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Abstract

We present the performances of our mathematical deep learning (MathDL) models for D3R Grand Challenge 4 (GC4).
This challenge involves pose prediction, affinity ranking, and free energy estimation for beta secretase 1 (BACE) as well
as affinity ranking and free energy estimation for Cathepsin S (CatS). We have developed advanced mathematics, namely
differential geometry, algebraic graph, and/or algebraic topology, to accurately and efficiently encode high dimensional
physical/chemical interactions into scalable low-dimensional rotational and translational invariant representations. These
representations are integrated with deep learning models, such as generative adversarial networks (GAN) and convolutional
neural networks (CNN) for pose prediction and energy evaluation, respectively. Overall, our MathDL models achieved the
top place in pose prediction for BACE ligands in Stage 1a. Moreover, our submissions obtained the highest Spearman cor-
relation coefficient on the affinity ranking of 460 CatS compounds, and the smallest centered root mean square error on the
free energy set of 39 CatS molecules. It is worthy to mention that our method on docking pose predictions has significantly
improved from our previous ones.

Keywords D3R—drug design data resource - Algebraic topology - Graph theory - Differential geometry - Binding affinity -
Pose prediction - Docking - Deep learning - Generative adversarial network

Introduction December 4th, 2018. GC4 presented two different protein

targets, Cathepsin S (CatS) and beta secretase 1 (BACE),

The drug design data resource (D3R) offers blind communit-
ywide challenges of ligand pose and binding affinity ranking
predictions [1-3]. Benchmarks in D3R contests contain high
quality structures and reliable binding free energies supplied
by experimental groups before the publication. These chal-
lenges provide computer-aided drug design (CADD) com-
munity a great opportunity to validate, calibrate, and develop
drug virtual screening (VS) models. The latest D3R Grand
Challenge 4 (GC4), took place from September 4th 2018 to
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which were generously supplied by Janssen Pharmaceuticals
and Novartis, respectively. There were two stages in GC4.
The first one has two subchallenges, namely Stage 1a and
Stage 1b. In Stage 1a, participants were asked to predict the
pose, rank the affinity, and estimate the free energy of BACE
ligands. Following Stage 1a, Stage 1b revealed the receptor
structures and participants were asked again to predict the
crystallographic poses of 20 BACE ligands. There was no
affinity calculation in this stage 1b. The second part of GC4
was called Stage 2 which contained the affinity rankings and
free energy challenges for both BACE and CatS compounds.
In this last stage, participants were able to take advantage of
experimental structures of BACE complexes released right
after stage 1b.

A successful VS model requires a reliable ligand confor-
mation generation and highly accurate scoring function to
predict binding affinities. There are several state-of-the-art
software packages to take care of the first component of
VS, for example, Autodock Vina [4], GOLD [5], GLIDE
[6], ICM [7], etc. Unfortunately, one may fail dramatically
to achieve decent poses if blindly using these software
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programs. The pose prediction results in Grand Challenge 3
(GC3) clearly demonstrated this issue [3]. The second com-
ponent of VS relates to the development of scoring func-
tion (SF) for binding affinity predictions. Basically, one can
classify SF methods into four different types, namely force-
field-based SF, knowledge-based SF, empirical-based SF,
and machine learning-based SF [8]. The force-field-based
SFs commonly emphasize van der Waals (vdW) interactions,
electrostatic energy, hydrogen bonding descriptions, solva-
tion effects, and so on. The well-known SFs for this category
are COMBINE [9], MedusaScore [10], to name only a few.
Typical examples of knowledge-based SFs are [11], Drug-
Score [12], KECSA [13], and IT-Score [14], which utilize
protein—ligand pairwise statistical potentials in an additive
manner to predict binding affinities. One can regard the
empirical-based SFs as simple machine learning-based SFs
since these SFs employ linear regression schemes to con-
struct predictive models using various physical features, for
instance vdW interactions, Lennard—Jones potentials, hydro-
gen bonds, electrostatics, solvation, and torsion information,
etc. PLP [15], ChemScore [16], and X-Score [17] are the
well-known representatives in this category. The last type of
binding affinity SFs is machine learning-based approaches
which have recently arise as the most advanced technique in
CADD. One of the pioneer work on this SF category is RF-
Score [18] based on the Random Forest (RF) algorithm [19]
and their features as the numbers of atom pairwise contacts.
Thanks to the nonlinear representation of the sophisticated
machine learning frameworks, machine learning-based SFs
can characterize the non-additive contributions from func-
tional group interactions in the binding affinity calculations
[20-26].

The availability of massive biological datasets, along
with the accessibility to high-performance computing clus-
ter (HPCC), has made machine learning-based models an
emerging technology in biomolecular data analysis and pre-
diction. However, the accuracy of machine learning-based
SFs highly depends on whether their features are able to cap-
ture the physical and chemical information in protein-ligand
interactions. Moreover, the direct use of three dimensional
(3D) biomolecular structures in the deep learning network
is immensely expensive. This hindrance mainly causes by
the hefty number of degrees of freedom in the 3D macro-
molecular representations and the number of atoms varying
among different structures. Therefore, there is a pressing
need to develop innovative representations of protein—ligand
complexes for machine learning methods.

Mathematical deep learning (MathDL) encompasses a
family of scalable low-dimensional rotational and trans-
lational invariant mathematical representations integrated
with advanced machine learning, including deep learning
algorithms [27]. Its hypothesis is that the intrinsic phys-
ics of macromolecular interactions lie in low-dimensional
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manifolds. Based on such hypothesis, we have developed
a number of mathematical tools originated from geometry,
topology, graph theory, combinatorics, and analysis to sim-
plify macromolecular complexity and reduce their dimen-
sionality. For example, differential geometry provides a
high-level abstraction of macromolecular complexes [28].
In molecular biophysics, differential geometry-based frame-
work has shown its efficiency in modeling solvation-free
energies [29, 30] and ion channel transport [31-35]. How-
ever, in those applications, differential geometry information
is largely restricted to the separation of solvent and solute
domains in facilitating the Poisson-Boltzmann model or
the Poisson—Nernst—Planck model. In geometric modeling,
differential geometry has been utilized for the qualitative
analysis of biomolecule properties [36, 37]. Also, poten-
tial protein—ligand binding sites can be recognized via con-
cave and convex regions of molecular surfaces indicated
by minimum and/or maximum curvatures [37, 38]. Most
recently, the roles of different kinds of curvature in solvation
free energy models have been investigated [39]. However,
the efficiency of the aforementioned differential geometry
models is limited due to neglecting of atomic level informa-
tion. Element interactive manifolds (EIM) were proposed to
address this problem in differential geometry-based geomet-
ric learning (DG-GL) [25]. These EIMs successfully encode
the pivotal physical, chemical, and biological information
stored in high-dimensional data into low-dimensional mani-
folds, rendering a powerful approach for predicting solva-
tion free energy, drug toxicity, and protein—ligand binding
affinity [25].

Another low-dimensional mathematical approach is the
topological representation of biomolecular structures. In
topological data analysis, one can capture the connectivity
of macromolecules or molecular components. Topological
invariants, such as independent components, rings, cavi-
ties, and higher dimension faces in terms of Betti numbers
help to characterize the conformation change upon the pro-
tein—ligand binding process, the folding and unfolding of
proteins, and the opening or closing of ion channels [40].
The traditional topological descriptors, unfortunately, can-
not discriminate the geometric difference among various
macromolecular structures. Persistent homology (PH),
a new branch of algebraic topology, utilizes a filtration
parameter to generate a family of topological spaces and
associated invariants, which contain richer geometric infor-
mation [41, 42]. PH has been applied to computational
biology [43—45]. However, these applications were mostly
limited to qualitative analysis. Recently, we have devised
PH for the quantitative analysis of protein folding energy,
protein flexibility [46], ill-posed inverse problems of cryo-
EM structures [47], predictive models of curvature energies
of fullerene isomers [48, 49], and protein pocket detection
[50]. In 2015, we introduced one of the first combinations



Journal of Computer-Aided Molecular Design (2020) 34:131-147

133

of PH descriptors and machine learning algorithms [51].
Since then, the integration of PH and machine learning has
become a very popular approach in topological data analysis.
Nonetheless, this approach is not good enough for biomo-
lecular systems. It turns out that PH neglects chemical and
biological information in its topological simplification of
geometric complexity. Element-specific PH was introduced
to retain chemical and biological information [22]. The inte-
gration of element-specific PH and machine learning algo-
rithms has found great success in the predictions of protein
folding free energy changes upon mutation [52], binding
affinity [22-24], drug toxicity [53], partition coefficient, and
aqueous solubility [54]. It has been employed for the clas-
sification of active ligands and decoys [24]. All of these
new topological models outperformed other state-of-the-art
methods on various common benchmarks.

