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of protein-protein binding affinity changes
following mutation
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The ability to predict protein-protein interactions is crucial to our understanding of a wide range of biological activities and
functions in the human body, and for guiding drug discovery. Despite considerable efforts to develop suitable computational
methods, predicting protein-protein interaction binding affinity changes following mutation (A AG) remains a severe challenge.
Algebraic topology, a champion in recent worldwide competitions for protein-ligand binding affinity predictions, is a promis-
ing approach to simplifying the complexity of biological structures. Here we introduce element- and site-specific persistent
homology (a new branch of algebraic topology) to simplify the structural complexity of protein-protein complexes and embed
crucial biological information into topological invariants. We also propose a new deep learning algorithm called NetTree to take
advantage of convolutional neural networks and gradient-boosting trees. A topology-based network tree is constructed by inte-
grating the topological representation and NetTree for predicting protein-protein interaction AAG. Tests on major benchmark
datasets indicate that the proposed topology-based network tree is an important improvement over the current state of the art

in predicting AAG.

of biological activities and functions in the human body,

including cell metabolism, signal transduction, muscle con-
traction and immune systems. The antibody-antigen system is one
of the most essential among all PPIs and plays a unique role in the
study of PPIs. Antibodies are large proteins that serve important
roles in the immune system by counteracting antigens—chemicals
recognized as alien by the human body. On the tip of an antibody,
there is an antigen-binding fragment that contains a paratope for
recognizing a unique antigen via its epitope; more specifically, a
paratope consists of a set of complementarity-determining regions
that have the highest conformational flexibility among sites on an
antibody'. The high selectivity of antibody-antigen recognition
mechanism and the flexibility of antibodies as large proteins make
antibodies a suitable platform for designing counteractants of tar-
get molecules. Antibodies have been widely used as therapeutic
agents to treat human diseases. Antibody therapy has several advan-
tages over traditional therapy, including longer serum half-life,
higher avidity and selectivity, and the ability to invoke desired
immune responses* . Antibody therapy also brings hope of curing
several previously incurable diseases and there are ongoing efforts
in the direction of HIV vaccine development® and cancer therapeu-
tic antibodies®’.

Three-dimensional (3D) structural information and thermody-
namic measurements are two essential components for understand-
ing the molecular mechanism of PPIs. Many experimental methods
have been developed to determine the structure of protein-protein
complexes. Among them, X-ray crystallography, NMR and cryo-
electron microscopy are the main workhorses®. The Protein Data
Bank’, one of the largest protein structure databases, includes tens
of thousands of protein-protein complex structures and is expand-
ing at an unprecedented rate.

P rotein—protein interactions (PPIs) are crucial to a wide range

Site-directed mutation is a key technology for probing the thermo-
dynamic properties of PPIs, including binding affinities of antibody-
antigen interactions. Sirin et al.'’ collected an AB-Bind database of
mutation-induced antibody-antigen complex binding free energy
changes. This database contains 1,101 mutation data entries, includ-
ing 645 single-point mutations on 32 different antibody-antigen
complexes. SKEMPI is a more general database for protein—protein
binding affinity changes following mutation (AAG)", it contains
3,047 mutation data entries for protein-protein heterodimeric com-
plexes with experimentally determined structures.

The aforementioned databases have been widely used as bench-
mark tests for evaluating the predictive power of computational
methods, which are indispensable for the investigation of PPlIs,
especially for the systematic screening of mutations'>"”. There are
many reliable computational methods that can predict mutant
structures on the wild-type, such as Rosetta and Jackal™.
Computational methods for generating protein structures from
sequences (for example, MODELLER') and predicting docking
poses for protein-protein complexes (for example, BioLuminate'”)
are also available.

