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Performance Potential of 2D Kagome
Lattice Interconnects

Tong Wu and Jing Guo

Abstract— Kagome lattice materials are layered
two-dimensional (2D) materials in which atoms are
arranged in a trihexagonal tiling lattice pattern. It has
been suggested that the Kagome lattice can possess
topologically non-trivial band structures. By performing
atomistic quantum transport simulations, we show that the
topological edge modes of a Fe3Sn Kagome nanoribbon
have excellent carrier transport properties, with a mean
free path several orders of magnitude larger than that of the
bulk modes. Vertical stacking of intercalated Kagome layers
can further boost the conductance per unit width. As a
result, the 2D Kagome lattice materials offer low resistivity
and promising potential for interconnect applications in the
sub-10nm regime.

Index Terms— Interconnect, topological insulator,
kagome lattice.

I. INTRODUCTION

AS COPPER interconnects continue to scale down, their
resistivity increases significantly [1]. The interconnect

RC delay degrades and becomes an increasing larger portion
in the overall delay of the integrated circuits. To search for
alternative interconnects with lower resistivity, carbon nan-
otubes and graphene nanoribbons have previously been pro-
posed [2], [3]. However, carbon nanotubes can have variability
in terms of mixture of metallic and semiconducting tubes.
A narrow graphene nanoribbon, regardless of its chirality,
always has a bandgap due to quantum confinement, edge bond
relaxation or electron-electron interaction at the edges [4].
Furthermore, edge roughness lowers its conductivity as the
width is scaled down.

It has been demonstrated experimentally that certain two-
dimensional (2D) Kagome lattice materials can have topologi-
cally non-trivial electronic bands [5]. The Kagome monolayer
lattice materials M3X can be formed out of elements M and X,
where the examples are M = Fe, Mn and X = Ge, Sn [5]–[7].
Theoretical studies have also shown that the Kagome lattice
materials can be 2D topological insulators [8]. In a topological
insulator, the edge modes are protected from backscattering,
which can lead to excellent carrier transport properties. In
this letter, the conductivity and transport properties of a 2D
Kagome material are examined by atomistic quantum transport
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simulations. The results indicate that in the sub-10 nm regime,
the Kagome lattice material can outperform Cu interconnects
in terms of lower resistivity and have excellent potential for
future interconnect applications.

II. APPROACH

Monolayer Fe3Sn has a 2D Kagome lattice structure, as
shown in Fig. 1(a), in which Fe atoms occupy the triangular-
shaped corners of the hexagons and form a trihexagonal tiling
pattern, and the Sn atoms occupy the centers of the hexagons.
The electronic structure near the Fermi level is due to the Fe
atoms, and the bond part of a tight-binding Hamiltonian can
be expressed as [5], [8],

HB = −t0
∑
�i, j �

c+
i c j , (1)

where t0 is the nearest-neighbor hopping parameter between
the sites �i, j�. The spin-orbit coupling (SOC) Hamiltonian
can be described in a tight-binding form with an imaginary
nearest-neighbor binding parameter [5],

HS OC = i
∑
�i, j �

λi j

(
c+

i↑c j↑ − c+
i↓c j↓

)
, (2)

where ↑ and ↓ are spin indices, λi j = λ0

(
Êi j × R̂i j

)
· ŝ, Êi j

is the directional vector of the in-plane electric field, R̂i j is the
bond directional vector, and ŝ is the Pauli operator for electron
spin, and λ0 is the SOC strength parameter. The above form
of SOC Hamiltonian results in a SOC term in the Kane-Mele
type [9]. Without considering the SOC effect, the Hamiltonian
HB in Eq. (1) results in a flat band and a pair of gapless Dirac
bands crossing at the K and K’ points of the Brillouin zone.
By considering the SOC effect H = HB + HS OC , a band gap
of Eg = 2

√
3λ0 opens at the Dirac points. The E-k relation

near the intrinsic Fermi level can be expressed in a form of
dispersive Dirac Fermions,

