Manipulating the patterns of mechanical forces that shape multicellular tissues

R. Marisol Herrera-Perez and Karen E. Kasza

Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA

Corresponding author: Karen E. Kasza, karen.kasza@columbia.edu



Abstract:
During embryonic development, spatial and temporal patterns of mechanical forces help to

transform unstructured groups of cells into complex, functional tissue architectures. Here, we
review emerging approaches to manipulate these patterns of forces to investigate the mechanical
mechanisms that shape multicellular tissues, with a focus on recent experimental studies of
epithelial tissue sheets in the embryo of the model organism Drosophila melanogaster.

Main text:

Introduction:

During development, the tissues, organs, and body of an embryo are shaped from an unstructured
group of cells, a process called morphogenesis. Many morphogenetic events involve the bending,
stretching, or flow of epithelial tissue sheets, and failure of these movements can be associated
with birth defects. Epithelial tissues play key roles in shaping of the basic embryonic body plan
(42) as well as more elaborate structures, such as the spatial ridges of gut villi and the branching
patterns of lungs and mammary glands (96, 120). Transforming a simple tissue sheet into a
complex, functional architecture requires generating mechanical forces in specific spatial and
temporal patterns. Ultimately, to understand morphogenesis we must know the genes and
molecules that pattern the embryo, the mechanical forces that build and shape tissues, and how
mechanical cues feed back on the molecular control of cell behavior and fate (52, 67, 133, 138).
Dissecting the mechanisms of morphogenesis has remained a significant challenge, in part due
to the difficulty of manipulating patterns of mechanical forces within tissues inside developing
embryos.

The actomyosin cytoskeleton plays a major role in generating the forces that shape tissues (48,
49, 65, 84). Non-muscle myosin |l motor proteins (myosin) form processive assemblies that pull
on anti-parallel actin filaments to generate contractile mechanical tension within cells. For
example, during Drosophila development planar polarized localization patterns of myosin drive
oriented cell rearrangements that narrow and elongate the embryonic body axis in a convergent
extension movement (9, 10, 38, 57, 107, 132, 152). Contractile forces generated by myosin drive
these cell rearrangements by promoting the contraction of cell-cell contacts that are disassembled
as cells exchange neighbors (9, 10, 38, 64, 94, 106, 107, 132) (Fig. 1A, right panel). On the ventral
surface of the Drosophila embryo, radially polarized actomyosin networks span the apical surface
of presumptive mesoderm cells and drive apical constriction (24, 86, 87, 140). These cell shape
changes generate a bend in the tissue and promote tissue invagination during gastrulation (77,
86, 87, 131) (Fig. 1B, right panel).

Morphogenetic processes are organized by molecules that control patterns of gene expression
across tissues and regulate the patterns of mechanical forces generated by cells. Morphogens
can provide long-range patterning of tissues by activating gene regulatory networks in a
concentration dependent manner, which in turn control the cell signaling pathways that regulate
the actomyosin machinery, for an excellent review see (42). These molecules can be expressed
in patterns, often taking the forms of gradients, stripes, or spots. In Drosophila, spatiotemporal
patterns of transcription factors expressed along the anterior-posterior (AP) and dorsal-ventral



(DV) body axes are required for specific patterns of actomyosin contractility. Myosin planar
polarity in the germband requires the pair-rule transcription factors Eve and Runt (152), which are
expressed in stripes along the anterior-posterior axis of the embryo and direct expression of Toll-
family receptors in combinatorial patterns that provide spatial cues to cells (102) (Fig. 1A, left
panel). Likewise, ventral furrow formation and mesoderm invagination require the transcription
factors Twist and Snail, which are expressed in the ventral region of the embryo and are required
for pulsed myosin-driven apical cell constriction (77, 86) (Fig. 1B, left panel). Although mesoderm
invagination and body axis elongation are controlled by different upstream factors, actomyosin
localization and activity in both cases are regulated by the Rho/Rho-kinase signaling pathway (64,
94, 121, 122, 140).

Mechanical forces generated by cells or transmitted by the microenvironment can also act as
signals that influence cell behavior and fate. Mechanical factors influence myosin localization and
dynamics in the Drosophila germband (38), ventral furrow (104), and wing imaginal disc (32).
Moreover, forces have been reported to promote expression of the Twist transcription factor in
the Drosophila embryo (27), to influence cell positioning and cell fate specification in a YAP-
dependent process during formation of the mouse blastocyst (81), and to play a role in lateral
inhibition mediated by compression that influences TAZ activity during zebrafish oogenesis (148).

