al., 2013; Marušič, Plesničar, Razboršek,
Sullivan, & Barner, 2016). Thus, while Slovenian-speaking children do have the benefit of a fairly regular count system, they appear
to have low exposure to counting routines, allowing us to weigh the relative effects of productive counting knowledge vs. number
training. Critically, however, our main question was whether the acquisition of productive counting rules is related to successor
function knowledge across opaque and transparent languages, and independent of cross-linguistic difference in learning timecourse.

In Experiment 2, we investigated the relationship between productive counting and successor function knowledge in two lan-
guages with highly opaque count lists: Hindi and Gujarati. While Hindi and Gujarati numbers are generated through a base-10
system, both exhibit many more irregularities, morphological variations, and unpredictable phonological changes in comparison to
English (Berger, 1992; Bright, 1969). In fact, it has been argued that the phonological properties of Hindi and Gujarati are so irregular
that the numbers 1–100 can only be learned through rote memorization, a claim we test in our study (Bright, 1969; Comrie, 2011; see
Appendix for a table demonstrating irregularities in the Hindi count list). As an example of this complexity, whereas in Hindi the
numbers 2, 5, and 10 are do, pānch, and das, respectively, the label for 20 is bīs, 25 is pachchīs, and 50 is bāvan. Such patterns are
found throughout both languages. Given this, we hypothesized that children learning Hindi and Gujarati might have to memorize a
larger segment of their count list before converging on productive counting rules. However, while we were interested in cross-
linguistic differences, our main focus, as in Experiment 1, was to test within-group relations between children’s mastery of the count
list’s structure and their knowledge of the successor function.

Since previous studies do not establish a single gold standard for evaluating children’s acquisition of productive counting rules, in
each of these Experiments we took an exploratory approach to evaluating this knowledge. In particular, we developed and pre-
registered several measures that sought to differentiate between children with a fully memorized list versus those who count using
rules. The first was a commonly used measure of children’s counting mastery which involves testing how high they can count without
error - what we call their “Initial Highest Count” (Almoammer et al., 2013; Barth, Starr, & Sullivan, 2009; Cheung et al., 2017;
Davidson et al., 2012; Marušič et al., 2016; Fuson et al., 1982; Siegler & Robinson, 1982; Wagner, Chu, & Barner, 2019). However, a
problem with this measure is that for some children it has the potential to underestimate knowledge of productive counting rules:
Whereas some children — especially those who make errors on decade transitions like 29 — can count higher when prompted, other
children who make errors nearby in the count list (e.g., 32) are unable to continue counting, suggesting that their list is likely
memorized, and not generated by rules (Siegler & Robinson, 1982). Therefore, when used as a standalone measure, Initial Highest
Count is ambiguous with respect to children’s productivity.

Given these concerns, we provided children with prompts when they made errors or omissions in their count routine. In addition
to analyzing children’s initial errors when counting, we also measured their Final Highest Count, a potentially stronger indicator of
their ability to generate new number labels, and then built a measure based on the difference between these two, which we expected
would provide an especially strong measure of productivity since it reflects the ability to continue counting after an initial error when
given a prompt. Finally, to assess knowledge of productive rules outside of the count routine, we tested children’s ability to name the
next number in the count list from arbitrary points, both within and beyond the range of their Initial Highest Count (e.g., “105, what
comes next?”). We reasoned that only children with strong knowledge of how to productively generate number labels should perform
well on this task. Taking this exploratory approach, we compared the relative ability of these metrics to predict children’s acquisition
of a recursive successor function as measured by Sarnecka and Carey (2008) Unit Task, with the goal of identifying a strong measure
of productivity that explains knowledge across different languages and cultures.

2. Experiment 1

2.1. Method

The methods and analyses of this study were pre-registered prior to any data collection. The pre-registration can be found at
https://osf.io/2vzxr. All methodological and analytical choices were as pre-registered, unless stated otherwise in-text. Throughout
the method section, we use English examples; however, stimuli were always presented in the child’s language.

2.1.1. Participants
We pre-registered a minimum n of 80 per language group to conduct analyses, and a maximum n of 150. We recruited 378

children aged 3.5 to 6.5 years from preschools, elementary schools, and the surrounding community in Hong Kong; Nova Gorica,
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Slovenia; and San Diego, California, USA. Fifty of these children were tested, but excluded from analyses as pre-registered for missing
data from more than 20% of trials (n = 25); not completing the Highest Count task (n = 5, including children who were unable to
count to two);1 missing Highest Count recording (n = 4); being out of age range (n = 6); experimenter error (n = 6); non-native
primary language (n = 2); noted by experimenter for exclusion (n = 1); or for parental interference (n = 1). As pre-registered, an
additional two participants were excluded only from analyses involving the Next Number and WPPSI tasks in our English dataset due
to failure to complete the minimum number of test trials for those tasks.

After these exclusions, our final sample included 328 participants. A breakdown of demographic information by language is
shown in Table 2.

2.1.2. Stimuli, design, and procedure
Children were tested individually by native speakers of Cantonese, Slovenian, or English in a room set apart from the classroom

(in Hong Kong, Nova Gorica, and San Diego), or in a small lab testing space (in San Diego). Participants received the tasks in a fixed
order (Abbreviated Give-N, Highest Count, Unit Task, Next Number, and WPPSI Picture Memory Test).

2.1.2.1. Abbreviated Give-N. This task was a conservative test of whether children understood the CP. The experimenter provided
children with 10 plastic objects (e.g., buttons, bananas, apples, or bears), and a small plastic plate. After familiarizing the child with
the purpose of the game, the experimenter asked them to put N items on the plate (trials included 6, 9, 7, and 5, in that order). After
the child finished placing a set on the plate, the experimenter asked, “Is that N? Can you count to make sure?” If the child answered in
the negative they were permitted to fix the set. If children were able to correctly generate only three of the four requested sets, they
were given a second try on the failed trial. Children were classified as CP-knowers if they correctly generated sets for all four
numbers. Both CP- and subset knowers were included in analyses.

2.1.2.2. Highest Count. The experimenter introduced the task to the child by saying, “In this game I want you to count as high as you
can. Can you start counting with one?” If the child did not begin counting after one, the experimenter repeated the prompt with a
rising intonation. If the child made an error, the experimenter immediately stopped them by saying, “Wait a minute, what comes after
N?” This provided the child an opportunity to self-correct. If the child failed to correct the error the experimenter provided the next
number by saying, “Actually, what comes after N is N + 1. Can you keep counting?” If the child did not continue, the experimenter
repeated the previous three numbers (including the prompt) with a rising intonation to encourage the child to continue. If the child
made an error immediately after being given a prompt, or was otherwise unable to continue, the experimenter stopped the task. The
task was similarly ended if the child made more than three errors within a single decade, or more than three consecutive errors (i.e.,
counts with one prompt between each number). Otherwise, children were allowed to count to 140, and were then stopped and
congratulated (“Wow! You counted to 140!”). Throughout the task, children were allowed up to 14 prompts (an average of one per
decade), as we hypothesized that even children who were highly familiar with the base system might nevertheless struggle to recall
decade transitions, which are often irregular. No child used all 14 prompts; the maximum number given was 12, with an average of
2.53 prompts across all languages. All children’s counting data were recorded on a voice recorder and independently coded and
validated by two other researchers, which allowed us to apply the same coding criteria to all children.

2.1.2.3. Unit Task. To assess children’s understanding of the successor function, we used a modified version of the Unit Task
(Sarnecka & Carey, 2008) presented on a tablet. The experimenter presented children with a scene depicting a picture of a frog on a
lilypad, saying, “This is my friend, Froggie. Froggie is going to tell you about some fish she sees in the pond. You have to listen very
carefully to Froggie, because she is going to ask you some questions. Let’s see what Froggie has to show us.”

Every trial had three phases. First, the child saw some number of fish move into the middle of the screen, and heard a pre-recorded
female voice say in their native language, “Look! There is/are N fish in the pond!” The fish were visually presented for approximately
1.5 s. Next, a lilypad covered the fish so that they were no longer visible, and children were given a memory check: “How many fish
are in the pond?” If the child failed this first memory check, the experimenter went back to the start of the trial, saying, “Let’s try that
again!” If the child failed this second memory check, the experimenter told the child how many fish were in the pond, and proceeded
with the remainder of the trial.

After the memory check, children heard, “Look!” and saw one fish swim in from the right side of the screen and remain directly to
the right of the lilypad. Children then heard the critical question, “Are there N + 1 or N + 2 fish now?” Order of alternatives (N + 1
or N +2) was counterbalanced across trials. If children failed to pick one of the presented alternatives, the experimenter provided the
alternatives again verbally. Participants completed a training trial (with 1 fish; on this trial, participants received feedback) and then
12 test trials (numbers queried were 5, 7, 16, 24, 52, 71, 105, 107, 116, 224, 252, and 271). In contrast to previous work using this
task (Cheung et al., 2017; Davidson et al., 2012; Sarnecka & Carey, 2008), we included items so large that they that could not have
been produced in the Highest Count task (224, 252, and 271).