Similarly to topology, graph theory also accentuates the
connectivity between vertices to define graph edges. There
are two major types of graphs: geometric graphs and alge-
braic graphs. Geometric graphs concern the pairwise con-
nectivity between graph nodes and represent it in terms of
“topological index” [55, 56], graph centrality [57-59], and
contact map [60, 61]. The algebraic graph theory expresses
the connectivity via eigenvalues, particularly, the second-
smallest eigenvalue of the Laplacian matrix, known as
Fiedler value, which is often used to analyze the stability
of dynamical systems [62]. Graph theory has been widely
used in many interdisciplinary studies. In biophysics, it is
employed to model protein flexibility and long-time dynam-
ics in normal mode analysis (NMA) [63-66] and elastic net-
work model (ENM)[60, 67-72]. Since graph theory offers a
nature representation of molecular structure, it is a common
approach for analyzing chemical datasets [56, 73—77] and
biomolecular datasets [60, 78—83]. Although there was much
effort in constructing various graph representations in the
past, graph based quantitative models are often less accurate
than other competitive models in the analysis and prediction
of biomolecular properties from massive and diverse data-
sets. Indeed, in the protein stability changes upon mutation
analysis, the other models [23, 52, 84] are more accurate
than the graph-based approach [85]. In addition, the graph
theory based Gaussian network model (GNM) is not com-
petitive in protein B-factor predcitions [86]. One of the main
reasons is that there is no systematic representation of inter-
actions among different chemical element types in a molecu-
lar structure. Additionally, many graph approaches do not
describe non-covalent interactions. To overcome these limi-
tations, we have proposed novel multiscale weighted colored
subgraphs in both geometric graph and algebraic graph
schemes to achieve the state-of-the-art performances in the
predictions of protein B-factor [87], protein—ligand binding
affinity [21, 26], docking [26], and virtual screening [26].

Our MathDL models using graph theory and algebraic
topology were employed in the D3R Grand Challenges since
GC2 and have obtained many encouraging results. Specifi-
cally, our prediction of the binding free energy set in Stage 2
was ranked the best in GC2 in our first participation of D3R
competitions [27]. In our second participation, i.e. GC3, our
submissions achieved the top places in 10 out of 26 official
contests [27]. These achievements have confirmed the pre-
dictive power and efficiency of our MathDL models in drug
design and discovery. However, there were still some short-
comings existing in our previous approaches mostly con-
cerning the pose generation performance and ability to rank
affinities of compounds with diverse chemical structures.

In the current D3R challenge, i.e. GC4, we have brought
in two new technological aspects in our approach. First,
we have further developed powerful differential geometry
and algebraic graph-based MathDL models to assist our
algebraic topology based methods. Additionally, we have
extended our MathDL approach with more advanced deep
learning architectures like generative adversarial networks
(GAN) [88]. We have achieved very promising results with
top places in pose prediction, affinity ranking and free
energy estimation. The rest of this paper is devoted to more
detailed discussions of our methodologies and their perfor-
mances in D3R GC4.

Methods

We describe the mathematical methods underpinning our
MathDL models in this sections.

Differential geometry representation
Multiscale discrete-to-continuum mapping

Given a molecule having N atoms. Denote r; and g;,
i=1--N,respectively, an atomic coordinate and a partial
charge of the jth atom. A discrete-to-continuum mapping
[89-91] represents the unnormalized molecular density at
an arbitrary point r € R3 as follows

N
pr, () v h = Y, we(lr =rlim,), M
j=1

where |[r —r;|| is the Euclidean distance of the point r
and the jth atom in a given molecule. If all w; are set to
L, p(x, {n;}, {w,}) indicates a molecular density, whereas
p(r, {n}, {w,}) serves as molecular charge density with
w; = g; for all j. In the present work, we utilize Autodock
Tools (http://autodock.scripps.edu/resources/adt/index
_html) to assign the Gasteiger charges for small molecules
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and macromolecules. Additionally, n; are characteristic dis-
tances and @ is a monotonically decreasing kernel featuring
the similarity between two 3D data points. To ensure the
existence of the geometric representations such as curva-
tures, ® is chosen to be monotonically decreasing C? func-
tion satisfying the following conditions

O(IIr —r;ll;mll) =1, as |r—rx;]l =0, )

d)(||r —I'j||§71_/||) =0, as |r—r - . 3)

It is noted that radial basis functions meet admissibility con-
ditions (2) and (3). Commonly used correlation kernels are
generalized exponential functions

q;(”r _ l'j||§’1j||) - e—(llr—rjll/ﬂj)K.’ 0 @
and generalized Lorentz functions

1
®(lIr —rjllsm) = v>0. )

L (I =l /)"

Moreover, one can use correlation kernels to model the
electrostatic interaction between two charged articles as the
following

1

q)(”ri - rj”’ qi qj, C) = —1 N e—cqiq;/llri—Ff|| 5 (6)

where, ¢; and g; are the partial charges of two atoms, and ¢
is a nonzero tunable parameter. It is noted that ® described
in Eq. (6) does not follow the admissible conditions (2) and
(3). It is, therefore, only utilized to generate electrostatic per-
sistent homology. All the ®s discussed in the current work
were determined by one of Eqgs. (4)—(5). Here, ® takes 3D
coordinates and kernel parameters as the input variables and
maps them to a real number: R3 - R. Therefore, ® values
totally depend on atom coordinates or grid point positions
and are rotationally and translationally invariant.

It is expected that C? delta sequences of the positive type
discussed in an earlier work [92] can function well for the
correlation kernel purposes. To obtain multiscale discrete-
to-continuum mapping, one can employ more than one set
of scale parameters. In the current work, the aforementioned
mapping was applied to protein—ligand complexes.

Element interactive densities
In order for differential geometry (DG) representations
to effectively capture the crucial physical and biological

information of large and diverse biomolecular datasets, we
must employ DG to feature non-covalent intramolecular
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molecular interactions in a molecule and intermolecular
interactions in molecular complexes, such as protein—pro-
tein and protein—ligand.

Additionally, the accuracy of the DG representations can
be upgraded by element-level descriptions which result in
scalable low-dimension manifold representations of high
dimensional structures. For instance, to describe the pair-
wise interactions between protein and ligand, we consider
frequently occurring element types in proteins and ligands.
Particularly, the commonly occurring element types in pro-
teins are C, N, O, S and commonly occurring element types
in ligands are H, C, N, O, S, P, F, Cl, Br, L. That gives rise to
40 element pairwise groups. We do not include hydrogen in
protein element types since H is usually absent from most
datasets in the Protein Data Bank (PDB). Note that during
our validation process, the pairwise interactions between dif-
ferent atom types did not enhance the overall performance of
our models (this may be due to the limited data size.). Thus,
we only carried out the element-specific interactions for the
sake of simplicity.

Based on a statistical analysis, the frequently occurring
element types in the biomolecular dataset are denoted as
C=H,C, N,O,S,P,FCl,--. For convenience, C, repre-
sents the kth element in the set C. For example, C5 = S. An
ith atom in a given molecule is associated with its coordinate
r;, element type «;, and partial charge g;. The non-covalent
interactions between atoms of element type C, and C;, are
assumed to be described by the correlation kernel ®

{O(r; — ;| )l = G = Cps
i,j:1,2,...,N;||I‘l-—l‘j||>r,»+rj+0'}, (7)

where r; and r; are the atomic radii of ith and jth atoms,
respectively and o is the mean value of the standard
deviations of r; and r; in the interested dataset. The cova-
lent interactions are excluded due to the constraint
llr; = x;|| > r; + r; 4+ 0. In addition, n, is a characteristic
distance between the atoms, which depends only on their
element types.

