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Abstract
We present the performances of our mathematical deep learning (MathDL) models for D3R Grand Challenge 4 (GC4). 
This challenge involves pose prediction, affinity ranking, and free energy estimation for beta secretase 1 (BACE) as well 
as affinity ranking and free energy estimation for Cathepsin S (CatS). We have developed advanced mathematics, namely 
differential geometry, algebraic graph, and/or algebraic topology, to accurately and efficiently encode high dimensional 
physical/chemical interactions into scalable low-dimensional rotational and translational invariant representations. These 
representations are integrated with deep learning models, such as generative adversarial networks (GAN) and convolutional 
neural networks (CNN) for pose prediction and energy evaluation, respectively. Overall, our MathDL models achieved the 
top place in pose prediction for BACE ligands in Stage 1a. Moreover, our submissions obtained the highest Spearman cor-
relation coefficient on the affinity ranking of 460 CatS compounds, and the smallest centered root mean square error on the 
free energy set of 39 CatS molecules. It is worthy to mention that our method on docking pose predictions has significantly 
improved from our previous ones.

Keywords  D3R—drug design data resource · Algebraic topology · Graph theory · Differential geometry · Binding affinity · 
Pose prediction · Docking · Deep learning · Generative adversarial network

Introduction

The drug design data resource (D3R) offers blind communit-
ywide challenges of ligand pose and binding affinity ranking 
predictions [1–3]. Benchmarks in D3R contests contain high 
quality structures and reliable binding free energies supplied 
by experimental groups before the publication. These chal-
lenges provide computer-aided drug design (CADD) com-
munity a great opportunity to validate, calibrate, and develop 
drug virtual screening (VS) models. The latest D3R Grand 
Challenge 4 (GC4), took place from September 4th 2018 to 

December 4th, 2018. GC4 presented two different protein 
targets, Cathepsin S (CatS) and beta secretase 1 (BACE), 
which were generously supplied by Janssen Pharmaceuticals 
and Novartis, respectively. There were two stages in GC4. 
The first one has two subchallenges, namely Stage 1a and 
Stage 1b. In Stage 1a, participants were asked to predict the 
pose, rank the affinity, and estimate the free energy of BACE 
ligands. Following Stage 1a, Stage 1b revealed the receptor 
structures and participants were asked again to predict the 
crystallographic poses of 20 BACE ligands. There was no 
affinity calculation in this stage 1b. The second part of GC4 
was called Stage 2 which contained the affinity rankings and 
free energy challenges for both BACE and CatS compounds. 
In this last stage, participants were able to take advantage of 
experimental structures of BACE complexes released right 
after stage 1b.

A successful VS model requires a reliable ligand confor-
mation generation and highly accurate scoring function to 
predict binding affinities. There are several state-of-the-art 
software packages to take care of the first component of 
VS, for example, Autodock Vina [4], GOLD [5], GLIDE 
[6], ICM [7], etc. Unfortunately, one may fail dramatically 
to achieve decent poses if blindly using these software 

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1082​2-019-00237​-5) contains 
supplementary material, which is available to authorized users.

 *	 Guo‑Wei Wei 
	 weig@msu.edu

1	 Department of Mathematics, Michigan State University, 
East Lansing, MI 48824, USA

2	 Department of Biochemistry and Molecular Biology, 
Michigan State University, East Lansing, MI 48824, USA

3	 Department of Electrical and Computer Engineering, 
Michigan State University, East Lansing, MI 48824, USA

http://orcid.org/0000-0001-8132-5998
http://crossmark.crossref.org/dialog/?doi=10.1007/s10822-019-00237-5&domain=pdf
https://doi.org/10.1007/s10822-019-00237-5


132	 Journal of Computer-Aided Molecular Design (2020) 34:131–147

1 3

programs. The pose prediction results in Grand Challenge 3 
(GC3) clearly demonstrated this issue [3]. The second com-
ponent of VS relates to the development of scoring func-
tion (SF) for binding affinity predictions. Basically, one can 
classify SF methods into four different types, namely force-
field-based SF, knowledge-based SF, empirical-based SF, 
and machine learning-based SF [8]. The force-field-based 
SFs commonly emphasize van der Waals (vdW) interactions, 
electrostatic energy, hydrogen bonding descriptions, solva-
tion effects, and so on. The well-known SFs for this category 
are COMBINE [9], MedusaScore [10], to name only a few. 
Typical examples of knowledge-based SFs are [11], Drug-
Score [12], KECSA [13], and IT-Score [14], which utilize 
protein–ligand pairwise statistical potentials in an additive 
manner to predict binding affinities. One can regard the 
empirical-based SFs as simple machine learning-based SFs 
since these SFs employ linear regression schemes to con-
struct predictive models using various physical features, for 
instance vdW interactions, Lennard–Jones potentials, hydro-
gen bonds, electrostatics, solvation, and torsion information, 
etc. PLP [15], ChemScore [16], and X-Score [17] are the 
well-known representatives in this category. The last type of 
binding affinity SFs is machine learning-based approaches 
which have recently arise as the most advanced technique in 
CADD. One of the pioneer work on this SF category is RF-
Score [18] based on the Random Forest (RF) algorithm [19] 
and their features as the numbers of atom pairwise contacts. 
Thanks to the nonlinear representation of the sophisticated 
machine learning frameworks, machine learning-based SFs 
can characterize the non-additive contributions from func-
tional group interactions in the binding affinity calculations 
[20–26].

The availability of massive biological datasets, along 
with the accessibility to high-performance computing clus-
ter (HPCC), has made machine learning-based models an 
emerging technology in biomolecular data analysis and pre-
diction. However, the accuracy of machine learning-based 
SFs highly depends on whether their features are able to cap-
ture the physical and chemical information in protein–ligand 
interactions. Moreover, the direct use of three dimensional 
(3D) biomolecular structures in the deep learning network 
is immensely expensive. This hindrance mainly causes by 
the hefty number of degrees of freedom in the 3D macro-
molecular representations and the number of atoms varying 
among different structures. Therefore, there is a pressing 
need to develop innovative representations of protein–ligand 
complexes for machine learning methods.