The thermodynamic properties of PPIs are usually interpreted
as the binding affinity or binding free energy, AG. Given the impor-
tance of computational methods, a variety of them have been
developed that use structures to predict antibody-antigen binding
affinities. DFIRE' relies on an all-atom, distance-scaled, pairwise
potential that is derived using a database of high-quality diverse
protein structures, whereas STATIUM uses a pairwise statistical
potential that scores how well a protein complex can accommo-
date different pairs of residues in the parent complex geometry.
Force-fields for proteins can also be used to compute the binding
free energy, representing van der Waals interactions, hydropho-
bic packing, electrostatics and solvation effects. These approaches
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include FoldX (FOLDEF)"”, Discovery Studio (CHARMMPLR)*
and Rosetta'’. Typically, physics-based methods provide mecha-
nistic interpretations but are not designed for handling large and
diverse datasets.

Pires et al. optimized their graph-based cut-off scanning matrix
(CSM) method for predicting antibody-antigen affinity changes
following mutation given in the AB-Bind database”. This method
(named mCSM-AB) was shown to outperform the aforementioned
physical methods yet only achieve a Pearson’s correlation coefficient
(Rp) 0f 0.53 with tenfold cross-validation on a set of 645 single-point
mutations. The limited performance of the current methods there-
fore highlights a pressing need for a new generation of AAG predic-
tors that are constructed with entirely new design principles and/
or innovative machine learning algorithms. Although the physics-
based methods assume potential functions of certain forms and the
graph-based method only considers pairwise interactions, we seek
an approach that makes fewer assumptions and allows a systemic
description of PPIs.

Persistent homology**~*—a new branch of algebraic topology—
is able to bridge geometry and topology, leading to a new efficient
approach for the simplification of biological structural complex-
ity*~'; however, it neglects critical chemical/biological informa-
tion when it is directly applied to complex biomolecular structures.
Element-specific persistent homology can retain critical biologi-
cal information during the topological abstraction. Paired with
advanced machine learning, such as a convolutional neural network
(CNN), this new topological method gives rise to some of the best
predictions for protein-ligand binding affinities’, protein folding
free energy changes following mutation®>** and drug virtual screen-
ing®. This approach has won many contests in the D3R Grand
Challenges, a worldwide competition series in computer-aided drug
design®’; however, the techniques designed for protein-ligand bind-
ing analysis could not be directly applied to PPIs due to biological
differences and the different characteristics of available datasets.

In the present work we introduce site-specific persistent homol-
ogy that is tailored for PPI analysis. We explore the utility of site-
specific persistent homology and machine learning algorithm for
characterizing PPIs that are associated with site-specific mutations.
We hypothesize that a topological approach that generates intrin-
sically low-dimensional representations of PPIs could dramatically
reduce the dimensionality of antibody-antigen complexes, leading
to a reliable high-throughput screening in searching for valuable
mutants in protein design. To validate our hypothesis, we integrate
topological descriptors with a machine learning algorithm (CNN-
assisted gradient-boosting trees (GBTs)) to predict PPI AAG. The
resulting topology-based network tree (TopNetTree) method is
found to outperform other methods on two major benchmark data-
sets, AB-Bind'® and SKEMPI", by a large margin. Our TopNetTree
offers an accurate and reliable tool for studying PPIs.

TopNetTree model for PPI binding energy change following
mutation prediction

This section describes the TopNetTree model and its application to
PPI AAG prediction. As shown in Fig. 1, the proposed TopNetTree
consists of two major modules: topology-based feature generation
and a CNN-assisted GBT model (Fig. 1). For the feature generation,
we mainly used element- and site-specific persistent homology to
capture structural characteristics, which was enhanced by chemi-
cal-physical descriptors, whereas for the learning model we used
a GBT fed with inputs from a CNN as a predictor. We demonstrate
the performance of the proposed TopNetTree by three commonly
used PPI benchmark datasets.