To construct the element interactive densities, we define
atomic-radius-parametrized van der Waals domain of all
atoms of kth element type as [25]

Dy 1= Uy g=¢ B(r; 1), ®

in which B(r;, r;) is a ball with a center r; and a radius r;,
and r, is the atomic radius of the kth element type. Thus, D,
depends on atom coordinate r; and its atomic radius. Note
that, D, does not define any vdW interactions but a domain
to construct the surface density. The element interactive
density between domain D, and all atoms of k’th (k # k')

element type is given by
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Fig. 1 Illustration of some
element-specific selections

and corresponding element
interactive manifolds obtained
at a given level set of the ele-
ment interactive density. Each
sphere illustrates the atomic
positions. Cyan, red, and blue
colors represent carbon, oxygen,
and nitrogen, respectively. The
transparent surfaces are the iso-
surface extracted from volume
data represented in Eq. (8)

Pt (T M) = Z
J
a;=Cy
[Ir; = x|l > r; + 1+ 0,Ya; €C,

w;(||r = 1| [s10),

r € D,.
©

When k' = k, the element interactive density py, is now
induced only by van der Waals domain D,. In this case, we
exclude the covalent interactions based on the position of the
density input. Assuming r € D!, with D} = B(r;,r;),a; = C,
the element interactive density is then formulated by

P, 1) = Z

o
J

llr; = ;|| > 2r;+ 0

wO(|[r =1 [;7)-

For the sake of simplicity, we chose w; = 1 for all cases.
Since element interactive density is obtained by the addi-
tion of correlation kernels, it belongs to C? on the closed
domain of D,. We construct element interactive manifolds
by restricting the set of points at a given level set of the
density as shown in Fig. 1 .

Element interactive curvatures

Given an element interactive density p(r), one can calcu-
late the Gaussian curvature (K), the mean curvature (H),
the minimum curvature (k,,;,), and the maximum curvature
(K ax) for the resulting manifold as the following [37, 93]:

1
K= o 20,0, + 2020.0.,Py. + 20,0.0,,Ps

=2pP.Px:Pyy = 200 P1iPy; — 20xPyPryP;

2 2 2 (11)

22 22 2 2
= PPy, = PPy = PPy |
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1
H=—I[2ppypy +20.0.P; + 20,00,

2g2
= () + P = 0y + 000y — (3 + PP (1)
Kmin =H- H2_K’ (13)

k... = H+ VH K, (14)

where g = p? + pi + 0.

To construct unified curvature quantities for various bio-
molecular structures, we study the element interactive curva-
tures (EIC) at the atomic center and formulate them as [25]

Klljkll(ﬂkk/) = Z Kkk/(r[, nkk’)’ r; S Dk,k # k, (15)
and

Egs. (15) and (16) are for the element interactive Gaussian
curvature (EIGC), are applied to protein—ligand complexes
in the current work. Thus, the atomic centers in Egs. (15)
and (16) can be either from ligand atoms or protein atoms.
In a same manner, one can define ), (1) K,g’mm(nkk,) and
Kllil,’max(ﬂkk,) for the element interactive mean curvature, ele-
ment interactive minimum curvature, and element interac-
tive maximum curvature, respectively.

It is worth noting that, the expressions of the curva-
tures defined in (11)—(14) are in the analytical forms. Thus,
the EIC formulations are free from numerical error and
totally preserve the reference geometric information of the
molecules.

Multiscale weighted colored geometric subgraphs

For a given molecular datasets, we denote C a set consist-
ing of the most frequently appearing element types. For a
molecule of interest, we define a graph with the following
vertices

V={@,a)r; e R, €Cij=1,2,....N}, A7)

where N is the number of atoms, r; and «; are, respectively,
coordinates and element type of the jth atom. Similarly to
the discussion in the differential geometry representation
section, we only consider non-covalent interactions repre-
sented by correlation kernels

Er = {O(|r; = 1115 M) la; = Cpo @ = G
Lj=12,...,N;lle, = x;|| > r; +1;+ 0}, (18)
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all the notations in Eq. (18) are adopted from “Differen-
tial geometry representation” section. In which, ® refers
to the edge weight which represents the potential interac-
tion between two nodes forming that edge. We now form
weighted colored subgraphs G(V, £;,/) to describe pairwise
interactions in a given molecule. To unify the geometric
graph-based descriptors for a diversity dataset, we construct
multiscale weighted colored subgraph rigidity between kth
element type C, and k'th element type C;, via a graph central-
ity type of scheme

R = D uilng) = Y D
1 l ]
a; =Cy

D(|[r; — x| [i0)-

% =Cy

[Ir;=xll >r+r+0

19)
The proposed subgraph rigidity index RI®(#7,,,) in Eq. (19) is
the aggregation of the collective subgraph centrality M,-G(’?kk/)
which used in our previous B-factor prediction model [87].
That formulation represents a coarse-grained description at
the element-level capturing important physical and biology
information in a molecule or biomolecule such as van der
Waals interactions, hydrogen bonds, electrostatics, etc. This
description is scalable, i.e., independent of the size of an
individual protein—ligand complex. In fact, when describing
protein—ligand interactions, the labeled subgraph G(V, &£;,)
gives rise to a bipartite graph with its edges connecting
protein atoms to ligand atoms. The positive and negative
eigenvalues of the adjacency matrix of a bipartite graph are
reflective, which enables us to select only positive or nega-
tive eigenvalues in machine learning. Moreover, Eq. (19)
generalized our previous binding affinity prediction model
[21] and was utilized for the D3R Grand Challenge 3 [27].

Multiscale weighted colored algebraic subgraphs

Still based on multiscale weighted colored subgraphs as
defined in “Multiscale weighted colored geometric sub-
graphs” section, we have recently developed a novel alge-
braic graph approach or spectral graph formulation to
describe molecules, biomolecules and their interactions at
atomic levels [25]. We here utilize the Laplacian matrix and
adjacency matrix to represent the interactions between nodes
in a given subgraph.

Based on a weighted colored subgraph G(V, &), we
define the weighted colored Laplacian matrix L (1) as the
following

if i#j,a=C,a=Cy
—@(||r; — x;l|71440) e

and ||r;—x;|| >r,+ 71+ 0;
- XL it i=j.

Lij(”lkk/) =

(20)
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Laplace matrix

Fig.2 Illustration of weight colored subgraphs Gyq including its
Laplacian matrix (Left), and adjacency matrix (Right) deduced from
molecule graph (CsH¢N,O,) (Middle). Atoms 1 and 4 are oxy-

gen, while atoms 2 and 3 are nitrogen. Graph edges, @, are in the

Due to the symmetric, diagonally dominant and positive-
semidefinite, all eigenvalues of the Laplacian matrix szj(’lkk')
are nonnegative. Moreover, the smallest eigenvalues are
zero. It is worth noting that the number of zero eigenvalues
can equally referred to the zero-dimensional topological
invariant which implies the number of the connected com-
ponents in the graph. If a graph is connected, there exists one
non-zero eigenvalue. Moreover, the smallest non-zero ones
is called as Fiedler value representing algebraic connectivity.
It is interesting to see that one can reconstruct the geometric
graph rigidity via the following formulation

RI(f) = TrL(ye),

In addition, we can form the adjacency matrix A for the
aforementioned subgraph G(V, £,;,) by

ifi#j,a'=ck, '=Ck/

O(||r; — ;|| ! J

(e = x5l 150 and [, = 1| > r; + 1, + 0;
0 ifi=j.