E (k) = ±
√

(�υF k)2 + (
Eg

/
2
)2

, (3)

where � is the reduced Planck constant and the velocity
parameter is υF = √

3at0/�. Here, we use the material
parameters for the Fe3Sn monolayer Kagome lattice given
in [5]. The in-plane lattice constant as shown in Fig. 1(a) is
a = 0.5338 nm, the tight binding parameter is t0 ≈ 123 meV,
which results in υF ≈ 1.85 × 105 m/s. The SOC parameter
λ0 ≈ 9.24 meV, which results in a bandgap Eg ≈ 32 meV
and a ratio of λ0/t0 ≈ 0.075. The monolayer Fe3Sn can
be intercalated by Stanene layers and forms a vertical stack,
with a vertical lattice constant of c ≈ 1.5 nm, as shown in
Fig. 1(b) [5].

By patterning the 2D Kagome lattice to nanometer-width,
Kagome lattice nanoribbons can be formed. The edge atoms
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Fig. 1. (a) 2D monolayer Kagome lattice structure. (b) Schematic stack
of Fe3Sn monolayers intercalated by Stanene layers. (c) A monolayer
Kagome nanoribbon with armchair-shaped edges.

are passivated by H atoms, so that no dangling bonds exist
at the edges. Fig. 1(c) shows a Kagome nanoribbon with an
armchair-shaped edge. The nanoribbon has a lattice constant
of aN R = a ≈ 0.5338 nm along the length direction and a
nanoribbon width of W = √

3na/2, where n is an integer.
To study the carrier transport properties of the nanoribbon,

the non-equilibrium Green’s function (NEGF) formalism is
used with the tight binding Hamiltonian as described above.
The modeled nanoribbon has a scattering region of length L,
with semi-infinite nanoribbon contacts on both ends. To study
the effect of short-range scattering mechanisms such as defects
on the conductivity and transport properties, a Gaussian ran-
dom atomic potential is introduced at each atomic site of
the scattering region. The short-range scattering potential is
assumed to have a mean value of zero and a standard deviation
of δVa . By statistically averaging over hundreds of random
realizations of the scattering potential, the average transmis-
sion is calculated, and the conductance can be obtained from
the statistically averaged transmission by using the Landauer-
Buttiker formula [10]. For the edge modes in a nanoribbon,
backscattering due to long-range scattering mechanisms, such
as charge impurity scattering and acoustic phonon scattering,
is suppressed and has a weaker effect than the short-range
scattering mechanisms due to considerations of momentum
conservation and symmetry, which is neglected for simplicity.
Room temperature T = 300K is assumed in this study.

III. RESULTS

Fig. 2(a) shows the dispersive Dirac bands of monolayer
Fe3Sn, in which the direct bandgap is located at the corners of
the hexagonal Brillouin zone, and is proportional to the spin-
orbit coupling strength. The unit cell of the Kagome lattice
has three atoms. In addition to these two dispersive Dirac
bands, there is an additional nearly flat band as shown in
Fig. 2(b). The intrinsic Fermi level, located at the middle of the

Fig. 2. (a) Band structure of a 2D Fe3Sn lattice with SOC. The energy is
normalized to the binding parameter t0. (b) 2D band structure viewed
along kx direction at ky = 0. (c) The calculated band structure of a
armchair edge Fe3Sn nanoribbon with n = 20, which has a width of
W = √

3n /2 ≈ 9.25nm.

dispersive Dirac gap, is taken as energy zero. Fig. 2(c) shows
the band structure of a Kagome nanoribbon with an armchair-
shaped edge as shown in Fig. 1(c). For the nanoribbon, a pair
of edge bands crosses the entire band gap energy range. The
bands do not exist in the 2D bulk band structure. Examination
of the calculated wave function confirms that these bands are
spatially located at the edges of the nanoribbon.