For both the Unit Task and the Next Number task (below), the correct response for a given N was N + 1. “I don’t know” responses
were coded as incorrect. If a participant did not respond for a given N, that trial was excluded from analysis, but otherwise all
numeric responses were included in analyses. Trials were additionally classified as being either within or outside of a child’s Initial

1 Children who were unable to count to two in the Highest Count task were excluded because it was unclear whether such failure to count reflected
a lack of knowledge or an unwillingness to participate.
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Highest Count.

2.1.2.4. Next Number task. The experimenter introduced the task by saying, “This is called ‘What Comes Next.’ In this game, I’m
going to say a number, and you’ll tell me the one that comes next.” For every number, the experimenter prompted the child by saying,
“N, what comes next?” If a child gave a response that was less than the initial prompt the experimenter reminded the child that the
game was called, ‘What comes next,’ and allowed them to change their response. Children only received one such reminder. The
numbers queried in this task were the same as in the Unit Task.

2.1.2.5. Picture memory task. This task was adapted for display on a tablet from the WPPSI-IV (Wecshler, 2012) picture memory task,
and was included to assess children’s nonverbal working memory. Children were presented with pictures of familiar items (e.g., bell,
block, and hat) and told to remember them with the prompt, “Look at this/these picture(s)!”. After either 3s (single target) or 5s
(multiple targets), children saw a set containing the target and some number of distractor objects (e.g., chair, drum, and rainbow).
Children were asked to touch the objects they had just seen with the prompt, “Point to the picture(s) I just showed you.” As is typical
for this task, to prevent the use of verbal rehearsal strategies, children were stopped from saying the names of the objects and told that
they had to be silent during the game.

Children received three trials with feedback at the start of the task. If they selected the incorrect items on these trials, the
experimenter showed them the target items again, saying, “I showed you these pictures, so you should choose these pictures.”
Following WPPSI protocol, if children were younger than 4 years, they began the task with 1-item trials, while children older than
4 years began the task with 2-item trials. A response was only considered correct if the child correctly identified every target item.
The task was terminated after 3 consecutive incorrect trials, and there were either 28 or 32 possible test trials, depending on the age
of the child. As the task progressed, both the number of target items and the number of distractors increased (up to 7 targets and 12
distractors).

Children received one point for every correct trial. We summed all correct trials for each participant to obtain their raw working
memory score.

2.2. Measures of productivity

2.2.1. Highest Count
This task yielded three measures of children’s counting knowledge, each of which might capture knowledge of productive

counting rules. Initial Highest Count was the highest number counted to without errors. As noted in the Introduction, however, this
measure alone may not yield a reliable measure of productivity since the source of children’s errors in a Highest Count task is often
ambiguous. Our second measure, Final Highest Count, was defined as the highest number reached during the counting task with the
aid of experimenter prompts. We reasoned that this measure should distinguish between children who understand how to produc-
tively generate the remainder of the numbers within a given decade, and those who do not. This measure is appealing as a measure of
productivity because it captures the difference between a child who, having counted to, e.g., 29, can continue counting up to, e.g., 39,
when prompted with the label thirty vs. one who cannot continue counting. Additionally, restricting the number of prompts for
children who did not demonstrate knowledge of the count list’s structure meant that these prompts only provided meaningful Final
Highest Count improvements if the child was able to use those prompts to progress substantially through the count list.

Our third measure was a binary classification based on the difference between these first two measures (Initial and Final Highest
Count) in which we classified children as either “Resilient” or “Non-Resilient” counters, on the hypothesis that Resilient counters rely
on knowledge of the base-system to count up from errors. Children were classified as Resilient if they were able to count at least two
decades past any error (without making more than three errors in those two decades). This pre-registered criterion allowed children
two prompts at each decade transition within those two decades, plus one additional mid-decade or decade-beginning error. Our logic
in developing this classification was that, if children have some understanding of the structure of the count list, but perhaps have
made an error due to an irregular decade label, they should be able to productively use experimenter prompts to continue counting
beyond their Initial Highest Count. The two-decade criterion was chosen a priori because it provided stronger evidence that children’s
counting behavior after a prompt was rule-governed (as opposed to a one-decade criterion) while also accommodating children who
might have initial counts close to 100, where additional embedding may cause further errors. Children who were unable to meet this
criterion for any error made during the Highest Count task were classified as Non-Resilient. In Experiments 1 and 2, only nine
children used ten or more prompts, and 67 children used five or more prompts. Overall, Resilient and Non-Resilient counters tended
to use prompts similarly, and to the same degree. This categorical classification contains some noise, however; for example, it does
not distinguish between children who met these criteria after counting to 30 versus those who were able to count to 100.

Table 2
Demographic information for Cantonese, Slovenian, and US English samples.

n n CP-knower Mage (SD) Medianage

Cantonese 118 (55 female, 63 male) 98 5.16 (0.81) 5.07
Slovenian 99 (45 female, 54 male) 65 5.21 (0.75) 5.25
English (US) 111 (43 female, 68 male) 71 4.79 (0.85) 4.78
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Additionally, it may classify children who were able to count quite high but not able to continue after a prompt as Non-Resilient.
Keeping these shortcomings of the classification in mind, we report Resilience as a broad diagnostic of productive counting
knowledge.

2.2.2. Next Number
The Next Number task acted as a fourth potential measure of counting productivity. We reasoned that children who have pro-

ductive counting rules should have an easier time labeling the next number in a sequence, especially for numbers beyond their Initial
Highest Count. Also, unlike the other measures, this task required children to generate the next number without the benefit of the
count routine’s momentum. Children’s Highest Contiguous Next Number was defined as the highest number for which they were able
to generate a successor, provided all previously queried items were also correct. For example, if a child responded correctly for 5, 7,
and 24, but incorrectly for 16, their Highest Contiguous Next Number would be 7. For children who made an error on 1, the training
item in this task, their Highest Contiguous Next Number was 0.2

3. Results

3.1. Highest Count

A breakdown of counting profiles by language and Resilience is shown in Table 3. Consistent with prior work, we found that
Cantonese-speaking children demonstrated overall greater counting proficiency than either US or Slovenian children in both their
Initial and Final Highest Counts. As expected, we also found lower levels of counting proficiency in Slovenian-speaking children in
comparison to the other two languages (Table 3). Children in all three languages used experimenter prompts to a similar degree. In
grouping children by Resilience, we found that Resilient counters had higher Initial and Final Highest Counts than Non-Resilient
counters in all languages. Nevertheless, we still found that Cantonese-speaking children were able to count higher than English- and
Slovenian-speaking children, regardless of Resilience classification.

Consistent with our hypothesis that acquiring productive counting rules is facilitated by increased count list transparency or
exposure, we found the greatest number of Resilient counters in Cantonese, with 51% of children identified as Resilient. In contrast,
only 26% of Slovenian children were classified as Resilient. Finally, 38% of children were identified as Resilient in our US sample,
which has higher rates of counting exposure in comparison to Slovenian, but a lower level of count list transparency.

A visualization of counting profiles is shown in Fig. 1. Consistent with our motivation for seeking alternative measures of counting
productivity, we found that a majority of children (63% across all three languages) who stopped before 140 were nevertheless able to
count beyond their Initial Highest Count when provided with prompts. Further, many children were classified as Resilient despite
having fairly low Initial Highest Counts (i.e., they could count at least 2 decades beyond their first error). While Initial Highest Count
was strongly correlated with Final Highest Count in all languages (Cantonese: r = 0.86, p < .0001; Slovenian: r = 0.80, p < .0001;
English (US): r = 0.82, p < .0001), the frequency of children who were able to count beyond their initial errors, sometimes by many
decades, indicates that this measure may not always fully capture knowledge of a productive counting rule.

3.2. Predictors of Unit Task performance

3.2.1. Within-language analyses
In this section, our main goals were to test whether productive counting knowledge is predictive of successor function knowledge

within each language group, and to test which measure of productivity was the strongest predictor. To address these questions, we
constructed four models for each language group, separately predicting Unit Task performance from our candidate measures of
productivity: (1) Initial Highest Count; (2) Final Highest Count; (3) Counting Resilience; and (4) Highest Contiguous Next Number.
For each model, we also included age, whether the number was within or outside the child’s Initial Highest Count, and the numerical
magnitude of the Unit Task trial,3 with subject as a random factor.4 We tested whether each candidate measure significantly predicted
Unit Task performance by conducting a Likelihood Ratio Test between each of these four individual models and the base model. Next,
we constructed our large models. In constructing large models for this and all other analyses, we used hierarchical model comparison
to test whether candidate measures of productive counting knowledge explained unique or overlapping variance in children’s per-
formance. The base of each large model contained the candidate measure associated with the lowest AIC, to which we added
predictors in order of increasing AIC. Candidate measures were retained on the basis of a significant χ2 value.