Mathematical deep learning (MathDL) encompasses a 
family of scalable low-dimensional rotational and trans-
lational invariant mathematical representations integrated 
with advanced machine learning, including deep learning 
algorithms [27]. Its hypothesis is that the intrinsic phys-
ics of macromolecular interactions lie in low-dimensional 

manifolds. Based on such hypothesis, we have developed 
a number of mathematical tools originated from geometry, 
topology, graph theory, combinatorics, and analysis to sim-
plify macromolecular complexity and reduce their dimen-
sionality. For example, differential geometry provides a 
high-level abstraction of macromolecular complexes [28]. 
In molecular biophysics, differential geometry-based frame-
work has shown its efficiency in modeling solvation-free 
energies [29, 30] and ion channel transport [31–35]. How-
ever, in those applications, differential geometry information 
is largely restricted to the separation of solvent and solute 
domains in facilitating the Poisson–Boltzmann model or 
the Poisson–Nernst–Planck model. In geometric modeling, 
differential geometry has been utilized for the qualitative 
analysis of biomolecule properties [36, 37]. Also, poten-
tial protein–ligand binding sites can be recognized via con-
cave and convex regions of molecular surfaces indicated 
by minimum and/or maximum curvatures [37, 38]. Most 
recently, the roles of different kinds of curvature in solvation 
free energy models have been investigated [39]. However, 
the efficiency of the aforementioned differential geometry 
models is limited due to neglecting of atomic level informa-
tion. Element interactive manifolds (EIM) were proposed to 
address this problem in differential geometry-based geomet-
ric learning (DG-GL) [25]. These EIMs successfully encode 
the pivotal physical, chemical, and biological information 
stored in high-dimensional data into low-dimensional mani-
folds, rendering a powerful approach for predicting solva-
tion free energy, drug toxicity, and protein–ligand binding 
affinity [25].

Another low-dimensional mathematical approach is the 
topological representation of biomolecular structures. In 
topological data analysis, one can capture the connectivity 
of macromolecules or molecular components. Topological 
invariants, such as independent components, rings, cavi-
ties, and higher dimension faces in terms of Betti numbers 
help to characterize the conformation change upon the pro-
tein–ligand binding process, the folding and unfolding of 
proteins, and the opening or closing of ion channels [40]. 
The traditional topological descriptors, unfortunately, can-
not discriminate the geometric difference among various 
macromolecular structures. Persistent homology (PH), 
a new branch of algebraic topology, utilizes a filtration 
parameter to generate a family of topological spaces and 
associated invariants, which contain richer geometric infor-
mation [41, 42]. PH has been applied to computational 
biology [43–45]. However, these applications were mostly 
limited to qualitative analysis. Recently, we have devised 
PH for the quantitative analysis of protein folding energy, 
protein flexibility [46], ill-posed inverse problems of cryo-
EM structures [47], predictive models of curvature energies 
of fullerene isomers [48, 49], and protein pocket detection 
[50]. In 2015, we introduced one of the first combinations 
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of PH descriptors and machine learning algorithms [51]. 
Since then, the integration of PH and machine learning has 
become a very popular approach in topological data analysis. 
Nonetheless, this approach is not good enough for biomo-
lecular systems. It turns out that PH neglects chemical and 
biological information in its topological simplification of 
geometric complexity. Element-specific PH was introduced 
to retain chemical and biological information [22]. The inte-
gration of element-specific PH and machine learning algo-
rithms has found great success in the predictions of protein 
folding free energy changes upon mutation [52], binding 
affinity [22–24], drug toxicity [53], partition coefficient, and 
aqueous solubility [54]. It has been employed for the clas-
sification of active ligands and decoys [24]. All of these 
new topological models outperformed other state-of-the-art 
methods on various common benchmarks.

Similarly to topology, graph theory also accentuates the 
connectivity between vertices to define graph edges. There 
are two major types of graphs: geometric graphs and alge-
braic graphs. Geometric graphs concern the pairwise con-
nectivity between graph nodes and represent it in terms of 
“topological index” [55, 56], graph centrality [57–59], and 
contact map [60, 61]. The algebraic graph theory expresses 
the connectivity via eigenvalues, particularly, the second-
smallest eigenvalue of the Laplacian matrix, known as 
Fiedler value, which is often used to analyze the stability 
of dynamical systems [62]. Graph theory has been widely 
used in many interdisciplinary studies. In biophysics, it is 
employed to model protein flexibility and long-time dynam-
ics in normal mode analysis (NMA) [63–66] and elastic net-
work model (ENM)[60, 67–72]. Since graph theory offers a 
nature representation of molecular structure, it is a common 
approach for analyzing chemical datasets [56, 73–77] and 
biomolecular datasets [60, 78–83]. Although there was much 
effort in constructing various graph representations in the 
past, graph based quantitative models are often less accurate 
than other competitive models in the analysis and prediction 
of biomolecular properties from massive and diverse data-
sets. Indeed, in the protein stability changes upon mutation 
analysis, the other models [23, 52, 84] are more accurate 
than the graph-based approach [85]. In addition, the graph 
theory based Gaussian network model (GNM) is not com-
petitive in protein B-factor predcitions [86]. One of the main 
reasons is that there is no systematic representation of inter-
actions among different chemical element types in a molecu-
lar structure. Additionally, many graph approaches do not 
describe non-covalent interactions. To overcome these limi-
tations, we have proposed novel multiscale weighted colored 
subgraphs in both geometric graph and algebraic graph 
schemes to achieve the state-of-the-art performances in the 
predictions of protein B-factor [87], protein–ligand binding 
affinity [21, 26], docking [26], and virtual screening [26].

Our MathDL models using graph theory and algebraic 
topology were employed in the D3R Grand Challenges since 
GC2 and have obtained many encouraging results. Specifi-
cally, our prediction of the binding free energy set in Stage 2 
was ranked the best in GC2 in our first participation of D3R 
competitions [27]. In our second participation, i.e. GC3, our 
submissions achieved the top places in 10 out of 26 official 
contests [27]. These achievements have confirmed the pre-
dictive power and efficiency of our MathDL models in drug 
design and discovery. However, there were still some short-
comings existing in our previous approaches mostly con-
cerning the pose generation performance and ability to rank 
affinities of compounds with diverse chemical structures.

