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A review of mathematical representations of
biomolecular data
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Recently, machine learning (ML) has established itself in various worldwide benchmarking competitions

in computational biology, including Critical Assessment of Structure Prediction (CASP) and Drug Design

Data Resource (D3R) Grand Challenges. However, the intricate structural complexity and high ML

dimensionality of biomolecular datasets obstruct the efficient application of ML algorithms in the field. In

addition to data and algorithm, an efficient ML machinery for biomolecular predictions must include

structural representation as an indispensable component. Mathematical representations that simplify the

biomolecular structural complexity and reduce ML dimensionality have emerged as a prime winner in

D3R Grand Challenges. This review is devoted to the recent advances in developing low-dimensional

and scalable mathematical representations of biomolecules in our laboratory. We discuss three classes

of mathematical approaches, including algebraic topology, differential geometry, and graph theory. We

elucidate how the physical and biological challenges have guided the evolution and development

of these mathematical apparatuses for massive and diverse biomolecular data. We focus the

performance analysis on protein–ligand binding predictions in this review although these methods have

had tremendous success in many other applications, such as protein classification, virtual screening, and

the predictions of solubility, solvation free energies, toxicity, partition coefficients, protein folding stability

changes upon mutation, etc.

I Introduction

Recently, Google’s DeepMind has caught the world’s breath in
winning the 13th Critical Assessment of Structure Prediction
(CASP13) competition using its latest artificial intelligence (AI)
system, AlphaFold.1 The goal of the CASP is to develop and
recognize the state-of-the-art technology in constructing pro-
tein three-dimensional (3D) structures from protein sequences,
which are abundantly available nowadays. While many people
were surprised by the power of AI when AlphaGo beat humans
for the first time in the highly intelligent Go game a few
years ago, it was not clear whether AI could tackle scientific
challenges. Since CASP has been regarded as one of the most
important challenges in computational biophysics, AlphaFold’s
dominant win of 25 out of 43 contests ushers in a new era of
scientific discovery.

The algorithms underpinning the ALphaFold’s AI system
are machine learning (ML), including deep learning (DL).
Indeed, ML is one of the most transformative technologies in

history. The combination of big data and ML has been referred
to as both the ‘‘fourth industrial revolution’’2 and the ‘‘fourth
paradigm of science’’.3 However, this two-element combination
may not work very well for biological science, particularly,
biomolecular systems because of the intricate structural com-
plexity and the intrinsic high dimensionality of biomolecular
datasets.4 For example, a typical human protein–drug complex
has so many possible configurations that even if a computer
enumerates one possible configuration per second, it would
still take longer than the universe has existed to reach the right
configuration. The chemical and pharmacological spaces of
drugs are so large that even all the world’s computers put
together do not have enough power for automated de novo drug
design due to additional requirements in solubility, partition
coefficient, permeability, clearance, toxicity, pharmacokinetics,
pharmacodynamics, etc.

An appropriate low-dimensional representation of biomolecular
structures is required4–9 to translate the complex structural infor-
mation into machine learning feature vectors or mathematical
representations as shown in Fig. 1 and 2. As a result, various
machine learning algorithms, particularly relatively simple
ones without complex internal structures, can work efficiently
and robustly with biomolecular data.

Descriptors or fingerprints are indispensable even for small
molecules – they play a fundamental role in quantitative
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structure–activity relationship (QSAR) and quantitative struc-
ture–property relationship (QSPR) analysis, virtual screening,
similarity-based compound search, target molecule ranking,
drug absorption, distribution, metabolism, and excretion (ADME)
prediction, and other drug discovery processes. Molecular
descriptors are property profiles of a molecule, usually in the
form of vectors with each vector component indicating the
existence, the degree or the frequency of a certain structure
feature.10–12 Various descriptors have been developed in the
past few decades.13–15 Most of them are 2D ones that can be
extracted from molecular simplified molecular-input line-entry
system (SMILES) strings without 3D structure information.
High dimensional descriptors have also been developed to utilize
3D molecular structures and other chemical and physical
information.16 There are four main categories of 2D descriptors:
(1) substructure keys-based fingerprints, (2) topological or path-
based fingerprints, (3) circular fingerprints, and (4) pharmaco-
phore fingerprints. Substructure keys-based fingerprints,
such as the molecular access system (MACCS),17 are bit strings
representing the presence of certain substructures or fragments
from a given list of structural keys in a molecule. Topological or

path-based descriptors, e.g., FP2,18 Daylight19 and electro-
topological state (Estate),20 are designed to analyze all the
fragments of a molecule following a (usually linear) path up
to a certain number of bonds, and then hashing every one of
these paths to create fingerprints. Circular fingerprints, such as
the extended-connectivity fingerprint (ECFP),13 are also hashed
topological fingerprints but rather than looking for paths in a
molecule, they record the environment of each atom up to a
pre-defined radius. Pharmacophore fingerprints include the
relevant features and interactions needed for a molecule to be
active against a given target, including 2D-pharmacophore,21

3D-pharmacophore21 and extended reduced graph (ERG)22

fingerprints as examples.
However, typically designed for 2D SMILES strings, the

aforementioned small-molecular descriptors do not work well for
macromolecules that have complex 3D structures. The complexity
of biomolecular structure, function, and dynamics often makes
the structural representation inconclusive, inadequate, inefficient
and sometimes intractable. These challenges call for innovative
design strategies for the representation of macromolecules.

Popular molecular mechanics models use bonded terms for
describing covalent bond interactions and non-bonded terms for
representing long-range electrostatic and van der Waals effects.
As a result, the early effort has been focused on exploring related
physical descriptors to account for hydrogen bonds, electrostatic
effects, van der Waals interactions, hydrophilicity, and hydro-
phobicity. These descriptors have been applied to many macro-
molecular systems, such as protein–protein interaction hot
spots.6,7,23,24 Similar physical descriptors in terms of van der
Waals interactions, Coulomb interactions, electrostatic poten-
tials, electrostatic binding free energies, reaction field energies,
surface areas, volumes, etc., were applied by us to predictions of
protein–ligand affinity25 and solvation free energy.26,27 However,
the major limitation of physical descriptors is that they highly
depend on existing molecular force fields, such as radii, partial
charges, polarizability, dielectric constants, and van der Waals
well depth, and thus could inherit errors from upstream physical
models. As a result, these descriptors are often not as competi-
tive as the state-of-the-art force-field-free models based on
advanced mathematics.9,28

Topology analyzes space, connectivity, dimension, and
transformation. Topology offers the highest level of abstraction
and thus could provide an efficient tool for tackling high-
dimensional biological data.30–32 However, topology typically
oversimplifies geometric information. Persistent homology
is a new branch of algebraic topology that is able to bridge
geometry and topology.31,33,34 This approach has been applied
to macromolecular analysis.35–45 Nonetheless, it neglects critical
chemical/biological information when it is directly applied to
complex biomolecular structures. Recently, we have introduced
element-specific persistent homology to retain critical biological
information during the topological abstraction, rendering a
potentially revolutionary representation for biomolecular data
(see Fig. 2).46–49

Graph theory studies the modeling of pairwise relations
between vertices or nodes.50 Geometric graphs admit geometric

Fig. 1 Illustration of essential elements for machine learning (ML) based
discovery from complex biomolecular data.

Fig. 2 Illustration of descriptor-based learning processes.
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objects as graph nodes while algebraic graphs utilize algebraic
techniques to study the relations between nodes. Both geo-
metric graph theory and algebraic graph theory have been
widely applied to biomolecular systems.8,51–53 For example,
spectral graph theory has been used to represent protein Ca

atoms as an elastic mass-and-spring network in the Gaussian
network model (GNM)54 and the anisotropic network model
(ANM).55 Extremal graph theory concerns unavoidable patterns
and structures in graphs with a given density or distribution. It
has potential applications to chromosome packing and Hi-C
data. However, most graph theory methods suffer from the
neglecting of critical biological information and non-covalent
interactions, and sometimes, inappropriate distance metrics
for biomolecular interactions. In the past few years, we have
developed weighted graphs,56–62 multiscale graphs,60,63 and
colored graphs64,65 for modeling biomolecular systems. These
new graph theory methods are found to be some of the most
powerful representations of macromolecules.64–66

How biomolecules assume complex structures and intricate
shapes and why biomolecular complexes admit convoluted
interfaces between different parts can be naturally described
by differential geometry, a mathematical subject drawing on
differential calculus, integral calculus, algebra, and differential
equations to study problems in geometry or differentiable
manifolds. Einstein used this approach to formulate his
general theory of relativity. Curve and curvature analysis has
been applied to the shape analysis of molecular surfaces67 and
protein folding trajectories.68,69 In the past two decades, we
have developed a variety of differential geometry models for
biomolecular surface analysis,70–75 solvation modeling,76–85 ion-
channel study,80–82,86,87 protein binding pocket detection,88 and
protein–ligand binding affinity prediction.89 Differential geometry-
based representations are able to offer a high-level abstraction
of macromolecular structures.89

We have pursued differential geometry, algebraic topology,
graph theory and other mathematical methods, such as de
Rham–Hodge theory,90,91 for modeling, analysis and character-
ization of biomolecular systems for nearly two decades. Using
these representations, we have studied a number of bio-
molecular systems and problems, including macromolecular
electrostatics, implicit solvent models, ion channels, protein
flexibility, geometric analysis, surface modeling, and multiscale
analysis. Our mathematical representations have evolved and
improved over time. In 2015, we proposed one of the first
integrations of persistent homology and machine learning and
applied this new approach to protein classification. Since
then, we have demonstrated the superiority of our mathematical
representations over other existing methods in a wide variety
of other applications, including the predictions of protein
thermal fluctuations,59,60,63,65 toxicity,92 protein–ligand binding
affinity,25,47,64,66,89 mutation-induced protein stability changes,46,48

solvation,26,27,79,93 solubility,94 partition coefficients94 and
virtual screening.49 As shown in Fig. 3, the aforementioned
mathematical approaches have enabled us to win many con-
tests in D3R Grand Challenges, a worldwide competition series
in computer-aided drug design.28

Due to the abstract nature of mathematical representations
and the fact that our results are scattered over a large number
of subjects and topics it is difficult for a researcher who has
no formal training in mathematics to use these methods.
Therefore, there is a pressing need to elucidate these methods
in physical terms, provide simplified representations, and
interpret their working principles. To this end, we provide a
review of our mathematical representations. Our goal is to offer
a coherent description of these methods for protein–ligand

Fig. 3 Wei team’s performance in D3R Grand Challenges 2, 3 and 4,28,29

community-wide competition series in computer-aided drug design, with
components addressing blind predictions of pose-prediction, affinity
ranking, and binding free energy. The gold medal, silver medal, and bronze
medal label the contest where our prediction was ranked 1st, 2nd, and
3rd, respectively. The numbers (a/b) right beside each medal, say the gold
medal, imply that we have a predictions that were ranked 1st and there was
a total of b submissions sharing the first position. ‘‘No Participation’’ is
placed in the contests that we unintendedly did not participate due to the
inconsistent announcement from the D3R organizer.
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binding interactions so that the reader can better understand
how to use advanced mathematics for describing macromole-
cules and their interaction complexes.

Like small molecular descriptors, macromolecular representa-
tions, once designed, can be applied to different tasks in principle.
However, many different types of applications require specially
designed macromolecular representations. For example, in protein
B-factor prediction, one deals with atomic properties, while in
predicting protein stability changes upon mutation, solubility, etc.
one considers molecular properties. Additionally, in protein–
ligand binding affinity predictions, one deals with the properties
of protein–ligand complexes. Therefore, different mathematical
representations are required to tackle atomic, molecular, and
molecular complex properties. Another complication is due to
different systems. For example, representations for the binding
affinity of protein–ligand interactions should differ from those
for the binding affinity of protein–protein interactions or pro-
tein–nucleic acid interactions. The other hindrance arises from
specific tasks. For example, in protein classification, one deals
with secondary structures and needs to design macromolecular
representations to capture secondary structural differences.
In general, macromolecules and their interactive complexes
inherently contain multiscale, multiphysics, multi-dynamics,
and multifunction. Their descriptions can vary from cases to
cases. We cannot cover all possible situations in this review.