In this review, we focus on new approaches for manipulating patterns of mechanical forces within
tissues in vivo, with an emphasis on studies of epithelial tissue sheets in the embryo of the model
organism Drosophila melanogaster. This research is rapidly accelerating our ability to dissect the
complex mechanical and molecular mechanisms of morphogenesis.

Techniques to directly apply patterns of mechanical forces to tissues inside developing
embryos: One approach to manipulating and studying the spatiotemporal patterns of forces in
developing tissues is to directly apply mechanical loads. This can be achieved by externally
confining, compressing, or indenting the embryo or by modifying interactions between the embryo
and the surrounding environment (7, 20, 36, 95, 104). These techniques have provided valuable
insight into the mechanisms by which tissues resist deformation and respond to mechanical
forces. However, these approaches typically do not generate precise or localized patterns of
forces characteristic of endogenous forces during morphogenesis. Alternative techniques with
greater spatial resolution have also been used to apply loads at small length scales inside
embryos by manipulating injected magnetic particles or ferrofluids (23, 27, 29, 89, 90, 117), cutting
tissue structures by laser ablation (7, 37, 55, 105, 124, 130), applying pressure to tissues by
locally aspirating with a micropipette (38), or by manipulating endogenous structures with optical
traps (3). Many of these approaches have been used to measure tissue mechanical properties
(16, 23, 29, 49, 117, 129), and some have also been used to study the effects of forces on tissue
morphogenesis and development.

Laser ablation approaches to locally cut tissues have been widely used to study mechanical
forces within tissues in developing embryos (55, 105, 124, 130). This approach has helped to
elucidate the nature of forces that contribute to dorsal closure (55), germband extension (38, 107),
and ventral furrow invagination (85) in the Drosophila embryo, cortical flows in the C. elegans
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zygote (88), and gastrulation movements in zebrafish (7). Laser ablation has also been used to
manipulate patterns of forces in developing embryos, revealing effects on gene expression (27,
130), myosin dynamics (38), cell division (17, 115, 143), and oriented cell rearrangement (151).
While laser cutting disrupts the force patterns in a tissue, it cannot flexibly generate any desired
pattern of force and can induce wound healing responses in the tissue (71).

Manipulation of magnetic nanoparticles has also been utilized to study how patterns of forces
regulate expression of transcription factors in the Drosophila embryo. Magnetic field
manipulations of magnetic nanoparticles were used to mimic forces exerted by the elongating
germband on the neighboring stomodeal primordium to study the effects that mechanical forces
have on gene regulation (27). This study suggested that forces regulate gene expression in the
Drosophila embryo, where they promote expression of the Twist transcription factor (27). More
recently, injected nanoparticles driven by arrays of small magnets were used to produce forces
that mimic cell-scale patterns of apical contractions in mesodermal cells. These forces were
shown to rescue mesoderm invagination defects in embryos mutant for the Snail transcription
factor (89). While magnetic manipulation can provide localized control of forces and allows deep
penetration into tissues, the presence of large magnetic objects within tissues may pose issues
for long-term development. Moreover, the incorporation of particles inside tissues and the
generation of magnetic fields to produce desired force patterns remain experimental challenges,
limiting accessibility of these techniques for many labs.

Techniques to manipulate patterns of forces within tissues by harnessing the cell’s own
machinery: In an alternative approach, patterns of forces within tissues can be manipulated by
harnessing the cells’ own force-generating machinery. Cell and tissue movements during
morphogenesis are largely driven by the cellular actomyosin cytoskeleton (48, 49, 65, 84), with
distinct patterns of actomyosin activity associated with different tissue movements.