In the current D3R challenge, i.e. GC4, we have brought 
in two new technological aspects in our approach. First, 
we have further developed powerful differential geometry 
and algebraic graph-based MathDL models to assist our 
algebraic topology based methods. Additionally, we have 
extended our MathDL approach with more advanced deep 
learning architectures like generative adversarial networks 
(GAN) [88]. We have achieved very promising results with 
top places in pose prediction, affinity ranking and free 
energy estimation. The rest of this paper is devoted to more 
detailed discussions of our methodologies and their perfor-
mances in D3R GC4.

Methods

We describe the mathematical methods underpinning our 
MathDL models in this sections.

Differential geometry representation

Multiscale discrete‑to‑continuum mapping

Given a molecule having N atoms. Denote �i and qj , 
i = 1⋯N , respectively, an atomic coordinate and a partial 
charge of the jth atom. A discrete-to-continuum mapping 
[89–91] represents the unnormalized molecular density at 
an arbitrary point � ∈ ℝ

3 as follows

where ‖� − �j‖ is the Euclidean distance of the point � 
and the jth atom in a given molecule. If all wj are set to 
1, �(�, {�k}, {wk}) indicates a molecular density, whereas 
�(�, {�k}, {wk}) serves as molecular charge density with 
wj = qj for all j. In the present work, we utilize Autodock 
Tools (http://autod​ock.scrip​ps.edu/resou​rces/adt/index​
_html) to assign the Gasteiger charges for small molecules 

(1)�(�, {�k}, {wk}) =

N�

j = 1

wjΦ
�‖� − �j‖;�j

�
,

http://autodock.scripps.edu/resources/adt/index_html
http://autodock.scripps.edu/resources/adt/index_html
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and macromolecules. Additionally, �j are characteristic dis-
tances and Φ is a monotonically decreasing kernel featuring 
the similarity between two 3D data points. To ensure the 
existence of the geometric representations such as curva-
tures, Φ is chosen to be monotonically decreasing C2 func-
tion satisfying the following conditions

It is noted that radial basis functions meet admissibility con-
ditions (2) and (3). Commonly used correlation kernels are 
generalized exponential functions

and generalized Lorentz functions

 Moreover, one can use correlation kernels to model the 
electrostatic interaction between two charged articles as the 
following

where, qi and qj are the partial charges of two atoms, and c 
is a nonzero tunable parameter. It is noted that Φ described 
in Eq. (6) does not follow the admissible conditions (2) and 
(3). It is, therefore, only utilized to generate electrostatic per-
sistent homology. All the Φ s discussed in the current work 
were determined by one of Eqs. (4)–(5). Here, Φ takes 3D 
coordinates and kernel parameters as the input variables and 
maps them to a real number: ℝ3

→ ℝ . Therefore, Φ values 
totally depend on atom coordinates or grid point positions 
and are rotationally and translationally invariant.

It is expected that C2 delta sequences of the positive type 
discussed in an earlier work [92] can function well for the 
correlation kernel purposes. To obtain multiscale discrete-
to-continuum mapping, one can employ more than one set 
of scale parameters. In the current work, the aforementioned 
mapping was applied to protein–ligand complexes.

Element interactive densities

In order for differential geometry (DG) representations 
to effectively capture the crucial physical and biological 
information of large and diverse biomolecular datasets, we 
must employ DG to feature non-covalent intramolecular 

(2)Φ
�‖� − �j‖; �j‖

�
= 1, as ‖� − �j‖ → 0,

(3)Φ
�‖� − �j‖; �j‖

�
= 0, as ‖� − �j‖ → ∞.

(4)Φ
�‖� − �j‖; 𝜂j‖

�
= e−(‖�−�j‖∕𝜂j)

𝜅

, 𝜅 > 0;

(5)Φ
�‖� − �j‖; 𝜂j

�
=

1

1 +
�‖� − �j‖∕𝜂j

�𝜈 , 𝜈 > 0.

(6)Φ(‖�i − �j‖, qi, qj; c) = 1

1 + e−cqiqj∕‖�i−�j‖
,

molecular interactions in a molecule and intermolecular 
interactions in molecular complexes, such as protein–pro-
tein and protein–ligand.

Additionally, the accuracy of the DG representations can 
be upgraded by element-level descriptions which result in 
scalable low-dimension manifold representations of high 
dimensional structures. For instance, to describe the pair-
wise interactions between protein and ligand, we consider 
frequently occurring element types in proteins and ligands. 
Particularly, the commonly occurring element types in pro-
teins are C, N, O, S and commonly occurring element types 
in ligands are H, C, N, O, S, P, F, Cl, Br, I . That gives rise to 
40 element pairwise groups. We do not include hydrogen in 
protein element types since H is usually absent from most 
datasets in the Protein Data Bank (PDB). Note that during 
our validation process, the pairwise interactions between dif-
ferent atom types did not enhance the overall performance of 
our models (this may be due to the limited data size.). Thus, 
we only carried out the element-specific interactions for the 
sake of simplicity.

Based on a statistical analysis, the frequently occurring 
element types in the biomolecular dataset are denoted as 
C = H, C, N, O, S, P, F, Cl,⋯ . For convenience, Ck repre-
sents the kth element in the set C . For example, C5 = S . An 
ith atom in a given molecule is associated with its coordinate 
�i , element type �i , and partial charge qi . The non-covalent 
interactions between atoms of element type Ck and Ck′ are 
assumed to be described by the correlation kernel Φ

where ri and rj are the atomic radii of ith and jth atoms, 
respectively and � is the mean value of the standard 
deviations of ri and rj in the interested dataset. The cova-
lent interactions are excluded due to the constraint 
||�i − �j|| > ri + rj + 𝜎 . In addition, �kk′ is a characteristic 
distance between the atoms, which depends only on their 
element types.