A(Mge) =

ey
Clearly, adjacency matrix A(#;,) is a symmetric non-nega-
tive matrix. As a result, its spectrum is real. The Laplacian
and adjacency matrices for subgraph including only oxygen
and nitrogen atoms in molecule CsH¢N,O, are depicted in
Fig. 2. Note that for different molecules, one can expect to
have different graph structures. We only utilized one unique
3D representation for each ligand; thus there was only
one single graph structure to represent one corresponding
compound.

In general, the element-level information decoded from
the Laplacian matrix and the adjacency matrix is quite simi-
lar despite of the different behaviors among their eigenvalues
and eigenvectors. Specifically, the correlation between the
adjacency matrix and the Laplacian matrix can be found in
the Perron-Frobenius theorem via the following inequalities

Adjacency matrix

green-dashed lines representing the noncovalent bonds. In addition,
one can get nine other nontrivial subgraph for this molecule, namely
Geer Gens Geo» Gen» Onns G Goos Gon and Gy

min D A; < p(4) < max Y’ Ay, 22)
J J

In other words, one can state that the spectral radius p(A)
of the adjacency matrix A is bounded by diagonal element
interval of the corresponding Laplacian matrix L.

In the algebraic approach, we are interested in describ-
ing the interactions between elements in the subgraph by
the eigenvalues of its matrix. Thus, we design the weighted
colored Laplacian matrix based descriptor at the element-
level by

RIL(r]kk/) = z Ml‘L(nkk’)’ (23)

and the weighted colored adjacency matrix based descrip-
tor is proposed in a similar manner. Note that GNM [60] is
a special case of the proposed Laplacian matrix uf(nkk,).
Thus, one can utilize its spectrum uf(nkk,) for the protein
B-factor prediction. To enrich the algebraic graph-based
description information, we consider the statistics of the
eigenvalues such as sum, mean, maximum, minimum and
standard deviation.

Algebraic topology-based molecular signature

By employing powerful topological analysis, one can con-
struct sophisticated topological spaces to capture the key
interactions at the element level of an interested molecule or
biomolecule. These physical and chemical information are
encoded in different dimensional space under the topological
invariant features, so-called Betti numbers. Upon the topo-
logical information, the rich and systematic descriptions are
formulated and integrated with advanced machine learning
framework.

Persistent homology

In the geometric point of view, the collection of points,
edges, triangles, and higher-dimension representations

@ Springer
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Fig. 3 Illustration of bound-
ary operators, chain, cycle, and
boundary groups in R3. Yellow
circles are empty sets

form topological spaces. The general form of a triangle or
a tetrahedron is called a simplex. Mathematically, a set of
(k + 1) affinely independent points in R" with n > k gives
rise to a simplex. To further characterize the topological
spaces, face is introduced as a convex hull of a subset of
points defining a simplex. In addition, a finite collection of
simplices defines a simplicial complex X provided that two
requirements are met. First, the faces of any simplex in X are
also in X. Second, the intersection of two simplices ¢, and o,
in X are either empty or a face of both ¢, and ¢,. In a given
simplicial complex X, a k-chain c is a formal sum of all the
k-simplices in X which is defined as ¢ = ), a,0;. Here, g, is
an integer coefficient chosen in a finite field Z, with a prime
p. With the additional operator on the coefficients of in the
k-chain, one can form a group of k-chain denoted C,(X). The
boundary operator on simplices is defined as

k

0,(0) = D\ (=1)[vg, -+, By oo, vy, 24)
i=0

where v, :-,v, are vertices of the k-simplex ¢ and

[vg, **+» V;5 ==+, v, ] means the codim-1 face of ¢ be omit-

ting the vertex v;. The boundary operator 9d,(c) is homeo-
morphisms going from C,(X) to C,_;(X) with an important
property d,0d,,; = 0. Therefore, one can form the following
chain complex
041 9 iy ) 9 9
CX)—C_(X)— - — C,(X)— Cy(X)— 0.
(25)

In algebraic topology, homology is used to distinguish
two shapes by detecting their holes. To define kth homol-
ogy group, we consider the image of the boundary operator
Oy denoted B (X) = Im(d,, ;) and the kernel of 9, denoted
Z,(X) = Ker(d,) which are all illustrated in Fig. 3. Then,
the quotient group between the aforementioned kernel and
image gives rise to the kth homology group

Hi(X) = Z(X)/ B(X). (26)

The described above homology group is applied for a fixed
topological space. To accommodate the objects related
to multiscale, we can construct a sequence of subspaces
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of topological space. Such sequence is called a filtration
@=X,CX, C-CX, , CX, = X which naturally induces
a series of homology groups of different dimensions con-
nected by homomorphisms

LY Hy(X) - Hi(X), with0 <7 <s <m. 7)

The images of these homomorphisms are called kth per-
sistent homology groups, and ranks of these groups define
kth persistent Betti numbers which are used to recognize
topological spaces via number of k-dimensional holes. In the
physical interpretation, Betti-O counts the number of inde-
pendent components, Betti-1 illustrates number of rings, and
Betti-2 encodes the cavities.

Topological description of molecular systems

We carry out persistent homology on labels subgraph
G(V, &) defined in the previous sections to describe molec-
ular properties. The resulting topological formulation is
called element specific persistent homology [22, 52].

There are two common types of filtration, namely Vieto-
ris—Rips complex and alpha complex [94]. The Vieto-
ris—Rips complex, a distance-based filtration, is used to
directly address the protein—ligand interactions. For a set of
atoms in subgraph G(V, &,;,), the subcomplex associated to
€ is defined as

Xrips(€) = {0 € X|o = [vg, =+, ], d(v;,v;) < 2¢ for 0 < i, j <k},

(28)
where X is the collection of all possible simplices, d is the
distance between two atoms. To capture a complex protein
geometry, one can utilize alpha complex. The alpha filtration
is built upon the non-empty intersection between a k-simplex
and a (k + 1) Voronoi cells. In general, in the alpha filtration,
the subcomplex associated to e is defined as

Xopna(€) = {6 € X|o = [vg, =+, v ], 0, (V(v) N B.(v)) # B},
(29)
where V(v;) is the Voronoi cell of v; and B.(v;) is an € ball
centered at v;. For the details of building an alpha filtration,
we refer the interested readers to our published work [46].
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Fig.4 A framework of MathDL
energy prediction model which

integrates advanced mathemati-
cal representations with sophis-
ticated CNN architectures

Protein-
ligand
complex

Similarly to multiscale weight colored subgraphs in alge-
braic graph theory approaches, the element specific persis-
tent homology has been shown to capture crucial physical
interactions by tweaking the distance functions used in the
filtration [22, 52]. Indeed, the hydrophobic effects can be
described by considering the persistent homology computa-
tion on the collection of all carbon atoms. To describe the
hydrophilic behavior of the molecular system, the element
specific persistent homology is carried out only for nitro-
gen and oxygen atoms. In addition, an appropriate distance
function selection can characterize the covalent bonds and
non-covalent interactions in small molecules [24].

There are several ways to incorporate barcodes generated
by persistent homology into machine learning models. One
can use the Wasserstein metric to measure the similarities
between two molecules’ barcodes. As a result, the distance-
based machine learning approaches such as nearest neigh-
bors and kernel methods can be exploited [24]. To make
use of advanced machine learning algorithms such as the
ensemble of trees and deep neural networks, we vectorize
persistent homology barcodes by discretizing them into bins
and taking into account of the persistence, birth and death
incidents in each bin. Furthermore, the statistics of element-
specific persistent homology barcodes are included in fixed
length features [24]. In the convolutional neural networks,
such featurization of barcodes is represented in 1-dimen-
sional and 2-dimensional like images [23, 24].