Developmental biologists can manipulate the genes that control morphogenesis, and the forces
that drive it, with a powerful molecular genetics toolbox. This toolbox includes genetic mutants,
RNAi-mediated knockdown, and transgenic over-expression or mis-expression. In Drosophila
these approaches have been essential for determining the requirement of genes in development
(99). For example, a combination of these approaches has helped to elucidate the regulation and
function of myosin during epithelial tissue morphogenesis (24, 40, 62, 64, 70, 121, 140, 146). The
Gal4-UAS system can restrict the expression of transgenes to specific time periods or locations
in the embryo with tissue-specific Gal4 drivers (12), but expression patterns are restricted by
available drivers and so cannot flexibly produce any desired pattern. Alternatively, small molecule
inhibitors that target the cellular force-generating machinery can be micro-injected to specific
regions of embryos. Yet, spatial patterns are constrained by injection and diffusion of the inhibitor.
Moreover, micro-injection can be disruptive to the tissue, and the effects of the inhibitors often
cannot be temporally controlled. The need for non-invasive tools for manipulating cell-generated
patterns of forces with high spatial and temporal precision motivated the recent utilization of
optogenetic (45, 68, 136), thermogenetic (50), and magnetogenetic (91) technologies in
developing embryos. Here, we focus on studies using optogenetic technologies, which have
recently been adapted for a wide variety of model organisms used in the study of development.
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Optogenetics: Over the last decade, light-sensitive protein domains have increasingly been
utilized as genetically-encoded optogenetic tools for manipulating diverse cellular processes in
vitro and in vivo because of their precision, controllability, and accessibility (1, 14, 18, 44, 46, 53,
56, 58, 59, 68, 74, 79, 112, 127, 144, 147, 150). These tools are activated by exposure to specific
wavelengths of light and can achieve high spatial and temporal precision. They have been used
to manipulate protein localization and activity, cell signaling, and gene expression at various
stages during development. They offer precise, and in some cases reversible, perturbations that
are difficult to achieve with other methods. The most common optogenetic tools are based on
phytochromes (PHY), cryptochromes (CRY), Light Oxygen Voltage sensing (LOV), and Blue Light
Using Flavin (BLUF) domains or their derivatives, which are largely derived from plants, bacteria,
and algae. Many optogenetic tools are based on a light-dependent dimerization mechanism. For
example, in CRY2-CIB1 tools blue light absorption by CRY2 induces a conformational change,
leading to increased affinity for its partner CIB1 (68).

Some optogenetic tools are better suited for specific systems or questions. Despite success using
optogenetic systems in vivo, there are limitations and constraints to be considered, including the
degree of expression, dissociation time and reversibility, requirement of an external chromophore
(e.g. some phytochromes) (14, 79), potential for self-oligomerization (e.g. cryptochromes) (15),
degree of residual activity without light activation or ‘leakiness’, and level of subcellular control.
General limitations of light-based methods include phototoxicity during long periods of activation
and difficulty penetrating into deep sections of tissues. For excellent reviews of the growing
collection of optogenetic tools, see (60, 108, 134). In general, optogenetic tools have the potential
for fast (miliseconds to minutes) and local (micron or greater) control of intracellular processes,
and so are well-suited to the study of development. Here, we highlight CRY2-derived and LOV-
derived optogenetic tools, which have been most widely used in the interrogation of the forces
that drive morphogenesis.

Optogenetic manipulation of molecules that directly regulate the contractile machinery: One
strategy is to use optogenetic technologies to manipulate the molecules that directly regulate the
cellular actomyosin machinery (Fig. 2B). Significant progress has been made in identifying many
of these regulators and elucidating the mechanisms by which they influence myosin localization
and/or activity, making them ideal candidates for optogenetics. The Rho/Rho-kinase signaling
pathway plays a key role in regulating the patterns of myosin localization and activity in many
cells and tissues (2, 109), including the planar polarized pattern of myosin in the elongating
germband tissue (64, 69, 94, 121, 122) and the radial pattern of myosin in cells during mesoderm
invagination (87, 140) in the Drosophila embryo.

Optogenetic tools to manipulate actin or myosin regulators have been widely used to modulate
and study the behaviors of cultured cells in vitro (6, 68, 72, 79, 100, 101, 139, 142, 147). ALOV-
derived TULIP tool was developed to recruit the RhoA guanine nucleotide exchange factor (GEF)
LARG to the cell membrane, revealing that patterned RhoA activation is sufficient to induce
formation of contractile rings during cytokinesis (127, 142). This photo-recruitable GEF tool was
also used to modulate contractility in adherent cells, revealing a requirement for zyxin in stress
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fiber mechanics (101). A cryptochrome-based CRY2-CIBN system was used to manipulate the
catalytic DHPH domain of ARHGEF11, either recruiting it to the cell membrane to increase RhoA
signaling and actomyosin contractility or sequestering it at the mitochondrial membrane to
decrease ectopic contractility associated with expression of the tool (139). Optogenetically
induced changes in contractility were associated with differences in the nuclear localization of the
transcriptional regulator YAP, demonstrating optogenetic control over mechanotransduction in
cultured MDCK-II cells (139). CRY2-CIBN-based tools have also served to manipulate GEFs
during cytokinesis (72) and cell migration (6).