Biologically, protein–ligand binding interactions are tre-
mendously important for living organisms. Ligand–receptor
agonist binding is known to initiate a vast variety of molecular
and/or cellular processes, from transmitter-mediated signal
transduction, hormone or growth factor regulated metabolic
pathways, stimulus-initiated gene expression, enzyme produc-
tion, to cell secretion. Therefore, the understanding of protein–
ligand binding interactions is a central issue in biological
sciences, including drug design and discovery. Despite much
research in the past, the molecular mechanism of protein–
ligand binding interactions is still elusive. A prevalent view is
that protein–ligand binding is initiated through protein–ligand
molecular recognition, synergistic cooporation, and conforma-
tional changes. Computationally, the prediction of protein–
ligand binding affinity is sufficiently challenging. Consequently,
we focus on mathematical representations for protein–ligand
binding affinity predictions to illustrate their design and
application in the present review.

II Methods

In this section, we briefly review three classes of mathematical
representations, i.e., representations constructed from algebraic
topology, graph theory, and differential geometry.

II.A Algebraic topology-based methods

II.A.1 Background. Topology dramatically simplifies geo-
metric complexity.23,30–32,95–98 The study of topology deals with
the connectivity of different components in space and char-
acterizes independent entities, rings, and higher dimensional

faces within the space.99 For example, simplicial homology,
a type of algebraic topology, concerns the identification of
topological invariants from a set of discrete node coordinates
such as atomic coordinates in a protein. For a given (protein)
configuration, independent components, rings, and cavities are
topological invariants and their numbers are called Betti-0,
Betti-1, and Betti-2, respectively, see Fig. 4. To study topological
invariants in a discrete dataset, simplicial complexes are con-
structed by gluing simplices under various settings, such as the
Vietoris–Rips (VR) complex, Čech complex or alpha complex.
Specifically, a 0-simplex is a vertex, a 1-simplex an edge, a
2-simplex a triangle, and a 3-simplex a tetrahedron, as illustrated
in Fig. 4. Algebraic groups built on these simplicial complexes
are used in simplicial homology to systematically compute
various Betti numbers. There is also a cubical complex99 built
upon volumetric data, including those from biomolecules.44

However, conventional topology or homology is truly free of
metrics or coordinates, and thus retains too little geometric
information to be practically useful. Persistent homology is a
relatively new branch of algebraic topology that embeds multi-
scale geometric information into topological invariants to achieve
a topological description of geometric details.31,33 It creates a
sequence of topological spaces of a given object by varying a
filtration parameter, such as the radius of a ball or the level set of
a surface function as shown in Fig. 4. As a result, persistent
homology can capture topological structures continuously over a
range of spatial scales. Unlike commonly used computational
homology which results in truly metric free representations,

Fig. 4 Topological representation of point clouds via persistent homology.
Top panel: The Betti numbers for some objects. Middle panel: Many datasets
are represented as a point cloud and the simplices are the building blocks for
constructing a simplicial complex to topologically characterize the point
cloud. Bottom panel: The persistence barcode of the point cloud and some
example simplicial complexes at different stages of the filtration.
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persistent homology embeds essential geometric information
into topological invariants, e.g., topological representations
or barcodes100 shown in Fig. 4, so that ‘‘birth’’ and ‘‘death’’
of isolated components, circles, rings, voids or cavities can be
monitored at all geometric scales by topological measurements.
A schematic illustration of our persistent homology-based
machine learning predictions is given in Fig. 6. Key concepts
are briefly discussed below. More mathematical details can be
found in the literature,31 including ours.37,38

Simplicial complex. A simplicial complex is a topological space
consisting of vertices (points), edges (line segments), triangles,
and their high dimensional counterparts. Based on the simpli-
cial complex, simplicial homology can be defined and used to
analyze topological invariants. The essential building blocks of a
geometry induced simplicial complex are simplices. Specifically,
let v0, v1, v2,. . .,vk be k + 1 affinely independent points; a
(geometric) k-simplex sk = {v0,v1,v2,. . .,vk} is the convex hull of
these points in RN (N Z k), and can be expressed as

sk¼ l0v0þl1v1þ���þlkvkj
Xk
i¼0

li¼ 1;0� li� 1; i¼ 0;1; . .. ;k

( )
:

An i-dimensional face of sk is defined as the convex hull formed
by the subset of i + 1 vertices from sk (k Z i). Geometrically, a 0,
1, 2, and 3-simplex corresponds to a vertex, an edge, a triangle,
and a tetrahedron, respectively. A simplicial complex K is a finite
set of simplices such that any face of a simplex from K is also in
K and the intersection of any two simplices in K is either empty
or a face of both. The underlying space |K| is a union of all the
simplices of K, i.e., |K| = ,sAKs.

Homology. The basic algebraic structures, chain groups, are
defined for simplicial complexes so that homology can be

characterized. A k-chain [sk] is a formal sum
P
i

aiski of

k-simplices sk
i . The coefficients ai are often chosen in an

algebraic field (typically, Z2). The set of all k-chains of the
simplicial complex K together with addition operation forms an
abelian group Ck(K, Z2). The homology of a topological space is
represented also by a series of abelian groups, constructed
based on these spaces of chains connected by boundary opera-
tors. The boundary operator on chains qk:Ck - Ck�1 is defined
by linear extension from the boundary operators on simplices.
The boundary of a k-simplex sk = {v0,v1,v2,. . .,vk} is defined to be

the alternating sum of its codimension-1 faces, @ksk ¼

Pk
i¼0
ð�1Þifv0; v1; . . . ; v̂i; . . . ; vkg; where {v0,v1,. . .,v̂i,. . .,vk} is the

(k � 1)-simplex excluding vi from the vertex set. A key property
of the boundary operator is that qk�1qk = + and q0 = +. The
k-cycle group Zk and the k-boundary group Bk are the sub-
groups of Ck defined as Zk = Ker qk = {c A Ck|qkc = +},
Bk = Im qk+1 = {qk+1c|c A Ck+1}.

An element in the k-th cycle group Zk (or the k-th boundary
group Bk) is called a k-cycle (or the k-boundary, resp.). As the
boundary of a boundary is always empty qk�1qk = +, one has

Bk D Zk D Ck. Topologically, a k-cycle is a union of k dimen-
sional loops (or closed membranes). The k-th homology group
Hk is the quotient group generated by the k-cycle group Zk and
k-boundary group Bk: Hk = Zk/Bk. Two k-cycles are called
homologous if they differ by a k-boundary element. From the
fundamental theorem of finitely generated abelian groups,
the k-th homology group Hk can be expressed as a direct sum,
Hk = Z"� � �"Z"Zp1

"� � �"Zpn
= Zbk"Zp1

"� � �"Zpn
, where bk,

the rank of the free subgroup, is the k-th Betti number. Here Zpi

is torsion subgroup with torsion coefficients {pi|i = 1, 2,. . .,n},
powers of prime numbers. The Betti number can be simply
calculated by bk = rank Hk = rank Zk � rank Bk. The geometric
interpretations of Betti numbers in R3 are as follows: b0 repre-
sents the number of isolated components, b1 is the number
of independent one-dimensional loops (or circles), and b2

describes the number of independent two-dimensional voids
(or cavities). Together, the Betti numbers {b0,b1,b2,. . .} describe
the intrinsic topological property of a system.

Persistent homology. For a simplicial complex K, a filtration is
defined as a nested sequence of subcomplexes, + = K0 D K1

D� � �DKm = K. Generally speaking, abstract simplicial com-
plexes generated from a filtration give a multiscale topological
representation of the original space, from which related
homology groups can be evaluated to reveal topological
features. Specifically, upon passing the previous sequence to
homology, we obtain a sequence of vector spaces connected
by homomorphisms: H�ðK0Þ ! H�ðK1Þ ! � � � ! H�ðKmÞ.
Following this sequence of homology groups, sometimes new
homology classes are created (i.e., without pre-image under the
map H�ðKiÞ ! H�ðKiþ1Þ), and sometimes certain homology
classes are destroyed (i.e., they have trivial image under
H�ðKjÞ ! H�ðKjþ1Þ). The concept of persistence is introduced
to measure the ‘‘lifetime’’ of such homological features. The
results can be summarized in the persistence barcodes (or equiva-
lently persistence diagrams), consisting of a set of intervals [x,y)
with the beginning and ending values representing the birth and
death of homology classes. The introduction of filtration is of
essential importance and directly leads to the invention of
persistent homology. Generally speaking, abstract simplicial com-
plexes generated from a filtration give a multiscale representation
of the corresponding topological space, from which related
homology groups can be evaluated to reveal topological features.
Furthermore, the concept of persistence is introduced for long-
lasting topological features. However, we have shown that short-
lived topological features are also important for biomolecular
systems.37 The p-persistent of the k-th homology group, Ki, is

Hi,p
k = Zi

k/(Bi+p
k -Zi

k). (1)

Through the study of the persistence pattern of these topological
features, the so-called persistent homology is capable of capturing
the intrinsic properties of the underlying space solely from a
discrete point set.

Filtration. Given a set of discrete sample points, there are
different ways to construct simplicial complexes. Typical
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constructions are based on the intersection patterns of the set
of expanding balls centered at the sample points, such as the
Čech complex, (Vietoris–)Rips complex and alpha complex.101,102

The corresponding topological invariants, e.g., the Betti numbers,
could be different depending on the choice of simplicial complexes.
A common filtration for a set of atomistic data of a macromolecule
is constructed by enlarging a common atomic radius r from 0. As
the value of r increases, the solid balls will grow and new simplices
can be defined through the overlaps among the set of balls. In
Fig. 4, we illustrate this process by a set of points. In Fig. 5, we
demonstrate the persistent homology analysis of different aspects
of a protein–ligand complex using the barcode representation.

II.A.2 Challenge. Conventional topology and homology are
independent of metrics or coordinates and thus retain too
little geometric information to be practically useful in most
biomolecular systems. While persistent homology incorporates
more geometric information, it typically treats all atoms in a
macromolecule indifferently, which fails to recognize detailed
chemical, physical, and biological information.35,36 We intro-
duced persistent homology as a quantitative tool for analyzing
biomolecular systems.37–42,44,45 In particular, we introduced
one of the first topology-based machine learning algorithms for
protein classification in 2015.43 We further introduced element
specific persistent homology, i.e., element-induced topology, to
deal with massive and diverse bimolecular datasets.43,45–48

Moreover, we introduced multi-level persistent homology
to extract non-covalent-bond interactions.49 Furthermore,
physics-embedded persistent homology was proposed to incor-
porate physical laws into topological invariants.49 These new
topological tools are potentially revolutionary for complex
biomolecular data analysis.9

II.A.3 Element specific persistent homology. Many types of
interactions exist in a protein–ligand complex, for example,
hydrophobic effects, hydrogen bonds, and electrostatics. Due to
the mechanisms of these interactions, they happen under
different geometric distances. Persistent homology, when applied
to all the atoms, however, will mostly capture the interactions
among nearest neighbors and hinder the detection of long-range
interactions. Additionally, it does not distinguish the difference
between different element types and their combinations and thus,
neglects important chemistry and biology. Element specific
persistent homology provides a simple yet effective solution
to these issues. Instead of computing persistent homology for
the whole molecule once, we perform persistent homology
computations on a collection of subsets of atoms. For example,
persistent homology on only carbon atoms characterizes the
hydrophobic interaction network and the hydrogen bond inter-
actions can be described by persistent homology on the set of
nitrogen and oxygen atoms. Although different types of inter-
actions have different characteristics, they may also influence
each other. This encourages the iteration over all combinations
of atom types which may result in large computation cost.
Fortunately, as Vietoris–Rips filtration is often used to char-
acterize the interaction networks, we only need to generate the
filtered simplicial complex once for all atoms and perform
persistent homology computation on the subcomplexes of the
filtered simplicial complex.