MathDL energy prediction models

We integrate the mathematical features with deep learn-
ing networks to form a powerful predictive model. The
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convolutional neural network (CNN) is a well-known algo-
rithm with much success in image recognition and computer
vision analysis. Essentially, CNN is a regularized version
of the artificial neural network consisting of many convo-
lutional layers, followed by several fully connected layers.
To enhance the learning process, dropout techniques have
been exploited in network layers [95]. The neural networks
we use are classified as the feed-forward network where all
the information in the current layer is linearly combined and
then nonlinearized via an activation function before send-
ing out to the next layer. The predictive power of the CNN
models relies on the characterization of the local interac-
tions in the spatial dimension under the discrete convolution
operator. The choice of features inputs in the CNN networks
gives rise to variants of binding energy predictive models.
Figure 4 depicts MathDL energy prediction models and
their network architectures are described in Fig. S1 in the
Supporting Information. In the D3R GC4, we utilized two
different models. In the first approach, the combination of
algebraic topology and differential geometry features were
employed in the network, we named this model BP1. In the
second approach, algebraic topology, differential geometry,
and algebraic graph representations were mixed to lead to
another binding energy prediction model named BP2. The
details of feature generation procedure of the algebraic
topology, differential geometry, and algebraic graph models
can be found in our earlier work [24-26].

MathDeep docking models

We here present an innovative pose generation scheme,
denoted MGAN, using advanced mathematical

@ Springer
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Fig.5 Illustration of our docking approach using mathematical repre-
sentations integrated with GAN architectures. The generator contains
an autodecoder, a latent space (LS), and a noise source. The discrimi-
nator consists of an autoencoder and latent space. The Math center
encodes 3D structures into low-dimensional mathematical represen-
tations using algebraic topology, differential geometry, and/or graph
theory

representation pre-conditioned generative adversarial net-
works (GAN). GAN is a kind of deep learning model con-
sisting of a generator G to learn the data distribution, and a
discriminator D to discriminate training set structural infor-
mation from that of the generator G [88]. The G model is
iteratively improved from the D feedback until the D cannot
tell the difference between training set structural information
and D set one. To improve the GAN performance and avoid
vanishing gradient and mode collapse, we employ Wasser-
stein GAN (WGAN) [96] in our model. To further enhance
the quality of the generated structures, we take advantage
of the conditional GAN technique [97]. The deep learning
(DL) models G and D are partially adapted from our binding
energy prediction networks which are fed with data encoded
in intrinsically low-dimensional manifolds with differential
geometry, algebraic topology and graph theory. Figure 5
depicts the MGAN’s framework. Network architectures
of autodecoder and autoencoder are illustrated in Figs. S2
and S3, respectively. By varying combinations of different
mathematics, we end up with several docking models. Spe-
cifically, If DL networks G and D only exploit algebraic
topology, we name this docking model DM1. Similarly, we
attain DM2 and DM3 when GAN model includes only alge-
braic graph and differential geometry based representations,
respectively. Finally, DM4 is constructed with the assistance
of algebraic topology, algebraic graph, and differential
geometry. We employed the PDBbind v2018 dataset to train
MathDL and MGAN models. The optimal hyperparameters
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of the MathDL model were selected by experience and final-
ized by hyperopt python package (http://github.com/hyper
opt/hyperopt). The MGAN model was trained based on the
setting of Wasserstein GAN network discussed in this work
[96]. Furthermore, to enhance the pose generation quality,
we carry out the transfer learning to further optimize the
MGAN model with the protein family-specific structures.

Results and discussion

In this section, we present MathDL results and discuss our
performances in the latest Grand Challenge named GC4.

Pose prediction results and discussion

We have participated in the docking challenge task since
D3R GC2. Before the current challenge, i.e., GC4, our
docking results in term of RMSE were not competitive in
comparison to those of other participants. Specifically, our
mean RMSD values are 6.03 A and 3.78 A for GC2 and
GC3, respectively. These results reflect an improvement in
our docking approaches but their accuracy is still behind the
top submissions in GC3. Instead of depending on the dock-
ing programs such as Autodock Vina [4] and GLIDE [6] as
we did in the previous challenges, our GC4 docking schemes
were driven by advanced mathematical representations and
sophisticated deep learning architectures. Consequently, we
achieved remarkable performances on the pose prediction
tasks. The rest of this section is devoted to result discussions.

Despite having two protein receptors in GC4, all the pose
predictions were only for BACE ligands and were organ-
ized in two stages, Stage 1a and Stage 1b. In Stage 1a, par-
ticipants were provided SMILES strings of 20 ligands to be
docked, the FASTA sequence of the BACE protein, and the
reference protein structure (PDBID: Sygx, chain A) for the
superimposition process. Stage 1b took place right after the
end of Stage 1a. Stage 1b provided the experimental protein
structures in the complexes with 20 ligands requested for
pose predictions, in which the structures of these ligands
were removed. Participants were still asked to predict their
poses. Therefore, Stage 1b is often referred to a self-dock-
ing challenge. There are two evaluation metrics for the pose
prediction tasks, namely median and mean calculated over
all RMSD values between the predicted poses and crystal
structures.

In Stage 1a, we submitted two results. Figure 6 illustrates
the performances of 70 submissions having median RMSD
<10 A . Our best submission having receipt ID 5t302 with
median RMSD = 0.53 A and being highlighted in the red
color. This docking model was DM1. In Stage 1b, we deliv-
ered four submissions; unfortunately, none of them was
ranked the first place in either the median or mean metric.


http://github.com/hyperopt/hyperopt
http://github.com/hyperopt/hyperopt
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Fig.6 Performance comparison of different submissions on pose prediction challenge of Stage la for the BACE dataset in term of median
RMSD. Our submissions are highlighted in the red color, in which the best one is 5t302 with median RMSD = 0.55 A

Fig. 7 Illustration of pose
predictions by our MathGAN
docking model with receipt ID
5t302. The top-left corner is
original binding pocket of the
BACE receptor. The top-right
corner is our best pose predic-
tion accuracy obtained when
predicting BACEO3’s pose
with RMSD = 0.23 A . The
bottom-left corner is our middle
performance when predicting
BACEO5’s pose with RMSD
=0.53 A . The bottom-right is
our worst performance when
predicting BACEQ7’s pose with
RMSD = 2.63 A . The experi-
ment structures are in yellow
while the predicted structures
are in purple

However, our results were very promising. Particularly, our ~ with mean RMSD being 0.61 A (receipt ID 50d5g). It may
submission based on docking model DM3 with receipt ID ~ be noted that the best result in Stage 1b is not as good as
itzv6 achieved mean RMSD of 0.73 A which is at the sec-  that in Stage la. Figure 7 compares the poses predicted by
ond place and is a bit less accurate than the top submission
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Fig.8 Performance comparison of different submissions on the combined ligand and structure based scoring of CatS dataset in term of Spear-
man’s p. Our submissions are highlighted in the red color, in which our top-ranked submissions are 3c8nw and Oxvrb with p=0.73

our submission ID Oinvp to the corresponding experimental
structures at different levels of accuracy.

It is interesting to find out that, the additional informa-
tion of the co-crystal structures did not help our docking
models. For example, our docking approach DM4 with sub-
mission ID Oinvp attained median RMSD of 0.53 A and
mean RMSD of 0.8 A | respectively in Stage 1a. However,
in Stage 1b, the same model labeled by receipt ID 2ieqo
produced median RMSD and mean RMSD as high as 0.55
A and 0.84 A | respectively. These observations can con-
firm the robustness of our models and predictive value for
the realistic situations in CADD when little or no co-crystal
information is provided.

Affinity prediction results and discussion

There were two subchallenges for affinity prediction tasks.
Subchallenge 1 regarded BACE ligands while Subchallenge
2 concerned CatS ligands. Both subchallenges were inter-
ested in affinity ranking of a diversity datasets and relative
binding affinity predictions on the designated free energy
set. There were two stages on BACE affinity prediction task,
namely Stage 1 and Stage 2, whereas there was only one
stage on CatS ligands. Unfortunately, we did not participate
in Stage 1 of the BACE target since the announcement email
made us overlook this contest.

Statistically, there were 154 compounds in the BACE
dataset for affinity ranking contest, while there were 34
compounds for the calculation of relative or absolute bind-
ing affinities of the same receptor target. In CatS dataset,
participants were asked to rank affinities of 459 ligands and
predicted the binding energies of a smaller subset with 39
molecules. Moreover, Kendall’s 7 and Spearman’s p were
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the evaluation metrics for affinity ranking challenges. In the
binding free energy predictions, besides the aforementioned
metrics, Pearson’s » and centered root mean square error
(RMSE,) were utilized.