Within developing embryos, optogenetic tools have been used to manipulate regulators of
actomyosin force generation. In Drosophila, a CRY2-CIBN-based tool was used to disrupt actin
through depletion of the phosphoinositide PI(4,5)P2 at the cell membrane (44, 56). Local
optogenetic disruption of actomyosin-driven apical constriction in a small group of cells in the
prospective mesoderm of the Drosophila embryo was sufficient to disrupt tissue invagination
along the ventral midline of the embryo (44). To locally increase actomyosin contractility, a CRY2-
CIBN-based tool was developed to recruit the DHPH catalytic domain of RhoGEF2 to the cell
membrane in the epithelium of the early Drosophila embryo, triggering apical constriction and
initiating ectopic tissue folding in the illuminated region (58) (Fig. 2B). The same tool was used
to increase levels of myosin activity specifically at the basal side of presumptive mesoderm
cells. This perturbation disrupted invagination, suggesting that relaxation of contractile forces
on the basal side of cells is required for full tissue invagination (75).

Optogenetic manipulation of molecules that pattern the embryo: Another strategy to manipulate
patterns of forces in tissues is to use optogenetic technologies to manipulate the upstream
regulators that organize morphogenetic processes (Fig. 2A), such as the morphogens and
transcription factors that direct development (42, 99, 103). For example, the requirement and
function of molecules involved in myosin-driven body axis elongation in Drosophila have been
elucidated over the past two decades (57, 69, 102, 152). Bicoid is localized in a gradient along
the anterior-posterior (AP) axis and regulates expression of gap genes, which in turn regulate the
striped expression pattern of pair-rule transcription factors (30, 41, 43, 128). These transcription
factors regulate the striped expression of Toll-family receptors, which direct the planar polarized
localization pattern of myosin (102) (Fig. 1A). The concentration and activity of upstream
organizing molecules change in space and time to pattern the embryo, specify cell fates, and build
tissues. Therefore, optogenetic manipulation of these upstream organizing molecules will have
broad impacts on cell behavior and fate, and have the potential to orchestrate multiple processes
required in complex morphogenetic movements, including patterns of actomyosin contractility.

In Drosophila, optogenetic control of Erk mitogen-activated protein kinase signaling was achieved
using a LOV-derived light-switchable iLID membrane anchor paired with a light-recruited Ras
activator, together called OptoSOS (59) (Fig. 2A). Global or local ectopic Erk activation in the
embryo resulted in apical myosin localization and contractility (61). OptoSOS was used to dissect
the spatial and temporal requirements for Erk in cell fate and tissue morphogenesis during
Drosophila development, revealing that cells measure the cumulative load of Erk signaling to
make an endoderm versus ectoderm fate decision (61). Spatial and temporal requirements for
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the morphogen Bicoid were investigated with an optogenetic tool based on fusing the light-
responsive CRY2 domain to the N-terminus of Bicoid, allowing light-controlled disruption of Bicoid
transcriptional activity in the Drosophila embryo (53) (Fig. 2A). A CRY2 fusion to B-catenin allowed
light-controlled aggregation of B-catenin and inhibition of canonical Wnt signaling to study
patterning of the Drosophila embryonic epidermis (66). In zebrafish, LOV-domain based
optogenetic tools have been developed and used to study non-canonical Wnt signaling (18) and
Nodal signaling (112) during gastrulation.

Optogenetic manipulation of motor proteins, vesicles, and membraneless compartments: Beyond
the manipulation of actomyosin regulators and upstream organizers of development, optogenetic
tools have also been used to directly control cytoskeletal motor proteins and organelles within
cultured cells. Direct recruitment of kinesin, dynein, or myosin-V motor proteins to selected cargos
using a LOV-domain (8) or a CRY2-CIB1 (31) system was used to control organelle transport
along cytoskeletal filaments (Fig. 2C). Optogenetic tools have also been used to control cellular
trafficking processes by prompting intracellular vesicle aggregation (97) and to manipulate
membraneless organelles that play numerous roles in cells, from facilitating biochemical reactions
to sequestering proteins (11, 119). Optogenetic control over membraneless organelles has
allowed quantitative study of their formation through liquid-liquid phase separation within cells (11,
119).