II.A.4 Multi-level persistent homology. The Vietoris–Rips
complex based only on pairwise distance is a widely used
realization of filtration. When directly feeding the Euclidean
distance between atoms to Rips complex construction, the
interactions of interest such as electrostatic interactions can
be flushed away by covalent bonds which usually have shorter
lengths. This motivates us to incorporate a simple yet effective
strategy to recover these important interactions by masking the
original Euclidean distance matrix. Specifically, we keep only
the entries corresponding to the interaction of interest and set
every other entry to infinity in the distance matrix. For example,
we set distances between atoms from the same component
(protein or ligand) to infinity to focus on the interactions
between the protein and ligand. This strategy was found
especially useful when dealing with ligands alone which often
have a much simpler structure than the proteins or the protein–
ligand complexes. We call this approach to small molecules
multi-level persistent homology of level n where we set the
distance between two atoms to infinity if the shortest path
between them through the covalent bond network is at most of
the length n. This treatment has led to powerful predictive tools
in tasks only explicitly involving small molecules.49,92

II.A.5 Physics-embedded persistent homology. All the topo-
logical methods discussed above are force-field-free approaches.
In other words, they depend only on atomic coordinates and
types without the need for molecular force field information.
However, despite being insufficient, non-unique, and subject to
errors, many biophysical models offer important approximations
to the ground truth of biological science and reflect some of our
best understandings of the biological world. Therefore, it is

Fig. 5 Topological fingerprints addressing different aspects of the protein–
ligand complex. (a) The example protein–ligand complex (PDB: 1A94). (b) The
H0 barcodes from Rips filtration based on the Coulomb potential for carbon–
carbon and nitrogen–oxygen interactions between the protein and ligand.
(c) The multi-level persistent homology characterization of the ligand revealing
the non-covalent intramolecular interaction network. (d) The enriched barcode
via persistent cohomology for atomic partial charges as the non-geometric
information.
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crucial to develop the so-called ‘‘physics-embedded’’ topology
which incorporates physical models into topological invariants.

We are particularly interested in physical models that quan-
tify the interaction strengths and directions. To characterize
electrostatic interactions, we can construct a Rips filtration
based on the Coulomb potential,

Feleði; jÞ ¼
1

1þ expð�cqiqj=dijÞ
; (2)

where the filtration value Fele(i, j ) for the edge between atoms i
and j depends on their partial charges qi and qj and their
geometric distance dij.

49 The part due to the Coulomb potential
in eqn (2) can be substituted by other models, such as the van der
Waals potential. We can also use cubical persistent homology103

to characterize the charge density as volumetric data, for example,
the one estimated from point charges,

mcðrÞ ¼
X
i

qi expð� r� rik k=ZiÞ; (3)

where ri is the position of atom i and Zi is a characteristic bond-
length parameter.

In a more general setting, there often are available properties
defined on the simplices in the simplicial complex representing the
protein–ligand complex. The interaction strength characterized
by physical models as in eqn (2) is indeed a property defined on
the 1-simplices (edges). There are also various properties given on
the 0-simplices (nodes/atoms) including atomic weight, atomic
radii, and partial charges. Another way of incorporating these
properties into the topological representation is to attach additional
attributes to the persistence barcodes obtained through geometric
filtration. We developed a method called enriched barcode through
cohomology theory.104 The usage of cohomology has led to efficient
algorithms105 as well as richer representations.106 We are unable to
elaborate on the details of cohomology here and the interested
reader is referred to the aforementioned references.

Consider a persistence barcode {[bi,di)}i A I of dimension k
obtained by a geometric based filtration of the molecular
system, for example, the Vietoris–Rips filtration built upon
the Euclidean distance between atoms in space. Let K(x;k) be
the set of k-simplices of the simplicial complex in the corres-
ponding filtration with the filtration parameter x. Our goal is to
annotate each persistence pair [bi,di) in the barcode with
the non-geometric information provided by f:K(N,k) - R.
We proposed to embed such non-geometric information via
cohomology.104 Specifically, for an x A [bi,di), let oi,x be a real
k-cocycle lifted from the representative cocycle from the persistent
(co)homology computation.106 A smoothed cocycle �oi,x = �a + oi,x

can be obtained by solving the following problem,

�a ¼ arg min
a2Ck�1ðKðxÞ;RÞ

Lðoi;x þ daÞ
�� ��

2
2; (4)

where Ck�1ðKðxÞ;R
� �

is the real (k � 1)-cochain on K(x), d is
the coboundary operator, and L is a Laplacian operator. This
smoothed representative k-cocycle �o annotates the simplices
with weights which can be used to describe the non-geometric
information on this persistence pair,

fi
�ðxÞ ¼

X
s2Kðx;kÞ

f ðsÞj�oi;xðsÞj
, X

s2Kðx;kÞ
j�oi;xðsÞj: (5)

Intuitively, this obtained function fi*:[bi,di) - R describes the
average value of f near the k-dimensional hole associated with
the persistence pair [bi,di). We call this object enriched barcode
{{[bi,di), fi*}}iAI.

104 In practice, we only compute for several filtra-
tion values in the interval or even only one such as the midpoint
of each persistence pair.

II.A.6 From topological invariants to machine learning
algorithms. While persistent homology already significantly
reduces the complexity of the molecular system description,
directly feeding it to machine learning algorithms can cause too

Fig. 6 Workflow of topology based protein–ligand binding affinity prediction. In multi-level persistent homology, the distance between covalent bonds
are set to N to avoid their disturbance to the topological representation of non-covalent bonds.
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many model parameters compared to the moderate size of
available data in this field. Also, the outputs of persistent
homology are similar to unstructured point clouds. Additional
processing is needed to integrate persistent homology charac-
terization with machine learning models.

In the application to biomolecular structure description,
prior knowledge is available on the approximate distance
ranges for different interactions. Therefore, we first divide an
interval [0,D] where D is the longest range among the interac-
tions of interest into bins. We then count the number of events
in each bin, namely, (1) birth of persistence pairs, (2) death of
persistence pairs, and (3) overlaps of bars with the bins. These
approaches result in a 1-dimensional image-like feature tensor
with three channels which can be fed into a 1-dimensional
convolutional neural network or any other machine learning
model that accepts structured features. Prior knowledge on the
spatial range of different types of interactions can guide the
decision of bin endpoints. We have also found similar perfor-
mance with uniform partitioning. Another way of vectorization
is to statistically describe the unstructured persistence barcodes,
for example, the mean value and standard deviation of birth,
death, and bar lengths.

The Wasserstein distance between the resulting persistence
barcodes also works well with distance-based methods, such as
k-nearest-neighbor-based regression and classification or k-means
clustering. This approach was found effective especially when the
objects are moderately complex. It has been successfully applied
to ligand-based tasks.49

In general applications of integrating persistent homology
with machine learning, the persistence barcodes can become
sparse and available field knowledge might be insufficient to
guide the vectorization. In this case, a neural network layer with
each neuron learning a kernel function can automatically
vectorize the barcodes. Specifically, one neuron in such a layer
is a function that takes the persistence barcode B ¼ bi; di½ �f gi2I
and output a number,

NðB;YÞ ¼
X
i2I

fðjbi � mbj; jdi � mdj;YÞ; (6)

where f is a distance-based kernel function with learnable
parameters Y and the center (mb,md). This layer can be the first
layer in a neural network for supervised learning. This layer
can also be used as the first layer of an autoencoder that
tries to reconstruct the persistence barcodes controlled by the
Wasserstein metric. On the other hand, kernel density estimators
with a fixed number of kernels can also be used as a vectorization
tool. Specifically, a kernel density estimator with nk kernels each
of which has np parameters to optimize can turn a persistence
barcode into a feature vector of size nk � np. Treatment such as
truncated kernels might be needed to take care of the nature of
persistence barcodes that the points are only in the upper left part
of the first quadrant.

II.B Differential geometry-based methods

II.B.1 Background. Differential geometry has a long history
of development in mathematics and has been consistently

studied since the 18th century. Nowadays, many differential
geometry branches have been created from the Riemannian
geometry, differential topology, to Lie groups. As a result,
differential geometry has been used in various interdisciplinary
fields including physics, chemistry, economics, and computer
vision. In 2005, we unfolded a curvature-based model to generate
biomolecular surfaces.70 In the following years, we successfully
formulated a Laplace–Beltrami operator based minimal molecular
surface (MMS) for macromolecular systems.71,72,107 This approach
is applied to multiscale solvation modeling in which the mole-
cular surfaces are described via the differential geometry of
surfaces. Specifically, the solute molecule is still described
in microscopic detail while the solvent is treated as a macro-
scopic continuum to reduce a large number of degrees of
freedom.76–79,83,84 Differential geometry-based multiscale models
incorporate molecular dynamics, elasticity and fluid flow to further
couple the discrete macromolecular and continuum solvent
domains.80–82,86,87 In the past few years, we have improved the
computational efficiency of the geometric modeling by incor-
porating the differential geometry based multiscale paradigms
in Lagrangian73,74 and Eulerian representations.75,108

Differential geometry-based multiscale models have been
used for solvation free energy prediction79,93 and ion channel
transport analysis80–82,87,109 to demonstrate their model efficiency
in comparison with atomistic scale models.

Another type of application of differential geometry in
biomolecular systems is to utilize curvatures to characterize
the macromolecular surface landscape and further infer chemical
and biological properties. For example, the minimum and max-
imum curvatures are combined with the surface electrostatic
potential to detect both positively charged and negatively charged
protein binding sites.75,108

The other type of application of differential geometry in
molecular science is to carry out curvature-based solvation free
energy prediction.85 In this approach, the total Gaussian, mean,
minimum, and maximum curvatures of a molecule are computed
for a molecule and correlated with its solvation free energy.

II.B.2 Challenge. Differential geometry based multiscale
models bridge the discrete and continuum descriptions and
enable physical interpretation of molecular mechanisms.
Curvature-based modeling of biomolecular binding sites and
solvation free energy reveals macromolecular interactive land-
scapes. These methods are designed as physical models to
enhance our understanding of biomolecular systems. However,
they have limited capability in predicting massive and diverse
datasets due to their dependence on physical models such as
the Poisson–Boltzmann equation or the Poisson–Nernst–
Planck equation or their excessive reduction of geometric shape
information, i.e., a molecular-level average of local curvatures.
Indeed, physical models depend on force field parameters
which are subject to errors. Meanwhile, molecular-level descrip-
tions are too coarse-gained for large datasets. In contrast,
atomistic descriptions not only involve too much detail but
also are not scalable for molecules with different sizes in a large
dataset. As a result, machine learning algorithms cannot be
effectively implemented.
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To overcome these obstacles, we have designed new differential
geometry-based models to extract element-level geometric infor-
mation which automatically leads to scalable machine learning
representations. Additionally, effort has been devoted to encoding
intermolecular and intramolecular non-covalent interactions.
Therefore, these novel models can be handily applied for diverse
molecular and biomolecular datasets, including protein–ligand
binding analysis and prediction.

II.B.3 Multiscale discrete-to-continuum mapping. Biomole-
cular datasets provide atomic coordinate and type information.
To facilitate differential geometry modeling, this discrete repre-
sentation is transformed into a continuum one by the so-called
discrete-to-continuum mapping. In a given biomolecule or
molecule with N atoms, denote rj A R3 and qj the position of
the jth atom and its partial charge, respectively. For any point r
in three-dimensional space, a discrete-to-continuum mapping56,59,62

defines the molecular number/charge density as the following

rðr; fZkg; fwkgÞ ¼
XN
j¼1

wjF r� rj
�� ��; Zj
� �

; (7)

In particular, the density r indicates the molecular number
density when wj = 1, and represents the molecular charge
density when wj = qj. In addition, Zj describes characteristic
distances, 8�8 is the second norm, and F with C2 property
satisfies the following admissibility conditions

F(8r � rj8;Zj) = 1, as 8r � rj8 - 0, (8)

F(8r � rj8;Zj) = 0, as 8r � rj8 - N. (9)

In principle, the density function can accept all radial basis
functions (RBFs) as well as C2 delta sequence of the positive
type examined in this work.110 In practice, the generalized
exponential functions

F ri � rj
�� ��; Zkk0
� �

¼ e� kri�rjk=Zkk0ð Þk ; k4 0; (10)

and generalized Lorentz functions

F ri � rj
�� ��; Zkk0
� �

¼ 1

1þ ri � rj
�� ��=Zkk0� �n ; n4 0: (11)

seem to be the most optimal choice for the biomolecular
datasets.56,59 Here power parameters k and n vary for different
datasets and are systemically selected.