As demonstrated in Table 4, we found that several candidate measures of counting productivity were related to acquisition of the

2We did not pre-register a Highest Contiguous Next Number for children who failed the first trial of the Next Number task, as we did not
encounter any children who failed this trial during piloting. Failure on this initial trial was rare in all datasets: n Cantonese = 8; n Slovenian = 9; n
US English = 8; n Hindi = 4; n Indian English = 5.

3 Note that we pre-registered the use of numerical magnitude in these models for Experiment 2, but not for Experiment 1. Based on the results for
Experiment 2, we felt that the most informative analyses were those that took into account how large the number was on the Unit Task.

4 Models were generalized linear mixed effects models constructed in R using the ‘lme4′ package (Bates, Maechler, Bolker, & Walker, 2014) with
the formula: Correct ~ [Resilience/Initial Highest Count/Final Highest Count/Highest Contiguous Next Number] + Trial Within/Outside Initial
Highest Count + Item Magnitude + Age + (1|Subject). Continuous predictors were centered and scaled to facilitate model fit.
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successor function, though no single measure of productivity consistently emerged as the best predictor in each of the languages
when considered individually. In Cantonese, Initial Highest Count was the strongest predictor of Unit Task performance
(χ2

(1) = 38.91, p < .0001), with neither Final Highest Count (χ2
(1) = 1.39, p = .24) nor Highest Contiguous Next Number

(χ2
(1) = 1.86, p = .17) improving the fit of this model. In Slovenian, we found that Highest Contiguous Next Number and Final

Highest Count were both predictors of Unit Task performance in Slovenian: Final Highest Count significantly improved the fit of a
model containing Highest Contiguous Next Number (χ2

(1) = 8.03, p = .005), but neither the addition of Initial Highest Count
(χ2

(1) = 0.02, p = .89) nor Resilience (χ2
(1) = 0.07, p = .80) explained additional variance. Finally, in English, both Initial Highest

Count and Highest Contiguous Next Number were predictors of Unit Task performance: Highest Contiguous Next Number sig-
nificantly improved the fit of a model containing Initial Highest Count (χ2

(1) = 8.65, p = .003), while Final Highest Count did not

Table 3
Counting data by language. Initial and Final Highest Count are rounded.

n M IHC (SD) M FHC (SD) M Prompts (SD)

Cantonese
Overall 118 73 (41.91) 94 (45.06) 2.63 (1.93)
Resilient 61 85 (40.00) 122 (25.44) 3.87 (2.12)
Non-Resilient 57 60 (40.24) 64 (42.43) 1.51 (0.63)

Slovenian
Overall 99 27 (28.36) 44 (45.07) 2.31 (1.87)
Resilient 26 56 (38.34) 109 (36.08) 4.30 (2.40)
Non-Resilient 73 17 (13.80) 21 (16.04) 1.67 (1.06)

English (US)
Overall 111 41 (41.53) 61 (49.19) 3.04 (2.77)
Resilient 42 64 (46.32) 110 (28.33) 5.68 (3.36)
Non-Resilient 69 27 (31.19) 31 (32.01) 1.74 (0.92)

Fig. 1. Initial and Final Highest Counts by language, grouped by Resilience. Points indicate the relation between a participant’s Initial and Final
Highest Counts. Points are jittered slightly to avoid overplotting. Density plots indicate the distribution of Initial (top) and Final (right) Highest
Count by Resilience.

Table 4
Within-language Unit Task models in Cantonese, Slovenian, and US English. IHC = Initial Highest Count; FHC = Final Highest Count;
HCNN = Highest Contiguous Next number. Only final models shown for each language: predictors without coefficient estimates did not sig-
nificantly improve the fit of that language’s model in a Likelihood Ratio Test. Significance was calculated using the standard normal approximation
to the t distribution (Barr, Levy, Scheepers, & Tily, 2013).

Cantonese Slovenian English (US)

Predictors β CI p β CI p β CI p

(Intercept) 0.69 0.44–0.93 <0.001 0.22 0.03–0.41 0.023 0.58 0.36–0.79 <0.001
IHC 0.81 0.56–1.06 <0.001 — — — 0.75 0.44–1.06 <0.001
FHC — — — 0.36 0.11–0.61 0.004 — — —
HCNN — — — 0.35 0.12–0.57 0.002 0.43 0.15–0.71 0.003
Trial Within IHC −0.05 −0.43–0.34 0.811 0.26 −0.11–0.64 0.173 0.09 −0.29–0.47 0.639
Item Magnitude −0.52 −0.70–−0.33 <0.001 −0.33 −0.49–−0.17 < 0.001 −0.48 −0.65–−0.32 <0.001
Age 0 −0.23–0.23 0.993 0.12 −0.08–0.31 0.241 0.03 −0.20–0.26 0.792
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(χ2
(1) = 0.10, p = .75). Thus, taking this approach, we found that different measures of counting ability predicted Unit Task per-

formance in different languages. In our next analyses, we asked which of these measures was the best fit of the entire data set
(including all three language groups).

3.2.2. Cross-linguistic analyses
In our next set of analyses, we had two goals. First, we sought to ask which of the four measures of counting ability best predicted

children’s Unit Task performance across all three languages when included in a single model. Second, we sought to provide a basic
characterization of how the samples in our study differed, and thus whether our data are compatible with past reports that find cross-
cultural differences, and in particular an advantage for Mandarin- or Cantonese-speaking children. We found that the overall pattern
of performance on the Unit Task was largely consistent with prior work finding an advantage for Chinese children, with higher mean
performance for Cantonese (M = 0.63, SD = 0.23) in comparison to both Slovenian (M = 0.55, SD = 0.22) and English (M = 0.59,
SD = 0.25).5 In order to address limitations of past work, however, we attempted to account for some individual differences in
counting exposure by assuming that a child’s Initial Highest Count provides some signal of counting training. Children’s rote counting
ability has been shown to be correlated with levels of parental number talk, such that children who can count higher without error
are likely to have had more exposure to counting than children who have lower rote counts (Lefevre, Clarke, & Stringer, 2002;
Manolitsis, Georgiou, & Tziraki, 2013; see also Saxe, Guberman, Gearhardt, & Gelman, 1987). While children’s highest errorless count
may be indicative of their exposure to counting training, it does not offer an unequivocal proxy, as children eventually impute
productive counting rules which allow them to surpass a rote memorized list. In this way, Initial Highest Count may provide a
nonlinear estimate of exposure if some children are faster to become productive counters than others. Therefore, our logic in in-
cluding Initial Highest Count in our cross-linguistic analyses was to remain as conservative as possible regarding the nature of cross-
linguistic differences on our other potential measures of productivity (Final Highest Count, Resilience, and Highest Contiguous Next
Number). Thus, to the extent that Initial Highest Count captures some of the variance explained by knowledge of productive rules, it
will lead us to produce conservative estimates for these other measures of productivity.

Additionally, unlike most previous studies, we included a working memory term to control for domain-general cognitive dif-
ferences between groups. We built three models6 predicting Unit Task performance from (1) Counting Resilience; (2) Final Highest
Count; and (3) Highest Contiguous Next Number. As in our within-language analyses, these models included effects of item mag-
nitude, whether the item was within or outside the child’s Initial Highest Count, age, and raw working memory score, with a random
effect of subject.

As demonstrated in Table 5, Highest Contiguous Next Number was the single best counting productivity predictor of Unit Task
performance cross-linguistically, improving the model fit in comparison to the base (χ2

(1) = 22.70, p < .0001). This model also
revealed a significant main effect of language: when controlling for other factors, English-speaking children exhibited better per-
formance relative to Cantonese-speaking children (β = 0.43, p = .002), and there were no other significant language-wise differences
(Slovenian vs. Cantonese: p = .22; English vs. Slovenian: p = .15). These effects were significant even when controlling for Initial
Highest Count, which we included in an effort to provide a conservative estimate of the effects of cross-linguistic differences and
productivity. Additionally, this model indicated that Initial Highest Count predicted Unit Task performance, with higher Initial
Highest Counts associated with better performance (β = 0.55, p < .001). Critical to our hypotheses, it is important to note that these
effects of Highest Contiguous Next Number, language, and Initial Highest Count were significant when accounting for the effects of
trial difficulty, age, and working memory. Thus, the results of our model yield a more nuanced picture of the relationship between
count list morphology and numerical knowledge than a comparison of mean performance alone. These data suggest that when
controlling for differences in age, working memory, and exposure to the count routine, the mean differences in Unit Task performance
across languages may not be best explained by count list transparency, at least not in languages with relatively small differences in
count list structure, such as English, Cantonese, and Slovenian.