To construct the element interactive densities, we define 
atomic-radius-parametrized van der Waals domain of all 
atoms of kth element type as [25]

in which B(�i, ri) is a ball with a center �i and a radius ri , 
and rk is the atomic radius of the kth element type. Thus, Dk 
depends on atom coordinate �

�
 and its atomic radius. Note 

that, Dk does not define any vdW interactions but a domain 
to construct the surface density. The element interactive 
density between domain Dk and all atoms of k′ th ( k ≠ k′ ) 
element type is given by

(7)

{Φ(||�i − �j||; 𝜂kk� )|𝛼i = Ck, 𝛼j = Ck� ;

i, j = 1, 2,… ,N; ||�i − �j|| > ri + rj + 𝜎},

(8)Dk ∶= ∪
�i,�i=Ck

B(�i, rk),
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When k� = k , the element interactive density �kk is now 
induced only by van der Waals domain Dk . In this case, we 
exclude the covalent interactions based on the position of the 
density input. Assuming � ∈ Di

k
 , with Di

k
= B(�i, ri) , �i = Ck , 

the element interactive density is then formulated by

For the sake of simplicity, we chose wj = 1 for all cases. 
Since element interactive density is obtained by the addi-
tion of correlation kernels, it belongs to C2 on the closed 
domain of Dk . We construct element interactive manifolds 
by restricting the set of points at a given level set of the 
density as shown in Fig. 1 .

(9)

𝜌kk� (�, 𝜂kk� ) =
∑

j

𝛼j = Ck�

||�i − �j|| > ri + rj + 𝜎,∀𝛼i ∈ Ck

wjΦ(||� − �j||;𝜂kk� ), � ∈ Dk.

(10)

𝜌kk(�, 𝜂kk) =
∑

j

𝛼j = Ck

||�i − �j|| > 2rj + 𝜎

wjΦ(||� − �j||;𝜂kk).

Element interactive curvatures

Given an element interactive density �(�) , one can calcu-
late the Gaussian curvature (K), the mean curvature (H), 
the minimum curvature ( �min ), and the maximum curvature 
( �max ) for the resulting manifold as the following [37, 93]:

(11)

K =
1

g2

[
2�x�y�xz�yz + 2�x�z�xy�yz + 2�y�z�xy�xz

− 2�x�z�xz�yy − 2�y�z�xx�yz − 2�x�y�xy�zz

+ �2
z
�xx�yy + �2

x
�yy�zz + �2

y
�xx�zz

− �2
x
�2
yz
− �2

y
�2
xz
− �2

z
�2
xy

]
,

Fig. 1   IIlustration of some 
element-specific selections 
and corresponding element 
interactive manifolds obtained 
at a given level set of the ele-
ment interactive density. Each 
sphere illustrates the atomic 
positions. Cyan, red, and blue 
colors represent carbon, oxygen, 
and nitrogen, respectively. The 
transparent surfaces are the iso-
surface extracted from volume 
data represented in Eq. (8)
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where g = �2
x
+ �2

y
+ �2

z
.

To construct unified curvature quantities for various bio-
molecular structures, we study the element interactive curva-
tures (EIC) at the atomic center and formulate them as [25]

and

Eqs. (15) and (16) are for the element interactive Gaussian 
curvature (EIGC), are applied to protein–ligand complexes 
in the current work. Thus, the atomic centers in Eqs. (15) 
and (16) can be either from ligand atoms or protein atoms. 
In a same manner, one can define HEI

kk�
(�kk� ), �

EI
kk�,min

(�kk� ) and 
�EI
kk�,max

(�kk� ) for the element interactive mean curvature, ele-
ment interactive minimum curvature, and element interac-
tive maximum curvature, respectively.

It is worth noting that, the expressions of the curva-
tures defined in (11)–(14) are in the analytical forms. Thus, 
the EIC formulations are free from numerical error and 
totally preserve the reference geometric information of the 
molecules.

Multiscale weighted colored geometric subgraphs

For a given molecular datasets, we denote C a set consist-
ing of the most frequently appearing element types. For a 
molecule of interest, we define a graph with the following 
vertices

where N is the number of atoms, �j and �j are, respectively, 
coordinates and element type of the jth atom. Similarly to 
the discussion in the differential geometry representation 
section, we only consider non-covalent interactions repre-
sented by correlation kernels

(12)

H =
1

2g
3

2

[2�x�y�xy + 2�x�z�xz + 2�y�z�yz

− (�2
y
+ �2

z
)�xx − (�2

x
+ �2

z
)�yy − (�2

x
+ �2

y
)�zz],

(13)�min = H −
√
H2 − K,

(14)�max = H +
√
H2 − K,

(15)KEI
kk�
(�kk� ) =

∑
i

Kkk� (�i, �kk� ), �i ∈ Dk;k ≠ k�

(16)KEI
kk
(𝜂kk) =

∑
i

Kkk(�i, 𝜂kk), �i ∈ Di
k
,Di

k
⊂ Dk.

(17)V = {(�j, �j)|�j ∈ IR3; �j ∈ C;j = 1, 2,… ,N},

(18)

Ekk� = {Φ(||�i − �j||; 𝜂kk� )|𝛼i = Ck, 𝛼j = Ck� ;

i, j = 1, 2,… ,N; ||�i − �j|| > ri + rj + 𝜎},

all the notations in Eq. (18) are adopted from “Differen-
tial geometry representation” section. In which, Φ refers 
to the edge weight which represents the potential interac-
tion between two nodes forming that edge. We now form 
weighted colored subgraphs G(V, Ekk� ) to describe pairwise 
interactions in a given molecule. To unify the geometric 
graph-based descriptors for a diversity dataset, we construct 
multiscale weighted colored subgraph rigidity between kth 
element type Ck and k′ th element type Ck′ via a graph central-
ity type of scheme

The proposed subgraph rigidity index RIG(�kk� ) in Eq. (19) is 
the aggregation of the collective subgraph centrality �G

i
(�kk� ) 

which used in our previous B-factor prediction model [87]. 
That formulation represents a coarse-grained description at 
the element-level capturing important physical and biology 
information in a molecule or biomolecule such as van der 
Waals interactions, hydrogen bonds, electrostatics, etc. This 
description is scalable, i.e., independent of the size of an 
individual protein–ligand complex. In fact, when describing 
protein–ligand interactions, the labeled subgraph G(V, Ekk� ) 
gives rise to a bipartite graph with its edges connecting 
protein atoms to ligand atoms. The positive and negative 
eigenvalues of the adjacency matrix of a bipartite graph are 
reflective, which enables us to select only positive or nega-
tive eigenvalues in machine learning. Moreover, Eq. (19) 
generalized our previous binding affinity prediction model 
[21] and was utilized for the D3R Grand Challenge 3 [27].