To generate the multiscale representation for r(r,{Zj},{wj}), one
can vary different values for scale parameters {Zj}. A published
work42 has shown that the molecular number density eqn (7) is
an efficient representation for molecular surfaces. Unfortunately,
such a molecular-level description has a small role in the
predictive models for massive data.

II.B.4 Element interactive densities. To handle the diverse
molecular or biomolecular datasets, we have upgraded differential
geometry representations with an emphasis on non-covalent
intramolecular interactions in a molecule and intermolecular
interactions in complexes, such as protein–ligand, protein–
nucleic acid, and protein–protein complexes. Also, our differential
geometry features can characterize the geometric information

at element-specific interactions and are scalable despite a wide
range of molecular sizes.

To accurately encode the physical and biological informa-
tion in the differential geometry representations, we describe
the molecular interactions at the element-level in a systematic
manner. For instance, in the protein–ligand datasets, the
intermolecular interactions are decomposed into element-
level descriptions based on the commonly occurring element
type in proteins and ligands. Typically, protein structures
usually consist of H, C, N, O, S, and ligand structures often
include H, C, N, O, S, P, F, Cl, Br, I. That results in 50 element-
level intermolecular descriptions. In practice, hydrogen atoms
are missing in most Protein Data Bank (PDB) datasets for
proteins. Therefore, we do not include them in our models
for macromolecules or for both proteins and ligands. Finally,
we end up with 40 or 36 element-specific groups to express the
intermolecular interactions in the protein–ligand complexes.
This element-specific approach can be straightforwardly car-
ried out in other interactive systems in chemistry, biology and
materials science. For example, in protein–protein interactions,
one can similarly arrive at a total of 16 element-level descrip-
tions for practical use.

In a given molecule, based on the most frequently appearing
element types included in the set C ¼ fH;C;N;O; S;P;F;Cl; . . .g,
we collect N atoms. For each jth atom in that collection, we
label it as {(rj,aj,qj)}. Here aj is the element type of the jth atom,
and aj ¼ Ck indicates the kth element type in set C.

Before defining the element interactive density, we have to
designate the non-covalent interactions between two element
types Ck and Ck0 . Such interactions can be represented by
correlation kernel F

fFðjjri � rj jj; Zkk0 Þjai ¼ Ck; aj ¼ Ck0 ;

i; j ¼ 1; 2; . . . ;N; jjri � rj jj4 ri þ rj þ sg;
(12)

where ri and rj are the atomic radii of the ith and jth atoms,
respectively, and s is the mean value of the standard deviations
of all ri and rj in the dataset. The inequality constraint 8ri � rj84
ri + rj + s serves the purpose of excluding the covalent forces.

Given a point r in R3, we define the element interactive
density induced by the pairwise interaction between two
chemical element types Ck and Ck0

rkk0 ðr; Zkk0 Þ ¼
X
j

wjFðjjr� rj jj; Zkk0 Þ; r 2 Dk; aj ¼ Ck0 ;

jjri � rj jj4 ri þ rj þ s; 8ai 2 Ck; k a k0;

(13)

where Dk is the so-called atomic-radius-parametrized van der
Waals domain given by the union of all the balls with centers at
the Ck atomic positions with the corresponding atomic radius rk.
In other words, if B(ri,ri) is denoted as a ball with a center ri and
a radius ri, Dk can be expressed as

Dk: ¼ [ri ;ai¼CkBðri; rkÞ: (14)

Note that element interactive density represented in (13) is
only good for k a k0. When density is calculated based on the
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interactions between the same element types, i.e. k a k0, each Ck

atom will belong to the atomic-radius-parametrized van der Waals
domain and element interactive density representation. To this
end, we define such density formulation as the following

rkkðr; ZkkÞ ¼
X
j

wjFðjjr� rj jj; ZkkÞ; r 2 Di
k; ai ¼ Ck; aj

¼ Ck; jjri � rj jj4 2rj þ s;

(15)

in which domain Di
k is just a single ball B(ri,ri), and the density

function rkk is evaluated at all Di
k.

The element interactive density rkk is the linear combination
of correlation kernel F of pairs of element types. Consequently,
the smoothness of rkk is the same as that of F. Moreover, by
changing a level constant c, one can attain a family of element
interactive manifolds as

rkk0 ðr;Zkk0 Þ ¼ crmax; 0� c� 1 and rmax ¼maxfrkk0 ðr;Zkk0 Þg:
(16)

Fig. 7 illustrates a few element interactive manifolds.
II.B.5 Element interactive curvatures
Differential geometry of differentiable manifolds. We here

describe the geometric information calculation on a differential
manifold. Consider U being an open subset of Rn with its
closure compact,72,86,111 we are interested in a C2 immersion
f: U - Rn+1. Given a vector u = (u1,u2,. . .,un) A U, we express the
Jacobian matrix with respect to u as

Df ¼ ðX1;X2; � � � ;XnÞ; Xi ¼
@f

@ui
; i ¼ 1; 2; . . . ; n: (17)

The first fundamental form is written in the metric tensor with
its coefficients gij = hXi,Xji, where h,i is the Euclidean inner
product in Rn, i, j = 1, 2,. . .,n.

We define the unit normal vector via the Gauss map

N: U - Rn+1 (18)

(u1,u2,. . .,un) / X1 � X2� � �� Xn/8X1 � X2� � �� Xn8, (19)

where ‘‘�’’ denotes the cross product. If we denote >uf the
normal space of f at point X = f(u), then N(u) A>uf. In addition,
one can form a second fundamental form via the means of the
normal vector N and tangent vector Xi:

IIðXi;XjÞ ¼ ðhijÞi;j¼1;2;...n ¼ �@N
@ui

;Xj

� �	 

ij

: (20)

Then, the Gaussian curvature K and the mean curvature H are
determined as the following

K ¼ DetðhijÞ
DetðgijÞ

; H ¼ 1

n
hijg

ji: (21)

The Einstein summation convention is used in the curvature
expressions and (gij) = (gij)

�1.

Element interactive curvatures. With element interactive mani-
folds defined via element interactive density r(r) described
in (16) and the expressions in (21), one can further formulate
the representations for the Gaussian curvature (K) and the

Fig. 7 Illustration of the DG-GL strategy for a complex with PDBID:5QCT (first column). The second column presents the different element specific
groups including OC, CN, and CH, respectively, from top to bottom. The third column depicts the element interactive manifolds for the corresponding
element specific groups. A predictive model in the last column integrates the differential geometry features (fourth column) with the machine learning
algorithm.
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mean curvature (H) as the following75,112

K ¼ 1

g2
2rxryrxzryz þ 2rxrzrxyryz þ 2ryrzrxyrxz
h

� 2rxrzrxzryy � 2ryrzrxxryz � 2rxryrxyrzz

þ rz
2rxxryy þ rx

2ryyrzz þ ry
2rxxrzz

�rx2ryz2 � ry
2rxz

2 � rz
2rxy

2
i
;

(22)

and

H ¼ 1

2g
3
2

2rxryrxy þ 2rxrzrxz þ 2ryrzryz � ðry2 þ rz
2Þrxx

h

�ðrx2 þ rz
2Þryy � ðrx2 þ ry

2Þrzz
i
;

(23)

where g = rx
2 + ry

2 + rz
2.

In addition, the minimum curvature (kmin) and maximum
curvatures (kmax) can be evaluated based on the Gaussian and
mean curvature values

kmin ¼ H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

; kmax ¼ H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 � K
p

: (24)

It is noted that in the curvature representations in (22)–(24), the
derivatives of the density function can be analytically calculated.
For convenience, we denote the curvatures associated with the
density function rkk0(r,Zkk0) as Kkk0(r,Zkk0), Hkk0(r,Zkk0), kkk0,min(r,Zkk0),
and kkk0,max(r,Zkk0). In practical use, the element interactive curves
are only evaluated at the atomic positions in a given molecule
or biomolecule structure. Notice that, due to the variant sizes in
different biomolecular structures, numbers of selected atoms
for the curvature evaluations vary. To achieve element-level
geometry information, we propose the element interactive
mean curvature as the following

HEI
kk0 ðZkk0 Þ ¼

X
i

Hkk0 ðri; Zkk0 Þ; ri 2 Dk; kak0 (25)

and

HEI
kkðZkkÞ ¼

X
i

Hkkðri; ZkkÞ; ri 2 Di
k;D

i
k � Dk: (26)

The other element-level interactive curvatures for Gaussian

curvature KEI
kk0 ðZkk0 Þ

� �
, minimum curvature kEIkk0 ;minðZkk0 Þ

� �
, and

maximum curvature kEIkk0 ;maxðZkk0 Þ
� �

are defined in a similar

manner.
II.B.6 Differential geometry based geometric learning (DG-GL)
Geometric learning. In our differential geometry based geo-

metric learning (DG-GL) model, we incorporate the geometric
representations such as element-level interactive curvatures
with advanced machine learning algorithms to form powerful
predictive models. Given a training set fX igi2I , in which X i is
the input data for the ith molecule and I is the set of the
molecular indices in the training data, we denote FðX i; zÞ as
differential geometric functions encoding the input structures
X i via the given hyperparameter set z into aforementioned

DG descriptions. Our DG-GL model learns the training set
fX igi2I by minimizing the following loss functions

min
z;y

X
i2I

Lðyi;FðX i; zÞ; yÞ; (27)

in which L is the loss function, yi is the target label of molecule
X i, and y is the set of parameters of a selected machine
learning algorithm. It is worth noting that the DG representa-
tion encoded in F does not depend on the type of learning task.
Therefore, our DG-GL models can adapt any regressor or classifier
models such as linear regression, support vector machine,
random forest, gradient boosting trees, artificial neural networks,
and convolutional neural networks. Besides the machine learning
hyperparameters, the kernel parameters in the encoding DG
function F need to be optimized for a specific learning algorithm
and a particular training set X if g.

In the validation, we only utilize the gradient boosting trees
(GBTs) even though the other advanced machine learning
models including convolutional neural networks can be incor-
porated with minimal effort. The general framework of the
DG-GL model is depicted in Fig. 7. The GBTs in the DG-GL score
are employed via the gradient boosting regression module in the
scikit-learn v0.19.1 package with the following hyperparameters:
n_estimators = 10 000, max_depth = 7, min_samples_split = 3,
learning_rate = 0.01, loss = ls, subsample = 0.3, max_features =
sqrt for all experiments.

Model parametrization. In our differential geometry-based
approach, we calculate the element interactive curvatures (EICs)
of type C based on kernel a with parameters (d,t). We denote
such a model as EICC

a,d,t. Here, C A {K,H,kmin,kmax} and a = E and
a = L indicate generalized exponential and generalized Lorentz
kernels, respectively. In addition, d refers to the kernel order and
is denoted as k if a = E or n if a = L. Another kernel parameter is
t defined by the following relationship

Zkk0 = t(%rk + %rk0) (28)

where %rk and %rk0 stand for the van der Waals radii of element
type k and element type k0, respectively. These kernel para-
meters are selected via a 5-fold cross-validation on a specific
training set with the range of t and d varying from 0.5 to 6
with an increment of 0.5. Moreover, we are interested in high
values of power order, d A {10,15,20}, which accounts for the
ideal low-pass filter (ILF).63 These parameter ranges are also
listed in Table 1.