Topological representation of PPIs. The pairwise interactions
between atoms are characterized by the zeroth homology group
(H,, also known as the size function”). The higher-dimensional

homology groups encode higher-order patterns in PPI complexes.
The first homology group (H,), which is generated with Euclidean
distance (D,)-based filtration, characterizes loop or tunnel-like struc-
tures, as shown in Fig. 2, whereas the second homology group (H,)
describes cavity structures in PPI complexes. We obtain a comprehen-
sive topological description of PPIs by combining various dimensions.

A topological representation should be able to extract patterns
of different biological or chemical aspects (for example, hydrogen
bonds between oxygen and nitrogen atoms, hydrophobicity, polar-
izability and so on) from a PPI system that is represented by a set of
atomic coordinates (that is, a point cloud). We construct simplicial
complexes using selected subsets of atomic coordinates and modi-
fied distance matrices to achieve this goal.

For the construction of an element- and site-specific persistent
homology, we classify the atoms in a PPI complex into various
subsets:

(1) Ap: atoms of the mutation site.

(2) Amn(r): atoms in the neighbourhood of the mutation site with-
in a cut-off distance, r.

(3) Aap(r): antibody atoms within r of the binding site.

(4) Ang(r): antigen atoms within r of the binding site.

(5) Aee(E): atoms in the system that has atoms of element type, E.
When characterizing interactions between atoms a,and a; in set
A and/or set B, we use a modified distance matrix to exclude
the interactions between the atoms from the same set. In the
following formula, D, 4 is defined as the modified distance and
D, is defined as the Euclidian distance.

00, if a;,a; € A, or a;, a; € B,
De(ai,a;), if a; € A and a; € B,

Do, a) = { M

Specific designations for sets A and B are given in Supplementary
Table 1, which summarizes various topological barcodes.

Vectorization of topological barcodes. Using persistent homology,
the original 3D point-cloud data are characterized by topological
barcodes that are represented as collections of intervals that capture
geometric patterns, topological patterns and PPIs while dramati-
cally simplifying complicated structural representations of a PPI-
complex. The upper bound of the filtration parameter corresponds
to the distance cut-off of interactions of interest, which is set to
be the same for different samples in the dataset. Instead of having
bounding cubes of different sizes around the binding and muta-
tion sites, topological barcodes for different samples are in the same
range of filtration values, which improves the scalability in compari-
son with the direct use of the original 3D data. We construct feature
vectors from these sets of intervals for machine learning models.

One method of vectorization is to discretize the range of the fil-
tration parameter into bins and record the behaviour of the bar-
codes in each bin™. In this work we subdivide a filtration range (for
example, [0, 12] A) into bins of length 0.5 A; namely, [0, 0.5], (0.5, 1],
.-+, (11.5, 12] A. For each bin, we count the numbers of persistence
intervals, birth events and death events (see Fig. 3 for an illustration
of filtration and persistence). This approach gives us three feature
vectors for each topological barcode. Note that this characterization
of birth and death might not be stable against different discretiza-
tions. As such, only H, barcodes obtained from the Vietoris-Rips
filtration are used in our approach.

One advantage of binned barcode vectorization is that it keeps the
distance information that reflects the strength of hydrogen bonds,
van der Waals interactions and so on. The bin representation of bar-
code features can be easily incorporated into a CNN, which captures
and discriminates local patterns; that is, the impact of mutations.

Another method of vectorization is to summarize barcode statis-
tics, including the sum, maximum, minimum, mean and standard
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Fig. 1| Anillustration of the proposed TopNetTree model. The H, features are processed by a CNN whose flatten layer outputs—together with H,,H, and
auxiliary features—are fed into a GBT model for the final prediction.
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Fig. 2 | Topological barcode change associated with a mutation. Residue
leucine in the wild-type is mutated into alanine. Barcodes are generated for
carbon atoms within a cut-off of 12 A of the mutant residue.

derivation of bar lengths, birth values and death values. We use
this method to vectorize H, and H, barcodes obtained from alpha
complex filtration as these higher-dimensional barcodes are sparser
than the zero-dimensional ones®.