Multiscale weighted colored algebraic subgraphs

Still based on multiscale weighted colored subgraphs as 
defined in “Multiscale weighted colored geometric sub-
graphs” section, we have recently developed a novel alge-
braic graph approach or spectral graph formulation to 
describe molecules, biomolecules and their interactions at 
atomic levels [25]. We here utilize the Laplacian matrix and 
adjacency matrix to represent the interactions between nodes 
in a given subgraph.

Based on a weighted colored subgraph G(V, Ekk� ) , we 
define the weighted colored Laplacian matrix Lij(�kk� ) as the 
following

(19)

RI
G(𝜂kk� ) =

∑
i

𝜇G
i
(𝜂kk� ) =

∑

i

𝛼i = Ck

∑

j

𝛼j = Ck�

||�i − �j|| > ri + rj + 𝜎

Φ(||�i − �j||;𝜂kk� ).

(20)

Lij(𝜂kk� ) =

⎧
⎪⎨⎪⎩

−Φ(���i − �j��;𝜂kk� ) if i ≠ j, 𝛼i = Ck, 𝛼j = Ck�

and ���i − �j�� > ri + rj + 𝜎;

−
∑

j Lij if i = j.
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Due to the symmetric, diagonally dominant and positive-
semidefinite, all eigenvalues of the Laplacian matrix Lij(�kk� ) 
are nonnegative. Moreover, the smallest eigenvalues are 
zero. It is worth noting that the number of zero eigenvalues 
can equally referred to the zero-dimensional topological 
invariant which implies the number of the connected com-
ponents in the graph. If a graph is connected, there exists one 
non-zero eigenvalue. Moreover, the smallest non-zero ones 
is called as Fiedler value representing algebraic connectivity. 
It is interesting to see that one can reconstruct the geometric 
graph rigidity via the following formulation

In addition, we can form the adjacency matrix Aij for the 
aforementioned subgraph G(V, Ekk� ) by

Clearly, adjacency matrix A(�kk� ) is a symmetric non-nega-
tive matrix. As a result, its spectrum is real. The Laplacian 
and adjacency matrices for subgraph including only oxygen 
and nitrogen atoms in molecule C 5H6N2O2 are depicted in 
Fig. 2. Note that for different molecules, one can expect to 
have different graph structures. We only utilized one unique 
3D representation for each ligand; thus there was only 
one single graph structure to represent one corresponding 
compound.

In general, the element-level information decoded from 
the Laplacian matrix and the adjacency matrix is quite simi-
lar despite of the different behaviors among their eigenvalues 
and eigenvectors. Specifically, the correlation between the 
adjacency matrix and the Laplacian matrix can be found in 
the Perron-Frobenius theorem via the following inequalities

RIG(�kk� ) = TrL(�kk� ),

(21)

Aij(𝜂kk� ) =

⎧
⎪⎨⎪⎩

Φ(���i − �j��;𝜂kk� ) if i ≠ j, 𝛼i = Ck, 𝛼j = Ck�

and ���i − �j�� > ri + rj + 𝜎;

0 if i = j.

In other words, one can state that the spectral radius �(A) 
of the adjacency matrix A is bounded by diagonal element 
interval of the corresponding Laplacian matrix L.

In the algebraic approach, we are interested in describ-
ing the interactions between elements in the subgraph by 
the eigenvalues of its matrix. Thus, we design the weighted 
colored Laplacian matrix based descriptor at the element-
level by

and the weighted colored adjacency matrix based descrip-
tor is proposed in a similar manner. Note that GNM [60] is 
a special case of the proposed Laplacian matrix �L

i
(�kk� ) . 

Thus, one can utilize its spectrum �L
i
(�kk� ) for the protein 

B-factor prediction. To enrich the algebraic graph-based 
description information, we consider the statistics of the 
eigenvalues such as sum, mean, maximum, minimum and 
standard deviation.

Algebraic topology‑based molecular signature

By employing powerful topological analysis, one can con-
struct sophisticated topological spaces to capture the key 
interactions at the element level of an interested molecule or 
biomolecule. These physical and chemical information are 
encoded in different dimensional space under the topological 
invariant features, so-called Betti numbers. Upon the topo-
logical information, the rich and systematic descriptions are 
formulated and integrated with advanced machine learning 
framework.

Persistent homology

In the geometric point of view, the collection of points, 
edges, triangles, and higher-dimension representations 

(22)min
i

∑
j

Aij ≤ �(A) ≤ max
i

∑
j

Aij.

(23)RIL(�kk� ) =
∑
i

�L
i
(�kk� ),

+

−

−
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Fig. 2   IIlustration of weight colored subgraphs GNO including its 
Laplacian matrix (Left), and adjacency matrix (Right) deduced from 
molecule graph (C5H6N2O2 ) (Middle). Atoms 1 and 4 are oxy-
gen, while atoms 2 and 3 are nitrogen. Graph edges, Φij , are in the 

green-dashed lines representing the noncovalent bonds. In addition, 
one can get nine other nontrivial subgraph for this molecule, namely 
GCC,GCN,GCO,GCH,GNN,GNH,GOO,GOH, and GHH
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form topological spaces. The general form of a triangle or 
a tetrahedron is called a simplex. Mathematically, a set of 
(k + 1) affinely independent points in ℝn with n ≥ k gives 
rise to a simplex. To further characterize the topological 
spaces, face is introduced as a convex hull of a subset of 
points defining a simplex. In addition, a finite collection of 
simplices defines a simplicial complex X provided that two 
requirements are met. First, the faces of any simplex in X are 
also in X. Second, the intersection of two simplices �1 and �2 
in X are either empty or a face of both �1 and �2 . In a given 
simplicial complex X, a k-chain c is a formal sum of all the 
k-simplices in X which is defined as c =

∑
i ai�i . Here, ai is 

an integer coefficient chosen in a finite field ℤp with a prime 
p. With the additional operator on the coefficients of in the 
k-chain, one can form a group of k-chain denoted Ck(X) . The 
boundary operator on simplices is defined as

where v0,⋯ , vk are vertices of the k-simplex � and 
[v0,⋯ , v̂i,⋯ , vk] means the codim-1 face of � be omit-
ting the vertex vi . The boundary operator �k(�) is homeo-
morphisms going from Ck(X) to Ck−1(X) with an important 
property �k◦�k+1 = 0 . Therefore, one can form the following 
chain complex

In algebraic topology, homology is used to distinguish 
two shapes by detecting their holes. To define kth homol-
ogy group, we consider the image of the boundary operator 
�k+1 denoted Bk(X) = Im(�k+1) and the kernel of �k denoted 
Zk(X) = Ker(�k) which are all illustrated in Fig. 3. Then, 
the quotient group between the aforementioned kernel and 
image gives rise to the kth homology group

The described above homology group is applied for a fixed 
topological space. To accommodate the objects related 
to multiscale, we can construct a sequence of subspaces 

(24)𝜕k(𝜎) =

k∑
i=0

(−1)i[v0,⋯ , v̂i,⋯ , vk],

(25)
⋯

�i+1
�������������→ Ci(X)

�i
�������→ Ci−1(X)

�i−1
�������������→ ⋯

�2
��������→ C1(X)

�1
��������→ C0(X)

�0
��������→ 0.