To enable the multiscale descriptions in differential geo-
metry representation, we employ multiple kernels to evaluate
the EICs. For instance, if two kernels with the following

Table 1 The ranges of DG-GL hyperparameters for 5-fold cross-validations

Parameter Domain

t {0.5,1.0,. . .,6}
d {0.5,1.0,. . .,6} , {10,15,20}
C {K,H,kmin,kmax}
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parameters (a1,d1,t1) and (a2,d2,t2) are utilized, our EIC model

can be written as EICC1C2
a1 ;d1;t1;a2;d2;t2

.

In a protein–ligand complex, we are interested in 4 commonly
occurring protein atom types {C,N,O,S}, and 10 commonly occurring
ligand atom types {H,C,N,O,F,P,S,Cl,Br,I}. That results in a total of 40
different combinations. With a set of calculated atomic pairwise
curvatures, we construct 10 statistical features, namely, sum, the
sum of absolute values, minimum, the minimum of absolute values,
maximum, the maximum of absolute values, mean, the mean of
absolute values, standard deviation, and the standard deviation
of absolute values. In total, we attain 400 features for the current
differential geometry-based models.

II.C Graph theory-based methods

II.C.1 Background. Graph theory is one of the most popular
subjects in discrete mathematics. In graph theory, the informa-
tion inputs are represented in graph structures formed by vertices
that are connected by edges and/or high-dimensional simplexes.
Different ways are there to interpret the graph result in different
graph theories such as geometric graph theory, algebraic graph
theory, and topological graph theory. In geometric graph study,
the graph information is extracted based on the geometric objects
drawn in the Euclidean plane.113 If there are algebraic methods
involved in graph structure processing, that approach belongs to
algebraic graph theory. There are two common approaches to this
branch. The first one is to use linear algebra to study the spectrum
of various types of matrices representing the graph including the
adjacency matrix and Laplacian matrix.114 Another approach
relies on group theory, especially automorphism groups115 and
geometric group theory,116 for the study of graphs. Unlike the
aforementioned graph theories, the algebraic graph theory con-
siders graphs as topological spaces by associating with different
types of simplicial complexes such as abstract simplicial
complexes117 and Whitney complexes.118

Due to the natural representations for structured information,
graph theory finds enormous applications in various fields includ-
ing computer science, linguistics, physics, chemistry, biology, and
social sciences. Particularly in chemical and biological studies,
graph theory is commonly used since molecular structures always
feature graph information in which vertices illustrate atoms and
graph edges represent bonds. Indeed, graph-based approaches
have been utilized to describe chemical datasets119–124 as well as
biomolecular datasets.54,125–130 In addition, one can make use of
graph representations to uncover the connectivity of different
components of a molecule such as centrality,131–133 contact
map,54,134 and topological index.123,135 Moreover, graph extracting
representations can be employed in chemical analysis52,120,121

and biomolecular modeling.136 Particularly, some research
groups have invested their efforts to carry out the graph-based
representation to model protein flexibility and long-time
dynamics such as the normal-mode analysis (NMA)137–140 and
elastic network model (ENM).54,55,141–144

II.C.2 Challenge. Due to the richness in geometric inter-
pretations, graph theory-based approaches have shown their
efficiency in the qualitative and descriptive models. However,

oversimplified representations and the lack of physical and
biological detailed information may render graph theory-based
approaches less attractive in the quantitative analysis. For
instance, in the Gaussian network model (GNM),54,142,145 the
use of the spectrum of the Laplacian matrix is quite efficient
to decompose the flexible and rigid regions and domains of
proteins but its fluctuation predictions on protein Ca atoms
were not reliable with the Pearson correlation coefficient as
low as 0.6 for three datasets.146 To predict the mutations in
proteins, the graph-based mCSM method was not competent as
physical and knowledge-based or topological fingerprint-based
models.46,147

The poor performances of the aforementioned graph theory-
based models on quantitative tasks are due to the lack of three
main components in our point of view. Firstly, these graph
theory-based structures do not provide the information at
the chemical element level. Consequently, these models treat
different element types equally which results in inadequate
coded information from the original structures. Secondly, non-
covalent interactions between two atoms are overlooked in
many graph edges which cause the unphysical representations
for most molecular and biomolecular data. Finally, the edges in
the many graph-based models express the connectivity between
a pair of atoms based on the number of covalent bonds
between these two atoms, which inaccurately describe many
interactions that depend on the Euclidean distance.

To address the aforementioned issues in graph based-
modeling, we have developed the weighted graphs, termed as
the flexibility–rigidity index (FRI), to predict the B-factor of protein
atoms. In our FRI model, the graph edges were formulated by the
radial basis functions (RBFs)58–60,62 which properly describe the
interaction strengths between two atoms in the equilibrium
structures. The original FRI was upgraded to multiscale FRI60,63

for capturing the multiscale interactions in biological structures.
Specifically, the graph in the multiscale FRI model is allowed to
have multiple edges formed by RBFs with careful selections of
scaled and power parameters. Although our FRI models have
outperformed the GNM in B-factor predictions, they provide only
coarse-grained molecular-level descriptions. To overcome this
limitation, we have proposed graph coloring based methods with
vertices colored differently based on the corresponding element
types. Consequently, we ended up with various element-specific
subgraphs taking care of different types of physical interactions,
such as hydrophilic, hydrophobic, hydrogen bonds.64,65 As a
result, the predicted accuracy for protein B-factors by our multi-
scale weighted colored graphs is over 40% higher than GNM
models.65 The success of multiscale weighted colored graph
models on B-factor prediction encouraged us to design graph-
based scoring functions to predict protein–ligand binding affi-
nities. The protein–ligand binding mechanism is more complex
than the protein B-factor. Therefore, it requires sophisticated
graph-based models to accurately encode the physical and biolo-
gical properties to unveil its molecular mechanism. The develop-
ment of such graphs is described in the following sections.

II.C.3 Multiscale weighted colored geometric subgraphs.
In this section, we discuss general graph representations for a
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molecule or biomolecule. Graph-based representations are
systematic, scalable, and straightforward applied not only to
the predictions of protein–ligand binding affinity but also for
various bioactivities such as toxicity, solvation, solubility, parti-
tion coefficients, mutation-induced protein folding stability
changes, and protein–nucleic acid interactions. In a given
molecule or biomolecule in a dataset, we denote a graph G to
represent a subset of its N atoms. The set of its vertices V
consists of coordinates and chemical element types of atoms,
defined as

V ¼ fðrj ; ajÞjrj 2 R3; aj 2 C; j ¼ 1; 2; . . . ;Ng; (29)

where rj is the 3D position of the jth atom, and aj is its element
type which belongs to a predefined set of commonly occurring
chemical element types as introduced in Section II.B.4. To
accomplish meaningful encoded physical and biological infor-
mation in the graph, graph edges have to express the non-
covalent interactions. Moreover, to accommodate for the inter-
actions between k element atoms and k0 element type atoms, we
consider a set of graph edges Ekk0 represented by RBFs as the
following

Ekk0 ¼ fFðjjri � rj jj; Zkk0 Þjai ¼ Ck; aj ¼ Ck0 ;

i; j ¼ 1; 2; . . . ;N; jjri � rj jj4 ri þ rj þ sg;
(30)

where 8ri � rj8 accounts for the Euclidean distance between the
ith and jth atoms, ri and rj are the atomic radii of ith and jth
atoms, respectively. Moreover, s is the mean value of the
standard deviations of all atomic radii belonging to element
types Ck and Ck0 in the dataset. The exclusion of the covalent
interactions are portrayed in this inequality 8ri� rj84 ri + rj + s.
F is a predefined RBF representing a graph weight and has the
following properties56,59

Fðjjri � rj jj; Zkk0 Þ ¼ 1; as jjri � rj jj ! 0 and (31)

Fðjjri � rj jj; Zkk0 Þ ¼ 0 as jjri � rj jj ! 1; ai ¼ Ck; aj ¼ Ck0 ;
(32)

where Zkk0 is a characteristic distance between the atoms. We
now achieve the weight colored subgraphs (WCS) GðV; Ekk0 Þ or
denote Gkk0 for short.

In principle, our WCS GðV; Ekk0 Þ can adopt any RBFs.
In practice, the generalized exponential functions (10) and
generalized Lorentz functions (11) seem to be the most optimal

choice for the biomolecular datasets.56,59 Here power para-
meters k and n vary for different datasets and are systemically
selected. To illustrate WCS of a given molecule, we use the uracil
compound (C4H4N2O2) as an example. Fig. 8 depicts WCS for
nitrogen and oxygen atoms GNOð Þ. To elicit the geometrical
invariants of WCS formed by element types Ck and Ck0 , we propose
a collective representation at the element level as follows

RIGðZkk0 Þ ¼
X
i

mGi ðZkk0 Þ ¼
X
i

X
j

Fðjjri � rj jj; Zkk0 Þ; ai ¼ Ck;

aj ¼ Ck0 ; jjri � rj jj4 ri þ rj þ s;

(33)

where mG
i (Zkk0) which is a geometric subgraph centrality for

the ith atom has been developed in our previous work for protein
B-factor predictions.65 The summation over mG

i (Zkk0) in eqn (33)
gives rise to WCS rigidity between element types Ck and Ck0 . In
fact, mG

i (Zkk0) is the generalized form of our successful rigidity
index model for protein–ligand binding affinity prediction in the
previous work.64 It is noticed that the WCS for the protein–ligand
system is bipartite since each of its edges presents the inter-
action between one atom in the protein and another protein in
the ligand. With that design, a variety of physical and biological
properties such as electrostatics, van der Waals interactions,
hydrogen bonds, polarization, hydrophilicity, and hydrophobi-
city can be successfully encoded in our WCS representations.

To exhibit the intermolecular and intramolecular properties,
one can vary the characteristic distance Zkk0 to set up multiscale
weighted colored subgraphs (MWCS). To methodically attain
multiscale graph-based molecular and biomolecular represen-
tations in a collective and scalable manner, one can aptly select
groups of pairwise element interactions k and k0, the choice of
subgraph weights F and their parameters.

II.C.4 Multiscale weighted colored algebraic subgraphs.
In this section, we present another approach to extract the
meaningful representation for biomolecules from their WCS.
This scheme depends on the algebraic graph or spectral graph
formulations. Since geometric and algebraic approaches
handle the graph information differently, these two kinds of
subgraphs will be expected to encode the physical and biologi-
cal information in varied aspects. In the algebraic graph theory,
matrices are utilized to represent a given subgraph. Two of
the most common ones are the Laplacian matrix and the
adjacency matrix.

Fig. 8 Illustration of weighted colored subgraph GNO (left), its Laplacian matrix (middle), and adjacency matrix (right) for uracil molecules (C4H4N2O2).
Graph vertices, namely oxygen (i.e., atoms 1 and 4) and nitrogen (i.e., atoms 2 and 3), are labeled in red and blue colors, respectively. Here, graph edges
(i.e., Fij) are labeled by green-dashed lines which are not covalent bonds. Here, Fij are distance-weighted edges. Note that there are 9 other nontrivial
subgraphs for this molecule (i.e., GCC;GCN;GCO;GCH;GNN;GNH;GOO;GOH;GHH).
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Multiscale weighted colored Laplacian matrix. Considering a
weighted colored subgraph GðV; Ekk0 Þ defined at eqn (29) and (30),
we construct the following weighted colored Laplacian matrix
L(Zkk0) = (Lij(Zkk0)) describing the interaction between element types
Ck and Ck0

For illustration, we explicitly formulate the Laplacian matrix of the
WCS GNO for the uracil molecule (C4H4N2O2) in Fig. 8. It is obvious
to learn that all eigenvalues of our element-level WCS Laplacian
matrix are nonnegative due to its symmetric, diagonally dominant,
and positive-semidefinite properties. Moreover, every row sum and
column sum of L(Zkk0) is zero. In consequence, its first eigenvalue
is 0. The second smallest eigenvalue of L(Zkk0) is so-called algebraic
connectivity (also known as a Fiedler value) which approximates the
sparest cut of a graph. With a given WCS GðV; Ekk0 Þ one can easily
see that its geometrical invariant proposed at eqn (33) is fully
recovered in the trace of its Laplacian matrix L(Zkk0)

RIG(Zkk0) = Tr L(Zkk0), (35)

where Tr is the trace.
In the algebraic graph, we are interested in using the eigenvalue

and eigenvector information to extract the graph invariants. To this
end, we denote lL

j , j = 1, 2,. . . and uL
j , j = 1, 2,. . . the eigenvalues and

eigenvectors of L(Zkk0). The element-level molecular representations
of the Laplacian matrix L(Zkk0) is proposed as the following

RILðZkk0 Þ ¼
X
i

mLi ðZkk0 Þ; (36)

where mL
i (Zkk0) is a so-called atomic representation for the ith

atom ri; ai ¼ Ckð Þ

mLi ðZkk0 Þ ¼
X
l

ðlLl Þ�1 uLl ðuLl ÞT
� 


ii
; (37)

where T is the transpose. It is noted that mL
i (Zkk0) is the atomic repre-

sentation of the generalized GNM.54,63 Therefore, it can be directly
utilized to capture atomic properties such as protein B-factors.
Moreover, the element-level invariant of the Laplacian matrix can
be enriched via the statistical information of mL

i (Zkk0) values, namely,
sum, mean, maximum, minimum and standard deviation.