Magnetogenetic, thermogenetic, and electrical manipulation: A broad range of other physical
modalities have been used to manipulate molecules that influence the cellular force generating
machinery. Magnetic manipulation of functionalized magnetic nanoparticles can trigger
biochemical events in cultured cells and developing embryos (91). This approach has allowed
manipulation of microtubule nucleation (51), Rho-GTPase activity (35), and protein and organelle
localization (80). A major limitation of magnetic manipulation is the difficulty of incorporating
magnetic particles into embryos with high precision and minimal tissue disruption. New
approaches are focusing on genetically-encoded molecules such as ferritin, although the
magnetic properties of these systems may need to be optimized to ensure sufficient magnetic
force magnitudes (91). Recently, thermogenetic approaches have been developed to locally
inactivate fast-acting temperature-sensitive mutant proteins in C. elegans (50). These tools were
used to manipulate and study the spatiotemporal requirements for myosin during cell division in
myosin-ll(ts) embryos (50). In addition, electric fields can influence cell behavior and migration
and have been used to manipulate collective migration of cultured epithelial cell monolayers (22);
for a comprehensive review see (78).

New opportunities to study patterns of mechanical forces that emerge in populations of
cells cultured in vitro: There are exciting new opportunities to study morphogenesis, and the
forces that drive it, in cell populations that self-organize in vitro. Cell-cell interactions, cell-matrix
interactions, biochemical cues, and mechanical cues can drive cultured cells to sort, form complex
three-dimensional architectures, specify cell fates, and even generate organ-like and embryo-like
structures that recapitulate aspects of tissue structure, composition, and function in vivo (21, 39,
76, 111, 113). Self-organizing in vitro systems can provide insights into the roles of mechanical
forces in development, especially for organisms for which embryonic development occurs in
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environments that have proven difficult to interrogate (118). In addition, in vitro systems offer
precise control over environmental conditions and can be amenable to live imaging and direct
mechanical measurements, providing new opportunities to dissect the roles of mechanical and
biochemical factors in regulating cell behavior and fate within multicellular tissues.

In the 1950s, dissociated cells from amphibian embryos were shown to spontaneously organize
into layered tissues that mimic embryonic tissue layers (137). More recently, cell sorting has been
studied in cell lines (125) and in cells from zebrafish embryos (73, 82, 83, 116) and Xenopus
embryos (98), revealing roles for cell-cell adhesion and cortical tension in driving sorting (Fig. 3A).
Interactions between cells and the extracellular matrix (ECM) were shown to help support
formation of functional alveolar structures by cultured primary mammary cells (4), and a recent
study revealed a key role for cell-ECM interactions in the self-organization of mammary and
prostate gland structures in vitro (19) (Fig. 3B).

A significant research effort over the last decade has revealed that stem cells and organ-specific
progenitors can give rise to complex self-organized and self-patterned structures, called
organoids, which mimic the structure and function of in vivo organs. Examples include intestinal
organoids (114), optic cups (33) (Fig. 3D), brain-like organoids (34, 63, 93), and a wide range of
other organoid systems (21, 111, 113). More recently, these approaches have been applied to
mimic and study embryonic patterning and morphogenesis. Human and mouse embryonic stem
cells self-organize into patterned germ layers and three-dimensional structures that mimic the
early embryo (25, 26, 92, 110, 123, 145), opening new opportunities for studying mammalian
development and morphogenesis (Fig. 3E). Remarkably, mouse embryonic stem cell cultures
called gastruloids can undergo gastrulation-like and axis elongation events in vitro (5, 13) (Fig.
3E). In vitro models that recapitulate key developmental events offer unique opportunities to alter
mechanical parameters of the environment and link them to changes in the cell and tissue
behaviors that control tissue form and function (141, 149).

Combining self-organization with engineered cues to direct these processes may provide new
pathways to engineer structures in vitro that better mimic in vivo tissues or even have novel,
optimized characteristics. For example, engineered cell-cell interactions have recently been used
to direct generation of mechanical stresses in tissue layers to drive folding into complex three-
dimensional patterns (54) (Fig. 3C), and synthetic Notch receptor systems have been used to
manipulate cell-cell interactions and engineer self-organized cell aggregates (135).