(26)Hk(X) = Zk(X)∕Bk(X).

of topological space. Such sequence is called a filtration 
� = X0 ⊆ X1 ⊆ ⋯ ⊆ Xm−1 ⊆ Xm = X which naturally induces 
a series of homology groups of different dimensions con-
nected by homomorphisms

The images of these homomorphisms are called kth per-
sistent homology groups, and ranks of these groups define 
kth persistent Betti numbers which are used to recognize 
topological spaces via number of k-dimensional holes. In the 
physical interpretation, Betti-0 counts the number of inde-
pendent components, Betti-1 illustrates number of rings, and 
Betti-2 encodes the cavities.

Topological description of molecular systems

We carry out persistent homology on labels subgraph 
G(V, Ekk� ) defined in the previous sections to describe molec-
ular properties. The resulting topological formulation is 
called element specific persistent homology [22, 52].

There are two common types of filtration, namely Vieto-
ris–Rips complex and alpha complex [94]. The Vieto-
ris–Rips complex, a distance-based filtration, is used to 
directly address the protein–ligand interactions. For a set of 
atoms in subgraph G(V, Ekk� ) , the subcomplex associated to 
� is defined as

where X is the collection of all possible simplices, d is the 
distance between two atoms. To capture a complex protein 
geometry, one can utilize alpha complex. The alpha filtration 
is built upon the non-empty intersection between a k-simplex 
and a (k + 1) Voronoi cells. In general, in the alpha filtration, 
the subcomplex associated to � is defined as

where V(vi) is the Voronoi cell of vi and B�(vi) is an � ball 
centered at vi . For the details of building an alpha filtration, 
we refer the interested readers to our published work [46].

(27)I
t,s

k
∶ Hk(Xt) → Hk(Xs), with 0 ≤ t ≤ s ≤ m.

(28)
XRips(�) = {� ∈ X|� = [v0,⋯ , vk], d(vi, vj) ≤ 2� for 0 ≤ i, j ≤ k},

(29)
Xalpha(�) = {� ∈ X|� = [v0,⋯ , vk], ∩i

(
V(vi) ∩ B�(vi)

)
≠ �},

Fig. 3   Illustration of bound-
ary operators, chain, cycle, and 
boundary groups in ℝ3. Yellow 
circles are empty sets

∁∁ ∁ ∁

0
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Similarly to multiscale weight colored subgraphs in alge-
braic graph theory approaches, the element specific persis-
tent homology has been shown to capture crucial physical 
interactions by tweaking the distance functions used in the 
filtration [22, 52]. Indeed, the hydrophobic effects can be 
described by considering the persistent homology computa-
tion on the collection of all carbon atoms. To describe the 
hydrophilic behavior of the molecular system, the element 
specific persistent homology is carried out only for nitro-
gen and oxygen atoms. In addition, an appropriate distance 
function selection can characterize the covalent bonds and 
non-covalent interactions in small molecules [24].

There are several ways to incorporate barcodes generated 
by persistent homology into machine learning models. One 
can use the Wasserstein metric to measure the similarities 
between two molecules’ barcodes. As a result, the distance-
based machine learning approaches such as nearest neigh-
bors and kernel methods can be exploited [24]. To make 
use of advanced machine learning algorithms such as the 
ensemble of trees and deep neural networks, we vectorize 
persistent homology barcodes by discretizing them into bins 
and taking into account of the persistence, birth and death 
incidents in each bin. Furthermore, the statistics of element-
specific persistent homology barcodes are included in fixed 
length features [24]. In the convolutional neural networks, 
such featurization of barcodes is represented in 1-dimen-
sional and 2-dimensional like images [23, 24].

MathDL energy prediction models

We integrate the mathematical features with deep learn-
ing networks to form a powerful predictive model. The 

convolutional neural network (CNN) is a well-known algo-
rithm with much success in image recognition and computer 
vision analysis. Essentially, CNN is a regularized version 
of the artificial neural network consisting of many convo-
lutional layers, followed by several fully connected layers. 
To enhance the learning process, dropout techniques have 
been exploited in network layers [95]. The neural networks 
we use are classified as the feed-forward network where all 
the information in the current layer is linearly combined and 
then nonlinearized via an activation function before send-
ing out to the next layer. The predictive power of the CNN 
models relies on the characterization of the local interac-
tions in the spatial dimension under the discrete convolution 
operator. The choice of features inputs in the CNN networks 
gives rise to variants of binding energy predictive models. 
Figure 4 depicts MathDL energy prediction models and 
their network architectures are described in Fig. S1 in the 
Supporting Information. In the D3R GC4, we utilized two 
different models. In the first approach, the combination of 
algebraic topology and differential geometry features were 
employed in the network, we named this model BP1. In the 
second approach, algebraic topology, differential geometry, 
and algebraic graph representations were mixed to lead to 
another binding energy prediction model named BP2. The 
details of feature generation procedure of the algebraic 
topology, differential geometry, and algebraic graph models 
can be found in our earlier work [24–26].