Carrier transport properties of the Kagome nanoribbons
are studied next by using the NEGF transport simulations.
Fig. 3(a) shows the simulated transmission vs. energy in the
presence of scattering compared to that at the ballistic limit.
The standard deviation of the Gaussian distribution of the
scattering potential �Ua = 4λ0 is larger than the 2D Kagome
lattice bandgap Eg = 2

√
3λ0. The ballistic transmission shows

a clear stepwise feature, with the steps at the subband edges.
In the bandgap region, the ballistic transmission is 1 due
to the edge modes as shown in Fig 2. In the presence of
scattering, the edge modes are topologically protected from
backscattering and the transmission is still close to 1. In
contrast, the transmission for the bulk modes is severely
degraded. To quantify the difference between the edge modes
and other modes, the average carrier scattering mean free path
�λ(E)� can be extracted from the ratio of transmission with
scattering �TS(E)� and that at the ballistic limit TB(E) [10],

�TS(E)�
TB(E)

= �λ(E)�
L + �λ(E)� , (4)

or equivalently, �λ(E)� = L/ [TB(E)/�TS(E)� − 1], where �·�
denotes average over random scattering potential samples for
the quantity.

Fig. 3(b) shows the extracted mean free path λ (E) vs.
energy. The results indicate that the mean free path of the
edge bands is over two order of magnitude larger than that
of the bulk bands. Even in the presence of atomic scattering
potential strength comparable to the bandgap value, the mean
free path of the edge modes can be well above a micrometer.

The excellent carrier transport properties of the edge
modes of the Kagome nanoribbons make them attractive for
scaled interconnect applications. A major challenge of scaled
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Fig. 3. (a) Transmission vs. energy at ballistic transport (dashed line)
and in the presence of atomic scattering potential (solid line) by NEGF
simulations, calculated over 200 random scattering potential realizations.
The scattering potential has a Gaussian distribution with a mean of zero
and standard deviation of ΔU = 4λ0 at all atom sites. The simulated
ribbon has a width of W = √

�n /2 ≈ 9.25nm for n = 20, and the
scattering region has a length of L = m ≈ 107nm, where m = 200.
(b) The extracted scattering mean free path vs. energy. The dashed
lines show the nanoribbon bandgap energy range, within which the
conductance is completely due to the edge bands.

Fig. 4. Resistivity vs the width for interconnects made of monolayer
Fe3Sn nanoribbon, stacked nanoribbon layers as shown in Fig. 1(b),
and Cu wire.

interconnects is to achieve low resistivity. The resistivity of
a nanoribbon can be calculated from the mean free path
�λ(E)� as,

ρmo =
[

q2

h

∫
�λ(E)�

(
−∂ f (E)

∂ E

)
d E

]−1

, (5)

where q is the elementary electron charge, h is the Planck
constant and f (E) = 1/

[
1 + ex p

(
E−EF
kB T

)]
is the Fermi-

Dirac distribution function and EF is the Fermi energy level.
Fig. 4 shows the resistivity vs. the width of the monolayer
nanoribbon compared to that of Cu wire [3], [11]. For a width
smaller than 6nm, the Kagome monolayer nanoribbon outper-
forms the Cu wire in terms of lower resistivity. A vertical
stack as shown in Fig. 1(b) can have multiple edge modes

in parallel. By assuming a vertical stacking with an aspect
ratio of W/T ≈ 1, the number of monolayers in a square wire
can be approximately computed as, nL = [T/c] ≈ [W/c]
and the resistivity value becomes ρw = ρmo/nL , where [x]
denotes the closest integer to x and ρmo is the resistivity of
the monolayer. Below a width of 10nm, the stacked Kagome
wire can offer better conductivity compared to the Cu wire
with the same cross-sectional size. The advantage is especially
significant as the size further scales down, while Cu wire
suffers from significant increase of resistivity while the edge
modes of the Kagome nanoribbons have much more preferred
scaling properties.

IV. CONCLUSION

Atomistic quantum transport simulations are performed to
investigate the carrier transport properties of the Kagome
lattice nanoribbons. The results indicate that the edge modes
maintain excellent carrier transport properties with mean free
path orders of magnitude longer than other modes in the
presence of scattering. Another advantage of the 2D materials
is that multiple layers can be stacked in the vertical direction
so that the parallel combination of the edge modes further
decreases the resistivity. For an interconnect with a cross
section dimension smaller than 10nm, the multilayer Kagome
lattice wire can outperform the Cu wire. The advantage is
more significant as the size of the interconnect is further scaled
down.
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