3.3. Predictors of Next Number performance

3.3.1. Within-language analyses
In the preceding analyses, we found that Highest Contiguous Next Number emerged as the best overall predictor of successor

knowledge in a model including all three languages (Cantonese, Slovenian, and English). Further, performance on the Next Number
task was significantly related to Unit Task performance in all three languages when analyzed individually,7 and was one of the

5 Children’s overall performance was lower here in comparison to previous work testing the relationship between counting ability and successor
knowledge (Cheung et al., 2017) due to our inclusion of (a) both subset and CP knowers in the sample (in contrast to Cheung et al., which included
only CP knowers); and (b) extremely large numbers (224, 252, and 271). Despite our inclusion of these large numbers and of subset knowers, we
replicated Cheung and colleagues’ finding that US children who have higher Initial Highest Counts are significantly more accurate on the Unit Task,
even for these very large numbers. Additionally, highly competent counters (with Initial Highest Counts> 80) have near-ceiling performance (89%)
on the Unit Task. This analysis is detailed in the Supplementary Online Materials.

6 Models were generalized linear mixed effects models with the formula: Correct ~ [Resilience/Final Highest Count/Highest Contiguous Next
Number] + Language*Initial Highest Count + Trial Within/Outside Initial Highest Count + Item Magnitude + Age + WPPSI + (1|Subject).
Continuous predictors were scaled and centered to facilitate model fit.

7 Highest Contiguous Next Number significantly improved the fit of the Cantonese Unit Task base model (χ2
(1) = 11.83, p = .0006), but did not

explain unique variance when included with a model containing Initial Highest Count (χ2
(1) = 1.86, p = .17).
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strongest predictors in English and Slovenian. These findings provide support for the proposal that Next Number knowledge is a
critical precursor to acquiring the successor function (Barner, 2017; Cheung et al., 2017; Davidson et al., 2012), and also that learning
the recursive rules by which number words are productively generated may support the induction that every natural number has a
successor. In our next analyses, we explored the Next Number task, testing which candidate measure of counting productivity best
predicts children’s performance. To do this, we evaluated the relation between children’s performance on the Next Number task and
Highest Count task. These analyses closely mirror our Unit Task analyses: Within each language, we constructed three models8

predicting Next Number performance from (1) Counting Resilience; (2) Final Highest Count; and (3) Initial Highest Count.
These within-language models revealed that counting ability significantly predicted Next Number performance in all three lan-

guages, although once again the best predictor differed across languages (Table 6). Final Highest Count was the best predictor of Next
Number performance in Slovenian (χ2

(1) = 72.93, p < .0001) and English (χ2
(1) = 43.93, p < .0001), and Initial Highest Count did

not significantly improve the fit of these models (ps > 0.05). In Cantonese, however, Initial Highest Count was the strongest
predictor of Next Number performance (χ2

(1) = 68.63, p < .0001), and Final Highest Count did not explain additional variance
(χ2

(1) = 0.37, p = .54). In our next set of analyses, we tested which measure best predicted Next Number performance for the entire
dataset.

3.3.2. Cross-linguistic analyses
Perhaps surprisingly, descriptive statistics indicated no evidence of an advantage for Cantonese-speakers in this task. Mean

performance was around 50% for Cantonese (M = 0.49, SD = 0.33), Slovenian (M = 0.46, SD = 0.32), and English (M = 0.49,
SD = 0.35). As above, we constructed models that predicted Next Number performance across languages: One predicting Next
Number performance from Counting Resilience, and another predicting it from Final Highest Count. Importantly, these models tested
whether these predictors remained significant when controlling for differences in overall exposure to counting by including an
interaction between language and Initial Highest Count. These models also included effects of item magnitude, whether the item was
within or outside the child’s Initial Highest Count, age, and raw working memory score, with a random effect of subject.

As demonstrated in Table 7, Final Highest Count emerged as the strongest predictor of Next Number performance, and explained
significant additional variance in comparison to our base model (χ2

(1) = 38.96, p < .0001); the addition of Resilience did not
improve the fit of this model (χ2

(1) = 0.27, p = 0.60). Also, similar to our Unit Task models we found the surprising result that, when
accounting for working memory and Initial Highest Count - a measure used by previous studies as a proxy for training with counting -
Cantonese-speaking children’s performance was actually significantly poorer than that of both English- (β = -1.82, p < .001) and
Slovenian-speaking children (β = 1.77, p < .001), while there was no difference in performance between English and Slovenian
children (β = 0.04, p = .88, Fig. 2).

4. Discussion

In three languages with relatively transparent counting systems, we investigated the relation between knowledge of count list
structure and acquisition of the successor function. Consistent with previous reports, we found striking cross-cultural differences in
counting proficiency and numerical knowledge that were broadly related to language transparency: Cantonese-speaking children
were able to count much higher than English- and Slovenian-speaking children, and also had greater mean successor task

Table 5
Cross-linguistic Unit Task regression models with Cantonese (left) and Slovenian (right) selected as a reference group. IHC = Initial Highest Count;
HCNN = Highest Contiguous Next Number.

Comparison to Cantonese Comparison to Slovenian

Predictors β CI p β CI p

(Intercept) 0.31 0.11–0.51 0.003 0.50 0.25–0.76 <0.001
HCNN 0.34 0.20–0.47 < 0.001 0.34 0.20–0.47 <0.001
Cantonese — — — −0.19 −0.51–0.12 0.229
Slovenian 0.19 −0.12–0.51 0.229 — — —
English (US) 0.43 0.16–0.70 0.002 0.24 −0.08–0.55 0.142
IHC 0.54 0.34–0.75 < 0.001 0.55 0.24–0.86 0.001
Trial Within IHC 0.10 −0.12–0.32 0.388 0.10 −0.12–0.32 0.388
Item Magnitude −0.44 −0.54–−0.34 < 0.001 −0.44 −0.54–−0.34 <0.001
Age 0.10 −0.06–0.25 0.217 0.10 −0.06–0.25 0.217
WPPSI 0.07 −0.04–0.17 0.217 0.07 −0.04–0.17 0.223
Cantonese: IHC — — — −0.01 −0.34–0.32 0.966
Slovenian: IHC 0.01 −0.32–0.34 0.966 — — —
English (US): IHC 0.20 −0.08–0.47 0.162 0.19 −0.17–0.55 0.297

8 Models were generalized linear mixed effects models with the formula: Correct ~ [Resilience/Initial Highest Count/Final Highest Count] + Trial
Within/Outside Initial Highest Count + Item Magnitude + Age + (1|Subject). Continuous predictors were scaled and centered to facilitate model
fit.
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Table 6
Within-language Next Number models for Cantonese, Slovenian, and US English. IHC = Initial Highest Count; FHC = Final Highest Count. Only
final models shown for each language: predictors without coefficient estimates did not significantly improve the fit of that language’s model in a
Likelihood Ratio Test.

Cantonese Slovenian English (US)

Predictors β CI p β CI p β CI p

(Intercept) −0.47 −0.78–−0.15 0.004 −0.31 −0.62–−0.01 0.043 −0.42 −0.75–−0.09 0.012
IHC 1.62 1.26–1.98 <0.001 — — — — — —
FHC — — — 1.83 1.43–2.22 < 0.001 1.49 1.06–1.92 <0.001
Trial Within IHC 0.75 0.26–1.24 0.003 1.19 0.69–1.70 < 0.001 1.64 1.15–2.12 <0.001
Item Magnitude −1.12 −1.40–−0.84 <0.001 −1.09 −1.37–−0.81 < 0.001 −0.66 −0.89–−0.42 <0.001
Age 0.34 0.01–0.67 0.041 0.47 0.15–0.80 0.004 0.69 0.27–1.11 0.001

Table 7
Cross-linguistic Next Number regression models with Cantonese (left) and Slovenian (right) selected as a reference group. FHC = Final Highest
Count; IHC = Initial Highest Count.