MathDeep docking models

We here present an innovative pose generation scheme, 
denoted MGAN, using advanced mathematical 

Fig. 4   A framework of MathDL 
energy prediction model which 
integrates advanced mathemati-
cal representations with sophis-
ticated CNN architectures

…
Protein-
ligand

complex

Element
specific
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Machine
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representation pre-conditioned generative adversarial net-
works (GAN). GAN is a kind of deep learning model con-
sisting of a generator G to learn the data distribution, and a 
discriminator D to discriminate training set structural infor-
mation from that of the generator G [88]. The G model is 
iteratively improved from the D feedback until the D cannot 
tell the difference between training set structural information 
and D set one. To improve the GAN performance and avoid 
vanishing gradient and mode collapse, we employ Wasser-
stein GAN (WGAN) [96] in our model. To further enhance 
the quality of the generated structures, we take advantage 
of the conditional GAN technique [97]. The deep learning 
(DL) models G and D are partially adapted from our binding 
energy prediction networks which are fed with data encoded 
in intrinsically low-dimensional manifolds with differential 
geometry, algebraic topology and graph theory. Figure 5 
depicts the MGAN’s framework. Network architectures 
of autodecoder and autoencoder are illustrated in Figs. S2 
and S3, respectively. By varying combinations of different 
mathematics, we end up with several docking models. Spe-
cifically, If DL networks G and D only exploit algebraic 
topology, we name this docking model DM1. Similarly, we 
attain DM2 and DM3 when GAN model includes only alge-
braic graph and differential geometry based representations, 
respectively. Finally, DM4 is constructed with the assistance 
of algebraic topology, algebraic graph, and differential 
geometry. We employed the PDBbind v2018 dataset to train 
MathDL and MGAN models. The optimal hyperparameters 

of the MathDL model were selected by experience and final-
ized by hyperopt python package (http://githu​b.com/hyper​
opt/hyper​opt). The MGAN model was trained based on the 
setting of Wasserstein GAN network discussed in this work 
[96]. Furthermore, to enhance the pose generation quality, 
we carry out the transfer learning to further optimize the 
MGAN model with the protein family-specific structures.

Results and discussion

In this section, we present MathDL results and discuss our 
performances in the latest Grand Challenge named GC4.

Pose prediction results and discussion

We have participated in the docking challenge task since 
D3R GC2. Before the current challenge, i.e., GC4, our 
docking results in term of RMSE were not competitive in 
comparison to those of other participants. Specifically, our 
mean RMSD values are 6.03 Å  and 3.78 Å  for GC2 and 
GC3, respectively. These results reflect an improvement in 
our docking approaches but their accuracy is still behind the 
top submissions in GC3. Instead of depending on the dock-
ing programs such as Autodock Vina [4] and GLIDE [6] as 
we did in the previous challenges, our GC4 docking schemes 
were driven by advanced mathematical representations and 
sophisticated deep learning architectures. Consequently, we 
achieved remarkable performances on the pose prediction 
tasks. The rest of this section is devoted to result discussions.

Despite having two protein receptors in GC4, all the pose 
predictions were only for BACE ligands and were organ-
ized in two stages, Stage 1a and Stage 1b. In Stage 1a, par-
ticipants were provided SMILES strings of 20 ligands to be 
docked, the FASTA sequence of the BACE protein, and the 
reference protein structure (PDBID: 5ygx, chain A) for the 
superimposition process. Stage 1b took place right after the 
end of Stage 1a. Stage 1b provided the experimental protein 
structures in the complexes with 20 ligands requested for 
pose predictions, in which the structures of these ligands 
were removed. Participants were still asked to predict their 
poses. Therefore, Stage 1b is often referred to a self-dock-
ing challenge. There are two evaluation metrics for the pose 
prediction tasks, namely median and mean calculated over 
all RMSD values between the predicted poses and crystal 
structures.

In Stage 1a, we submitted two results. Figure 6 illustrates 
the performances of 70 submissions having median RMSD 
< 10 Å . Our best submission having receipt ID 5t302 with 
median RMSD = 0.53 Å  and being highlighted in the red 
color. This docking model was DM1. In Stage 1b, we deliv-
ered four submissions; unfortunately, none of them was 
ranked the first place in either the median or mean metric. 

LS
Yes
No

Discriminator

Auto-
decoder  LS

Generator

Training set
Math 

Center

Auto-
encoder

Fig. 5   Illustration of our docking approach using mathematical repre-
sentations integrated with GAN architectures. The generator contains 
an autodecoder, a latent space (LS), and a noise source. The discrimi-
nator consists of an autoencoder and latent space. The Math center 
encodes 3D structures into low-dimensional mathematical represen-
tations using algebraic topology, differential geometry, and/or graph 
theory

http://github.com/hyperopt/hyperopt
http://github.com/hyperopt/hyperopt
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However, our results were very promising. Particularly, our 
submission based on docking model DM3 with receipt ID 
itzv6 achieved mean RMSD of 0.73 Å  which is at the sec-
ond place and is a bit less accurate than the top submission 

with mean RMSD being 0.61 Å  (receipt ID 5od5g). It may 
be noted that the best result in Stage 1b is not as good as 
that in Stage 1a. Figure 7 compares the poses predicted by 

Fig. 6   Performance comparison of different submissions on pose prediction challenge of Stage 1a for the BACE dataset in term of median 
RMSD. Our submissions are highlighted in the red color, in which the best one is 5t302 with median RMSD = 0.55 Å

Fig. 7   Illustration of pose 
predictions by our MathGAN 
docking model with receipt ID 
5t302. The top-left corner is 
original binding pocket of the 
BACE receptor. The top-right 
corner is our best pose predic-
tion accuracy obtained when 
predicting BACE03’s pose 
with RMSD = 0.23 Å . The 
bottom-left corner is our middle 
performance when predicting 
BACE05’s pose with RMSD 
= 0.53 Å . The bottom-right is 
our worst performance when 
predicting BACE07’s pose with 
RMSD = 2.63 Å . The experi-
ment structures are in yellow 
while the predicted structures 
are in purple
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our submission ID 0invp to the corresponding experimental 
structures at different levels of accuracy.

It is interesting to find out that, the additional informa-
tion of the co-crystal structures did not help our docking 
models. For example, our docking approach DM4 with sub-
mission ID Oinvp attained median RMSD of 0.53 Å  and 
mean RMSD of 0.8 Å , respectively in Stage 1a. However, 
in Stage 1b, the same model labeled by receipt ID 2ieqo 
produced median RMSD and mean RMSD as high as 0.55 
Å  and 0.84 Å , respectively. These observations can con-
firm the robustness of our models and predictive value for 
the realistic situations in CADD when little or no co-crystal 
information is provided.