Another way to extract the invariant representation from the
WCS Laplacian matrix is the direct use of nontrivial eigenvalues
{lL

j }j=2,3,. . .. Also, the statistical analysis of those eigenvalues can
be incorporated to form a feature vector to characterize
element-level information of the molecule and biomolecule.

Multiscale weighted colored adjacency matrix. By setting all
diagonal entities of the Laplacian matrix to be 0, we end up with
an adjacency matrix with simpler representation but still preserve
the essential properties of the original molecular structures. With
a given WCS Gkk0 , the adjacency matrix A(Zkk0) = (Aij(Zkk0)) is given as

Since the adjacency matrix defined in (38) is undirected, A(Zkk0)
is symmetric. Thus, all the eigenvalues of it are real. Moreover,
due to being a bipartite graph, for each eigenvalue l, its opposite
�l is also an eigenvalue of A(Zkk0). In consequence, only positive
eigenvalues are used in the molecular representation. For the

sake of illustration, Fig. 8 illustrates the adjacency matrices for
the weighted colored subgraph GNO in the uracil molecule
(C4H4N2O2). It can be seen from the Perron-Frobenius theorem
that the spectral radius of A(Zkk0), denoted as r(A), is bounded
by the range of the diagonal elements of the corresponding
Laplacian matrix

min
i

X
j

Aij � rðAÞ � max
i

X
j

Aij : (39)

It is easy to see that all elements in the Laplacian matrix belong
to [0,1] and depends on the scale parameter Zkk0. In a char-
acteristic scale range for capturing hydrogen bonds or van der
Waals interactions, the Laplacian matrix has many zeros. How-
ever, the scale parameter Zkk0 can be very huge in electrostatic and
hydrophobic interactions,47 which results in many elements in
the Laplacian matrix being nearly 1. In that particular situation,
the spectral radius of the adjacency matrix A(Zkk0) is bounded by
n � 1, where n is the number of atoms in WCS Gkk0 .

Similarly to the approach of forming feature representation
for the Laplacian matrix, all positive eigenvalues {lA

j }, and their
statistical information such as sum, mean, maximum, minimum,
and standard deviation are included in element-level molecular
representations. If we define {uA

j } as the eigenvectors corres-
ponding to eigenvalues {lA

j }, then the atomic representations
can be attained as

mAi ðZkk0 Þ ¼
X
j

QLQ�1
� 


ij
; (40)

where Q = [uA
1uA

2. . .uA
n] is composed of n linearly independent

eigenvectors of A(Zkk0); thus Q is invertible. Moreover, L is a
diagonal matrix with each diagonal element Lii being the eigen-
value {lA

i }. Unfortunately, the formulation given in eqn (40) is
very computationally expensive due to the involvement of the
inverse-matrix calculation.

In general, the methods regarding the analysis of eigenvalues
and eigenvectors often pose a great challenge for sustaining an
efficient computation strategy. Fortunately, the construction
of WCS enables us to design a less-expensive computational
model due to two facts. First, the protein–ligand binding site
only involves a small region of the whole complex structure.
Second, WCS only admits the specific element types in the
matrix construction, which further reduces the size of matrices
for eigenvalue and eigenvector calculations. As a result, these

LijðZkk0 Þ ¼
�Fðjjri � rj jj; Zkk0 Þ if iaj; ai ¼ Ck; aj ¼ Ck0 and ri � rj

�� ��4 ri þ rj þ s;

�
P
j

Lij if i ¼ j:

8><
>: (34)

AijðZkk0 Þ ¼
Fðjjri � rj jj; Zkk0 Þ if iaj; ai ¼ Ck; aj ¼ Ck0 and k ri � rj k 4 ri þ rj þ s;

0 if i ¼ j:

(
(38)
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facts offer an efficient spectral graph-based model for protein–
ligand affinity analysis.

II.C.5 Graph-based learning models
Graph learning. The eigenvalue related information obtained

from the algebraic graph approach is incorporated with
machine learning algorithms to form predicting models for
molecular and biomolecular properties. Depending on the
nature of each learning task, regressor or classifier algorithms will
be utilized. To illustrate the learning process, we denote X i the ith
structure in the training data and denote G X i; zð Þ a function
representing the graph information of sample X i with respect to
kernel parameters z. Generally, during the training process,
machine learning models will minimize the following loss

min
z;y

X
i2I
Lðyi;GðX i; zÞ; yÞ; (41)

where L is the loss function, and yi indicates the training labels.
In addition, y is the machine learning parameter. In principle,
the set of parameters y will be optimized for a specific training
set and the choice of a machine learning algorithm. With the
current graph presentations, one can make use of advanced
machine learning models such as random forest (RF), gradient
boosting trees (GBTs), deep learning neural networks to mini-
mize the loss function L. To illustrate the performance of our
graph-based model, we employ GBTs for a balance between
accuracy and complexity. The flow chart of the proposed model
is illustrated in Fig. 9.

All the experiments in this graph learning task are carried
out by the Gradient Boosting Regressor module implemented
in the scikit-learn v0.19.1. The detailed parameters are given as
n_estimators = 10 000, max_depth = 7, min_samples_split = 3,

learning_rate = 0.01, loss = ls, subsample = 0.3, and max_
features = sqrt. That parameter selection is nearly optimal and
is the same for all calculations.

Model parametrization. Avoiding the wording, this notation

AGLMO;d;t represents the AGL-Score features encoded based on

the interactive matrix type along with kernel type O and kernel
parameters d and t. Furthermore, M¼ Adj, M¼ Lap, and
M¼ Inv represent the adjacent matrix, the Laplacian matrix,
and the pseudoinverse of the Laplacian matrix, respectively. In
the kernel type notation, O = E and O = L, respectively, indicate
the generalized exponential kernel and generalized Lorentz
kernels. Since the kernel order notation depends on the specific
kernel type, we denote d = k if O = E, and d = n if O = L. Lastly, the
scale factor t implicitly implies the expression Zkk0 = t(%rk + %rk0), in
which %rk and %rk0 are the van der Waals radii of element type k and
element type k0, respectively.

In the multiscale representation for the AGL-Score, we natu-
rally extend the single-scale notation. Only at most two different
kernels are carried out in the AGL-Score model, and the resulting

model is denoted as AGLM1M2
O1;d1;t1;O2;d2;t2

.

To achieve the optimal parameter selection in the AGL-Score’s
kernels, we perform 5-fold cross-validation (CV) on the training
data of the benchmark. Ideally, one needs to revise the machine
learning model for different problem settings. To demonstrate
the robustness of our graph-based features, we only train the
AGL-Score’s parameters on the CASF-2007 benchmark with a
training data size of 1105 complexes. Similar to our previous
work, we select the range of the graph-based model’s hyper-
parameters as demonstrated in Table 2. The ranges of AGL’s
kernel parameters are selected similarity to the ones in DG-GL

Fig. 9 A paradigm of the graph-based approach. The first column is the complex input with PDBID 5QCT. The second column illustrates the element-
specific groups in the binding site. The third column presents the eigenvalues of the corresponding weighted colored graph Laplacian and adjacency
matrices in the second column. The statistics of these eigenvalues are calculated in the fourth column. The final column forms a gradient boosting trees
model using these eigenvalues.
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models discussed in Section II.B.6. For the CASF bench-
mark datasets, we take into account 4 atom types in protein,
namely, {C,N,O,S}, and 10 atom types in the ligand, namely,
{H,C,N,O,F,P,S,Cl,Br,I}, which results in 40 different atom-pairwise
combinations. Due to having opposite eigenvalues in the adjacency
matrix, we only consider its positive eigenvalues. Moreover, the
statistical properties of these eigenvalues such as sum, minimum
(i.e., the Fiedler value for Laplacian matrices or the half band gap for
adjacency matrices), maximum, mean, median, standard deviation,
and variance are collected. Moreover, the number of distinct eigen-
values, as well as the summation of their second power, are
calculated. Finally, we form a representation vector of 360 features.

II.D Machine learning algorithms

It is generally true that our mathematical representations can
be paired with any machine learning model. However, the devil
is in the details: different machine learning algorithms respond
differently to data size, representation dimension, representation
noise, representation correlation, representation amplitude, and
representation distribution. Therefore, it is useful to design
learning-model adapted mathematical representations.

In the past few years, we have integrated various mathematical
representations with a variety of machine learning algorithms,
namely, k-nearest neighbors (KNNs),26,49 learning to rank (LR),25,27

support vector machine (SVM),43 gradient boosted decision trees
(GBDT),46,47 random forest (RF),64,92,94 extra-trees (ET),49 deep
artificial neural network (ANN),92,94 deep convolutional neural
network (CNN),48,49 multitask ANN,92,94 multitask CNN,48 and
generative networks.148

Due to the extensive variability in the possible types of
biological tasks and machine learning algorithms for poten-
tially many data conditions, it is very challenging to provide an
exhaustive list of fully optimized representations for a specific
combination of biological tasks, learning algorithms and data-
sets. Nevertheless, one can explore near-optimal representa-
tions to each potential combination of biological task, learning
model, and dataset and select appropriate mathematical repre-
sentations with suitable parameters. Using topological repre-
sentations as an example, we outline the construction of a few
topological learning strategies. In general, kNNs are very simple
and are used to facilitate optimal transport approaches, such as
Wasserstein metrics. However, their results might not be the
optimal.49 LR algorithms can be quite accurate,25,27 but their
training is quite time-consuming. Ensemble methods, such as
RF, GBDT, and ET, are relatively accurate and efficient.49,64,92,94

In particular, RF should be the method of choice for a new
problem due to its fewer parameters and robustness. Due to its
accuracy and robustness, the RF method is often used to rank
the feature importance. Utilizing a few more parameters, GBDT

can typically improve RF’s predictions after a more intensive
parameter search.

Ensemble methods and deep CNNs can be very accurate and
robust against overfitting originated from large machine learning
dimensions by shrinkage and dropout techniques, respectively.46,47

Therefore, they can be used to examine a large number of repre-
sentations. It is worth noting that none of these methods works well
when the statistics of the test set differs much from that of the
training set. When training datasets are sufficiently large, deep
learning methods can be more accurate but might involve a very
expensive training because of multiple layers of neurons.48,49,92,94

Transfer learning or multitask learning can be used to improve
the prediction of small datasets when they are coupled to a large
dataset that shares similar statistics and the same representation
structure.48,92,94

Intrinsically low-dimensional representations based on advanced
mathematics can be constructed for complex learning models
involving multiple neural networks, such as domain adaptation,
active learning, recurrent neural network, long short term
memory, autoencoder, generative adversarial networks, and
various reinforcement learning algorithms.