Machine learning models. A major challenge in the prediction of
binding affinity changes following mutation for PPIs is that the data
is highly complex due to 3D structures, whereas the datasets are rela-
tively small. We designed a hybrid machine learning algorithm that
combines a CNN and GBT to overcome this difficulty. The topo-
logically simplified description of the 3D structures are further con-
verted into concise features by the CNN module; the GBT module
then builds robust predictors with effective control of overfitting.

TopGBT model. An ensemble method is a class of machine learn-
ing algorithms that builds a powerful model from weak learners. It
improves the performance on the weak learners with the assumption

that the individual learners are likely to make different mistakes and
thus summing the weak learners will reduce the overall error. In
this work we use GBTs that add a tree to the ensemble according
to the current prediction error on the training data. This method
(a toplogy-based GBT or TopGBT) performs well when there is a
moderate number of features and is relatively robust against hyper-
parameter tuning and overfitting. The implementation provided by
the scikit-learn package (v.0.18.1)* is used.

TopCNN model. CNNs are some of the most successful deep learn-
ing architectures, a regular CNN is a special case of a multilayer
artificial neural network where only local connections are allowed
between convolution layers and the weights are shared across dif-
ferent locations. We use a topology-based CNN (TopCNN) as an
intermediate model; specifically, we feed vectorized H, features into
CNNs to extract higher level features for the downstream model
(detailed parameters and prepossessing process of our model can be
found in the Supplementary Information).

TopNetTree model. CNNs can automatically extract high-level fea-
tures from H,. These CNN-extracted features are combined with
features constructed from high-dimensional topological barcodes,
H, and H,, as the inputs of the GBTs; specifically, we build a super-
vised CNN model with the PPI AAG as labels. After the model is
trained, we feed the flatten layer neural outputs into a GBT model to
rank their importance. Based on the importance, a subset of CNN
features is combined with other features, such as the statistics of
H, and H, barcodes, for the final GBT model as shown in Fig. 1.
The GBT is used for its robustness against overfitting, good perfor-
mance for moderately small data sizes and its model interpretabil-
ity (further details on TopNetTree are given in the Supplementary
Information).

Model performance for PPIs. We consider three datasets: the
AB-Bind dataset', the SKEMPI dataset'' and the SKEMPI 2.0 data-
set” to validate the proposed TopNetTree model. Two evaluation
metrics (R, and the root-mean-square error, rm.s.e.) are used to
assess the quality of prediction. Detailed information of evaluation
metrics can be found in the Supplementry Information.

The prediction of AB-Bind free energy changes following mutation.
The AB-Bind dataset includes 1,101 mutational data points with
experimentally determined binding affinities'”. We follow Pires
et al.” by considering only 645 single mutations across 29 antibody-
antigen complexes. Among them, 87 mutations are on five com-
plexes with homology structures. This dataset, called the AB-Bind
S645 set, consists of about 20% stabilizing mutations and 80%
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Fig. 3 | Filtration and persistence. An illustration of filtration and H, persistence diagram of a set of points on a plane.

destabilizing ones; there are 27 non-binders in the whole dataset,
which are variants determined not to bind within the sensitivity of
the assay. The binding affinity changes following mutation of these
non-binders were set to -8 kcalmol™. These non-binders could be
regarded as outliers in the database and have a strongly negative
impact on the prediction model accuracy.

Our model achieved an R; of 0.65 on the AB-Bind S645 dataset,
which is significantly better than those of other existing methods
as shown in Table 1. In comparison with non-machine learning
methods such as Rosetta and bASA, our method is over 100% more
accurate in terms of Ry, indicating that our topology-based machine
learning methods have a better predictive power for PPI systems.
Our method is about 22% more accurate than the best-existing
score of R,=0.53 (given by mCSM-AB), indicating the power of
our TopNetTree.