Comparison to Cantonese Comparison to Slovenian

Predictors β CI p β CI p

(Intercept) −1.51 −1.84–−1.17 < 0.001 0.27 −0.16–0.69 0.217
FHC 1.05 0.73–1.38 < 0.001 1.05 0.73–1.38 <0.001
Cantonese — — — −1.77 −2.31–−1.24 <0.001
Slovenian 1.77 1.24–2.31 < 0.001 — — —
English (US) 1.82 1.38–2.25 < 0.001 0.04 −0.49–0.57 0.880
IHC 0.65 0.28–1.02 0.001 0.88 0.28–1.48 0.004
Trial Within IHC 1.18 0.89–1.46 < 0.001 1.18 0.89–1.46 <0.001
Item Magnitude −0.92 −1.07–−0.77 < 0.001 −0.92 −1.07–−0.77 <0.001
Age 0.61 0.34–0.88 < 0.001 0.61 0.34–0.88 <0.001
WPPSI 0.15 −0.02–0.33 0.088 0.15 −0.02–0.33 0.088
Cantonese: IHC — — — −0.23 −0.81–0.34 0.428
Slovenian: IHC 0.23 −0.34–0.81 0.428 — — —
English (US): IHC 0.13 −0.31–0.56 0.571 −0.11 −0.71–0.49 0.730

Fig. 2. Scatterplot relating Highest Count (Initial, left and Final, right) to mean Next Number performance by Language. Smooth curve fitted by
locally weighted regression, and shaded areas indicate 95% confidence intervals. Size of points indicate frequency of highest count.
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performance. Despite these cross-linguistic differences, however, our within-language analyses in Cantonese, Slovenian, and English
each found significant relations between measures of counting productivity and performance on the Unit Task, our measure of
successor function knowledge. Also, models including all three languages found that performance on the Next Number task, a
measure of children’s ability to count-up from arbitrary points in the count list, was the best overall predictor of performance on the
Unit Task. Finally, we found that while Initial Highest Count predicted performance on both the Unit and Next Number tasks in all
three languages, it was never solely predictive, and other productivity measures such as Next Number performance or Final Highest
Count were better indicators of children’s performance on these two tasks in English and Slovenian. In particular, the relationship
between children’s Next Number and Unit Task performance suggests that successor function knowledge arises in part from
knowledge of productive counting rules.

A key element of our design was to assess the role of language structure on number knowledge within languages, rather than
relying on cross-linguistic comparisons. The rationale for this was a concern that children learning different languages also typically
belong to different cultures, with different practices surrounding early numeracy. Children learning Cantonese, for example, may
outperform children learning English not because of the relatively small differences between their structures, but because they
receive more intensive math training in early elementary school years (Towse & Saxton, 1998). This concern was vindicated by our
analyses that included all three language groups. Although Cantonese-speaking children performed better than other groups on most
measures, when factors like working memory, age, and a child’s Initial Highest Count (a reasonable proxy for training exposure) were
included in models, they were either not different from other groups, or performed significantly worse.

Still, as already noted, the grammatical differences in counting transparency between Cantonese, English, and Slovenian are
relatively modest. For the most part, English and Slovenian have relatively transparent decade rules that recur from the 20s through
to 100, with only decade labels and syntax presenting points of contrast with Cantonese. Other languages, however, like Hindi and
Gujarati, are substantially less transparent, and feature multiple exceptions in every decade all the way to 100. We explore these
languages in Experiment 2.

5. Experiment 2

In Experiment 1, we contrasted three languages which, though different with respect to base-system transparency, were never-
theless relatively similar in structure, and generally transparent in nature. In Experiment 2, we investigated two languages that are
substantially less transparent in nature: Hindi and Gujarati, as well as a sample of English-speaking Indian children living in the same
region of India. Based on Experiment 1, we predicted that in these languages counting productivity would again be predictive of Unit
Task performance, but that far fewer children should be productive overall.

5.1. Method

As in Experiment 1, the methods and analyses of this study were pre-registered prior to any data collection. The pre-registration
can be found at https://osf.io/5zxrt.

5.1.1. Participants
All participants were recruited from Hindi, Gujarati, and English medium schools in Vadodara, Gujarat, India. Our research group

has conducted numerous studies in Vadodara for over a decade, and is familiar with local schools and consultants who are
knowledgeable about local educational practices. Additionally, the research team included a PhD with expertise in Indian linguistics,
as well as three undergraduate research assistants fluent in Hindi and Gujarati. Children’s inclusion in a particular dataset (Hindi,
Gujarati, or English), was determined by their primary language of instruction. Although relatively few children learn Hindi as a first
language in Gujarat, Hindi medium schools exist in the area to serve children of recent immigrants to the region. English medium
children spoke Gujarati, Hindi, or another language at home (based on parental report).

We pre-registered a minimum n of 80 per language group to conduct analyses, and a maximum n of 150. We recruited 288
children aged 3.5 to 6.5 years. As per our pre-registration, 47 of these children were excluded from all analyses for missing data
from>20% of trials (n = 19); not completing the Highest Count task (n = 9); failure to comprehend the task (n = 8); missing
Highest Count recording (n = 4); being out of age range (n = 3); experimenter error (n = 2); language impairment (n = 1); or, for
Gujarati and Hindi, native language other than the language of instruction (n = 1). In addition to the 47 who were excluded from all
analyses, 24 were removed from a subset of analyses if they did not complete the pre-registered minimum number of test trials for
that task. After these exclusions, our final sample included 241 participants (Table 8).

Table 8
Demographic information for Hindi, Gujarati, and English (US and Indian).

n n CP-knower Mage (SD) Medianage

Hindi 91 (41 female, 50 male) 44 5.63 (0.68) 5.81
Gujarati 80 (48 female, 25 male, 7 sex not recorded) 50 5.65 (0.41) 5.72
English (US) 111 (43 female, 68 male) 71 4.79 (0.85) 4.78
English (India) 70 (35 female, 32 male, 3 sex not recorded) 54 5.24 (0.81) 5.37
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These exclusions had their greatest effect on the Indian English dataset, perhaps because this was the only group tested in their
second language. Consequently we did not reach our minimum n defined in our pre-registration, and instead conducted our primary
analyses, as pre-registered, using the US English dataset from Experiment 1. Because US children’s performance may substantially
differ from that of Hindi- and Gujarati-speaking children for many reasons other than language, we interpreted these results of these
analyses with caution, and compared them to post hoc analyses which included the Indian English dataset for tasks in which we
observed low exclusion rates (Highest Count and Next Number). Thus, our Indian English dataset helped to isolate the role of
language in children’s performance on these measures.

5.1.2. Stimuli, methods, and procedure
These were identical to Experiment 1, with the exception that audio prompts were translated into the language of instruction.

Children were tested individually in a small room set apart from the classroom (in Vadodara and San Diego), or individually in a
small lab testing space (in San Diego).

6. Results

6.1. Highest Count

Table 9 shows a breakdown of counting profiles by language and Resilience. Overall, counting proficiency seemed to be strongly
related to count list transparency: Hindi- and Gujarati-speaking children had much lower Initial and Final Highest counts in com-
parison to English-speaking children. As in Experiment 1 these effects of language persisted when children were grouped by Resi-
lience, but to a lesser degree; Resilient counters had higher Initial and Final Highest Counts than Non-Resilient counters in all three
languages, although counts still tended to be higher for English-speaking children. Critically, we found that very few children were
able to meet the criteria for Resilience in Hindi and Gujarati (9% and 14% of children in each language respectively). On the other
hand, 40% of Indian English-speaking children were identified as Resilient, which is similar to the proportion observed in our US
English sample (38%).

Table 9
Counting data by language. Initial and Final Highest Count are rounded.

n M IHC (SD) M FHC (SD) M Prompts (SD)

Hindi
Overall 91 24 (13.63) 31 (22.99) 2.00 (1.37)
Resilient 8 38 (22.04) 81 (43.28) 4.00 (1.85)
Non-Resilient 83 22 (11.86) 26 (12.42) 1.80 (1.14)

Gujarati
Overall 80 27 (17.75) 37 (25.87) 2.26 (1.25)
Resilient 11 52 (27.28) 86 (31.34 3.36 (0.81)
Non-Resilient 69 23 (11.55) 29 (13.64) 2.08 (1.22)

English (India)
Overall 70 48 (39.64) 75 (48.62) 3.10 (2.12)
Resilient 28 59 (37.58) 117 (22.60) 4.74 (2.31)
Non-Resilient 42 40 (39.57) 47 (40.15) 2.05 (1.08)

Fig. 3. Initial and Final Highest Counts by language, grouped by Resilience. Points indicate the relation between a participant’s Initial and Final
Highest Counts. Points are jittered slightly to avoid overplotting. Density plots indicate the distribution of Initial (top) and Final (right) by
Resilience.
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Once again, we found that a majority of children (62% across all three languages) were able to continue counting past their Initial
Highest Count if they stopped prior to 140, although very few children counted far enough past their first error to be classified as
Resilient in Hindi and Gujarati (Fig. 3). Thus, while Initial Highest Count was strongly correlated with Final Highest Count (English
(India): r = 0.77, p < .0001; Hindi: r = 0.77, p < .0001; Gujarati: r = 0.91, p < .0001), we again found evidence that it may
underestimate children’s productive counting knowledge.

6.2. Predictors of Unit Task performance

6.2.1. Within-language analyses
We next tested whether candidate measures of productive counting were significantly predictive of Unit Task performance in

Hindi and Gujarati. We predicted that although children learning these languages may become productive counters later in devel-
opment, the same relation between productive counting and successor function knowledge should nevertheless exist. The individual
measures, model specifications, and hierarchical model comparisons used to assess the relationship between productive counting and
successor function knowledge were identical to Experiment 1. Once again, our candidate measures of productivity were (1) Counting
Resilience; (2) Final Highest Count; (3) Initial Highest Count; and (4) Highest Contiguous Next Number.