These in vitro systems provide promising new opportunities to study how mechanical and
molecular factors work together to build and shape functional tissues and organs. Organoid and
gastruloid systems clearly demonstrate that complex patterns of forces can be generated to drive
morphogenetic events in vitro, but they have not yet been widely used for the study of mechanical
mechanisms underlying morphogenesis. It will be exciting to combine these in vitro models of
self-organizing cell populations with new tools and approaches for studying and manipulating the
forces that drive morphogenesis.



Future perspectives:

Emerging techniques to manipulate patterns of mechanical forces within multicellular tissues are
accelerating our ability to dissect how mechanical forces cooperate with biochemical signals to
generate complex tissue structures during embryonic development. Combining these techniques
with each other and with classical molecular genetics approaches is likely to provide to
developmental biology a new toolbox of quantitative, precise perturbations. Future work will be
required to calibrate the forces produced using these techniques, which is a necessary step in
moving towards a quantitative, mechanistic understanding of morphogenesis. Theoretical and
computational approaches for predicting tissue movements from patterns of forces will contribute
to predictive models of specific morphogenetic events (28, 47, 126). Ultimately, increased
understanding of the mechanisms that control tissue morphogenesis, combined with
sophisticated tools to direct these processes, will contribute to efforts to predict and control tissue
shape and structure in vivo and in vitro, with potential applications in tissue engineering as well
as in fundamental biomedical research.
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Figure 1. Regulators and patterns of cell-generated mechanical forces that shape the
Drosophila embryo. Upstream molecules pattern the embryo and organize morphogenetic
events, ultimately controlling the actomyosin-generated mechanical forces that shape tissues
during morphogenesis and that can feed back on the molecular control of cell behavior and fate
(42, 103). A. Molecules that pattern the anterior-posterior (AP) axis of the Drosophila embryo.
Bicoid (blue) is localized in a gradient along the along the AP axis. Along with other maternal
effect genes, Bicoid regulates the expression of gap genes, which in turn regulate the striped
expression of pair-rule transcription factors such as Eve (pink). Pair-rule genes set up the
expression of Toll-family receptor stripes and the planar polarized distribution of myosin in the
germband tissue (102). Planar polarized myosin activity in the germband tissue is required for the
oriented cell rearrangements that elongate the body axis. See (9, 10, 38, 107, 152). B. Dorsal-
ventral patterning involves localization of the maternal transcription factor Dorsal (magenta) in a
gradient, regulating expression of the transcription factors Twist (cyan) and Snail (green), which
are required for the repeated pulses of actomyosin contractility at the apical cortex of the
presumptive mesoderm cells that drive tissue bending and invagination. See (77, 85).
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Figure 2. Optogenetic techniques to manipulate patterns of forces by harnessing the cell’s
own machinery. Light-responsive protein domains have been adapted as optogenetic tools to
manipulate cellular processes (60, 108, 134). Optogenetics tools can be used to manipulate the
cell’'s own machinery for generating forces. A. Optogenetic control of upstream organizers of
development and morphogenesis. In the Drosophila embryo, Bicoid (Bcd) was fused to CRY2 for
light-controlled inhibition of Bicoid transcriptional activity (53). An optogenetic system was used
to study the spatial and temporal requirements of Erk signaling in cell fate specification and tissue
morphogenesis during Drosophila development (59, 61). B. Optogenetic tools have been used to
control regulators of actomyosin force-generating machinery. Recruitment of actomyosin
regulators to the cell membrane can disrupt normal or generate ectopic cell shape changes and
tissue folding (44, 58, 75). C. Optogenetics has also been used to directly control motor protein
localization and control organelle transport in cultured cells (8, 31).
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\Figure 3. Opportunities to study patterns of forces within self-organizing populations of
cells cultured in vitro. Patterns of mechanical forces arising in populations of cells cultured in
vitro provide new opportunities to study and manipulate forces within tissues under controlled
conditions. A. Cells self-sort based on cell-cell interactions, arising from differences in adhesion
or cortical tension (39). B. Cells organize into functional structures similar to in vivo lumen
architectures based on cell specific interactions with the extracellular matrix (ECM) (19). C. Cell-
cell and cell-matrix interactions can be engineered to direct tissue morphogenesis (54). D.
Aggregates of embryonic stem cells can self-organize into tissue structures called organoids that
resemble adult organs, as illustrated by the example of optic cup formation in vitro (33). E
Aggregates of embryonic stem cells can self-organize into structures called gastruloids that mimic
features of developing embryos, including defined germ layers when cultured on
micropatterned surfaces (25, 26, 123) or axis elongation (5).
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