Both GBTs and neural networks are quite sensitive to system
errors as the training of a model is based on optimizing the mean-
square error of the loss function. The AAG of 27 non-binders
(-8 kcalmol™) did not follow the distribution of the whole data-
set. Pires et al.”' found that excluding non-binders from the dataset
would significantly increase the performance of a prediction model.
In our case, the R; increased from 0.65 to 0.68 for the same treat-
ment as shown in Fig. 4. We also applied a blind test on homology
structures using the rest of the samples as the training set, achieving
an R, of 0.55, as shown in Fig. 4.

The performance on the SKEMPI dataset. The SKEMPI dataset’’
contains 3,047 binding free energy changes following muta-
tion, which are assembled from the scientific literature for pro-
tein-protein heterodimeric complexes with experimentally
determined structures; it includes single-point mutations and
multipoint mutations. There are 2,317 single point mutation data
entries among the whole database, which are referred to as the
SKEMPI §2317 set.

Xiong et al. recently selected a subset of 1,131 non-redun-
dant interface single-point mutations (denoted set S1131) from
SKEMPI set S2317%. The same authors applied several methods to
the SKEMPI S1131 set®, including BindProfX*, Profile-score*"**
FoldX" BeAtMuSiC*, SAMMBE* and Dcomplex*.

Table 2 shows the Pearson correlation coefficients on tenfold
cross-validations. It is found that the proposed TopNetTree is about
15% more accurate than the best-existing method.

The performance on the SKEMPI 2.0 dataset. The SKEMPI 2.0
(ref. ) database is an updated version of the SKEMPI database,
containing new mutations collected after its first version, includ-
ing data from three other databases: AB-Bind'’, PROXiMATE*
and dbMPIKT". This dataset contains 7,085 entries, including
single- and multi-point mutations. By selecting only single-point
mutations and excluding mutation entries without energy-change
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Table 1| Comparison of the R, of various methods for the
AB-Bind S645 set

Method R,
TopNetTree 0.65/0.682
TopGBT 0.56
mCSM-AB 0.53/0.56*
TopCNN 0.53
Discovery Studio 0.45
mCSM-PPI 0.31

FoldX 0.34
STATIUM 0.32
DFIRE 0.31

bASA 0.22
dDFIRE 019
Rosetta 0.16

Aside from those from present TopNetTrees and TopGBTs, the results are adopted from ref. 7',
2Results exclude 27 non-binders (their AAG values were set to -8 kcal mol™; ref. 1°).

values, 4,947 data points were chosen from SKEMPI 2.0 (denoted
set S4947). David et al. recently applied their updated mCSM-PPI2
method* to the SKEMPI2 dataset. They filtered only single-point
mutations and selected 4,169 variants in 319 different complexes
(denoted set S4169). Set S8338 was derived from set S4169 by set-
ting the reverse mutation energy changes to the negative values of its
original energy changes. We applied our TopNetTree model to sets
$4947, 54169 and S8338. We tested set S4947 with the regular ten-
fold cross-validation, achieving an average R, of 0.82 and an rm.s.e.
of 1.11kcalmol™ for the tenfold cross-validation. We followed the
method of tenfold stratified cross-validation used in mCSM-PPI2
paper for sets S4169 and S8338*. For set S4169, we obtained an
average R, of 0.79 and r.m.s.e. of 1.13kcal mol™!, compared with the
average R, of 0.76 and r.m.s.e. of 1.19 kcal mol™ achieved by mCSM-
PPI2. Finally, for set S8338, our method attained an average R, of
0.85 and r.m.s.e. of 1.11 kcalmol!, whereas mCSM-PPI2 reported
the average R, 0.82 and r.m.s.e. of 1.18 kcal mol™* (ref. *).