We found evidence of a link between knowledge of productive counting rules and the acquisition of the successor function in
Hindi, but not in Gujarati, perhaps because so few Gujarati-speaking children exhibited knowledge of either productive rules or the
successor function (see Table 10). In Hindi, Initial Highest Count and Highest Contiguous Next Number were the strongest predictors
of Unit Task performance: the addition of Highest Contiguous Next Number significantly improved the fit of a model containing only
Initial Highest count (χ2

(1) = 9.91, p = .002), but the addition of Final Highest Count to a model containing both Initial Highest Count
and Highest Contiguous Next Number did not (χ2

(1) = 0.93, p = .34). However, none of our candidate measures of productivity were
related to successor knowledge in Gujarati, though Unit Task performance was predicted by age (β = 0.19, p < .03), and per-
formance was better for items within a participant’s Initial Highest Count range (β = 0.54, p < .005).

6.2.2. Cross-linguistic analyses
In our cross-linguistic analyses we tested whether measures of counting productivity were related to Unit Task performance when

all languages were included in a single model. Consistent with the hypothesis that learning a more morphologically complex count
list may impede extraction of productive counting rules and the successor function, we found lower mean performance for Hindi
(M = 0.40, SD = 0.22) and Gujarati (M = 0.45, SD = 0.18)9 children in comparison to US English (M = 0.59, SD = 0.25). However,
as in Experiment 1, we worried that cross-cultural factors other than language might explain these differences. The following analyses
explore this possibility in two steps. First, we built three separate models predicting Unit Task performance from (1) Counting
Productivity, (2) Final Highest Count, and (3) Highest Contiguous Next Number in US English, Hindi, and Gujarati. Second, we
conducted post hoc tests that included subsets of data from children learning Indian English, who are culturally more similar to the
Hindi and Gujarati children than US children, but have learned the more regular English count system. Model specifications, mea-
sures, and comparison process were identical to Experiment 1.

In the model including Hindi, Gujarati, and US English data, Highest Contiguous Next Number emerged as the strongest predictor
of Unit Task performance, and significantly improved model fit compared to our base model (χ2

(1) = 13.18, p = .0003; see Table 11).
In contrast to Experiment 1, however, mean differences in Unit Task performance by language persisted even when controlling for
between-group differences: Hindi- and Gujarati-speaking children had significantly lower Unit Task scores compared to English-

Table 10
Within-language Unit Task models for Hindi, Gujarati, and US English. Only final models shown for each language: predictors without coefficient
estimates did not significantly improve the fit of that language’s model in a Likelihood Ratio Test. IHC = Initial Highest Count; FHC= Final Highest
Count; HCNN = Highest Contiguous Next Number.

Hindi Gujarati English (US)

Predictors β CI p β CI p β CI p

(Intercept) −0.48 −0.67–−0.29 <0.001 −0.35 −0.54–−0.16 < 0.001 0.58 0.36–0.79 <0.001
IHC 0.35 0.14–0.56 0.001 — — — 0.75 0.44–1.06 <0.001
FHC — — — — — — — — —
HCNN 0.33 0.12–0.53 0.002 — — — 0.43 0.15–0.71 0.003
Trial Within IHC 0.03 −0.35–0.40 0.894 0.54 0.16–0.92 0.005 0.09 −0.29–0.47 0.639
Item Magnitude −0.39 −0.57–−0.22 <0.001 −0.16 −0.33–0.01 0.063 −0.48 −0.65–−0.32 <0.001
Age 0.30 0.13–0.48 0.001 0.19 0.02–0.35 0.026 0.03 −0.20–0.26 0.792

9 Hindi- and Gujarati-speaking children’s overall below-chance performance on the Unit Task is largely driven by their performance on large
numbers (> 100); for these larger numbers, many children gave an answer that was not an available alternative, which was always considered
incorrect. Children’s performance was not significantly different from chance for items under 100 (Hindi: t(90) = −1.36, p=.18; Gujarati: t(79) =
1.62, p = .11), however, indicating that they understood how to use these alternatives.
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speaking US children (Hindi: β = −0.70., p < .0001; Gujarati: β = −0.72, p < .0001). This much lower performance on the Unit
Task for Hindi- and Gujarati-speaking children in comparison to English-speaking children suggests that acquiring the successor
function may be more difficult in languages in which the recursion of the count list is less easily discoverable due to less transparent
morphology. However, this conclusion is tempered by the fact that only US data were available for this particular analysis. To further
probe whether this difference might be due to language in particular, our next analyses, which focused on the Next Number task,
included post hoc tests with Indian English data.

6.3. Predictors of Next Number performance

6.3.1. Within-language analyses
The results of our Unit Task analyses indicated that although productive counting is related to successor knowledge in some

children learning opaque count lists, this connection is somewhat more fragile. One potential factor limiting our ability to detect
effects was the relative infrequency of children who demonstrated productive counting knowledge in these languages: In Hindi only 8
out of 91 children were classified as Resilient, and in Gujarati, only 11 out of 80. Thus, we surely lacked power to reliably detect
relations between productivity and other outcomes. Nevertheless, in both Hindi and our cross-linguistic Unit Task analyses, Highest
Contiguous Next Number again significantly predicted successor knowledge. As in Experiment 1, we next explored the best predictors
of Next Number performance. We again constructed three within-language models as in Experiment 1, predicting Next Number
performance from (1) Counting Resilience; (2) Final Highest Count; and (3) Initial Highest Count. Because we observed higher rates
of comprehension in our Indian English sample for this task relative to other tasks, we include the results of their within-language
analyses here.

Despite the lower levels of counting proficiency in Hindi and Gujarati, we again found that counting ability was significantly
predictive of Next Number performance in all languages (see Table 12). In Hindi, although Initial Highest Count, Final Highest Count,
and Resilience were each significantly related to Next Number performance, overall Initial Highest Count was the strongest predictor

Table 11
Cross-linguistic Unit Task models with US English as a reference group. HCNN = Highest Contiguous Next Number;
IHC = Initial Highest Count.

Comparison to English (US)

Predictors β CI p

(Intercept) 0.43 0.23–0.63 <0.001
HCNN 0.26 0.12–0.40 <0.001
Hindi −0.70 −1.02–−0.39 <0.001
Gujarati −0.72 −1.02–−0.43 <0.001
IHC 0.45 0.27–0.63 <0.001
Within IHC 0.16 −0.06–0.39 0.148
Item Magnitude −0.37 −0.47–−0.27 <0.001
Age 0.27 0.11–0.44 0.001
WPPSI 0.10 −0.01–0.21 0.071
Hindi:IHC 0.45 0.04–0.87 0.032
Gujarati:IHC −0.42 −0.75–−0.09 0.012

Table 12
Within-language Next Number models for Hindi, Gujarati, and Indian English. IHC = Initial Highest Count; FHC = Final Highest Count. Only final
models shown for each language: predictors without coefficient estimates did not significantly improve the fit of that language’s model in a
Likelihood Ratio Test.

Hindi Gujarati English (India)

Predictors β CI p β CI p β CI p

(Intercept) −1.88 −2.34–−1.43 <0.001 −1.24 −1.69–−0.78 < 0.001 −0.76 −1.13–−0.39 <0.001
IHC 1.41 0.93–1.88 <0.001 — — — 0.64 0.13–1.15 0.014
FHC — — — 1.78 1.13–2.42 < 0.001 0.85 0.25–1.44 0.005
Resilient — — — −1.75 −3.46 –-0.04 0.045 — — —
Trial Within IHC 1.68 1.14–2.22 <0.001 2.00 1.43–2.57 < 0.001 1.11 0.52–1.70 <0.001
Item Magnitude −0.92 −1.24–−0.61 <0.001 −1.25 −1.59–−0.91 < 0.001 −1.37 −1.72–−1.02 <0.001
Age 0.53 0.09–0.98 0.020 0.37 −0.02–0.75 0.064 0.18 −0.30–0.67 0.458
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(χ2
(1) = 33.41, p < .0001), and neither Final Highest Count (χ2

(1) = 2.77, p = .10) nor Resilience (χ2
(1) = 0.37, p = .54) significantly

improved model fit. In Gujarati, Final Highest Count and Resilience were the best predictors of performance: Resilience significantly
improved the fit of a model containing Final Highest Count (χ2

(1) = 4.12, p = .04), and Initial Highest Count did not add to this model
(χ2

(1) = 0.08, p = .35). Finally, in Indian English, both Initial and Final Highest count produced the best fit to the data in comparison
to a model containing Final Highest Count alone. (χ2

(1) = 5.88, p = .02).