Overall, the official results from the D3R organizer have
placed us among the top performers on these energy predic-
tion contests. By considering specific evaluation metrics,
we were ranked first place in combined ligand and structure
based scoring', structure based scoring, and free energy set
subcategories all belonging to the CatS dataset. For illus-
tration, Figure 8 presents the Spearman’s p performance
of different submissions on the CatS affinity ranking con-
test combining ligand and structure based scoring models.
Our best submission are highlighted in the red color with
receipt IDs 3c8nw and Oxvrb. Both of them achieved the
same Spearman’s p as high as 0.73 and shared the first place
with another group’s submission having ID x4svd. In sub-
mission ID 3c8nw, we employed docking model DM4 for
pose generation and model BP2 for the affinity prediction.
While in submission ID Oxvrb, docking approach was DM3
and binding prediction protocol was BP2. In addition, our
best result with ID ar5p6 achieved the lowest RMSE, for
the free energy prediction of 39 designated CatS molecules.
This successful submission utilized docking model DM4 and
affinity prediction model BP2 for the calculations. Figure 9
presents RMSE, performance of various groups for the free
energy prediction of CatS dataset. Table 1 summarizes the
performances of our group at all categories in D3R GC4.
We only counted the number of our submissions in the top
three including ties. “No participation” at the results column

! This subcategory is the common list of ligand based and structure
based scoring subcategories.
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Fig.9 Performance comparison of D3R GC4 participants on free energy set for CatS contest in term of centered RMSE RMSE,. Our submis-
sions are highlighted in the red color, in which our top-ranked prediction is ar5p6 with RMSE_ = 0.47 kcal/mol

implies that we did not participate in the corresponding con-
test. The blank results indicate that our predictions were not
ranked within the top three.

It is noted that in the BACE affinity prediction, our results
were not in the top three. In fact, our team was behind only
to two teams that collected all the top three places in BACE
affinity ranking, which indicates the consistence of our
MathDL models in GC4 competitions.

Overall, the model BP2 was our best model for binding
affinity prediction for both CatS and BACE datasets (see
Table S1). The great performance of BP2 was expected since
it combines algebraic topology, differential geometry, and
graph theory features which help to enrich feature space and
cover the most important aspects of physical and biological
properties. However, there was a mixed conclusion when
finding the best solution for pose prediction. Indeed, mod-
els DM3 and DM4 worked well for the CatS dataset, while
DMI1 was an only good solution for producing high quality
poses for the BACE dataset (see Table S1). They helped the
predictor BP2 achieved the best rankings among our submit-
ted models. One can argue that DM1 achieved the best pose
prediction for BACE ligands in Stage 1A; therefore it was
foretasted to help BACE energy prediction tasks. The same
behavior was observed for CatS dataset. According to our
pre-validation results, DM4 which was our best model for
the CatS pose prediction, achieved mean RMSD of 1.8 A for
the CatS pose prediction Stage 1B challenge in GC3. Note
that the best submission in that subchallenge accomplished
mean RMSD as low as 2.13 A. It seems that the pose quality
of our pose generation models correlates well to the accu-
racy of our binding affinity predictors.

Conclusion

The performances of our mathematical deep learning
(MathDL) models on D3R GC4 are presented and discussed
in this paper. We participated in a variety of D3R GC4 con-
tests including pose predictions, affinity ranking, and abso-
lute free energy predictions. Overall, our submissions were
ranked the first in pose prediction in Stage 1a, affinity rank-
ing and free energy predictions for Cathepsin ligands. Unfor-
tunately, we did not get the first place on BACE datasets.
Our best submission was only at the second place in free
energy set for BACE in Stage 2 contest. In comparison to our
previous D3R challenges, i.e., D3R GC2 and D3R GC3, we
had two improvements in D3R GC4. The first improvement
was the pose prediction. This was the first time we won this
contest thanks to our newly developed docking model which
integrates scalable low-dimensional rotational and transla-
tional invariant mathematical representations, such as dif-
ferential geometry, algebraic graph, and algebraic topology,
with well-designed generative adversarial networks. The
second improvement was the affinity ranking for a dataset
with diverse chemical properties. In previous challenges,
our approaches performed well on free energy predictions
but not on affinity ranking. In GC4, we successfully unified
our newly established models, i.e., differential geometry and
algebraic graph, and our well-known algebraic topology into
powerful and robustness convolutional neural network mod-
els for binding affinity predictions.

In terms of efficiency, at this point, our MathDL models
are quite automated. With sufficient computer resources, our
MathDL models can finish all the GC4 competition tasks in
a week or so.
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Table 1 (continued)

Docking protocol Scoring protocol

Evaluation metric

Submission ID

Superscript

BP2
BP1
BP2
BP2
BP2
BP2
BP2
BP2
BP2
BP2
BP2
BP2

DM1
DM3
DM2
DM4
DM3
DM3
DM3
DM3
DM1
DM1
DM1
DM1

Kendall’s ¢

qb2s2

Spearman’s p

qiSev

kohoc
ar5p6

Spearman’s p

RMSE,

Xi

24b03
24b03
24b03
24b03
8frur

Xii

RMSE,

Kendall’s ¢

Xiii

Spearman’s p

Pearson’s r

Kendall’s ¢

Xiv

Spearman’s p

RMSE,

8frur

8frur

Pearson’s r

8frur

XV

The numbers in “(a / b)” indicates that @ number of our predictions had the ranking and there was a total of b submissions sharing the ranking

It is worth noting that our models for GC4 was the less

competitive performance in BACE affinity ranking and free
energy predictions. Additionally, it seems that our dock-
ing model did not upgrade when the co-crystal structures
became available. These issues are under our investigation.

Acknowledgements This work was supported in part by NSF Grants
DMS-1721024, DMS-1761320, and 1IS1900473 and NIH Grant
GM126189. DDN and GWW are also funded by Bristol-Myers Squibb
and Pfizer.

References

10.

11.

12.

13.

14.

Gathiaka S, Liu S, Chiu M, Yang H, Stuckey JA, Kang YN, Del-
proposto J, Kubish G, Dunbar JB, Carlson HA et al (2016) D3r
grand challenge 2015: evaluation of protein-ligand pose and affin-
ity predictions. J] Comput-Aided Mol Des 30(9):651-668

Gaieb Z, Liu S, Gathiaka S, Chiu M, Yang H, Shao C, Feher VA,
Walters WP, Kuhn B, Rudolph MG et al (2018) D3r grand chal-
lenge 2: blind prediction of protein-ligand poses, affinity rank-
ings, and relative binding free energies. ] Comput-Aided Mol Des
32(1):1-20

Gaieb Z, Parks CD, Chiu M, Yang H, Shao C, Walters WP, Lam-
bert MH, Nevins N, Bembenek SD, Ameriks MK et al (2019) D3r
grand challenge 3: blind prediction of protein-ligand poses and
affinity rankings. J] Comput-Aided Mol Des 33(1):1-18

Trott O, Olson AJ (2010) AutoDock Vina: improving the speed
and accuracy of docking with a new scoring function, efficient
optimization, and multithreading. ] Comput Chem 31(2):455-461
Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Develop-
ment and validation of a genetic algorithm for flexible docking. J
Mol Biol 267(3):727-748

Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz
DT, Repasky MP, Knoll EH, Shelley M, JK JKP, Shaw DE, Fran-
cis P, Shenkin PS (2004) Glide: a new approach for rapid, accu-
rate docking and scoring. 1. method and assessment of docking
accuracy. J Med Chem 47:1739

Abagyan R, Totrov M, Kuznetsov D (1994) Icm-a new method for
protein modeling and design: applications to docking and struc-
ture prediction from the distorted native conformation. J] Comput
Chem 15(5):488-506

Liu J, Wang R (2015) Classification of current scoring functions.
J Chem Inf Model 55(3):475-482