We further validated our method by the blind prediction of
another subset of the AB-Bind database. As SKEMPI 2.0 contains
entries in the AB-Bind dataset, we chose 24 protein complexes
that appear in both AB-Bind and SKEMPI 2.0 datasets as the
test set for 787 mutations (denoted as the S787 set). The S4947
set, excluding the S787 set, was used as the training set.
We achieved an average R, of 0.53 and r.m.s.e. of 1.45 kcal mol™!
on this blind test (further details are given in the Supplementary
Information).
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values of each group are cited in blue. e, Prediction results for different residue region types, with an R, of 0.60, 0.66, 0.66, 0.65 and 0.48 for the core, rim,

support, interior and surface, respectively.

Table 2 | A comparison of the R, values of various methods
for the single-point mutation in the SKEMPI dataset of 1,131
mutations

Method R,

TopNetTree 0.850
BindProfX 0.738
Profile-score + FoldX 0.738
Profile-score 0.675
SAAMBE* 0.624
FoldX 0.457
BeAtMuSic 0.272
Dcomplex 0.056

Aside from those from TopNetTree and SAMBE, the results are adopted from ref. “°.

Discussion

The quality of machine learning predictions typically depends on
model inputs. In our case, the inputs consist of three crucial compo-
nents: protein structures, the mutation position and mutation type.

120

In this section we discuss the influence of each component to the
prediction quality.

Prediction result analysis for different protein complexes. For
the AB-Bind S645 set, mutations can be separated into 24 different
protein—protein complexes (we merged the complex with its homol-
ogy model as one category). We did intra- and inter-protein cross-
validations to further analyse the prediction quality across different
protein complexes.

Inter-protein-level cross-validation. To perform inter-protein-level
cross-validation for 24 different protein-protein complexes, the
samples in one protein complex are taken as the test set, whereas
the rest of the dataset is used as the training set (see Supplementary
Table 2 for more details). For this test, our model reached an average
R, of 0.508 and a median R, of 0.541. This performance is compa-
rable with the result of blind test on homology models (see Fig. 4);
however, the performance of the model varies among different
protein families. Models trained on some protein families could
extrapolate to other families; for example, the two protein fami-
lies with the best results, IKTZ and 2JEL, can reach R, of 0.866
and 0.818, respectively, whereas the two families with the poorest
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Table 3 | Criteria of residue regions®’, ArASA =rASA, —rASA,

Region ArASA rASA, rASA,,
Interior 0 <25% —
Surface 0 >25% =
Rim >0 >25% =
Support >0 — <25%
Core >0 <25% >25%

results, IFFW and 1YY9, have R, values of -0.043 and -0.068,
respectively.

Intra-protein-level leave-one-out cross-validation. Cross-validation
was carried out within each protein complex. For this test, our
model reached average/median R, values of 0.170/0.215, which
are significantly lower than the tenfold cross-validation result
over the entire dataset. One possible reason for this behaviour is
that the training set for each complex is too small with only an
average of 27 samples per complex. This result also implies that
our model needs a diversity of training samples to achieve stable
and consistent prediction quality (see Supplementary Table 3 for
more details).
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Prediction result analysis for different mutation regions.
The locations of the site mutations could be categorized into
five different regions: interior, surface, rim, support and core (a
detailed definition can be found in the Methods). In experimen-
tal data, mutations at the core or support region have a higher
average energy change of around 1.8 kcalmol™ (1.72 kcal mol™!
and 1.91 kcalmol™, respectively), whereas mutations at the rim
or interior region have an average energy change of around 0.8
kcalmol™ (0.82 kcalmol™ and 0.83 kcalmol™, respectively), as
shown in Fig. 4. On the other hand, the surface mutations have an
average energy change of less than 0.2 kcal mol™. Similar patterns
regarding mutation sites and energy changes were reported in the
literature®. A possible reason for these patterns is that different
mutation regions vary in their accessibility to water; in general,
surface, interior and rim regions have greater access to water than
the core and support regions.