Affinity prediction results and discussion

There were two subchallenges for affinity prediction tasks. 
Subchallenge 1 regarded BACE ligands while Subchallenge 
2 concerned CatS ligands. Both subchallenges were inter-
ested in affinity ranking of a diversity datasets and relative 
binding affinity predictions on the designated free energy 
set. There were two stages on BACE affinity prediction task, 
namely Stage 1 and Stage 2, whereas there was only one 
stage on CatS ligands. Unfortunately, we did not participate 
in Stage 1 of the BACE target since the announcement email 
made us overlook this contest.

Statistically, there were 154 compounds in the BACE 
dataset for affinity ranking contest, while there were 34 
compounds for the calculation of relative or absolute bind-
ing affinities of the same receptor target. In CatS dataset, 
participants were asked to rank affinities of 459 ligands and 
predicted the binding energies of a smaller subset with 39 
molecules. Moreover, Kendall’s � and Spearman’s � were 

the evaluation metrics for affinity ranking challenges. In the 
binding free energy predictions, besides the aforementioned 
metrics, Pearson’s r and centered root mean square error 
( RMSEc ) were utilized.

Overall, the official results from the D3R organizer have 
placed us among the top performers on these energy predic-
tion contests. By considering specific evaluation metrics, 
we were ranked first place in combined ligand and structure 
based scoring1, structure based scoring, and free energy set 
subcategories all belonging to the CatS dataset. For illus-
tration, Figure 8 presents the Spearman’s � performance 
of different submissions on the CatS affinity ranking con-
test combining ligand and structure based scoring models. 
Our best submission are highlighted in the red color with 
receipt IDs 3c8nw and 0xvrb. Both of them achieved the 
same Spearman’s � as high as 0.73 and shared the first place 
with another group’s submission having ID x4svd. In sub-
mission ID 3c8nw, we employed docking model DM4 for 
pose generation and model BP2 for the affinity prediction. 
While in submission ID 0xvrb, docking approach was DM3 
and binding prediction protocol was BP2. In addition, our 
best result with ID ar5p6 achieved the lowest RMSEc for 
the free energy prediction of 39 designated CatS molecules. 
This successful submission utilized docking model DM4 and 
affinity prediction model BP2 for the calculations. Figure 9 
presents RMSEc performance of various groups for the free 
energy prediction of CatS dataset. Table 1 summarizes the 
performances of our group at all categories in D3R GC4. 
We only counted the number of our submissions in the top 
three including ties. “No participation” at the results column 

Fig. 8   Performance comparison of different submissions on the combined ligand and structure based scoring of CatS dataset in term of Spear-
man’s � . Our submissions are highlighted in the red color, in which our top-ranked submissions are 3c8nw and 0xvrb with �=0.73

1  This subcategory is the common list of ligand based and structure 
based scoring subcategories.
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implies that we did not participate in the corresponding con-
test. The blank results indicate that our predictions were not 
ranked within the top three.

It is noted that in the BACE affinity prediction, our results 
were not in the top three. In fact, our team was behind only 
to two teams that collected all the top three places in BACE 
affinity ranking, which indicates the consistence of our 
MathDL models in GC4 competitions.

Overall, the model BP2 was our best model for binding 
affinity prediction for both CatS and BACE datasets (see 
Table S1). The great performance of BP2 was expected since 
it combines algebraic topology, differential geometry, and 
graph theory features which help to enrich feature space and 
cover the most important aspects of physical and biological 
properties. However, there was a mixed conclusion when 
finding the best solution for pose prediction. Indeed, mod-
els DM3 and DM4 worked well for the CatS dataset, while 
DM1 was an only good solution for producing high quality 
poses for the BACE dataset (see Table S1). They helped the 
predictor BP2 achieved the best rankings among our submit-
ted models. One can argue that DM1 achieved the best pose 
prediction for BACE ligands in Stage 1A; therefore it was 
foretasted to help BACE energy prediction tasks. The same 
behavior was observed for CatS dataset. According to our 
pre-validation results, DM4 which was our best model for 
the CatS pose prediction, achieved mean RMSD of 1.8 Å  for 
the CatS pose prediction Stage 1B challenge in GC3. Note 
that the best submission in that subchallenge accomplished 
mean RMSD as low as 2.13 Å. It seems that the pose quality 
of our pose generation models correlates well to the accu-
racy of our binding affinity predictors.

Conclusion

The performances of our mathematical deep learning 
(MathDL) models on D3R GC4 are presented and discussed 
in this paper. We participated in a variety of D3R GC4 con-
tests including pose predictions, affinity ranking, and abso-
lute free energy predictions. Overall, our submissions were 
ranked the first in pose prediction in Stage 1a, affinity rank-
ing and free energy predictions for Cathepsin ligands. Unfor-
tunately, we did not get the first place on BACE datasets. 
Our best submission was only at the second place in free 
energy set for BACE in Stage 2 contest. In comparison to our 
previous D3R challenges, i.e., D3R GC2 and D3R GC3, we 
had two improvements in D3R GC4. The first improvement 
was the pose prediction. This was the first time we won this 
contest thanks to our newly developed docking model which 
integrates scalable low-dimensional rotational and transla-
tional invariant mathematical representations, such as dif-
ferential geometry, algebraic graph, and algebraic topology, 
with well-designed generative adversarial networks. The 
second improvement was the affinity ranking for a dataset 
with diverse chemical properties. In previous challenges, 
our approaches performed well on free energy predictions 
but not on affinity ranking. In GC4, we successfully unified 
our newly established models, i.e., differential geometry and 
algebraic graph, and our well-known algebraic topology into 
powerful and robustness convolutional neural network mod-
els for binding affinity predictions.

In terms of efficiency, at this point, our MathDL models 
are quite automated. With sufficient computer resources, our 
MathDL models can finish all the GC4 competition tasks in 
a week or so.

Fig. 9   Performance comparison of D3R GC4 participants on free energy set for CatS contest in term of centered RMSE RMSEc . Our submis-
sions are highlighted in the red color, in which our top-ranked prediction is ar5p6 with RMSEc = 0.47 kcal/mol
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It is worth noting that our models for GC4 was the less 
competitive performance in BACE affinity ranking and free 
energy predictions. Additionally, it seems that our dock-
ing model did not upgrade when the co-crystal structures 
became available. These issues are under our investigation.
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