6.3.2. Cross-linguistic analyses
Although we found that counting ability predicted Next Number performance in our within-language analyses, mean performance

on the Next Number task was lower in Hindi (M = 0.32, SD = 0.30) and Gujarati (M = 0.38, SD = 0.26) in comparison to both US
English (M = 0.49, SD = 0.35) and Indian English (M = 0.45, SD = 0.29), which did not significantly differ from one another (t
(177) = 0.88, p = .38). As pre-registered, we constructed cross-linguistic models using our US English dataset. Because we observed

Table 13
Cross-linguistic Next Number models with US English (left) and Indian English (right) selected as a reference group. FHC = Final Highest Count;
IHC = Initial Highest Count.

Comparison to English (US) Comparison to English (India)

Predictors β CI p β CI p

(Intercept) −0.63 −1.06–−0.19 0.005 −1.33 −1.88–−0.77 <0.001
FHC 0.98 0.58–1.38 <0.001 0.66 0.21–1.11 0.004
Hindi −0.53 −1.24–0.17 0.136 0.30 −0.46–1.07 0.438
Gujarati −0.53 −1.18–0.12 0.112 0.29 −0.42–1.01 0.422
IHC 0.42 0.00–0.84 0.047 0.25 −0.18–0.68 0.262
Trial Within IHC 1.73 1.42–2.04 <0.001 1.66 1.33–2.00 <0.001
Item Magnitude −0.91 −1.07–−0.74 <0.001 −1.21 −1.41–−1.01 <0.001
Age 0.80 0.43–1.16 <0.001 0.57 0.16–0.99 0.006
WPPSI 0.15 −0.08–0.37 0.210 0.13 −0.11–0.37 0.293
Hindi:IHC 1.48 0.58–2.38 0.001 2.05 1.19–2.90 <0.001
Gujarati:IHC 0.45 −0.28–1.18 0.227 1.00 0.29–1.71 0.006

Fig. 4. Scatterplot relating Highest Count (Initial, left and Final, right) to mean Next Number performance by language. Smooth curve fitted by
locally weighted regression, and shaded areas indicate 95% confidence intervals. Size of points indicate frequency of highest count.
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a much higher rate of comprehension for the Next Number task in our Indian English sample, however, we also report post hoc
analyses including these data in an attempt to isolate the effects of language transparency versus other cultural factors. In these
analyses, we again controlled for between-group differences by including an interaction between language and Initial Highest Count,
as well as a nonverbal working memory term. Once again, the model specifications and comparison process were identical to
Experiment 1. Using this base model we constructed two generalized linear mixed effects models predicting Next Number perfor-
mance from (1) Counting Resilience; and (2) Final Highest Count.

As shown in Table 13, Final Highest Count was the strongest single predictor of Next Number performance in Hindi, Gujarati, and
US English, significantly improving the fit of the base model (χ2

(1) = 22.68, p < .0001). A follow-up analysis which substituted our
Indian for US English dataset as the comparison group replicated this effect (χ2

(1) = 8.36, p = .004). There was no effect of language
in either the US or Indian English models (Fig. 4), suggesting that although counting mastery may vary across languages due to
morphological complexity, the best predictor of performance on the Next Number task is nevertheless children’s knowledge of
productive counting rules, reflected here by their Final Highest Count.

7. Discussion

In Experiment 2, we investigated children learning Hindi and Gujarati, two languages that are substantially less transparent in
nature than any of the languages studied in Experiment 1, to explore whether acquiring the successor function was made more
difficult by a more complex count list. We again found substantial differences in counting ability and successor knowledge between
transparent and opaque language groups, and these differences were greater than those reported in Experiment 1, even in a within-
culture comparison. Using a within-language approach, however, we found that productive counting knowledge was related to Unit
Task performance, despite lower numbers of productive counters in Hindi and Gujarati. Although this evidence was less robust than
in Experiment 1, likely due to overall lower levels of counting ability in Hindi and Gujarati, we again found that knowledge of
productive counting was significantly related to successor knowledge in Hindi. While the best predictors of Unit Task performance
differed across our within-language models, once again our combined cross-linguistic models revealed Next Number performance, an
indicator of children’s ability to count up from an arbitrary point in the count list, as the strongest indicator of children’s successor
knowledge. Similarly, although there was some variability in the counting measures related to Next Number performance in within-
language models, Final Highest Count emerged as the best predictor on this task in our cross-linguistic models. These results mirror
our findings from Experiment 1; once again, we find that two strong indicators of children’s productive counting knowledge are
significantly related to their performance on the Unit and Next Number tasks.

In contrast to Experiment 1, however, our cross-linguistic models also revealed strong effects of count list transparency. Children
learning less complex count lists seemed to benefit from this transparency in acquiring the successor function, even when controlling
for factors such as age, working memory, and individual differences in Initial Highest Count, such that English-speaking US children
performed better on the Unit Task relative to Hindi and Gujarati children. Thus, unlike in Experiment 1 where mean cross-linguistic
differences disappeared when accounting for other factors, the significantly lower performance of Hindi and Gujarati children in
comparison to English-speaking US children on the Unit Task suggests that extremely opaque count lists may confer a substantial
disadvantage in acquiring other numerical knowledge. While these findings are tempered by the fact that we were unable to make a
within-culture comparison for the Unit Task using our Indian English sample, post hoc comparisons indicated that these children’s
performance on the Highest Count and Next Number tasks was comparable to US English children, despite being tested in their
second language.

8. General discussion

Using a large cross-linguistic dataset drawn from five languages across four cultures, we tested the hypothesis that children
acquire the successor function through learning the productive morphological rules of their language’s count list, while also exploring
which candidate measures of productivity best predict successor function knowledge. We found large mean differences in counting
ability and successor knowledge between languages with relatively transparent counting systems (Cantonese, Slovenian, English)
compared to those with more opaque counting structure (Hindi, Gujarati). Also, despite these cross-linguistic differences, we found
that productive counting knowledge was strongly related to successor function knowledge within almost every language. This was
true even in a highly opaque language like Hindi where, despite the complexity posed by their count lists, a small number of children
were nevertheless able to learn a productive rule, and exhibited stronger successor function knowledge.

In addition to these main findings, our study also revealed several important secondary results. First, although measures of
counting productivity were related to successor function knowledge across languages, there was important variability in which
measures of counting productivity best predicted successor function knowledge. Second, despite these interesting differences, when
all languages were considered together, children’s successor function knowledge in both Experiments 1 and 2 was best predicted by
performance on the Next Number task - i.e., the ability to name the next number in the count list without counting up from 1. Third,
somewhat surprisingly, we found that although, like in past reports, Cantonese-speaking children outperformed English-speaking
children along several measures of number knowledge, these differences disappeared or were reversed when other factors, such as
working memory and amount of counting exposure, were considered. Similarly, although Slovenian is more transparent than English,
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Slovenian children exhibited much more limited counting abilities than English-speaking children. These results lead us to conclude
that some previously reported cross-linguistic differences may be not be due to language alone, but may also be importantly affected
by cultural differences in math practices. At the very least our results suggest that plain comparisons of counting ability across
different languages should not be interpreted without also considering other factors that might explain differences.

This work began with two observations. First, previous work reported that children who learn relatively transparent languages,
like Cantonese, make fewer counting errors than children learning English, and may be quicker to acquire early mathematical
abilities. Second, previous studies found that children’s acquisition of the successor function, as measured by the Unit Task, is
strongly predicted by how high they can count. Together, these two observations led us to hypothesize that exposure to counting
might lead children to move beyond a memorized list to derive productive rules that allow them to count indefinitely high, and that
these rules might be the basis for deriving a recursive successor function: Knowledge that counting words are governed by a rule-like
structure might lead children to infer that numbers themselves are generated by a recursive ‘+1′ rule. To investigate this question, we
took a novel approach. Although past work has found connections between the regularity of counting systems, counting proficiency,
and mathematical achievement, none of this work has provided direct evidence that such effects are actually due to differences in
how easily children are able to extract productive counting rules through exploring individual differences within a particular culture.
For example, although previous findings (Fuson & Kwon, 1992; Miller, Kelly, & Zhou, 2005; Miller & Stigler, 1987; Miura et al., 1988;
Miura & Okamoto, 1989) are consistent with the idea that such advantages are due to count list transparency, it is possible that they
may also reflect differences in the levels of counting, number, and mathematics exposure across these groups (Pan et al., 2006; Towse
& Saxton, 1998). Very generally, many cross-cultural differences including language, mathematics curriculum, and societal attitudes
toward the importance of early math education may impact children’s early counting fluency without necessarily implicating chil-
dren’s ability to detect recursive counting rules (Lefevre et al., 2002). If previously attested differences in mathematics learning result
from the impact of counting transparency on the acquisition of counting rules, then children learning transparent counting systems
should be faster to extract recursive rules from their count list, and should be faster to apply these rules to reasoning about simple
addition facts, like those tested by Sarnecka and Carey (2008) Unit Task.