Ortiz AR, Pisabarro MT, Gago F, Wade RC (1995) Prediction of
drug binding affinities by comparative binding energy analysis. J
Med Chem 38:2681-2691

Yin S, Biedermannova L, Vondrasek J, Dokholyan NV (2008)
Medusascore: an acurate force field-based scoring function for
virtual drug screening. J] Chem Inf Model 48:1656—-1662
Muegge I, Martin Y (1999) A general and fast scoring function
for protein-ligand interactions: a simplified potential approach. J
Med Chem 42(5):791-804

Velec HFG, Gohlke H, Klebe G (2005) Knowledge-based scoring
function derived from small molecule crystal data with superior
recognition rate of near-native ligand poses and better affinity
prediction. ] Med Chem 48:6296-6303

Zheng Z, Wang T, Li P, Merz KM Jr (2015) KECSA-Movable
type implicit solvation model (KMTISM). J] Chem Theor Comput
11:667-682

Huang SY, Zou X (2006) An iterative knowledge-based scoring
function to predict protein-ligand interactions: I. derivation of
interaction potentials. ] Comput Chem 27:1865-1875

@ Springer



146

Journal of Computer-Aided Molecular Design (2020) 34:131-147

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

Verkhivker G, Appelt K, Freer ST, Villafranca JE (1995) Empiri-
cal free energy calculations of ligand-protein crystallographic
complexes. i. Knowledge based ligand-protein interaction poten-
tials applied to the prediction of human immunodeficiency virus
protease binding affinity. Protein Eng 8:677-691

Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997)
Empirical scoring functions: I. The development of a fast empiri-
cal scoring function to estimate the binding affinity of ligands in
receptor complexes. ] Comput-Aided Mol Des 11:425-445
Wang R, Lai L, Wang S (2002) Further development and valida-
tion of empirical scoring functions for structural based binding
affinity prediction. J. Comput-Aided Mol. Des 16:11-26
Ballester PJ, Mitchell JBO (2010) A machine learning approach
to predicting protein -ligand binding affinity with applications to
molecular docking. Bioinformatics 26(9):1169-1175

Breiman L (2001) Random forests. Mach Learn 45(1):5-32

Li H, Leung K-S, Wong M-H, Ballester PJ (2014) Substituting
random forest for multiple linear regression improves binding
affinity prediction of scoring functions: cyscore as a case study.
BMC Bioinform 15(1):1

Nguyen DD, Xiao T, Wang ML, Wei GW (2017) Rigidity
strengthening: a mechanism for protein-ligand binding. J Chem
Inf Model 57:1715-1721

Cang ZX, Wei GW (2018) Integration of element specific persis-
tent homology and machine learning for protein-ligand binding
affinity prediction. Int J Numer Method Biomed Eng. https://doi.
org/10.1002/cnm.2914

Cang ZX, Wei GW (2017) TopologyNet: topology based deep
convolutional and multi-task neural networks for biomolecular
property predictions. PLOS Comput Biol 13(7):e1005690. https
://doi.org/10.1371/journal.pcbi. 1005690

Cang ZX, Mu L, Wei GW (2018) Representability of algebraic
topology for biomolecules in machine learning based scoring and
virtual screening. PLOS Comput Biol 14(1):e1005929. https://doi.
org/10.1371/journal.pcbi.1005929

Nguyen DD, Wei G-W (2019) Dg-gl: differential geometry-based
geometric learning of molecular datasets. Int J Numer Method
Biomed Eng 35(3):¢3179

Nguyen D, Wei G-W (2019) Agl-score: algebraic graph learning
score for protein-ligand binding scoring, ranking, docking, and
screening. J] Chem Inf Model 59(7):3291-3304

Nguyen DD, Cang Z, Wu K, Wang M, Cao Y, Wei G-W (2019)
Mathematical deep learning for pose and binding affinity predic-
tion and ranking in d3r grand challenges. ] Comput-Aided Mol
Des 33(1):71-82

Wei GW (2010) Differential geometry based multiscale models.
Bull Math Biol 72:1562-1622

Chen Z, Zhao S, Chun J, Thomas DG, Baker NA, Bates PB, Wei
GW (2012) Variational approach for nonpolar solvation analysis.
J Chem Phys 137:084101

Wang B, Wei G-W (2015) Parameter optimization in differential
geometry based solvation models. ] Chem Phys 143:134119
Chen D, Wei GW (2012) Quantum dynamics in continuum
for proton transport III: generalized correlation. J Chem Phys
136:134109

Chen D, Wei GW (2012) Quantum dynamics in continuum
for proton transport—generalized correlation. J Chem Phys
136:134109

Wei G-W, Zheng Q, Chen Z, Xia K (2012) Variational multiscale
models for charge transport. SIAM Rev 54(4):699-754

Wei GW (2013) Multiscale, multiphysics and multidomain models
I: basic theory. J Theor Comput Chem 12(8):1341006

Chen D, Wei GW (2013) Quantum dynamics in continuum for
proton transport I: basic formulation. Commun Comput Phys
13:285-324

@ Springer

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Feng X, Xia K, Tong Y, Wei G-W (2012) Geometric modeling
of subcellular structures, organelles and large multiprotein com-
plexes. Int J Numer Method Biomed Eng 28:1198-1223

Xia KL, Feng X, Tong YY, Wei GW (2014) Multiscale geometric
modeling of macromolecules i: Cartesian representation. J Com-
put Phys 275:912-936

Mu L, Xia K, Wei G (2017) Geometric and electrostatic mod-
eling using molecular rigidity functions. J Comput Appl Math
313:18-37

Nguyen DD, Wei GW (2017) The impact of surface area, volume,
curvature and Lennard-Jones potential to solvation modeling. J
Comput Chem 38:24-36

Kaczynski T, Mischaikow K, Mrozek M (2004) Computational
homology. Springer-Verlag, Berlin

Edelsbrunner H, Letscher D, Zomorodian A (2001) Topological
persistence and simplification. Discret Comput Geom 28:511-533
Zomorodian A, Carlsson G (2005) Computing persistent homol-
ogy. Discret Comput Geom 33:249-274

Kasson PM, Zomorodian A, Park S, Singhal N, Guibas LJ, Pande
VS (2007) Persistent voids a new structural metric for membrane
fusion. Bioinformatics 23:1753-1759

Dabaghian Y, Mémoli F, Frank L, Carlsson G (2012) A topo-
logical paradigm for hippocampal spatial map formation using
persistent homology. PLoS Comput Biol 8(8):1002581
Gameiro M, Hiraoka Y, Izumi S, Kramar M, Mischaikow K,
Nanda V (2014) Topological measurement of protein compress-
ibility via persistence diagrams. Jpn J Ind Appl Math 32:1-17
Xia KL, Wei GW (2014) Persistent homology analysis of protein
structure, flexibility and folding. Int J Numer Method Biomed Eng
30:814-844

Xia KL, Wei GW (2015) Persistent topology for cryo-EM data
analysis. Int J Numer Method Biomed Eng 31:¢02719

Xia KL, Feng X, Tong YY, Wei GW (2015) Persistent homol-
ogy for the quantitative prediction of fullerene stability. ] Comput
Chem 36:408-422

Wang B, Wei GW (2016) Object-oriented persistent homology. J
Comput Phys 305:276-299

Liu B, Wang B, Zhao R, Tong Y, Wei G-W (2017) Eses: soft-
ware for e ulerian solvent excluded surface. ] Comput Chem
38(7):446-466

Cang ZX, Mu L, Wu K, Opron K, Xia K, Wei G-W (2015) A
topological approach to protein classification. Mol Based Math
Biol 3:140-162

Cang ZX, Wei GW (2017) Analysis and prediction of protein fold-
ing energy changes upon mutation by element specific persistent
homology. Bioinformatics 33:3549-3557

Wu K, Wei GW (2018) Quantitative toxicity prediction using
topology based multitask deep neural networks. J Chem Inf Model
58:520-531