III Datasets and evaluation metrics
III.A Datasets

In this review, we illustrate our models against three commonly
used drug-discovery related benchmark datasets, namely,
CASF-2007,149 CASF-2013,150 and CASF-2016.151 These bench-
marks are collected in the PDBbind database and have been
used to evaluate the general performance of a scoring function
on a diverse set of protein–ligand complexes (Table 3).

Note that for docking power and screening power assess-
ments, additional data information is given for CASF-2007149

and CASF-2013150,152 as described in the next section.

III.B Evaluation metrics

In the drug-design related benchmark, a scoring function (SF)
is often validated based on four common metrics, namely,
scoring power, ranking power, docking power, and screening
power.149,152 The following sections briefly offer introductions
for these matrices and the associated datasets.

III.B.1 Scoring power. This metric measures how good a
scoring function is in predicting affinities that linearly correlate
with the experimental data. To this end, the standard Pearson’s
correlation coefficient (Rp) is employed

Rp ¼
P

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
xi � �xð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
yi � �yð Þ2

q ; (42)

Table 2 The ranges of AGL hyperparameters for 5-fold cross-validations

Parameter Domain

t {0.5,1.0,. . .,6}
d {0.5,1.0,. . .,6},{10,15,20}
M {Adj,Lap,Inv}

Table 3 Summary of PDBbind datasets used in the present work

Training set complexes Test set complexes

CASF-2007 benchmark 1105 195
CASF-2013 benchmark 3516 195
CASF-2016 benchmark 3772 285
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where xi and yi are, respectively, the predicted binding affinity
and experimental data for the ith complex. The average of all
predicted and experimental values are denoted as %x and %y,
respectively. All three benchmark datasets, CASF-2007, CASF-
2013, and CASF-2016, were used to evaluate the scoring power
of our models.

III.B.2 Ranking power. In this assessment, the ability to
ranking the binding affinity of complexes in the same cluster is
stressed.149,152 Two benchmarks, CASF-2007 and CASF-2013,
were used to test our AGL-Score’s ranking power. Both these
datasets have 65 different protein targets, and each protein has
three binding distinct ligands. There are two different levels of
assessments. The first is a high-level success measurement
which determines whether the affinities of three ligands in
each cluster are correctly ranked. The other assessment is the
so-called low-level success measurement which determines
whether a scoring function can identify the ligand with the
highest binding affinity in its cluster. The score in this assess-
ment is calculated by the percentage of successful ranking in a
given benchmark.

The above-mentioned ranking power evaluation may not be
robust since there are only three ligands in each cluster used to
determine the order ranking. Thus, the real performance of the
scoring function in virtual screening cannot be transferable.
Moreover, more accurate statistical information can be attained
by Kendall’s tau or Spearman correlation coefficient as used in
D3R Grand Challenges.153

III.B.3 Docking power. This metric is used to determine
the ability of a scoring function in discriminating the ‘‘native’’
pose from the docking software-generated structures.149 To
determine the native pose, one used the root-mean-square
deviation (RMSD) between that structure and the true binding
pose. If its RMSD is less than 2 Å, that pose is classified as native.
Each ligand in the CASF-2007 benchmark has 100 generated
structures using four docking software, namely, GOLD,154,155

Surflex,156,157 FLexX158 and LigandFit.159 In CASF-2013, there
are still 100 software-generated structures for each ligand but
from three docking software, namely, GOLD v5.1 (https://www.
ccdc.cam.ac.uk), Surflex-Dock provided in SYBYL v8.1 (https://
www.certara.com/), and MOE v2011 (https://www.chemcomp.
com/). It is noted that RMSD formulation in CASF-2007 is
different from one in CASF-2013. Specifically, RMSD in CASF-
2007 used a standard representation but property-matched
RMSD (RMSDPM) is employed in CASF-2013.150,152 The use of
new RMSD formulation is due to the incorrect values reported by
the standard RMSD on the symmetric structures. It is worth
mentioning that each ligand can have more than one ‘‘native’’
structure in the benchmark. Thus, if a scoring function is able to
detect any native poses, one can regard it as a successful task.
The number of ligands whose ‘‘native’’ poses are precisely
selected defines the docking power of the method.

III.B.4 Screening power. This assessment relates to the
scoring function’s capability in the differentiation of a target
protein’s true binders from unbinding structures. The CASF-
2013 benchmark is used in this assessment. This dataset
consists of 65 different protein classes. In each protein class,

at least three ligands bind to that target. The true binder that
has the highest experimental binding affinity is regarded as the
best true binder. In this assessment, there are two different
kinds of measurements. The first type concerns the enrichment
factor (EF) in x% top-ranked candidates:

EFx%¼
Numberof truebindersamongx%top-ranked candidates

Total numberof truebindersof thegiven targetprotein
:

(43)

In this measure, top-ranked candidates are the ligands with
high binding affinities predicted by the scoring function. The
screen power is determined by the average of all EF values over
65 targets in the benchmark.

The second type of screening power is the success rate which
concerns the best true binder identification. The percentage of
identifying the best binders for 65 receptors from x% top-ranked
candidates yields the value of the success rate.

IV Results and discussion

In this section, we review the scoring power, ranking power,
docking power and screening power of the discussed mathe-
matical models on the three benchmark sets including CASF-
2007, CASF-2013, and CASF-2016.

IV.A Hyperparameter optimization

To achieve optimal hyperparameters among the possible com-
binations listed in Tables 1 and 2 for our models, 5-fold cross
validation-based grid search strategies are taken into account.
For each CASF benchmark, the training data excluding the
corresponding data are employed for the aforementioned grid
search. As a result, the best EIC models in the differential based
approach are EICHH

E,2,1;E,3,3 and EICHH
L,3.5,0.5;L,3.5,2 for CASF-2007. In

CASF-2013, two optimal models are EICHH
E,1.5,5;E,3.5,3 (Rp = 0.771)

and EICHH
L,4.5,2.5;L,5.5,5. The selected hyperparameters found in

CASF-2013 are also employed in CASF-2016. In AGL-Score
models, we find that the following hyperparameters attain the
highest cross-validation scores for all the CASF benchmarks:
AGLAdj

E,6,2.5;E,4,2 and AGLAdj
L,3.5,1.5;L,15,0.5. Noting that the consensus

models, which are achieved by the mean of predictions of two
associated models, will further lift the accuracy. Therefore, they
are included in our experiments.

IV.B Performance and discussion

IV.B.1 Scoring power. In this task, we measure the Pearson
correlation coefficient (Rp) between predicted affinity by our
models, namely, TopBP, EIC-Score, and AGL-Score and experi-
mental values on CASF-2007, CASF-2013, and CASF-2016. The
optimal hyperparameters for AGL-Score which are chosen based
on the procedure described in Section IV.A are AGLAdj

E,6,2.5;E,4,2 and
AGLAdj

L,3.5,1.5;L,15,0.5. To validate the scoring power of AGL-Score
models on CASF-2007, we train the two aforementioned models
on that benchmark’s training set consisting of 1105 samples
after excluding 195 complexes in the test set. To reduce
the variance in our results, we perform 50 prediction tasks of
AGL-Score models at different random seeds. The final reported
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affinity is defined by averaging all the predicted values at
different runs. Similarly, we also train the optimal models of
DG-GL, i.e. EICHH

E,2,1;E,3,3 and EICHH
L,3.5,0.5;L,3.5,2, and topology

based models (TopBP) on 1105 complexes of CASF-2007. To
compare the accuracy of our models with other state-of-the-art
models, Fig. 10a provides a comprehensive list of various scoring
functions published in the literature.149,160–163 It is encouraging
to see that all our models are at the top positions. Particularly,
AGL-Score is the best model with Rp = 0.830, followed by TopBP
with Rp = 0.827 and EIC-Score with Rp = 0.817.

To predict the affinity labels of the test set consisting of 195
complexes in the CASF-2013 benchmark, we train the TopBP,
EIC-Score, and AGL-Score models with optimal parameters
selected in Section IV.A on CASF-2013’s training set having
3516 samples. We also provide a list of various scoring
functions’ performances on this benchmark as illustrated in
Fig. 11a. The data from that figure reveals that our TopBP is
ranked in the first place with a Pearson correlation coefficient
value Rp = 0.808, followed by AGL-Score with its Rp = 0.792. Our
differential geometry-based model is in the third place with
Rp = 0.774. The fourth place in the ranking table is PLEC-nn,165

a deep learning network model.
Similar to the training procedure on the first two bench-

marks, in the last one, i.e. CASF-2016, the structures of our
three models are learned from the training set (N = 3772) of this
benchmark. Fig. 12 compares Rp of numerous scoring func-
tions on the CASF-2016. Consistently, our models still achieve
the highest correlation values with Rp = 0.861, Rp = 0.835, and

Rp = 0.825 for TopBP, AGL-Score, and EIC-Score, respectively.
It is worth noting that all top models in this benchmark are
machine learning-based scoring functions, namely, KDEEP,166

Pafnucy,167 and PLEC-nn.165 These models predict the energies
for the test set of 290 complexes which is the PDBbind v2016
core set (Table 4). Our topology-based model, TopBP, was able
to outperform our other methods because it used convolutional
neural networks whereas AGL-Score and EIC-Score were based
on gradient boosted decision trees.

IV.B.2 Ranking power. In this assessment, the predicted
binding energies are used to determine the rank of the ligands
binding to the same target. We evaluated the ranking power of
three AGL-Score models, namely generalized exponential kernel
model AGLAdj

E,6,2.5;E,4,2 and generalized Lorentz kernel model
AGLAdj

L,3.5,1.5;L,15,0.5, and the consensus one. The result reveals that
the generalized exponential kernel model produces the best
performances on both CASF-2007 and CASF-2013 benchmarks.
Therefore, it is the representative model of the AGL-Score on
this measurement. Fig. 10b reports the ranking power of
various scoring functions on CASF-2007. In this benchmark,
our AGL-Score is ranked the third on high-level success with a
rate of 54%, and is behind DvinaRF20 (success rate = 57%)163 and
d X-Score::HSScore (success rate = 58%).149 Surprisingly, our
graph-based model achieves the best success rate in CASF-2013
with the rate being 60%, followed by X-ScoreHM with the
success rate as high as 59%. Since the ranking power perfor-
mance depends on the predicted affinities used for the scoring
power, one can see there is a correlation between these two

Fig. 10 The performances on different evaluation metrics of various scoring functions on the CASF-2007 benchmark. (a) Scoring power ranked by the
Pearson correlation coefficient, (b) ranking power assessed by the high-level success measurement, and (c) docking power measured by the rate of
successfully identifying the ‘‘native’’ pose from 100 poses for each ligand. Our developed models, namely, TopBP,49 EIC-Score,89 and AGL-Score66 are
colored in orange, and other scoring functions48,89,149,160–163 are colored in teal.
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Fig. 11 The performances on different evaluation metrics of various scoring functions on the CASF-2013 benchmark. (a) Scoring power ranked by the
Pearson correlation coefficient, (b) ranking power assessed by the high-level success measurement, and (c) docking power measured by the rate of
successfully identifying the ‘‘native’’ pose from 100 poses for each ligand. Our developed models, namely, TopBP,49 EIC-Score,89 and AGL-Score66 are
colored in orange, and other scoring functions89,150,163–165 are colored in teal.

Fig. 12 The Pearson correlation coefficient of various scoring functions on CASF-2016. Our developed models, namely, TopBP,49 EIC-Score,89 and
AGL-Score66 are colored in orange. The performances of other models that are in teal are taken from ref. 48, 89, 151 and 165–167 Our TopBP is the best
model with Rp = 0.861 and RMSE = 1.65 kcal mol�1. Our AGL-Score is the second best model, with Rp = 0.833 and RMSE = 1.733 kcal mol�1. The third-
ranked scoring function is still our model, EIC-Score, with Rp = 0.825 and RMSE = 1.767 kcal mol�1. Note that scoring functions marked with * use
PDBbind v2016 core set (N = 290).