Our data suggest that the transparency of a child’s count list likely does affect how readily they extract productive counting rules,
but that this is not the only factor, and that training amount may overwhelm differences in transparency when grammatical dif-
ferences in count structure are small. First, we found that when languages exhibited smaller differences in count list structure
between them, as in the case of Slovenian, English, and Cantonese, these differences were not the best predictors of performance. For
example, whereas English exhibits exceptions in the teens (eleven, twelve, thirteen) as well as on decade labels (twenty, thirty, fifty),
Slovenian only has exceptions in the teens and one decade label (twenty), but nevertheless Slovenian children performed worse than
US children on most tasks. One obvious account of why this might be is that Slovenian children likely receive much less exposure to
counting in their preschool years, as evidenced by their very low Initial Highest Counts relative to English and Cantonese. Compatible
with this, previous studies find that whereas US 5-year-olds typically have an initial highest count up to about 40 or 50 on average,
Slovenian children at the same age can only count to about 10 before making their first error (Almoammer et al., 2013; Marušič et al.,
2016). Our data also show that Cantonese children don’t exhibit a general advantage over US children, particularly when we account
for differences in working memory and Initial Highest Count. On the other hand, languages with more extreme morphological
complexities were associated with lower performance on these tasks in comparison to more transparent languages, despite similar
Initial Highest Count performance. We found that very few learners of Hindi and Gujarati were able to count very far beyond their
Initial Highest Count, even when given a prompt, and that these groups performed significantly worse on the Unit Task than English-
speaking US children.10 These data collectively support the idea that counting transparency likely plays a role in children’s ability to
extract productive counting rules when differences in transparency are significant, and when other factors, like training amount,
don’t compensate for differences in counting structure. Taken together, our results suggest that when making cross-cultural com-
parisons, we can’t assume that differences between cultures are straightforwardly predicted by differences in grammatical structure,
since other factors, like amount of input, surely also play a role.

One important lesson from these studies is that a common measure of children’s counting ability - i.e., their Initial Highest Count -
often underestimates children’s counting ability, and provides a less powerful predictor of other abilities than do measures that are
more sensitive to counting productivity. Our data show that, even within a language, two children who have an Initial Highest Count
of 30 may have qualitatively different understanding of counting and the rules that govern it. One such child may have rote
memorized all numbers up to ~30, without having extracted any rules to describe the count structure. Such children were frequent in
Hindi and Gujarati, and surprisingly, in Cantonese, where children were often able to count quite high without error, yet still
performed poorly on the Next Number task. Another type of child who counted up to ~30, however, may have noticed the recurrence
of the numbers 1–9 in each of the first two decades and extracted a rule, stopping at 30 due to a random error - a common pattern in
English, Cantonese, and Slovenian. Our methods allowed us to differentiate these two types of children by providing a prompt and
asking whether they could continue: Children who have memorized up to 30 should have no idea what to do next, whereas children
who have a rule may be able to recover and count up. Not only did we find this to be the case - that a large percentage of children who

10 A teacher survey found that teachers expected their Hindi and Gujarati students to be able to count as high as students in English medium
schools, and also that Hindi, Gujarati, and English medium school teachers spend similar amounts of time on number and counting instruction in the
classroom. Further, Hindi and Gujarati children often recited their count list as a memorized routine, indicating a high level of (rote) training.
Despite their relatively high exposure to the count list, however, we still found very few Resilient counters in these two languages, and perhaps
because of this, observed much lower mean performance on both the Unit and Next Number tasks.
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initially counted to a relatively small number in fact had a productive counting rule (e.g., about 40% of English-speaking children) -
we also found that this difference between children who could count-up vs. those who could not (i.e., what we termed “Resilience”)
was predictive of performance on both the Next Number task and the Unit Task. Although we found that children’s Initial Highest
Count is correlated with other measures of productivity, and can even be used to meaningfully predict their Unit Task performance, as
in Cheung et al. (2017), our data provide strong evidence that this measure cannot alone identify productivity, and is generally not
the strongest measure of children’s knowledge of rules.

An additional goal of the current work was exploratory, and sought to test several hypothesized measures of productivity in
addition to Initial Highest Count to identify one which was robustly predictive across five diverse language groups. Both within
several languages and cross-linguistically we found that Next Number performance was one of the strongest predictors of whether a
child was successful on the Unit Task. Although these converging findings indicate the strength of this measure for assessing pro-
ductivity, we also found that additional measures of productivity (such as Initial or Final Highest Count) explained Unit Task per-
formance in several within-language analyses. In one sense, it is unsurprising that we should find that other productivity measures
might jointly predict successor knowledge along with Next Number performance in some languages, as these measures were designed
to capture the same construct. However, we also noticed some degree of variability across languages with respect to the relation
between our different predictors. For example, in Slovenian, where children were comparatively weaker rote counters, we found that
measures which incorporated either some amount of support (such as Final Highest Count) or did not require rote counting (such as
the Next Number task) were much stronger predictors of successor knowledge than Initial Highest Count. In contrast we found that
for US children, who have higher levels of rote counting training overall, Initial Highest Count and Next Number performance were
the best predictors. Such differences are to be expected if children attain productivity via different routes in different languages - e.g.,
if children become productive with less rote memorization in Slovenian than in English because of its slightly greater transparency, or
if children receive massive amounts of rote training in early childhood.

Across a diverse set of language groups, our findings suggest that when a language provides the basis for acquiring a productive
rule for describing a count list’s base system, children can learn this rule and use it to generate very large numbers. In the
Introduction, we speculated that acquiring such a productive rule might provide the basis for learning not only how to count, but also
for discovering the recursive nature of the integers themselves (i.e., the concepts that are denoted by number words). Previous
accounts of number word learning hypothesized that children might acquire knowledge of the successor function - and thus of integer
concepts - using a form of analogical mapping defined over small number words (Carey, 2004, 2009; Gentner, 2010; Wynn, 1992). On
this view, a child who has learned a handful of number words might notice an analogy “between the magnitudinal relationships of
their own representations of numerosities, and the positional relationships of the number words” (Wynn, 1992, p.250), such that “she
is in the position to make the crucial induction: For any word on the list whose quantificational meaning is known, the next word on
the list refers to a set with another individual added” (Carey, 2004, p.67). Originally, this idea was proposed as an account of how
children might become CP-knowers, since learning this type of analogical mapping would allow children to use a counting procedure
to accurately give sets of any size within their count list. Although we now know that children fail to acquire successor function
knowledge at this stage (Cheung et al., 2017; Davidson et al., 2012; Spaepen et al., 2018), it remains possible that this model might
still explain how older children learn to interpret their count list. However, a critical problem with this idea is that, for children who
have a finite count list, an inductive inference that applies to “all” numbers need not take the form of a recursive function that can
generate an infinite number of numbers. Whereas the Peano-Dedekind axioms state that every number has a successor, the analogical
mapping hypothesis described by Carey and others generates a much weaker inductive inference - i.e., that for all numbers, the
successor of N in the count list has a cardinal value of N + 1. Whereas a child who has acquired a productive morphological rule for
generating indefinitely many number words might take “all” numbers to be unbounded - and thus requiring a recursive rule - a child
who knows only 30–40 number words and who believes that numbers are finite — as most 3- and 4-year-olds do (Cheung et al., 2017;
Evans, 1983; Gelman, 1980; Hartnett & Gelman, 1998) — might have no basis for inducing a fully recursive successor function (for a
related point, see Rips, Asmuth, & Bloomfield, 2006). Said otherwise, if children acquire the successor function by making an analogy
between the structure of the count list and the relations between integer concepts, then learning that count words are generated by
recursive rules might provide a basis for inferring that the integers, themselves, are governed by recursive rules.

Much remains to be discovered about the process by which children acquire successor function knowledge. For example, while it
is plausible that rules governing counting might be analogically extended to cardinal values, more evidence of this is needed. Many
alternative hypotheses are possible, including the possibility that explicit arithmetic training - e.g., on problems like 2 + 1, 3 + 1,
12 + 1, etc., forms the basis for an inductive inference supporting the successor function, and happens to co-occur developmentally
with greater counting abilities (see Barner, 2017; Secada et al., 1983). Alternatively, performance on the Unit Task may simply be
easier once children have acquired a productive counting rule, allowing them to deploy working memory resources previously
devoted to tracking their position in the count list to the problem of reasoning about the corresponding set operations. Although all of
our cross-linguistic models controlled for working memory, it remains possible that more subtle measures of how working memory is
deployed during the Unit Task might find differences in overall load when children use a memorized list vs. one that is governed by
rules. Future studies should explore these questions, while also investigated a broader range of languages, using both correlational
and experimental designs.
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Appendix A

From Comrie (2011): Demonstration of Hindi numeral irregularity between 1 and 99.

Appendix B. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cogpsych.2019.101263.
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