Wu K, Zhao Z, Wang R, Wei GW (2018) TopP-S: persistent
homology-based multi-task deep neural networks for simultane-
ous predictions of partition coefficient and aqueous solubility. J
Comput Chem 39:1444-1454

Hosoya H (1971) Topological index. a newly proposed quantity
characterizing the topological nature of structural isomers of satu-
rated hydrocarbons. Bull Chem Soc Jpn 44(9):2332-2339
Hansen PJ, Jurs PC (1988) Chemical applications of graph the-
ory. Part i. Fundamentals and topological indices. ] Chem Educ
65(7):574

Newman M (2010) Networks: an introduction. Oxford University
Press, Oxford

Bavelas A (1950) Communication patterns in task-oriented
groups. J Acoust Soc Am 22(6):725-730

Dekker A (2005) Conceptual distance in social network analysis.
J Soc Struct 6:31


https://doi.org/10.1002/cnm.2914
https://doi.org/10.1002/cnm.2914
https://doi.org/10.1371/journal.pcbi.1005690
https://doi.org/10.1371/journal.pcbi.1005690
https://doi.org/10.1371/journal.pcbi.1005929
https://doi.org/10.1371/journal.pcbi.1005929

Journal of Computer-Aided Molecular Design (2020) 34:131-147

147

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.
71.

78.

79.

80.

Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal
fluctuations in proteins using a single-parameter harmonic poten-
tial. Fold Des 2:173-181

Yang LW, Chng CP (2008) Coarse-grained models reveal func-
tional dynamics-I. Elastic network models-theories, comparisons
and perspectives. Bioinf Biol Insights 2:25-45

Wei GW, Zhan M, Lai CH (2002) Tailoring wavelets for chaos
control. Phys Rev Lett 89:284103

Go N, Noguti T, Nishikawa T (1983) Dynamics of a small globu-
lar protein in terms of low-frequency vibrational modes. Proc Natl
Acad Sci USA 80:3696-3700

Tasumi M, Takenchi H, Ataka S, Dwidedi AM, Krimm S
(1982) Normal vibrations of proteins: glucagon. Biopolymers
21:711-714

Brooks BR, Bruccoleri RE, Olafson BD, States D, Swaminathan
S, Karplus M (1983) Charmm: a program for macromolecular
energy, minimization, and dynamics calculations. J] Comput Chem
4:187-217

Levitt M, Sander C, Stern PS (1985) Protein normal-mode dynam-
ics: trypsin inhibitor, crambin, ribonuclease and lysozyme. J Mol
Biol 181(3):423-447

Flory PJ (1976) Statistical thermodynamics of random networks.
Proc R. Soc. Lond. A 351:351-378

Bahar I, Atilgan AR, Demirel MC, Erman B (1998) Vibrational
dynamics of proteins: significance of slow and fast modes in rela-
tion to function and stability. Phys Rev Lett 80:2733-2736
Atilgan AR, Durrell SR, Jernigan RL, Demirel MC, Keskin O,
Bahar I (2001) Anisotropy of fluctuation dynamics of proteins
with an elastic network model. Biophys J 80:505-515

Hinsen K (1998) Analysis of domain motions by approximate
normal mode calculations. Proteins 33:417-429

Tama F, Sanejouand YH (2001) Conformational change of pro-
teins arising from normal mode calculations. Protein Eng 14:1-6
Cui Q, Bahar I (2010) Normal mode analysis: theory and appli-
cations to biological and chemical systems. Chapman and Hall,
London

Balaban AT (1976) Chemical applications of graph theory. Aca-
demic Press, Cambridge

Trinajstic N (1983) Chemical graph theory. CRC Press, Boca
Raton

Schultz HP (1989) Topological organic chemistry. 1. Graph the-
ory and topological indices of alkanes. J Chem Inf Comput Sci
29(3):227-228

Foulds LR (2012) Graph theory applicatons. Springer, Berlin
Ozkanlar A, Clark AE (2014) Chemnetworks: a complex net-
work analysis tool for chemical systems. J Comput Chem
35(6):495-505

Di Paola L, Giuliani A (2015) Protein contact network topology:
a natural language for allostery. Curr Opin Struct Biol 31:43-48
Canutescu AA, Shelenkov AA, Dunbrack RL (2003) A graph-
theory algorithm for rapid protein side-chain prediction. Protein
Sci 12(9):2001-2014

Ryslik GA, Cheng Y, Cheung K-H, Modis Y, Zhao H (2014) A
graph theoretic approach to utilizing protein structure to identify
non-random somatic mutations. BMC Bioinform 15(1):86

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Jacobs DJ, Rader AJ, Kuhn LA, Thorpe MF (2001) Protein flex-
ibility predictions using graph theory. Proteins-Struct Funct Genet
44:150-165

Vishveshwara S, Brinda K, Kannan N (2002) Protein structure:
insights from graph theory. ] Theor Comput Chem 1(01):187-211
Wu Z, Ramsundar B, Feinberg EN, Gomes J, Geniesse C, Pappu
AS, Leswing K, Pande V (2017) Moleculenet: A benchmark for
molecular machine learning. arXiv preprint arXiv:1703.00564
Quan L, Lv Q, Zhang Y (2016) Strum: structure-based prediction
of protein stability changes upon single-point mutation. Struct
Bioinform (In press)

Pires DEV, Ascher DB, Blundell TL (2014) mcsm: predicting
the effects of mutations in proteins using graph-based signatures.
Struct Bioinform 30:335-342

Park JK, Jernigan R, Wu Z (2013) Coarse grained normal mode
analysis vs. refined gaussian network model for protein residue-
level structural fluctuations. Bull Math Biol 75:124-160
Bramer D, Wei GW (2018) Weighted multiscale colored
graphs for protein flexibility and rigidity analysis. J] Chem Phys
148:054103

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial
nets. In: Mozer MC, Jordan M1, Petsche T (eds) Advances in neu-
ral information processing systems. MIT Press, Cambridge, pp
2672-2680

Xia KL, Opron K, Wei GW (2013) Multiscale multiphysics
and multidomain models—flexibility and rigidity. ] Chem Phys
139:194109

Opron K, Xia KL, Wei GW (2014) Fast and anisotropic flexibil-
ity-rigidity index for protein flexibility and fluctuation analysis. J
Chem Phys 140:234105

Nguyen DD, Xia KL, Wei GW (2016) Generalized flexibility-
rigidity index. J Chem Phys 144:234106

Wei GW (2000) Wavelets generated by using discrete singular
convolution kernels. J Phys A 33:8577-8596

Soldea O, Elber G, Rivlin E (2006) Global segmentation and cur-
vature analysis of volumetric data sets using trivariate b-spline
functions. IEEE Trans PAMI 28(2):265-278

Edelsbrunner H (1992) Weighted alpha shapes. Technical Report.
University of Illinois, Champaign

Srivastava N, Hinton GE, Krizhevsky A, Sutskever I, Salakhutdi-
nov R (2014) Dropout: a simple way to prevent neural networks
from overfitting. ] Mach Learn Res 15(1):1929-1958

Arjovsky M, Chintala S, Bottou L (2017) Wasserstein generative
adversarial networks. In: International conference on machine
learning, pp 214-223

Mirza M, Osindero S (2014) Conditional generative adversarial
nets. arXiv preprint arXiv:1411.1784

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations/

@ Springer


http://arxiv.org/abs/1703.00564
http://arxiv.org/abs/1411.1784

	MathDL: mathematical deep learning for D3R Grand Challenge 4
	Abstract
	Introduction
	Methods
	Differential geometry representation
	Multiscale discrete-to-continuum mapping
	Element interactive densities
	Element interactive curvatures

	Multiscale weighted colored geometric subgraphs
	Multiscale weighted colored algebraic subgraphs
	Algebraic topology-based molecular signature
	Persistent homology
	Topological description of molecular systems

	MathDL energy prediction models
	MathDeep docking models

	Results and discussion
	Pose prediction results and discussion
	Affinity prediction results and discussion

	Conclusion
	Acknowledgements 
	References