Figure 4 shows our predictions concerning different mutation
regions. Average R;, values of 0.60, 0.66, 0.66, 0.65 and 0.48 were
achieved for the core, rim, support, interior and surface regions,
respectively. This result shows that the performance is consistent
among different mutation regions except for the surface region. We
believe that the relative inferior performance for surface mutations
is due to its small data size and that the energy disturbance caused
by surface mutations is small on average.
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Prediction result analysis for different mutation types. The pat-
tern of PPI binding affinity changes over different mutation types
is important for protein design. We test how well can the model
prediction resemble the distribution in experimental data. Here we
investigate the behaviour of our model for 20 different amino acids
types in the AB-Bind S645 set. A reverse mutation from ‘B’ to A’ is
considered to be the same mutation type as from A’ to ‘B, and the
associated energy change admits an opposite sign (the mutations
count for each mutation type can be found in Supplementary Fig. 1).

Overall, our predicted patterns are remarkably similar to those of
experimental data in terms of both average binding energy changes
and variance of binding energy changes, as shown in Fig. 5. It is
interesting to note that all the mutations to alanine have a positive
energy change—a possible reason is that mutations from a large
residue to a small one could lead to a stabilizing effect to the whole
system. Aside from the size of amino acids, we also categorized
them into charged, polar, hydrophobic and special-case groups. In
terms of binding affinity changes, we find that most mutations from
polar to hydrophobic residues have a positive free energy change
(for example, S to M), which means mutations from polar residues
to hydrophobic residues would make the whole PPI system more
stable. We also observed that a mutation from charged residues to
uncharged polar residues could lead to a negative energy change;
for example, lysine to serine (K to S), which means such mutations
might have broken some charge—charge interaction pairs.

Although our model shares a similar pattern in the variance of
energy changes with experimental data, the variance of the model
predictions is generally lower than the experimental data as shown
in Fig. 5. It remains a challenging task to come up with predictions
with a diversity level the same as that of experimental data.

Conclusion

The importance of PPIs is evident from the intensive efforts to
study them from many perspectives, including quantum mechan-
ics, molecular mechanics, biochemistry, biophysics and molecular
biology; for example, the R, value between predicted AAG values
and experimental data in cross-validations of a commonly used PPI
database, AB-Bind'", is only 0.53.

Topology has recently been shown to be surprisingly effective
in simplifying biomolecular structural complexity’>”*. It has been
devised to win worldwide competitions in computer-aided drug
design™. It is therefore of enormous importance to exploit topology
for understanding PPIs. In this work, we propose TopNetTrees for
AAG predictions; specifically, an element- and site-specific persis-
tent homology is introduced to characterize PPIs. Furthermore, we
propose machine learning algorithms—CNN-assisted GBTs—to pair
with the topological method for the prediction of PPI AAG. We dem-
onstrate that the proposed TopNetTree achieves an R, of 0.65, which
is about 22% better than the previous best result for the AB-Bind data-
set. For another benchmark PPI dataset, SKEMPI, the present method
significantly outperforms the state-of-the-art in the literature.

Methods
Simplicial complex and filtration. An abstract simplicial complex is a finite
collection of sets of points (that is, atoms) K = {6;},, where the elements in 5,
are called vertices and o, is called a k-simplex if it has k+ 1 distinct vertices. If
7Co; then 7 is called a face of 6,. A simplicial complex, K, is valid if 7 C o, for 6,€ K
indicates that 7€ K, and that the non-empty intersection of any two simplices &,,
0,€ K is a face of both 6, and o,.

In practice, it is favourable to characterize point clouds or atomic positions
in various spatial scales rather than in a fixed scaled simplicial complex
representation. To construct a scale-changing simplicial complex, consider a
function f : K — R that satisfies f(7) < f(c) whenever 7 C 6. Given a real value, x, f
induces a subcomplex of K by constructing a sub-level set, K(x) ={o € K|f(6) <x}.
As K is finite, the range of fis also finite and the induced subcomplexes, when
ordered, form a filtration of K,

& CK(x1) CK(x) C--- CK(x) =K (2)