Table 4 Discrepancy information between PDBbind v2016 core set and CASF-2016 test set

PDBID

Complexes in CASF-2016 but not in PDBbind v2016 core set 1g2k
Complexes in PDBbind v2016 core set but not in CASF-2016 4mrw, 4mrz, 4msn, 5c1w, 4msc, 3cyx
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assessments. However, our AGL-Score is the only model that
is ranked in the top three places in these metrics for both
CASF-2007 and CASF-2013 benchmarks.

IV.B.3 Docking power. This docking power examines the
ability of a scoring function in the discrimination between
‘‘native’’ and ‘‘non-native’’ poses. To build a robust machine
learning-based model for this task, it is natural to include the
diverse conformers with different ranges of root-mean-squared
deviation (RMSD) to target experimental structure. Therefore,
to create a satisfactory training data set for our AGL-Score
model, we carry out GOLD v5.6.3155 to set up a training set of
1000 poses for a given target ligand and its corresponding
receptor. The parameters in the GOLD software are chosen
as the following autoscale = 1.5, early_termination = 0,
and gold_fitfunc_path = plp. The total of computer-generated
structures for both CASF-2007 and CASF-2013 benchmarks is
365 000 poses which are fed to the AGL-Score for the learning
process. Interested readers can download this structure information
from our online server https://weilab.math.msu.edu/AGL-Score.

In considering benchmarks, each target ligand has 100
generated structures. To identify its ‘‘native’’ poses, we retrain
single exponential kernel AGL-Score AGLAdj

E,6,2.5 on 1000 poses
generated by docking software for that specific ligand. The
single model is used here to save the calculation and training
time. The accuracy and robustness of our AGL-Score model
on the docking power is illustrated in Fig. 10c and 11c for
CASF-2007 and CASF-2013, respectively. In both benchmarks,
our graph-based model is ranked in the first place. Specifically,
on CASF-2007, the success rate of the AGL-Score model is 84%,
the second and third best models are GOLD::ASP (82%)149

and DvinaRF20 (80%),163 respectively. On CASF-2013, the success
rate of our method is higher with the rate being 90%, while
DvinaRF20

163 and Autodock Vina163 only attain 87% and 85%,
respectively.

The training data of the AGL-Score model for this assess-
ment is provided by the docking software GOLD with ChemPLP
as a scoring function type (ChemPLP@GOLD). It is interesting
to see how this scoring function performs on the same bench-
mark. The ChemPLP@GOLD model achieves the success rates
of 67% and 82% for CASF-2007 and CASF-2013, respectively.
These values are much lower than those of our model (84% and
90%). These comparisons confirm that our AGL-Score indeed
upgrades the accuracy of the existing docking software by
correctly extracting the real physical and biological properties
of a biomolecular structure.

Scoring power and docking power are two very different
measurement metrics. The first one concerns the affinity with
the training data based on the experimental information.
The latter targets the geometric validation involving artificial
data. Consequently, it is not an easy task to accomplish state-of-
the-art performances on both evaluations.168–170 According to
our observation, the most commonly used docking software is
reliable in identifying the ‘‘native’’ structures but inadequate in
the binding energy prediction. For instance, GOLD with ASP as
a scoring function (ASP@GOLD) performs quite well on the
docking power with the success rate being 82% in CASF-2007.

However, ASP@GOLD’s performance on the scoring power does
not meet the satisfactory accuracy with Rp = 0.534. In contrast,
the machine learning-based scoring functions often display an
opposite impression. For example, RF-IChem169 is a machine
learning model and attains a higher Pearson correlation coeffi-
cient on the scoring power (Rp = 0.791), as expected. Unfortu-
nately, due to the lack of appropriate training data and too
simple representations for accurately encoding physical and
biological information of a molecule, RF-IChem has difficulty in
detecting the ‘‘native’’ pose with the success rate as low as 30%.
Recently, a machine learning-based model named DvinaRF20 was
developed by Wang and Zhang163 with a purpose of improving the
accuracy of random-forest based scoring functions on various
evaluations. Indeed, DvinaRF20 offers an excellent success rate
(80%) on the docking power of CASF-2007 but still shows a
respectable precision on binding affinity prediction with Rp =
0.732. Nevertheless, the Pearson correlation coefficient of the
DvinaRF20 is far behind the elite models such as TNet-BP (Rp =
0.826).48 Our graph based-model, AGL-Score, not only has a great
accomplishment on the docking power (success rate = 84% in
CASF-2007) as DvinaRF20, but also performs similarly to TNet-BP
on the scoring power (Rp = 0.83 in CASF-2007). These results
again reinforce the ability of the AGL-Score in capturing the
crucial interactions in molecular and biomolecular structures.

IV.B.4 Screening power. In this assessment, we verify the
ability of the AGL-Score in picking up the true binders for 65
different protein classes in the CASF-2013 benchmark. The
power metric concerns the active and inactive ones of 195
ligands for a specific class of proteins rather than the estimation
of the binding affinity for an experimental complex or ‘‘native’’
conformer identification. Therefore, to effectively carry out the
machine learning scoring function on this take, one needs to
construct appropriate training data tailoring the active/inactive
classification purpose. To this end, our training data consist of
docking software-generated poses and corresponding energies.
The 3D structures of 195 ligands binding to a specific target are
also created by the docking program and their energies are
estimated by our AGL-Score model. The predicted true binders
are identified based on their predicted affinities.

Our training set for AGL-Score on this screen power test is
based on the PDBbind v2015 refined set excluding the core set
in that database. Besides these experimental structures, we
generate the non-binder structures for each target protein
by using Autodock Vina.171 Specifically, we use that docking
software to dock all ligands in the PDBbind v2015 refined set
without the inclusion of the core-set compounds to the inter-
ested receptor. Here are the parameters of Autodock Vina we
use in this procedure: exhaustiveness = 10, num_modes = 10,
and energy_range = 3. For each docking run, the pose associated
with the highest predicted affinity by Autodock Vina is kept.

To preserve the consistency in the energy unit, all the
Autodock Vina scores in kcal mol�1 are converted to pKd units
via a constant factor �1.3633.25 Ligands in the PDBbind v2015
refined set which do not bind to a target protein are designated
as decoys.150,152 To conserve the physical and biological sense,
the Autodock Vina predicted energies of those decoys cannot be
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higher than the lowest energies among the ligands experimen-
tally bound to that target protein. To this end, we constrain the
decoy energies by the lower bound of the true binders. The
generated structures, as well as the energy labels of the decoys
used in the AGL-Score training process, are publicly available at
https://weilab.math.msu.edu/AGL-Score.

The AGL-Score model we used in this screening power
is AGL-Score AGLAdj

E,6,2.5. Fig. 13 plots the performance of the
AGL-Score along with numerous scoring functions reported in
the literature.150,163 It is an encouragement to see that our AGL-
Score achieves the top performance on enrichment factor (EF)
and success rate at the top 1% level in the CASF-2013 bench-
mark. The EF of the AGL-Score is 25.6 followed by DvinaRF20

(EF = 20.9)163 and GlideScore-SP (EF = 19.5).150 Moreover, the
success rate of our graph-based model is 68% followed by
DvinaRF20 and GlideScore-SP that both attain 60%.

Since the partial training data of our AGL-Score model is
generated by Autodock Vina, it is interesting to see the accuracy
of that docking software carried out in our lab on this assess-
ment. The Autodock Vina’s performances are much lower than
the graph-based model. Specifically, the docking software
attains EF as low as 14.7 while AGL-Score produces EF as high
as 25.6. In the success rate metric, Autodock Vina’s accuracy is
only 32% which is far from AGL-Score’s rate at 68%. Since the
published work163 already reported Vina’s screen power tests,

to avoid any confusion we plot our experiments on the Vina
software as green bars in Fig. 13. The unsatisfactory results of the
Autodock Vina on the screen power further reinforce the accurately
encoded physical and biological information in our graph-based
model rather than the dependence on training quality.

The screening power validation is an important metric in
virtual screening in drug design. Since this assessment strictly
requires meaningful molecular representations and an appro-
priate training set, large numbers of machine learning-based
scoring functions with simple features and irrelevant training
data often perform poorly on this metric despite the promising
accuracy on the scoring power. For instance, RF@ML170 is a
machine learning model using Random Forest for the predic-
tion but its features simply count the number of intermolecular
contacts between two atom types. In fact, RF@ML produces an
acceptable correlation (Rp = 0.704) on 164 complexes in the
PDBbind v2013 dataset. However, RF@ML’s accuracies of screen
power are the worst among the models listed in Fig. 13. In
contrast, our AGL-Score model with superior feature representa-
tions and training data insight has achieved the top places in
both scoring and screening powers.

IV.C Online servers

In the past few years, a few online servers have been developed
for the predictions of protein–ligand binding affinities (RI-Score,

Fig. 13 The performances of various scoring functions on the screening power for CASF-2013 benchmark based on (a) enrichment factor and (b)
success rate at the top 1% level. The orange bar indicates our graph-based models.66 The green bar represents the results of Autodock Vina carried out in
our lab. The teal bars express the performances of other models ref. 150 and 163.
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TML-BP, and TML-BP), protein stability changes upon muta-
tion (TML-MP, and TML-MP), molecular toxicity (TopTox),
partition coefficient and aqueous solubility (TopP-S), and
protein flexibility (FRI).

V Concluding remarks

Artificial Intelligence (AI), including machine learning (ML), has
had tremendous impacts on science, engineering, technology,
healthcare, security, finance, education, and industry, to
name just a few. However, the development of ML algorithms
for macromolecular systems is hindered by their intricate
structural complexity and associated high ML dimensionality.
In the past few years, we have addressed these challenges by
three classes of mathematical techniques based on algebraic
topology, differential geometry, and graph theory. These
mathematical apparatuses are enormously effective for macro-
molecular structural simplification and ML dimensionality
reduction. By integrating with advanced ML algorithms, we
have demonstrated that our mathematical approaches give rise
to the best prediction in D3R Grand Challenges, a worldwide
competition series in computer-aided drug design,28,29 as well
as many other physical, chemical and biological datasets.
Nonetheless, our methods and results were scattered over a
number of papers. In this review, we provide a systematic and
coherent narration of our state-of-the-art algebraic topology,
differential geometry, and graph theory-based methods. Emphasis
is given to the physical and biological challenge-guided evolution
of these mathematical approaches. Although our mathematical
methods can be paired with various machine learning algorithms
for a wide variety of chemical, physical, and biological systems,
we focus on protein–ligand binding analysis and prediction in
the present review.

Fueled by the fast advances in ML and the availability of
biological datasets, recent years have witnessed rapid growth in
the development of advanced mathematical tools in the realm
of molecular biology and biophysics. In most of history, mathe-
matics has been the driving force for natural science. Indeed,
mathematics is the underpinning for every aspect of modern
physics, from electrodynamics, thermodynamics, statistical
mechanics, quantum mechanics, solid state physics, quantum
field theory, to the general theory of relativity. In the past century,
mathematics and physics have been mutually beneficial. Similarly,
mathematics will become an indispensable part of biological
sciences shortly. Currently, algebraic topology, differential
geometry, graph theory, group theory, differential equations,
algebra, and combinatorics have been widely applied to biological
science. Many other advanced mathematical subjects, such as
algebraic geometry and low dimensional manifolds will soon find
their applications to biological science.

The next generation of AI and ML technologies will be
designed to understand the rules of life and reveal the physical
and molecular mechanics of biomolecular systems. Such a
development will bring tremendous benefits to health sciences,
including drug discovery. Mathematics will play a paramount

role in future AI and ML technologies. On the one hand, the
mathematical theory will contribute to the foundation of AL and
the design principle of ML. On the other hand, new mathematical
representations will be developed to enable the automatic discovery
of scientific laws and principles.172 New mathematical representa-
tions will be made physically interpretable so that machine
learning predictions from these representations can reveal new
molecular mechanisms. A generation of new mathematical
representations will be made adaptive to future AI technology.
Mathematical representations will be systematically validated
and optimized on a vast variety of existing datasets.
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