There are many constructions of K and one that is widely used for point clouds
is the Vietoris-Rips complex. Given K as the collection of all possible simplices
from a set of atomic coordinates until a fixed dimension, the filtration function
is defined as fy;,(6) = max{d(v;, v))|v;, v, € o} for 6 €K, where d is a predefined
distance function between the vertices; for example, D,. In practice, an upper
bound of the filtration value is set to avoid an excessively large simplicial
complex. Another efficient construction called the alpha complex* is often
used to characterize geometry, and we denote the filtration function by

fo : DT(X) — R, where DT(X) is the simplicial complex that is induced by the
Delaunay triangulation of the set of atomic coordinates, X (ref. ). The filtration
function is defined as f,(¢) = max{} De(v;,v;)|v,v; € 6} for 6 € DT(X). Back
to molecular structures, the filtration of simplicial complexes describes the
topological characteristics of interaction hypergraphs under various interaction
range assumptions.

Homology and persistence. A homology group (in singular homology) of
a simplicial complex topologically depicts hole-like structures of different
dimensions. Given a simplicial complex, K, a k-chain is a finite formal sum of k-
simplices in K; that is, ), a;0;. There are many choices for coefficients, a; , and we
choose a; € Z, for simplicity. The kth chain group (denoted C,(K)) comprises all
of the k-chains under the addition that is induced by the addition of coefficients.
A boundary operator 9;: C,(K) — C,_,(K) connects chain groups of different
dimensions by mapping a chain to the alternating sum of codimension-1 faces. It
suffices to define the boundary operator on simplices,
k

(=D{wo, -+ Ve ®3)

%({vo, -+ m}) =

i=0

»Vig oo

where v; indicates the absence of vertex v,. The kth cycle group (denoted Z,(K))
is defined to be the kernel of 9;, whose members are called k-cycles. The kth
boundary group is the image of 9, and is denoted B,(K). It follows that B(K) is
a subgroup of Z,(K) based on the property of boundary maps, 0, d;,, =0. The
kth homology group, H,(K), is defined to be the quotient group Z,(K)/B,(K). The
equivalent classes in H,(K) correspond to k-dimensional holes in K that cannot be
deformed to eachother by adding or subtracting the boundary of a subcomplex.
Given a filtration as in equation (2), in addition to characterizing the homology
group at each frame H,(K(x;)), we also want to track how topological features
persist along the sequence. Viewing H,(K(x;)) as vector spaces together with
inclusion map induced linear transformations gives a persistence module,

Hy(K(x1)) = Hr(K(x2)) = -+ = Hi(K(x))- 4)

An interval module with respect to [b, d) denoted [ 4 is defined as a collection of
vector spaces {V} that are connected by linear maps, f;: V;, - V,,,, where V; = Z,
for i € [b, d) and V,=0 elsewhere and f; is identity map when possible and zero
otherwise. The persistence module in equation (4) can be decomposed as a direct
sum of interval modules @, 4)elp,q). Each [} 4) corresponds to a homology class
that appears at filtration value b and disappears at filtration value d (the values

b and d are usually called the birth and death values). The collection of these
pairs, B, encodes the evolution of k-dimensional holes when varying the filtration
parameter and thus records the topological configuration of the input point cloud
under different interactions ranges if a distance based filtration is used. Figure 3
illustrates filtration and persistence.

Mutation regions. Mutant residue locations were classified into interface and non-
interface regions. Interface residues were further classified as the rim, support or
core, and non-interface residues were also further classified as surface or interior,
based on the classification approach by Levy™.

Residue classification is mainly based on the change of relative residue
accessible surface area (rASA) between protein—protein complex (rASA,) and
individual protein components of complex (rASA,,), as shown in Table 3. The
accessible surface area was calculated with AREAIMOL from the CCP4 suite’' and
relative solvent accessibility was obtained by normalizing the absolute value with
that of the same amino acid in a G-X-G peptide™.

Data availability
All the data are available through the original papers cited or through our Code
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Code availability
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